KR20220122465A - Oxide sputtering target and production method thereof, and oxide thin film - Google Patents

Oxide sputtering target and production method thereof, and oxide thin film Download PDF

Info

Publication number
KR20220122465A
KR20220122465A KR1020210150402A KR20210150402A KR20220122465A KR 20220122465 A KR20220122465 A KR 20220122465A KR 1020210150402 A KR1020210150402 A KR 1020210150402A KR 20210150402 A KR20210150402 A KR 20210150402A KR 20220122465 A KR20220122465 A KR 20220122465A
Authority
KR
South Korea
Prior art keywords
sputtering target
oxide
moo
oxide sputtering
xrd
Prior art date
Application number
KR1020210150402A
Other languages
Korean (ko)
Inventor
게이 무네야스
아츠시 나라
Original Assignee
제이엑스금속주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이엑스금속주식회사 filed Critical 제이엑스금속주식회사
Publication of KR20220122465A publication Critical patent/KR20220122465A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

Disclosed is an oxide sputtering target containing tungsten (W), molybdenum (Mo), and oxygen (O) and having a relative density of 90% or more. The present invention is to provide an oxide sputtering target from which a film having a high work function can be formed.

Description

산화물 스퍼터링 타깃 및 그 제조 방법 그리고 산화물 박막{OXIDE SPUTTERING TARGET AND PRODUCTION METHOD THEREOF, AND OXIDE THIN FILM}Oxide sputtering target, manufacturing method thereof, and oxide thin film

본 발명은, 일함수가 높은 산화물 박막을 성막하는 데 적합한, 산화물 스퍼터링 타깃 및 그 제조 방법 그리고 산화물 박막에 관한 것이다.The present invention relates to an oxide sputtering target suitable for forming an oxide thin film having a high work function, a method for manufacturing the same, and an oxide thin film.

유기 일렉트로루미네센스(유기 EL) 소자 등의 발광 소자에서의 투명 전극(양극)으로서 ITO(인듐·주석 산화물)가 사용되고 있다. 양극에 전압을 인가함으로써 주입된 정공은, 정공 수송층을 경유하여 발광층에서 전자와 결합한다. 근년, 정공 수송층에 대한 전하 주입 효율을 향상시킬 목적으로, ITO보다도 일함수가 높은 산화물을 사용하는 것이 연구되고 있다. 예를 들어, 비특허문헌 1에는, 유기 반도체 디바이스에서의 산화물 박막으로서, TiO2, MoO2, CuO, NiO, WO3, V2O5, CrO3, Ta2O5, Co3O4 등의 높은 일함수인 것이 보고되고 있다.ITO (indium tin oxide) is used as a transparent electrode (anode) in light emitting elements, such as an organic electroluminescent (organic EL) element. Holes injected by applying a voltage to the anode are coupled with electrons in the light emitting layer via the hole transport layer. In recent years, for the purpose of improving the charge injection efficiency into the hole transport layer, the use of an oxide having a higher work function than ITO has been studied. For example, in Non-Patent Document 1, as an oxide thin film in an organic semiconductor device, TiO 2 , MoO 2 , CuO, NiO, WO 3 , V 2 O 5 , CrO 3 , Ta 2 O 5 , Co 3 O 4 , etc. It has been reported that the high work function of

비특허문헌 1에 나타낸 바와 같이, WO3은 비교적 높은 일함수를 갖는다. 이 WO3막은 산화텅스텐 소결체로 이루어지는 스퍼터링 타깃을 사용하여 성막할 수 있지만(특허문헌 1, 2), WO3 단상에서는 소결체의 고밀도화가 곤란하고, 체적 저항률이 높기 때문에, DC 스퍼터링이 곤란하였다. 그 때문에, 특허문헌 2에는, WO3에 WO2를 첨가함으로써, 소결체의 고밀도화를 달성하고, 도전성을 높여서 DC 스퍼터링을 가능하게 하는 것이 개시되어 있다. 또한, 특허문헌 3, 4에는, W와 Mo의 산화물을 포함하는 산화물 스퍼터링 타깃이 개시되어 있다.As shown in Non-Patent Document 1, WO 3 has a relatively high work function. This WO 3 film can be formed using a sputtering target made of a tungsten oxide sintered body (Patent Documents 1 and 2), but in the WO 3 single phase, it is difficult to increase the density of the sintered body and the volume resistivity is high, so DC sputtering was difficult. Therefore, by adding WO2 to WO3 by patent document 2 , densification of a sintered compact is achieved, electroconductivity is improved, and enabling DC sputtering is disclosed. Further, Patent Documents 3 and 4 disclose an oxide sputtering target containing an oxide of W and Mo.

일본 특허 공개 평3-150357호 공보Japanese Patent Laid-Open No. 3-150357 일본 특허 공개 제2013-76163호 공보Japanese Patent Laid-Open No. 2013-76163 일본 특허 공개 제2017-25348호 공보Japanese Patent Laid-Open No. 2017-25348 일본 특허 공개 제2004-190120호 공보Japanese Patent Laid-Open No. 2004-190120

Mark T Greiner and Zheng-Hong Lu, "Thin-Film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces", NPG Asia Materials (2013) 5, e55, 19 July 2013Mark T Greiner and Zheng-Hong Lu, “Thin-Film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces”, NPG Asia Materials (2013) 5, e55, 19 July 2013

상술한 바와 같이, 유기 EL 등의 유기 반도체 디바이스를 구성하는 막으로서, 일함수가 높은 산화물막이 요구되고 있다. WO3, MoO3은 모두 높은 일함수를 갖는 재료로서 알려져 있지만, 양쪽 재료 모두 단상이며 고밀도의 스퍼터링 타깃을 제조하는 것이 곤란하였다. 이러한 점에서 본 발명은, 상술한 과제를 해결하기 위해서 제안된 것으로서, 일함수가 높은 막을 성막할 수 있는 고밀도의 스퍼터링 타깃을 제공하는 것을 과제로 한다.As described above, as a film constituting an organic semiconductor device such as organic EL, an oxide film having a high work function is required. Both WO 3 and MoO 3 are known as materials having a high work function, but both materials are single-phase and it has been difficult to manufacture a high-density sputtering target. In this regard, the present invention has been proposed in order to solve the above problems, and an object of the present invention is to provide a high-density sputtering target capable of forming a film having a high work function.

본 발명은, 상기 과제를 해결하기 위해서 제안된 것으로, 그 과제를 해결할 수 있는 본 발명의 일 양태는, 텅스텐(W), 몰리브덴(Mo), 및 산소(O)를 포함하는 산화물 스퍼터링 타깃이며, 상대 밀도가 90% 이상인 것을 특징으로 하는 산화물 스퍼터링 타깃이다.The present invention has been proposed to solve the above problems, and an aspect of the present invention that can solve the problems is an oxide sputtering target containing tungsten (W), molybdenum (Mo), and oxygen (O), It is an oxide sputtering target characterized by a relative density of 90 % or more.

본 발명에 따르면, 상대 밀도가 높은 산화물 스퍼터링 타깃을 제조할 수 있으며, 이와 같은 산화물 스퍼터링 타깃을 사용하여 일함수가 높은 산화물 박막을 제조할 수 있다는 우수한 효과를 갖는다.According to the present invention, it is possible to manufacture an oxide sputtering target having a high relative density, and it has an excellent effect that an oxide thin film having a high work function can be manufactured using such an oxide sputtering target.

본 발명의 실시 형태에 따른 산화물 스퍼터링 타깃은, 텅스텐(W), 몰리브덴(Mo), 및 산소(O)를 포함한다. 단, 당해 스퍼터링 타깃에는, 원료나 제조 과정 등에서 혼입되는 불순물이 포함되는 경우가 있고, 성막한 박막의 일함수 등에 특별한 영향을 미치지 않는 양의 불순물을 포함하고 있어도 되며, 불순물의 합계 함유량이 0.1wt% 이하이면 특별히 문제가 없다고 말할 수 있다.The oxide sputtering target according to the embodiment of the present invention contains tungsten (W), molybdenum (Mo), and oxygen (O). However, the sputtering target may contain impurities mixed in raw materials or manufacturing processes, etc. % or less, it can be said that there is no problem in particular.

본 발명의 실시 형태에 따른 산화물 스퍼터링 타깃은, 상대 밀도가 90% 이상인 것을 특징으로 하는 것이다. 보다 바람직하게는 92% 이상, 더욱 바람직하게는 94% 이상이다. 이와 같은 고밀도의 스퍼터링 타깃은, 스퍼터링 시에 크랙이나 균열 등을 방지할 수 있어, 성막 시의 파티클을 저감시킬 수 있다.An oxide sputtering target according to an embodiment of the present invention is characterized in that the relative density is 90% or more. More preferably, it is 92 % or more, More preferably, it is 94 % or more. Such a high-density sputtering target can prevent cracks, cracks, etc. at the time of sputtering, and can reduce the particle|grains at the time of film-forming.

또한, 스퍼터링 타깃의 상대 밀도는, 체적 저항률과도 관련되고, 상대 밀도의 값이 낮아지면, 체적 저항률이 높아지는 경향이 있다. 그 때문에, 체적 저항률을 낮추기 위해서는, 스퍼터링 타깃의 W와 Mo의 함유 비율 외에, 스퍼터링 타깃의 제조 방법이나 제조 조건을 엄격하게 조정하여, 상대 밀도를 높일 필요가 있다.Moreover, the relative density of a sputtering target is also related with volume resistivity, and when the value of a relative density becomes low, there exists a tendency for a volume resistivity to become high. Therefore, in order to lower a volume resistivity, it is necessary to strictly adjust the manufacturing method and manufacturing conditions of a sputtering target other than the content rate of W and Mo of a sputtering target, and to raise a relative density.

본 발명의 실시 형태에 따른 산화물 스퍼터링 타깃은, 몰리브덴의 산화물을 함유하고, 상기 몰리브덴 산화물은 MoO2로서 존재하고 있는 것이 바람직하다. 몰리브덴 산화물에는, MoO2와 MoO3이 있지만, MoO2는 MoO3에 비하여, 밀도가 높고, 도전성도 높기 때문에, MoO3이 아니라, MoO2로서 존재시키는 것이, 고밀도이면서, 또한, 저저항의 산화물 스퍼터링 타깃을 제조함에 있어서 중요하다.It is preferable that the oxide sputtering target which concerns on embodiment of this invention contains the oxide of molybdenum, and that the said molybdenum oxide exists as MoO2. Molybdenum oxide includes MoO 2 and MoO 3 , but MoO 2 has a higher density and higher conductivity than MoO 3 , so it is not MoO 3 but MoO 2 to exist as MoO 2 is a high-density and low-resistance oxide It is important in manufacturing sputtering targets.

바람직한 실시 형태는, MoO2 상의 (110)면에 귀속하는 XRD 피크 강도를 IMoO2로 하고, 백그라운드의 XRD 평균 강도를 IBG로 했을 때에, IMoO2/IBG가 3.0 이상으로 되는 것이다.In a preferred embodiment, when the XRD peak intensity attributed to the (110) plane of the MoO 2 phase is I MoO 2 , and the XRD average intensity of the background is I BG , I MoO 2 /I BG is 3.0 or more.

본원 명세서에 있어서, MoO2 상의 (110)면에 귀속하는 XRD 피크 강도 IMoO2, 백그라운드의 XRD 평균 강도 IBG는 이하와 같이 정의된다.In the present specification, the XRD peak intensity I MoO2 attributed to the (110) plane of the MoO 2 phase, and the XRD average intensity I BG of the background are defined as follows.

IMoO2: 25.8°≤2θ≤ 26.3°의 범위에서의 XRD 피크 강도I MoO2 : XRD peak intensity in the range of 25.8°≤2θ≤26.3°

IBG: 20.0°≤2θ<22.0°의 범위에서의 XRD 평균 강도I BG : XRD average intensity in the range of 20.0°≤2θ<22.0°

본 발명의 실시 형태에 따른 산화물 스퍼터링 타깃은, 텅스텐 산화물을 함유하고, 텅스텐 산화물은 WO3으로서 존재하고 있는 것이 바람직하다. 텅스텐 산화물은, WO3이 안정 산화물이지만, 산소 결손된, WO2, WO2.72∼2.75, WO2.9 등이 존재한다. 산소 결손된 텅스텐 산화물에서는, 타깃의 상대 밀도가 올라가기 어렵고, 또한 일함수가 저하될 가능성이 높은 점에서, 타깃의 고밀도화, 또한, 박막의 높은 일함수를 얻기 위해서는, WO3으로서 존재하고 있는 것이 바람직하다.It is preferable that the oxide sputtering target which concerns on embodiment of this invention contains tungsten oxide, and that tungsten oxide exists as WO3 . As for tungsten oxide, WO 3 is a stable oxide, but there are oxygen deficient oxides such as WO 2 , WO 2.72 to 2.75 , WO 2.9 , and the like. In oxygen - deficient tungsten oxide, the relative density of the target is difficult to increase and the work function is highly likely to decrease. desirable.

바람직한 실시 형태는, WO3 상의 (202)면에 귀속하는 XRD 피크 강도를 IWO3으로 하고, 백그라운드의 XRD 평균 강도를 IBG로 했을 때에, IwO3/IBG가 3.0 이상이다. 본원 명세서에 있어서, WO3 상의 (202)면에 귀속하는 XRD 피크 강도 IWO3, 백그라운드의 XRD 평균 강도 IBG는 이하와 같이 정의된다.In a preferred embodiment, when the XRD peak intensity attributed to the (202) plane on WO 3 is I WO 3 , and the XRD average intensity of the background is I BG , Iw O 3 /I BG is 3.0 or more. In the present specification, the XRD peak intensity I WO3 attributed to the (202) plane on WO 3 and the XRD average intensity I BG of the background are defined as follows.

IWO3: 33.5°≤2θ≤ 34.5°의 범위에서의 XRD 피크 강도I WO3 : XRD peak intensity in the range of 33.5°≤2θ≤34.5°

IBG: 20.0°≤2θ<22.0°의 범위에서의 XRD 평균 강도I BG : XRD average intensity in the range of 20.0°≤2θ<22.0°

본 발명의 실시 형태에 따른 산화물 스퍼터링 타깃은, W와 Mo의 함유 비율이 원자%로 0.10≤W/(W+Mo)<1.0을 충족하는 것이 바람직하다. W와 Mo의 함유 비율이 원자%로 W/(W+Mo)이 0.10 미만이면, 본 실시 형태에 따른 산화물 스퍼터링 타깃을 사용하여 형성한 산화물막에 있어서, 원하는 일함수를 얻지 못하는 경우가 있다. 한편, W/(W+Mo)=1.0(WO3 단상)이면, 고밀도의 산화물 스퍼터링 타깃을 얻는 것이 곤란해진다. 보다 바람직하게는, W와 Mo의 함유 비율이 원자%로 0.15≤W/(W+Mo)≤ 0.85이다.In the oxide sputtering target according to the embodiment of the present invention, the content ratio of W and Mo preferably satisfies 0.10≤W/(W+Mo)<1.0 in atomic%. When the content ratio of W and Mo is atomic% and W/(W+Mo) is less than 0.10, in the oxide film formed using the oxide sputtering target according to the present embodiment, the desired work function may not be obtained. On the other hand, if W/(W+Mo)=1.0 (WO 3 single phase), it becomes difficult to obtain a high-density oxide sputtering target. More preferably, the content ratio of W and Mo is 0.15≤W/(W+Mo)≤0.85 in atomic %.

본 발명의 실시 형태에 따른 산화물 스퍼터링 타깃은, 체적 저항률이 1Ω·㎝ 이하인 것이 바람직하다. 보다 바람직하게는 0.5Ω·㎝ 이하, 더욱 바람직하게는 0.1Ω·㎝ 이하이다. 이에 의해, 고속 성막이 가능한 DC 스퍼터링을 안정적으로 실시할 수 있다. 상술한 바와 같이, 본 실시 형태에 따른 산화물 스퍼터링 타깃 중, 산화몰리브덴은 MoO2로 되어 있으며, MoO2는 MoO3에 비하여 산소 결손되어 있기 때문에 체적 저항률을 낮게 할 수 있다. 또한, Mo의 함유 비율에 의해, 체적 저항률은 변동되고, Mo의 함유 비율이 증가하면, 체적 저항률이 낮아지는 경향이 있다.It is preferable that the oxide sputtering target which concerns on embodiment of this invention has a volume resistivity of 1 ohm*cm or less. More preferably, it is 0.5 ohm-cm or less, More preferably, it is 0.1 ohm-cm or less. Thereby, DC sputtering in which high-speed film-forming is possible can be performed stably. As mentioned above, in the oxide sputtering target which concerns on this embodiment, since molybdenum oxide becomes MoO2 and MoO2 has oxygen deficiency compared with MoO3, volume resistivity can be made low. Moreover, the volume resistivity fluctuates with the content rate of Mo, and when the content rate of Mo increases, there exists a tendency for a volume resistivity to become low.

본 발명의 다른 실시 형태에 따른 산화물 박막은, 상기 산화물 스퍼터링 타깃을 사용하여 성막되는 박막이며, 일함수가 4.5eV 이상인 것을 특징으로 한다. 이와 같은 일함수가 높은 막은, 예를 들어 유기 EL, 유기 태양 전지 등의 유기 반도체 디바이스에 있어서 정공 수송층에 대한 전하 주입 효율을 향상시킬 수 있어, 발광 효율 혹은 변환 효율 등의 향상을 기대할 수 있다.An oxide thin film according to another embodiment of the present invention is a thin film formed using the oxide sputtering target, and has a work function of 4.5 eV or more. A film having such a high work function can improve the charge injection efficiency into the hole transport layer in, for example, organic semiconductor devices such as organic EL and organic solar cells, and can be expected to improve luminous efficiency or conversion efficiency.

(산화물 스퍼터링 타깃의 제조 방법)(Manufacturing method of oxide sputtering target)

이하에, 본 실시 형태에 따른 산화물 스퍼터링 타깃의 제조 방법을 나타낸다. 단, 이하의 제조 조건 등은 개시한 범위에 한정되는 것이 아니며, 얼마간의 생략이나 변경을 행해도 되는 것은 명백하다.Below, the manufacturing method of the oxide sputtering target which concerns on this embodiment is shown. However, the following manufacturing conditions etc. are not limited to the disclosed range, It is clear that some abbreviation|omission and change may be performed.

원료 분말로서, 산화텅스텐(WO3) 분말, 산화몰리브덴(MoO2) 분말을 준비하고, 이들 원료 분말을 원하는 조성비가 되도록 칭량한다. 이때, 산화몰리브덴은 MoO3이 아니라, MoO2를 사용하는 것이 바람직하다. 이어서, 볼 직경이 0.5 내지 3.0㎜인 지르코니아 비즈를 사용하여, 습식 분쇄를 행한다. 그리고, 입경의 중앙값이 0.1 내지 5.0㎛가 될 때까지 분쇄를 행하고, 그 후, 조립을 행한다.As the raw material powder, tungsten oxide (WO 3 ) powder and molybdenum oxide (MoO 2 ) powder are prepared, and these raw material powders are weighed so as to have a desired composition ratio. At this time, the molybdenum oxide is not MoO 3 It is preferable to use MoO 2 . Next, wet grinding is performed using zirconia beads having a ball diameter of 0.5 to 3.0 mm. Then, pulverization is performed until the median particle size is set to 0.1 to 5.0 µm, and then granulation is performed.

다음으로, 얻어진 조립 혼합분을 진공 또는 불활성 가스(Ar 등) 분위기, 800℃ 이상 1000℃ 이하에서 핫 프레스 소결을 행한다. 소결 온도가 800℃ 미만이면, 고밀도의 소결체를 얻지 못하고, 한편, 1000℃ 초과이면, 입자가 조대화하여, 크랙이 발생하기 때문에 바람직하지 않다. 또한, 소결 시간은, 1 내지 10시간으로 하는 것이 바람직하다. 그 후, 얻어진 소결체를 타깃 형상으로 절삭, 연마하거나 하여, 스퍼터링 타깃을 제작할 수 있다.Next, hot press sintering of the obtained granulated mixed powder is performed in a vacuum or an inert gas (Ar, etc.) atmosphere in 800°C or higher and 1000°C or lower. If the sintering temperature is less than 800°C, a high-density sintered body cannot be obtained, whereas if it is more than 1000°C, the particles become coarse and cracks are generated, which is not preferable. In addition, it is preferable that sintering time shall be 1 to 10 hours. Then, a sputtering target can be produced by cutting and grinding|polishing the obtained sintered compact into a target shape.

본원 명세서에 있어서, 스퍼터링 타깃 및 박막의 각종 물성 분석 방법 등을이하에 나타낸다.In this specification, sputtering target and various physical property analysis methods of thin films, etc. are shown below.

(스퍼터링 타깃의 성분 조성)(Component composition of sputtering target)

스퍼터링 타깃의 성분 조성의 분석은, 이하의 장치를 사용할 수 있다.The following apparatus can be used for analysis of the component composition of a sputtering target.

장치: SII사 제조 SPS3500DDDevice: SPS3500DD manufactured by SII

방법: ICP-OES(고주파 유도 결합 플라스마 발광 분석법)Method: ICP-OES (High Frequency Inductively Coupled Plasma Emission Assay)

또한, 스퍼터링 타깃의 성분 조성은, 원료의 조성 비율과 동일하다고 간주할 수 있다. 본 실시 형태에 따른 스퍼터링 타깃의 제조 프로세스에 있어서, 특정한 산화물만이 손실되는 공정은 없으며, 조성 비율의 변화가 적다고 생각되기 때문이다.In addition, it can be considered that the component composition of a sputtering target is the same as the composition ratio of a raw material. It is because there is no process in which only a specific oxide is lost in the manufacturing process of the sputtering target which concerns on this embodiment, and it is because there is little change of a composition ratio.

(스퍼터링 타깃의 X선 회절 분석에 대하여)(About X-ray diffraction analysis of sputtering target)

스퍼터링 타깃의 X선 회절 분석(XRD)은, 이하의 방법에 의해 행한다.X-ray diffraction analysis (XRD) of the sputtering target is performed by the following method.

장치: 리가쿠사 제조 SmartLabDevice: SmartLab manufactured by Rigaku

관구: Cu-Kα선District: Cu-Kα

관전압: 40㎸Tube voltage: 40kV

전류: 30㎃Current: 30mA

측정 방법: 2θ-θ 반사법Measurement method: 2θ-θ reflection method

스캔 속도: 20.0°/분Scan Rate: 20.0°/min

샘플링 간격: 0.01°Sampling Interval: 0.01°

(스퍼터링 타깃의 체적 저항률)(volume resistivity of sputtering target)

스퍼터링 타깃의 체적 저항률은, 스퍼터링 타깃의 표면을 5점(중심 1점, 반경의 1/2의 개소를 90도 간격으로 4점) 측정하고, 그것들의 평균값으로 하였다. 측정에는, 이하의 장치를 사용한다.The volume resistivity of the sputtering target measured the surface of the sputtering target at 5 points (4 points|pieces at a 90-degree space|interval for the point of 1/2 of a center point and a radius), and made them average value. For the measurement, the following apparatus is used.

장치: NPS사 제조 저항률 측정기 Σ-5+Apparatus: resistivity measuring instrument Σ-5+ manufactured by NPS

방식: 정전류 인가 방식Method: Constant current application method

방법: 직류 4탐침법Method: DC 4-probe method

(스퍼터링 타깃의 상대 밀도에 대하여)(About the relative density of the sputtering target)

상대 밀도(%)=아르키메데스 밀도/진밀도×100Relative density (%) = Archimedes density / true density x 100

아르키메데스 밀도: 스퍼터링 타깃으로부터 소편을 잘라내어, 그 소편으로부터 아르키메데스법을 이용하여 밀도를 산출한다.Archimedes density: A small piece is cut out from a sputtering target, and a density is computed from the small piece using the Archimedes method.

진밀도: 원료의 조성 비율로 계산한 W, Mo의 원자비를, 스퍼터링 타깃의 W, Mo의 원자비로 간주하고, 그 원자비로부터, W의 WO3 환산 중량을 a(wt%), Mo의 MoO2 환산 중량을 b(wt%), WO3, MoO2의 이론 밀도를 각각 dWO3, dMoO2로 하여, 진밀도(g/㎤)=100/(a/dWO3+b/dMoO2)를 계산한다. 또한, WO3의 이론 밀도를 dWO3=7.16g/㎤, MoO2의 이론 밀도 dMoO2=6.47g/㎤로 한다.True density: The atomic ratio of W and Mo calculated by the composition ratio of the raw material is regarded as the atomic ratio of W and Mo of the sputtering target, and from the atomic ratio, the WO 3 conversion weight of W is a (wt%), Mo of MoO 2 converted weight b(wt%), WO 3 , and MoO 2 theoretical density d WO3 and d MoO2 , respectively, the true density (g/cm 3 )=100/(a/d WO3 + b/d MoO2 ) ) is calculated. Further, the theoretical density of WO 3 is d WO3 =7.16 g/cm 3 , and the theoretical density of MoO 2 is d MoO 2 =6.47 g/cm 3 .

(산화물 박막의 일함수에 대하여)(About the work function of the oxide thin film)

산화물 박막의 일함수의 측정은, 유리 기판 혹은 Si 기판 상에 성막한 20×20㎜의 샘플을 제작하고, 이하의 조건에서 측정을 실시하였다. 또한, 일함수의 측정 결과는, 통상 샘플의 사이즈에 의존하지는 않는다.For the measurement of the work function of the oxide thin film, a sample of 20 x 20 mm formed on a glass substrate or a Si substrate was prepared, and the measurement was performed under the following conditions. In addition, the measurement result of the work function does not normally depend on the size of a sample.

방식: 대기 중 광전자 분광법Method: Atmospheric Photoelectron Spectroscopy

장치: 리켄케이키 제조 AC-5 장치Device: Riken Keiki AC-5 device

조건: 측정 가능한 일함수의 범위: 3.4eV 내지 6.2eVCondition: Range of measurable work function: 3.4 eV to 6.2 eV

광원 파워: 2000W Light source power: 2000W

실시예Example

이하, 실시예 및 비교예에 기초하여 설명한다. 또한, 본 실시예는 어디까지나 일례이며, 이 예에 의해 전혀 제한되는 것은 아니다. 즉, 본 발명은 청구범위에 의해서만 제한되는 것이며, 본 발명에 포함되는 실시예 이외의 다양한 변형을 포함하는 것이다.Hereinafter, it demonstrates based on an Example and a comparative example. In addition, this Example is an example to the last, and it is not restrict|limited at all by this example. That is, the present invention is limited only by the claims, and includes various modifications other than the embodiments included in the present invention.

(실시예 1)(Example 1)

WO3 분말과 MoO2 분말을 준비하고, 이들 분말을 WO3:MoO2=85:15(mol%)로 칭량하였다. 이어서, 0.5㎜의 지르코니아 비즈를 사용하여 3시간 습식 비즈 밀 혼합 분쇄를 실시하고, 메디안 직경 0.8㎛ 이하의 혼합 분말을 얻었다. 이어서, 이 혼합 분말을 소결 온도: 825℃, 최고 압력: 250kgf/㎠, 유지 시간: 6시간, 분위기: 아르곤의 조건에서 핫 프레스 소결을 행하고, 소결체를 제작하였다. 그 후, 이 소결체를 기계 가공하여 스퍼터링 타깃 형상으로 마무리하였다.WO 3 powder and MoO 2 powder were prepared, and these powders were weighed to WO 3 :MoO 2 =85:15 (mol%). Next, using 0.5 mm zirconia beads, the wet bead mill mixing and grinding was performed for 3 hours, and the mixed powder with a median diameter of 0.8 micrometer or less was obtained. Next, the mixed powder was subjected to hot press sintering under the conditions of sintering temperature: 825°C, maximum pressure: 250 kgf/cm 2 , holding time: 6 hours, and atmosphere: argon to produce a sintered body. Then, this sintered compact was machined and finished in the shape of a sputtering target.

실시예 1에서 얻어진 스퍼터링 타깃에 대하여 평가한 결과, 상대 밀도는, 94.4%이며, 체적 저항률은 75.5mΩ·㎝였다. 또한, 스퍼터링 타깃에 대하여 X선 회절 분석(XRD)을 행한 결과, IMoO2/IBG는 7.1이었다. 이상의 결과를 표 1에 나타낸다. 또한, 스퍼터링 타깃의 성분 조성은, 원료의 조성 비율과 동일하게 간주하여 계산하였다.As a result of evaluating the sputtering target obtained in Example 1, the relative density was 94.4%, and the volume resistivity was 75.5 mΩ·cm. Further, as a result of performing X-ray diffraction analysis (XRD) on the sputtering target, I MoO 2 /I BG was 7.1. Table 1 shows the above results. In addition, the component composition of the sputtering target was calculated by considering the same as the composition ratio of the raw material.

Figure pat00001
Figure pat00001

(실시예 2 내지 4)(Examples 2 to 4)

WO3 분말과 MoO2 분말을 준비하고, 이들 분말을 표 1에 기재한 몰비가 되도록 칭량하였다. 이어서, 0.5㎜의 지르코니아 비즈를 사용하여 3시간 습식 비즈 밀 혼합 분쇄하고, 메디안 직경 0.8㎛ 이하의 혼합 분말을 얻었다. 이어서, 이 혼합 분말을 소결 온도: 850℃ 내지 875℃, 최고 압력: 250kgf/㎠, 유지 시간: 6시간, 분위기: 아르곤의 조건에서 핫 프레스 소결을 행하여, 소결체를 제작하였다. 그 후, 이 소결체를 기계 가공하여 스퍼터링 타깃 형상으로 마무리하였다.WO 3 powder and MoO 2 powder were prepared, and these powders were weighed so as to have a molar ratio shown in Table 1. Then, using 0.5 mm zirconia beads, the wet bead mill mixing-pulverization was carried out for 3 hours, and the mixed powder with a median diameter of 0.8 micrometer or less was obtained. Next, the mixed powder was subjected to hot press sintering under the conditions of a sintering temperature: 850°C to 875°C, a maximum pressure: 250 kgf/cm 2 , a holding time: 6 hours, and an atmosphere: argon to produce a sintered body. Then, this sintered compact was machined and finished in the shape of a sputtering target.

실시예 2 내지 4의 스퍼터링 타깃은, 모두 상대 밀도가 94% 이상이며, 체적 저항률은 1.0Ω·㎝ 이하였다. 또한, 스퍼터링 타깃에 대하여 X선 회절 분석(XRD)을 행한 결과, IMoO2/IBG는 3.0 이상이었다. 또한, 스퍼터링 타깃의 성분 조성은, 원료의 조성 비율과 동일하다고 간주하여 계산하였다.All of the sputtering targets of Examples 2-4 had a relative density of 94 % or more, and the volume resistivity was 1.0 ohm*cm or less. Moreover, as a result of performing X-ray diffraction analysis (XRD) with respect to a sputtering target, I MoO2 /I BG was 3.0 or more. In addition, the component composition of a sputtering target was calculated as being considered the same as the composition ratio of a raw material.

(비교예 1)(Comparative Example 1)

비교예 1에서는, WO3 분말만으로 하였다. WO3 분말을 0.5㎜의 지르코니아 비즈를 사용하여 3시간 습식 비즈 밀 혼합 분쇄하고, 메디안 직경 0.8㎛ 이하의 혼합 분말을 얻었다. 이어서, 이 혼합 분말을 소결 온도: 940℃, 최고 압력: 250kgf/㎠, 유지 시간: 10시간, 분위기: 산소의 조건에서, 상압 소결을 행하고, 소결체를 제작하였다. 그 후, 이 소결체를 기계 가공하여 스퍼터링 타깃 형상으로 마무리하였다.In Comparative Example 1, only WO 3 powder was used. WO 3 powder was mixed and pulverized by a wet bead mill using 0.5 mm zirconia beads for 3 hours to obtain a mixed powder having a median diameter of 0.8 µm or less. Next, the mixed powder was sintered under normal pressure under conditions of sintering temperature: 940°C, maximum pressure: 250 kgf/cm 2 , holding time: 10 hours, and atmosphere: oxygen to prepare a sintered body. Then, this sintered compact was machined and finished in the shape of a sputtering target.

비교예 1의 스퍼터링 타깃은, 상대 밀도가 94%이며, 체적 저항률은 1.6×104Ω·㎝였다. 또한, 스퍼터링 타깃에 대하여 X선 회절 분석(XRD)을 행한 결과, IMoO2/IBG는 1.9였다. 또한, 스퍼터링 타깃의 성분 조성은, 원료의 조성 비율과 동일하다고 간주하여 계산하였다.The sputtering target of Comparative Example 1 had a relative density of 94% and a volume resistivity of 1.6×10 4 Ω·cm. Moreover, as a result of performing X-ray diffraction analysis (XRD) with respect to a sputtering target, I MoO2 /I BG was 1.9. In addition, the component composition of a sputtering target was calculated as being considered the same as the composition ratio of a raw material.

다음으로, 실시예 1 내지 4의 스퍼터링 타깃을 사용하여, 스퍼터 성막을 행하였다. 또한, 성막 조건은 이하와 같이 하였다. 얻어진 스퍼터막에 대하여, 일함수를 측정한 결과, Ar 가스하에서는 4.62 내지 4.76eV이고, Ar 가스+2% O2하에서는 4.71 내지 4.76eV이고, Ar 가스+6% O2하에서는 4.74 내지 4.77eV이며, 원하는 높은 일함수가 얻어졌다. 이상의 결과를 표 1에 나타낸다. 또한, 스퍼터막의 성분 조성은, 원료 비율과 동일하다고 간주하여 계산하였다.Next, sputtering film formation was performed using the sputtering target of Examples 1-4. In addition, film-forming conditions were carried out as follows. As a result of measuring the work function of the obtained sputtered film, it was 4.62 to 4.76 eV under Ar gas, 4.71 to 4.76 eV under Ar gas +2% O 2 , and 4.74 to 4.77 eV under Ar gas +6% O 2 , The desired high work function was obtained. Table 1 shows the above results. In addition, the component composition of a sputter|spatter film was calculated considering the same as the raw material ratio.

(성막 조건)(Film formation conditions)

장치: 캐논 아네르바 제조 SPL-500 스퍼터 장치Device: SPL-500 sputter device manufactured by Canon Anerva

기판: 실리콘 기판Substrate: Silicon Substrate

성막 파워 밀도: 2.74W/㎠Film formation power density: 2.74 W/cm2

성막 분위기: Ar, Ar+2%O2, Ar+6%O2 Film formation atmosphere: Ar, Ar+2%O 2 , Ar+6%O 2

가스압: 0.5PaGas pressure: 0.5Pa

막 두께: 50㎚Film thickness: 50 nm

본 발명의 실시 형태에 따른 산화물 스퍼터링 타깃은, 상대 밀도가 높아, 성막 시에 타깃에 균열이나 크랙이 발생하는 경우가 없기 때문에, 실용적, 상업적 레벨로 사용할 수 있다. 또한, 체적 저항률이 낮아, DC 스퍼터링이 가능하다. 본 발명은, 특히 유기 일렉트로루미네센스 소자 등의 발광 소자에서의 투명 전극을 형성하기 위하여 유용하다.The oxide sputtering target according to the embodiment of the present invention has a high relative density, and cracks or cracks do not occur in the target during film formation, so it can be used on a practical and commercial level. Moreover, the volume resistivity is low, and DC sputtering is possible. The present invention is particularly useful for forming a transparent electrode in a light emitting device such as an organic electroluminescent device.

Claims (10)

텅스텐(W), 몰리브덴(Mo), 및 산소(O)를 포함하는 산화물 스퍼터링 타깃이며, 상대 밀도가 90% 이상인 것을 특징으로 하는 산화물 스퍼터링 타깃.An oxide sputtering target containing tungsten (W), molybdenum (Mo), and oxygen (O), the oxide sputtering target having a relative density of 90% or more. 제1항에 있어서,
MoO2인 몰리브덴 산화물을 함유하는 산화물 스퍼터링 타깃.
The method of claim 1,
Oxide sputtering target containing molybdenum oxide as MoO 2 .
제2항에 있어서,
MoO2 상의 (110)면에 귀속하는 XRD 피크 강도를 IMoO2로 하고, 백그라운드의 XRD 평균 강도를 IBG로 했을 때, IMoO2/IBG가 3.0 이상인 것을 특징으로 하는 산화물 스퍼터링 타깃.
3. The method of claim 2,
An oxide sputtering target characterized in that I MoO2 /I BG is 3.0 or more when the XRD peak intensity attributable to the (110) plane of the MoO 2 phase is I MoO 2 , and the XRD average intensity of the background is I BG .
제1항 내지 제3항 중 어느 한 항에 있어서,
WO3인 텅스텐 산화물을 함유하는 산화물 스퍼터링 타깃.
4. The method according to any one of claims 1 to 3,
Oxide sputtering target containing tungsten oxide which is WO 3 .
제4항에 있어서,
WO3 상의 (202)면에 귀속하는 XRD 피크 강도를 IWO3으로 하고, 백그라운드의 XRD 평균 강도를 IBG로 했을 때, IWO3/IBG가 3.0 이상인 것을 특징으로 하는 산화물 스퍼터링 타깃.
5. The method of claim 4,
An oxide sputtering target characterized in that I WO3 /I BG is 3.0 or more when the XRD peak intensity attributable to the (202) plane on WO 3 is I WO3 and the XRD average intensity of the background is I BG .
제1항 내지 제5항 중 어느 한 항에 있어서,
W와 Mo의 함유 비율이 원자%로 0.10≤W/(W+Mo)<1.0을 충족하는 산화물 스퍼터링 타깃.
6. The method according to any one of claims 1 to 5,
Oxide sputtering target in which the content ratio of W and Mo satisfies 0.10≤W/(W+Mo)<1.0 in atomic%.
제1항 내지 제6항 중 어느 한 항에 있어서,
체적 저항률이 1Ω·㎝ 이하인 산화물 스퍼터링 타깃.
7. The method according to any one of claims 1 to 6,
An oxide sputtering target having a volume resistivity of 1 Ω·cm or less.
제1항 내지 제7항 중 어느 한 항에 기재된 산화물 스퍼터링 타깃의 제조 방법이며, 산화텅스텐 분말과 산화몰리브덴 분말을 혼합하고, 그 혼합분을 800℃ 이상 1000℃ 이하에서 핫 프레스 소결하여 제조하는 산화물 스퍼터링 타깃의 제조 방법.It is the manufacturing method of the oxide sputtering target in any one of Claims 1-7, The oxide produced by mixing tungsten oxide powder and molybdenum oxide powder, and hot press sintering the mixed powder at 800 degreeC or more and 1000 degrees C or less. A method of manufacturing a sputtering target. 제8항에 있어서,
상기 산화몰리브덴 분말로서, MoO2를 사용하는 산화물 스퍼터링 타깃의 제조 방법.
9. The method of claim 8,
The manufacturing method of the oxide sputtering target which uses MoO2 as said molybdenum oxide powder.
제1항 내지 제7항 중 어느 한 항에 기재된 산화물 스퍼터링 타깃을 사용하여 스퍼터 성막한 산화물 박막이며, 일함수가 4.5eV 이상인 산화물 박막.An oxide thin film formed by sputtering using the oxide sputtering target according to any one of claims 1 to 7, and having a work function of 4.5 eV or more.
KR1020210150402A 2021-02-26 2021-11-04 Oxide sputtering target and production method thereof, and oxide thin film KR20220122465A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2021-030722 2021-02-26
JP2021030722A JP7436409B2 (en) 2021-02-26 2021-02-26 Oxide sputtering target, its manufacturing method, and oxide thin film

Publications (1)

Publication Number Publication Date
KR20220122465A true KR20220122465A (en) 2022-09-02

Family

ID=82974414

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210150402A KR20220122465A (en) 2021-02-26 2021-11-04 Oxide sputtering target and production method thereof, and oxide thin film

Country Status (4)

Country Link
JP (1) JP7436409B2 (en)
KR (1) KR20220122465A (en)
CN (1) CN114959594A (en)
TW (1) TW202233867A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150357A (en) 1989-11-06 1991-06-26 Nippon Tungsten Co Ltd Target and production thereof
JP2004190120A (en) 2002-12-13 2004-07-08 Sony Corp Method of producing sputtering target, and sputtering target
JP2013076163A (en) 2011-09-15 2013-04-25 Mitsubishi Materials Corp Sputtering target and method for manufacturing the same
JP2017025348A (en) 2015-07-15 2017-02-02 三菱マテリアル株式会社 Mo-W OXIDE SPUTTERING TARGET, AND MANUFACTURING METHOD OF Mo-W OXIDE SPUTTERING TARGET

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4066101B2 (en) * 1997-10-17 2008-03-26 旭硝子株式会社 Low emissivity laminate manufacturing method
JP4492877B2 (en) * 2005-09-27 2010-06-30 日本新金属株式会社 Method for producing high purity molybdenum-tungsten alloy powder used as raw material powder for sputtering target
WO2008088076A1 (en) * 2007-01-17 2008-07-24 Sony Corporation Developing solution and method for production of finely patterned material
CN101550535B (en) * 2009-05-07 2010-09-29 上海交通大学 Method for preparing compound metal sulfide diamond composite membrane
JP6295429B2 (en) * 2014-07-11 2018-03-20 パナソニックIpマネジメント株式会社 Reactive sputtering formation method
EP3467140A1 (en) * 2017-10-06 2019-04-10 Plansee SE Target material for deposition of molybdenum oxide layers
JP6766276B2 (en) * 2018-08-09 2020-10-07 Jx金属株式会社 Oxide sputtering target and its manufacturing method, and oxide thin film formed by using the oxide sputtering target.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150357A (en) 1989-11-06 1991-06-26 Nippon Tungsten Co Ltd Target and production thereof
JP2004190120A (en) 2002-12-13 2004-07-08 Sony Corp Method of producing sputtering target, and sputtering target
JP2013076163A (en) 2011-09-15 2013-04-25 Mitsubishi Materials Corp Sputtering target and method for manufacturing the same
JP2017025348A (en) 2015-07-15 2017-02-02 三菱マテリアル株式会社 Mo-W OXIDE SPUTTERING TARGET, AND MANUFACTURING METHOD OF Mo-W OXIDE SPUTTERING TARGET

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Mark T Greiner and Zheng-Hong Lu, "Thin-Film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces", NPG Asia Materials (2013) 5, e55, 19 July 2013

Also Published As

Publication number Publication date
JP2022131665A (en) 2022-09-07
TW202233867A (en) 2022-09-01
JP7436409B2 (en) 2024-02-21
CN114959594A (en) 2022-08-30

Similar Documents

Publication Publication Date Title
KR102367663B1 (en) Oxide sputtering target, manufacturing method thereof, and oxide thin film formed using the sputtering target
JP5188182B2 (en) Sputtering target, transparent conductive film, and transparent electrode for touch panel
KR101006037B1 (en) Gallium oxide/zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film
CN110637102B (en) Oxide thin film and oxide sintered body for sputtering target for producing the same
KR20070088246A (en) Sintered body target for transparent conductive film fabrication, transparent conductive film fabricated by using the same, and transparent conductive base material comprising this conductive film formed thereon
KR101328895B1 (en) Indium oxide sintered body and indium oxide transparent conductive film
JPWO2009078329A1 (en) Zinc oxide sintered body and manufacturing method thereof, sputtering target, electrode
JP5735190B1 (en) Oxide sintered body, sputtering target, and oxide thin film
JP6229366B2 (en) Composite oxide sintered body and oxide transparent conductive film
KR20220122465A (en) Oxide sputtering target and production method thereof, and oxide thin film
JP7162647B2 (en) Cu-W-O sputtering target and oxide thin film
TWI837462B (en) Cu-W-O sputtering target and oxide film
KR102274149B1 (en) Sputtering target member, method for producing sputtering target member, sputtering target, sputtered film, method for producing sputtered film, film body, laminate structure, and organic el device
WO2022255266A1 (en) Sputtering target and method for manufacturing same
JP2013189331A (en) Zinc oxide-based sintered body and method for producing the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal