KR20220113066A - Organic-inorganic hybrid photocatalyst coating agent and its manufacturing method - Google Patents

Organic-inorganic hybrid photocatalyst coating agent and its manufacturing method Download PDF

Info

Publication number
KR20220113066A
KR20220113066A KR1020210016797A KR20210016797A KR20220113066A KR 20220113066 A KR20220113066 A KR 20220113066A KR 1020210016797 A KR1020210016797 A KR 1020210016797A KR 20210016797 A KR20210016797 A KR 20210016797A KR 20220113066 A KR20220113066 A KR 20220113066A
Authority
KR
South Korea
Prior art keywords
organic
acrylate
methacrylate
inorganic
metal
Prior art date
Application number
KR1020210016797A
Other languages
Korean (ko)
Inventor
김대승
이진우
김정현
Original Assignee
(주)그린시스템
(주)퓨리테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)그린시스템, (주)퓨리테크 filed Critical (주)그린시스템
Priority to KR1020210016797A priority Critical patent/KR20220113066A/en
Publication of KR20220113066A publication Critical patent/KR20220113066A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/002Catalysts characterised by their physical properties
    • B01J35/004Photocatalysts
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • B01J37/105Hydropyrolysis
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters

Abstract

An objective of the present invention is to provide a photocatalytic coating agent that adheres well to inorganic surfaces such as glass and surfaces of various materials such as plastic or metal, does not deteriorate activity while adhering to the various surfaces, maintains transparency of a coating surface and does not damage the coating surface or a base material. A sol-gel process of reactive alkoxysilane and metal alkoxide and a polymer polymerization process of acrylic monomer are simultaneously performed to prepare an organic-inorganic hybrid oligomer in which organic and inorganic structures are covalently bonded. The organic-inorganic hybrid type oligomer is added to an antibacterial metal-containing photocatalyst to prepare the organic-inorganic hybrid type photocatalyst coating agent that has excellent antimicrobial activity without damage to a surface of a coated material and can adhere to various substrate surfaces.

Description

유무기 하이브리드형 광촉매 코팅제 및 그 제조방법 {Organic-inorganic hybrid photocatalyst coating agent and its manufacturing method}Organic-inorganic hybrid photocatalyst coating agent and its manufacturing method {Organic-inorganic hybrid photocatalyst coating agent and its manufacturing method}

본 발명은 유무기 하이브리드형 광촉매 코팅제 및 그 제조방법에 관한 것이다. The present invention relates to an organic-inorganic hybrid type photocatalyst coating agent and a method for manufacturing the same.

광촉매에 의한 환경 정화는 무한한 광에너지를 활용할 수 있고 2차 오염 부산물을 방출하지 않는다는 점에서 미래의 에너지 저감 기술로 기대되고 있다. 광촉매는 특히 유기물질에 대한 강력한 산화환원 작용과 초친수성 및 자기정화(self cleaning) 능력이 우수하여 이를 응용한 산업제품이 점차 증가하는 추세이다. Environmental purification by photocatalyst is expected as a future energy reduction technology in that it can utilize infinite light energy and does not emit secondary pollution by-products. In particular, photocatalysts have a strong redox action on organic materials, and excellent superhydrophilicity and self-cleaning ability, so industrial products using them are gradually increasing.

그러나 현재까지 개발된 광촉매 물질은 몇 가지 해결해야 할 과제가 있다. 첫째, 반응속도가 느리고 분해반응이 불완전하다. 둘째, 효율이 낮다. 셋째, 특정 물질만을 처리할 수 있다. 넷째, 오염물질의 제거 분해속도가 서서히 저하된다. 다섯째, 광 조사가 약해지면 처리속도가 낮아진다.However, the photocatalytic materials developed so far have several problems to be solved. First, the reaction rate is slow and the decomposition reaction is incomplete. Second, the efficiency is low. Third, only certain substances can be processed. Fourth, the rate of removal and decomposition of contaminants is gradually reduced. Fifth, when light irradiation is weak, the processing speed is lowered.

상기 문제점을 극복하기 위하여 다양한 시도가 이루어지고 있는데, 일례로 TiO2 광촉매 입자에 Pt, Au, Ag, Pd, Ru, Co, Ni, Fe, Cu, Cr 등의 금속 성분을 첨가함으로써 산화 환원작용이 좀 더 쉽게 일어날 수 있도록 유도하는 방법이 있는데, 이때 첨가 금속이 전자 주개(donor)로서 작용하여 가전자대(valance band)의 전자들이 용이하게 여기(exiting) 될 수 있다. 또한, 광촉매에 흡착물질을 첨가하여 탈취 성능을 향상시키고, Ag, Cu 등의 항균금속을 첨가하여 광 조사가 없는 상태에서도 항균능을 나타낼 수 있도록 하는 방법 등 여러 가지 개선작업이 진행되고 있다. 유기 항균제의 경우 효과의 지속성(내구성)과 인체에 대한 안전성이 문제가 되고, 무기 항균제의 경우 표면의 투명도가 크게 떨어지게 되는 문제점이 있다. 또한, 은용액은 강화마루 표면에 도포 또는 표면 광택제에 첨가하여 처리하였을 경우 서서히 누런색으로 변해가는 황변 현상이 발생할 수 있어 사용량이 극히 제한되는 문제점이 있다.Various attempts have been made to overcome the above problems. For example, by adding metal components such as Pt, Au, Ag, Pd, Ru, Co, Ni, Fe, Cu, Cr to TiO 2 photocatalyst particles, oxidation-reduction action is There is a method of inducing it to occur more easily. In this case, the additive metal acts as an electron donor so that electrons in the valence band can be easily excited. In addition, various improvements such as a method for improving deodorization performance by adding an adsorbent to a photocatalyst, and adding an antibacterial metal such as Ag or Cu to exhibit antibacterial activity even in the absence of light irradiation are in progress. In the case of organic antibacterial agents, there is a problem in the durability (durability) of the effect and safety to the human body, and in the case of inorganic antibacterial agents, there is a problem in that the transparency of the surface is greatly reduced. In addition, when the silver solution is applied to the surface of the hardened floor or added to a surface polisher, a yellowing phenomenon gradually changing to a yellow color may occur, and thus the amount of the silver solution is extremely limited.

광촉매 코팅제는 주로 광촉매 입자와 바인더, 그리고 용매가 주성분으로 이루어져 있는데 이 중 바인더의 종류와 특성에 따라 코팅할 수 있는 소재의 범위가 결정될 뿐만 아니라 광촉매의 산화 활성도에도 지대한 영향을 미치게 된다.The photocatalyst coating agent mainly consists of photocatalyst particles, a binder, and a solvent. Among them, the range of materials that can be coated is determined according to the type and characteristics of the binder, and it has a great influence on the oxidation activity of the photocatalyst.

기존의 광촉매 코팅제는 광촉매 입자의 유기물에 대한 산화작용으로 인해 바인더 성분의 선택에 한계가 있었다. 즉, 금속류, 플라스틱류 등에 접착이 용이한 유기성분의 고분자 물질을 바인더 성분으로 채택할 경우, 코팅막 형성 후 광촉매 입자의 산화작용으로 인해 자체 바인더 성분이 손상되어 물성 변화 또는 변색으로 인해 코팅막의 내구성이 저하하고 광촉매의 활성도도 약해지는 문제가 발생하게 된다.Existing photocatalyst coating agents have limitations in the selection of binder components due to the oxidation action of photocatalyst particles on organic matter. That is, when an organic polymer material that is easy to adhere to metals, plastics, etc. is adopted as a binder component, its own binder component is damaged due to the oxidation action of the photocatalyst particles after the formation of the coating film, and the durability of the coating film is reduced due to changes in physical properties or discoloration. and the photocatalyst activity is also weakened.

이러한 이산화티타늄 광촉매는 그 특성상 유기물과의 직접 접촉을 피하기 위하여 코팅제에 포함되는 바인더 성분을 무기질 계열의 성분을 주로 사용하게 되는데 이는 결과적으로 유리의 표면과는 접착이 잘되나 금속류나 플라스틱류 등에는 부착력이 크게 떨어지는 문제가 발생하게 되는데, 이는 광촉매 코팅제와 금속류 및 플라스틱류의 부착을 위한 화학적 결합 작용기가 서로 다르기 때문이다. 그리하여 최근에는 유기 작용기를 가진 화합물을 단순 혼합하거나 또는 하이브리드화하여 금속류나 플라스틱류에 어느 정도 부착력을 확보하고 있는 경우도 있다. 또한, 광촉매 입자 자체를 다공질 구조로 캡슐화하여 이웃하는 바인더의 손상을 억제하는 방법도 있다. 이러한 어려움 때문에 경우에 따라서 1차 코팅(프라이머 코팅) 하고, 건조한 후 2차로 광촉매를 코팅하는 방법도 시행되고 있으나, 코팅 작업에 장시간이 소요되고 비용이 증가하는 문제가 있다. 그리하여 주로 실리카 등의 무기바인더를 사용하거나 약간의 변질을 각오하고 유기물질이 첨가된 유무기 하이브리드형(복합형) 바인더를 도입하기도 한다.In order to avoid direct contact with organic materials, the titanium dioxide photocatalyst mainly uses inorganic components as binder components. As a result, it has good adhesion to the surface of glass, but has good adhesion to metals and plastics. This large drop occurs because the chemical bonding functional group for attaching the photocatalyst coating agent to metals and plastics is different from each other. Therefore, in recent years, there are cases in which a certain amount of adhesion to metals or plastics is secured by simply mixing or hybridizing a compound having an organic functional group. In addition, there is a method of suppressing damage to a neighboring binder by encapsulating the photocatalyst particles themselves in a porous structure. Due to these difficulties, in some cases, a method of primary coating (primer coating) and then secondary coating of the photocatalyst after drying has been implemented, but there is a problem that the coating operation takes a long time and increases the cost. Therefore, inorganic binders such as silica are mainly used, or organic-inorganic hybrid (composite) binders to which organic materials are added are sometimes introduced at the risk of slight deterioration.

한국등록특허 10-0436240 "항균금속성분을 함유하는 이산화티타늄 광촉매 및 그 제조방법" (2004.06.16. 공고)Korean Patent Registration 10-0436240 "Titanium Dioxide Photocatalyst Containing Antibacterial Metal Component and Manufacturing Method Thereof" (2004.06.16. Announcement)

따라서 본 발명은 위와 같은 문제점을 해결하려는 것, 즉, 유리 표면 외에도 플라스틱이나 금속과 같은 다양한 물질의 표면에 잘 부착하는 광촉매 코팅제를 제공하려는 것을 목적으로 한다.Therefore, an object of the present invention is to solve the above problems, that is, to provide a photocatalytic coating agent that adheres well to the surface of various materials such as plastic or metal in addition to the glass surface.

또한, 본 발명은 다양한 표면에 부착하면서도 활성이 저하하지 않는 광촉매 코팅제를 제공하려는 것을 목표로 한다.In addition, an object of the present invention is to provide a photocatalytic coating agent that does not decrease activity while adhering to various surfaces.

또한, 본 발명은 코팅 표면의 투명도가 유지되며, 코팅 표면이나 모재의 손상이 없는 광촉매 코팅제를 제공하려는 것을 목표로 한다.In addition, the present invention aims to provide a photocatalytic coating agent that maintains the transparency of the coating surface and does not damage the coating surface or the base material.

본 발명자는 항균성 금속을 좀 더 안정하게 광촉매 입자와 조합시키기 위하여 공침법을 통하여 항균성 금속성분 함유 무기수산화물 졸을 제조하였다. 수산화티타늄 수분산액에 과산화수소를 첨가하고 가열하여 티타늄산 용액을 제조하고 상기 항균성 금속성분 함유 무기수산화물 졸을 혼합한 후 수열반응(hydrothermal reaction)을 유도하여 결정형 아나타제(anatase) 이산화티타늄(TiO2)과 항균금속을 함유하는 항균금속 함유 이산화티타늄 결정체를 제조하였다. The present inventors prepared an inorganic hydroxide sol containing an antimicrobial metal component through a co-precipitation method in order to more stably combine the antimicrobial metal with the photocatalyst particles. Hydrogen peroxide is added to the aqueous dispersion of titanium hydroxide and heated to prepare a titanic acid solution, and after mixing the inorganic hydroxide sol containing the antibacterial metal component, a hydrothermal reaction is induced to form anatase titanium dioxide (TiO 2 ) and Antibacterial metal-containing titanium dioxide crystals containing antibacterial metal were prepared.

또한, 본 발명자는 반응성 알콕시실란과 금속 알콕사이드의 졸겔 공정과 아크릴 단량체의 고분자 중합공정을 동시에 진행하여 유기 구조와 무기 구조가 공유결합으로 연결된 유무기 하이브리드형 올리고머를 제조하였다. In addition, the present inventors simultaneously proceeded with the sol-gel process of reactive alkoxysilane and metal alkoxide and the polymer polymerization process of an acrylic monomer to prepare an organic-inorganic hybrid oligomer in which an organic structure and an inorganic structure are covalently linked.

상기 항균금속 함유 이산화티타늄 결정체에 상기 유무기 하이브리드형 올리고머를 처리하여 좀 더 안정하고 항균력이 우수할 뿐 아니라 다양한 소재에 강하게 부착할 수 있는 유무기 하이브리드형 광촉매 코팅제를 제조하였다.By treating the organic-inorganic hybrid oligomer on the antibacterial metal-containing titanium dioxide crystal, an organic-inorganic hybrid-type photocatalyst coating agent that is more stable and has excellent antibacterial activity and can be strongly attached to various materials was prepared.

이러한 광촉매 코팅제는 수분산 콜로이드 형태, 분말상으로 가공하여 이용할 수 있을 뿐 아니라, 황변 현상을 일으키지 않는 투명 코팅막을 얻을 수 있고, 광촉매 입자를 다공성의 유무기 하이브리드형 올리고머로 코팅 처리하여 햇빛에 장기 노출 시에도 변색이나 성능저하를 유발하지 않고, 강력한 산화환원 작용을 유지하면서 미생물에 대한 항균, 살균 능력이 탁월하다.Such a photocatalyst coating agent can be used by processing it into a water-dispersed colloidal form or powder form, and a transparent coating film that does not cause yellowing can be obtained. It does not cause discoloration or performance degradation, and it has excellent antibacterial and sterilization ability against microorganisms while maintaining strong redox action.

본 발명자는 광촉매의 광산화능이 저하되지 않으면서 유리 등의 무기소재 뿐만아니라 금속 소재나 플라스틱 소재 등에도 견고한 코팅막이 형성될 수 있도록 하는 광촉매 코팅제를 위하여 여러 가지 방법으로 실험을 통하여 모색해 본 결과, 유기 관능기를 가진 알콕시실란과 Ti(티타늄)이나 Zr(지르코늄)계를 비롯한 금속 알콕사이드 간의 졸겔공정과 그리고 이들과 관능기가 서로 같은 아크릴레이트 화합물 간의 고분자 중합공정을 동시에 진행함으로써 광촉매의 산화반응에 의한 자체 바인더와 피도물 표면 손상을 최소화할 수 있는 유무기 하이브리드형 올리고머를 제조하였고 여기에 본 발명에서 얻어진 광촉매 입자와 혼합하여 다양한 소재에 견고한 부착력을 가지는 광촉매 코팅제를 제조하였다.The present inventors have searched through experiments in various ways for a photocatalyst coating agent that allows a strong coating film to be formed not only on inorganic materials such as glass, but also on metal or plastic materials without the photooxidation ability of the photocatalyst being deteriorated. A self-binder by oxidation reaction of a photocatalyst by simultaneously performing a sol-gel process between an alkoxysilane having a functional group and a metal alkoxide including Ti (titanium) or Zr (zirconium) and a polymer polymerization process between these and an acrylate compound having the same functional group An organic-inorganic hybrid oligomer capable of minimizing damage to the surface of the substrate was prepared and mixed with the photocatalyst particles obtained in the present invention to prepare a photocatalyst coating agent having strong adhesion to various materials.

금속 알콕사이드, 바람직하게는 티타늄 알콕사이드 및 지르코늄 알콕사이드 중 1종 이상을 바람직하게는 바인더 성분 총량 대비 고형분 농도로 10중량% 이상 50중량% 이하의 함량을 첨가할 경우 광촉매에 의한 바인더의 산화 손상을 대폭 줄일 수 있음을 확인하였다.When one or more of a metal alkoxide, preferably a titanium alkoxide and a zirconium alkoxide, is added, preferably at a solid content concentration of 10 wt% or more and 50 wt% or less, relative to the total amount of the binder component, the oxidation damage of the binder caused by the photocatalyst is greatly reduced. It was confirmed that it is possible.

좀 더 구체적으로는 반응성 알콕시실란과 금속 알콕사이드 및 아크릴레이트의 공중합체는 유기 실란이 중합되어 실라놀기가 생성되며, (메타)아크릴기가 중합되어 유기재료 부분이 생성되고, 다량의 금속 알콕사이드 성분을 동시에 함유하는 유무기 하이브리드형 올리고머가 생성된다. 이 실라놀기는 축합반응을 통해 금속 산화물인 무기재료가 된다. 따라서, 이렇게 만들어진 유무기 하이브리드형 올리고머는 유기소재와 무기소재 모두에 대하여 친화성을 가지게 된다. 또한, 금속 알콕사이드 성분은 졸겔 프로세스와 중합공정을 거치면서 일부가 금속 산화물이 되고, 이 유기소재가 광촉매의 산화작용에 장벽 요소로 작용하게 되어 유기소재의 변질을 막아줌과 동시에 상온에서 경화가 가능하게 만들어주는 효과가 있다.More specifically, in the copolymer of reactive alkoxysilane, metal alkoxide, and acrylate, organic silane is polymerized to produce a silanol group, (meth)acrylic group is polymerized to form an organic material portion, and a large amount of metal alkoxide component is simultaneously produced. An organic-inorganic hybrid oligomer containing This silanol group becomes an inorganic material that is a metal oxide through a condensation reaction. Therefore, the organic-inorganic hybrid oligomer prepared in this way has affinity for both organic and inorganic materials. In addition, a part of the metal alkoxide component becomes a metal oxide through the sol-gel process and the polymerization process, and this organic material acts as a barrier to the oxidation of the photocatalyst, preventing deterioration of the organic material and curing at room temperature at the same time. It has the effect of making

특히 합성된 아크릴 고분자 특성의 금속류, 플라스틱류와의 우수한 접착 효과가 중요하다. 광촉매 코팅을 위한 바인더 조성물은 졸겔 반응과 고분자 중합반응을 이용하여 분자 단위의 화학적 결합을 하도록 하여 제조할 수 있다. 이렇게 화학 결합된 유무기 하이브리드는 유기 또는 무기 재료의 어디에도 우수한 접착력을 나타내고, 동시에 기존에 단순히 혼합된 형태의 유무기 복합체와 달리 유기재료의 특징과 무기재료의 특징을 균일하고 영구적으로 신뢰성이 있게 보유할 수 있다.In particular, it is important to have an excellent adhesion effect with the synthesized acrylic polymer properties of metals and plastics. The binder composition for the photocatalytic coating can be prepared by chemical bonding in molecular units using a sol-gel reaction and a polymer polymerization reaction. This chemically bonded organic-inorganic hybrid exhibits excellent adhesion to any organic or inorganic material, and at the same time retains the characteristics of organic materials and inorganic materials uniformly and permanently, unlike the conventional simply mixed organic-inorganic composites. can do.

본 발명은 the present invention

가) 항균금속과 무기수산화물을 공침법을 통해 화합물로 제조하고 이를 수중에 분산하여 콜로이드화하여 항균금속 함유 무기수산화물 졸을 제조하는 단계;A) preparing a compound of an antibacterial metal and an inorganic hydroxide through co-precipitation, dispersing it in water and colloidizing it to prepare an antibacterial metal-containing inorganic hydroxide sol;

나) 과산화티타늄산 용액을 제조하고 상기 항균금속 함유 무기수산화물 졸을 혼합한 후 수열합성반응을 통하여 결정형(anatase) 이산화티타늄(TiO2)과 항균금속을 함유하는 항균금속 함유 이산화티타늄 결정체를 제조하는 단계;B) preparing a titanic acid solution and mixing the antibacterial metal-containing inorganic hydroxide sol through a hydrothermal synthesis reaction to prepare an antibacterial metal-containing titanium dioxide crystal containing anatase titanium dioxide (TiO 2 ) and an antibacterial metal step;

다) 반응성 알콕시실란과 금속 알콕사이드의 졸겔 공정과 아크릴레이트 단량체의 고분자 중합공정을 동시에 진행하여 유기 구조와 무기 구조가 공유결합으로 연결된 유무기 하이브리드형 올리고머를 제조하는 단계;C) preparing an organic-inorganic hybrid oligomer in which an organic structure and an inorganic structure are covalently linked by simultaneously performing a sol-gel process of a reactive alkoxysilane and a metal alkoxide and a polymer polymerization process of an acrylate monomer;

라) 상기 항균금속 함유 이산화티타늄 결정체에 상기 유무기 하이브리드형 올리고머를 첨가하여 항균금속 함유 이산화티타늄 결정체의 입자 표면을 코팅 처리하는 단계;를 포함하는 유무기 하이브리드형 광촉매 코팅제의 제조방법에 관한 것이다.D) adding the organic-inorganic hybrid oligomer to the antibacterial metal-containing titanium dioxide crystal to coat the particle surface of the antibacterial metal-containing titanium dioxide crystal; it relates to a method for producing an organic-inorganic hybrid photocatalyst coating agent comprising a.

또한, 본 발명은 상기 무기수산화물이 Ti, Al, Zr, Ce 또는 Zn 중 1종의 수산화물인 것을 특징으로 하는, 유무기 하이브리드형 광촉매 코팅제의 제조방법에 관한 것이다.In addition, the present invention relates to a method for manufacturing an organic-inorganic hybrid type photocatalytic coating agent, characterized in that the inorganic hydroxide is one of Ti, Al, Zr, Ce, and Zn.

또한, 본 발명은 상기 항균금속이 Pt, Au, Ag, Pd, Ru, Co, Ni, Fe, Cu, Zn 및 Cr 중 선택된 1종 이상인 것을 특징으로 하는, 유무기 하이브리드형 광촉매 코팅제의 제조방법에 관한 것이다.In addition, the present invention is characterized in that the antibacterial metal is at least one selected from Pt, Au, Ag, Pd, Ru, Co, Ni, Fe, Cu, Zn and Cr, in a method for manufacturing an organic-inorganic hybrid photocatalyst coating agent it's about

또한, 본 발명은 상기 아크릴레이트 단량체가 메틸 메타크릴레이트, 에틸 메타크릴레이트, 프로필 메타크릴레이트, 부틸 메타크릴레이트, 이소부틸 메타크릴레이트, 펜틸 메타크릴레이트, 헥실 메타크릴레이트, 옥틸 메타크릴레이트, 노닐 메타크릴레이트, 라우릴 메타크릴레이트, 메틸 아크릴레이트, 에틸 아크릴레이트, 프로필 아크릴레이트, 부틸 아크릴레이트, 이소부틸 아크릴레이트, 펜틸 아크릴레이트, 헥실 아크릴레이트, 옥틸 아크릴레이트, 노닐 아크릴레이트, 라우릴 아크릴레이트, 트리메틸시클로헥실 메타크릴레이트, 트리메틸시클로헥실 아크릴레이트, 이소부틸 메타크릴레이트, t-부틸시클로헥실 아크릴레이트, t-부틸시클로헥실 메타크릴레이트, 벤질 아크릴레이트 및 벤질 메타크릴레이트 중 선택된 1종 이상인 것을 특징으로 하는, 유무기 하이브리드형 광촉매 코팅제의 제조방법에 관한 것이다.In addition, the present invention provides that the acrylate monomer is methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, isobutyl methacrylate, pentyl methacrylate, hexyl methacrylate, octyl methacrylate , nonyl methacrylate, lauryl methacrylate, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, isobutyl acrylate, pentyl acrylate, hexyl acrylate, octyl acrylate, nonyl acrylate, la selected from uryl acrylate, trimethylcyclohexyl methacrylate, trimethylcyclohexyl acrylate, isobutyl methacrylate, t-butylcyclohexyl acrylate, t-butylcyclohexyl methacrylate, benzyl acrylate and benzyl methacrylate It relates to a method for producing an organic-inorganic hybrid type photocatalyst coating agent, characterized in that at least one type.

또한, 본 발명은 상기 반응성 알콕시실란이 탄소 원자수 1∼5의 알킬기 또는 원자수 1∼4의 아실기를 포함하며, 아크릴레이트의 카복시기와 반응할 수 있는 작용기를 가진 것을 특징으로 하는, 유무기 하이브리드형 광촉매 코팅제의 제조방법에 관한 것이다.In addition, the present invention is an organic-inorganic hybrid, characterized in that the reactive alkoxysilane contains an alkyl group having 1 to 5 carbon atoms or an acyl group having 1 to 4 atoms and has a functional group capable of reacting with the carboxy group of the acrylate. It relates to a method for producing a fluorescent photocatalyst coating agent.

또한, 본 발명은 상기 반응성 알콕시실란이 메틸 트리메톡시실란, 메틸 트리에톡시실란, 에틸 트리메톡시실란, 에틸 트리에톡시실란, n-프로필 트리메톡시실란, 트리에톡시실란, i-프로필 트리메톡시실란, i-프로필 트리에톡시실란, γ-클로로프로필 트리메톡시실란, γ-클로로프로필 트리에톡시실란, 비닐 트리메톡시실란, 3,3,3-트리플루오로프로필 트리메톡시실란, 3,3,3-트리플루오로프로필 트리에톡시실란, γ-글리시드옥시프로필 트리메톡시실란, γ-글리시드옥시프로필 트리에톡시실란, γ-메타크릴옥시 프로필 트리메톡시실란, γ-메타크릴옥시프로필 트리에톡시실란, γ-메르캅토프로필 트리메톡시실란, γ-메르캅토프로필 트리에톡시실란, 페닐 트리메톡시실란, 페닐 트리에톡시실란, 3,4-에폭시시클로헥실에틸 트리메톡시실란 및 3,4-에폭시시클로헥실에틸 트리에톡시실란 중 선택된 1종 이상인 것을 특징으로 하는, 유무기 하이브리드형 광촉매 코팅제의 제조방법에 관한 것이다.In the present invention, the reactive alkoxysilane is methyl trimethoxysilane, methyl triethoxysilane, ethyl trimethoxysilane, ethyl triethoxysilane, n-propyl trimethoxysilane, triethoxysilane, i-propyl Trimethoxysilane, i-propyl triethoxysilane, γ-chloropropyl trimethoxysilane, γ-chloropropyl triethoxysilane, vinyl trimethoxysilane, 3,3,3-trifluoropropyl trimethoxy silane, 3,3,3-trifluoropropyl triethoxysilane, γ-glycidoxypropyl trimethoxysilane, γ-glycidoxypropyl triethoxysilane, γ-methacryloxy propyl trimethoxysilane, γ-methacryloxypropyl triethoxysilane, γ-mercaptopropyl trimethoxysilane, γ-mercaptopropyl triethoxysilane, phenyl trimethoxysilane, phenyl triethoxysilane, 3,4-epoxycyclohexyl It relates to a method for producing an organic-inorganic hybrid type photocatalyst coating agent, characterized in that at least one selected from ethyl trimethoxysilane and 3,4-epoxycyclohexylethyl triethoxysilane.

또한, 본 발명은 상기 금속 알콕사이드가 M(OR)n (단, M = Ti, Zr, Al, Sn, W, Co 및 Sn 중 선택된 1종 이상의 금속, n = 금속의 원자가, R = 탄소수 1~6의 유기기)로 표시되는 금속 알콕사이드, 이의 가수분해물, 이의 축합 생성물 또는 이들의 킬레이트 화합물인 것을 특징으로 하는, 유무기 하이브리드형 광촉매 코팅제의 제조방법에 관한 것이다.In addition, the present invention provides that the metal alkoxide is M (OR) n (where M = at least one metal selected from Ti, Zr, Al, Sn, W, Co and Sn, n = valence of the metal, R = carbon number 1~ 6), it relates to a method for producing an organic-inorganic hybrid type photocatalyst coating agent, characterized in that it is a metal alkoxide, a hydrolyzate thereof, a condensation product thereof, or a chelate compound thereof.

또한, 본 발명은 상기 금속 알콕사이드가 티타늄 알콕사이드, 알루미늄 알콕사이드, 지르코늄 알콕사이드 및 세륨 알콕사이드로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는, 유무기 하이브리드형 광촉매 코팅제의 제조방법에 관한 것이다.In addition, the present invention relates to a method for manufacturing an organic-inorganic hybrid type photocatalytic coating agent, wherein the metal alkoxide is at least one selected from the group consisting of titanium alkoxide, aluminum alkoxide, zirconium alkoxide and cerium alkoxide.

또한, 본 발명은 무기수산화물로 안정화시킨 Ag, Cu 또는 Zn 중 1종 이상의 항균금속염과 결정형 아나타제 이산화티타늄을 함유하는 항균금속 함유 이산화티타늄 결정체의 표면에 반응성 알콕시실란과 금속 알콕사이드의 졸겔 공정과 아크릴레이트 단량체의 고분자 중합공정을 동시에 진행하여 생성되는 유기 구조와 무기 구조가 공유결합으로 연결된 유무기 하이브리드형 올리고머가 코팅된 유무기 하이브리드형 광촉매 코팅제에 관한 것이다.In addition, the present invention relates to a sol-gel process and acrylate of a reactive alkoxysilane and a metal alkoxide on the surface of an antibacterial metal-containing titanium dioxide crystal containing at least one antibacterial metal salt of Ag, Cu or Zn stabilized with an inorganic hydroxide and crystalline anatase titanium dioxide. It relates to an organic-inorganic hybrid-type photocatalyst coating agent coated with an organic-inorganic hybrid-type oligomer in which an organic structure and an inorganic structure generated by simultaneously proceeding a polymer polymerization process of a monomer are covalently linked.

또한, 본 발명은 상기 아크릴레이트 단량체가 메틸 메타크릴레이트, 에틸 메타크릴레이트, 프로필 메타크릴레이트, 부틸 메타크릴레이트, 이소부틸 메타크릴레이트, 펜틸 메타크릴레이트, 헥실 메타크릴레이트, 옥틸 메타크릴레이트, 노닐 메타크릴레이트, 라우릴 메타크릴레이트, 메틸 아크릴레이트, 에틸 아크릴레이트, 프로필 아크릴레이트, 부틸 아크릴레이트, 이소부틸 아크릴레이트, 펜틸 아크릴레이트, 헥실 아크릴레이트, 옥틸 아크릴레이트, 노닐 아크릴레이트, 라우릴 아크릴레이트, 트리메틸시클로헥실 메타크릴레이트, 트리메틸시클로헥실 아크릴레이트, 이소부틸 메타크릴레이트, t-부틸시클로헥실 아크릴레이트, t-부틸시클로헥실 메타크릴레이트, 벤질 아크릴레이트 및 벤질 메타크릴레이트 중 선택된 1종 이상인 것을 특징으로 하는, 광촉매 코팅용 유무기 하이브리드형 바인더에 관한 것이다.In addition, the present invention provides that the acrylate monomer is methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, isobutyl methacrylate, pentyl methacrylate, hexyl methacrylate, octyl methacrylate , nonyl methacrylate, lauryl methacrylate, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, isobutyl acrylate, pentyl acrylate, hexyl acrylate, octyl acrylate, nonyl acrylate, la selected from uryl acrylate, trimethylcyclohexyl methacrylate, trimethylcyclohexyl acrylate, isobutyl methacrylate, t-butylcyclohexyl acrylate, t-butylcyclohexyl methacrylate, benzyl acrylate and benzyl methacrylate It relates to an organic-inorganic hybrid binder for photocatalytic coating, characterized in that at least one type.

또한, 본 발명은 상기 반응성 알콕시실란이 메틸 트리메톡시실란, 메틸 트리에톡시실란, 에틸 트리메톡시실란, 에틸 트리에톡시실란, n-프로필 트리메톡시실란, 트리에톡시실란, i-프로필 트리메톡시실란, i-프로필 트리에톡시실란, γ-클로로프로필 트리메톡시실란, γ-클로로프로필 트리에톡시실란, 비닐 트리메톡시실란, 3,3,3-트리플루오로프로필 트리메톡시실란, 3,3,3-트리플루오로프로필 트리에톡시실란, γ-글리시드옥시프로필 트리메톡시실란, γ-글리시드옥시프로필 트리에톡시실란, γ-메타크릴옥시 프로필 트리메톡시실란, γ-메타크릴옥시프로필 트리에톡시실란, γ-메르캅토프로필 트리메톡시실란, γ-메르캅토프로필 트리에톡시실란, 페닐 트리메톡시실란, 페닐 트리에톡시실란, 3,4-에폭시시클로헥실에틸 트리메톡시실란 및 3,4-에폭시시클로헥실에틸 트리에톡시실란 중 선택된 1종 이상인 것을 특징으로 하는, 광촉매 코팅용 유무기 하이브리드형 바인더에 관한 것이다.In the present invention, the reactive alkoxysilane is methyl trimethoxysilane, methyl triethoxysilane, ethyl trimethoxysilane, ethyl triethoxysilane, n-propyl trimethoxysilane, triethoxysilane, i-propyl Trimethoxysilane, i-propyl triethoxysilane, γ-chloropropyl trimethoxysilane, γ-chloropropyl triethoxysilane, vinyl trimethoxysilane, 3,3,3-trifluoropropyl trimethoxy silane, 3,3,3-trifluoropropyl triethoxysilane, γ-glycidoxypropyl trimethoxysilane, γ-glycidoxypropyl triethoxysilane, γ-methacryloxy propyl trimethoxysilane, γ-methacryloxypropyl triethoxysilane, γ-mercaptopropyl trimethoxysilane, γ-mercaptopropyl triethoxysilane, phenyl trimethoxysilane, phenyl triethoxysilane, 3,4-epoxycyclohexyl It relates to an organic-inorganic hybrid binder for photocatalytic coating, characterized in that at least one selected from ethyl trimethoxysilane and 3,4-epoxycyclohexylethyl triethoxysilane.

또한, 본 발명은 상기 금속 알콕사이드가 티타늄 알콕사이드, 알루미늄 알콕사이드, 지르코늄 알콕사이드 및 세륨 알콕사이드로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는, 유무기 하이브리드형 바인더 혼합물에 관한 것이다.In addition, the present invention relates to an organic-inorganic hybrid binder mixture, characterized in that the metal alkoxide is at least one selected from the group consisting of titanium alkoxide, aluminum alkoxide, zirconium alkoxide and cerium alkoxide.

본 발명의 방법으로 제조된 유무기 하이브리드형 광촉매 코팅제는 광 조사가 부족한 상태에서도 지속적으로 강력한 항균작용을 나타낼 수 있다.The organic-inorganic hybrid photocatalyst coating agent prepared by the method of the present invention can continuously exhibit strong antibacterial action even in a state where light irradiation is insufficient.

또한, 본 발명의 유무기 하이브리드형 광촉매 코팅제는 항균금속의 변질 또는 변색을 막을 수 있다.In addition, the organic-inorganic hybrid-type photocatalyst coating agent of the present invention can prevent deterioration or discoloration of the antibacterial metal.

또한, 본 발명의 유무기 하이브리드형 광촉매 코팅제는 바인더가 광촉매에 의해 손상되는 현상을 방지할 수 있다.In addition, the organic-inorganic hybrid-type photocatalyst coating agent of the present invention can prevent the binder from being damaged by the photocatalyst.

이뿐만 아니라, 본 발명의 유무기 하이브리드형 광촉매 코팅제는 유리 외에도 금속, 플라스틱과 같이 다양한 소재에 부착 가능하다.In addition to this, the organic-inorganic hybrid photocatalyst coating agent of the present invention can be attached to various materials such as metal and plastic in addition to glass.

결정형 아나타제 구조의 이산화티타늄은 반도체형 금속산화물로 광에너지에 의해 산화환원 라디칼을 생성하여 인접한 유기물질을 강력하게 산화 분해할 수 있다. 또한, 은(silver)은 항균 특성을 지닌 금속으로 알려져 있다. 본 발명에서는 결정형 이산화티타늄과 항균금속을 함유하는 항균금속 함유 이산화티타늄 결정체를 제조하여 두 성분이 좀 더 안정한 상태로 공존하게 함으로써 두 성분의 특성이 동시에 잘 발현될 수 있도록 하였다. 항균금속 함유 이산화티타늄 결정체는 인체에 대한 안정성이 높고, 열적, 화학적으로 안정하며 지속성도 우수하며, 난분해성 유기화합물, 유해 세균 및 곰팡이를 효과적으로 분해 제거할 수 있다. Titanium dioxide having a crystalline anatase structure is a semiconductor-type metal oxide that can strongly oxidatively decompose adjacent organic materials by generating redox radicals by light energy. Also, silver is known as a metal with antibacterial properties. In the present invention, the properties of the two components can be well expressed at the same time by preparing the crystalline titanium dioxide and the antibacterial metal-containing titanium dioxide crystal containing the antibacterial metal so that the two components coexist in a more stable state. Antibacterial metal-containing titanium dioxide crystals have high stability to the human body, are thermally and chemically stable, and have excellent durability, and can effectively decompose and remove difficult-to-decompose organic compounds, harmful bacteria and fungi.

먼저, 본 발명자는 공침법(coprecipitation)과 졸겔법(sol-gel process)을 이용하여 은을 비롯한 항균금속 성분을 이산화티타늄 광촉매와 화합물 또는 혼합물 형태로 합성하고 콜로이드화하여 광촉매 성능에 더하여 항균 능력을 강화하고, 광 조사가 부족한 환경에서도 강력한 항균 능력을 발현할 수 있는 항균성 광촉매 물질을 제조하였다. First, the present inventor synthesizes antibacterial metal components, including silver, in the form of a compound or mixture with a titanium dioxide photocatalyst using coprecipitation and sol-gel process, and colloidizes the photocatalyst performance in addition to antibacterial ability. An antibacterial photocatalyst material that can be strengthened and exhibit strong antibacterial ability even in an environment lacking light irradiation was prepared.

또한, 본 발명자는 광촉매와 접하는 바인더 성분 및/또는 피도물과의 계면을 보호하고, 바인더나 피도물 표면이 분해되거나 손상되지 않도록 하며, 광촉매의 내구성을 향상시키기 위해 졸-겔법을 통하여 다공성 실란 화합물과 아크릴레이트의 하이브리드형 올리고머와 유기금속 화합물로 광촉매 입자 표면을 코팅 처리하여 광촉매 코팅제를 제조하였다.In addition, the present inventors protect the interface with the binder component and/or the object in contact with the photocatalyst, prevent the binder or the surface of the object from being decomposed or damaged, and improve the durability of the photocatalyst through a sol-gel method with a porous silane compound and acryl A photocatalyst coating agent was prepared by coating the surface of the photocatalyst particle with a hybrid oligomer and an organometallic compound of the rate.

이산화티탄을 비롯한 광촉매에 빛이 조사되면 광촉매 상에서 활성산소 및/또는 OH 라디칼이 발생하여 강력한 산화환원 작용에 의해 악취물질 등을 분해 정화하는 특성을 나타내게 된다. 전기적으로 반도체 성질을 갖는 대표적인 광촉매로는 TiO2, ZnO, RuO2, CoO, Ce2O3, Cr2O3, Rh2O3 , V2O5 등의 산화물과 ZnS, CdS 등의 황화물을 들 수 있다. 이들 광촉매는 380nm 이하 단파장의 자외선이 조사되면 여기 상태가 되어 강력한 산화력을 나타낸다. 유사한 거동을 나타내는 반도체로는 위와 같이 여러 종류가 있지만 TiO2가 주목받는 이유는 화학적으로 안정성이 높은 물질이면서 광반도체로서도 우수한 장점을 갖고 있기 때문이다. When light is irradiated to a photocatalyst including titanium dioxide, active oxygen and/or OH radicals are generated on the photocatalyst to decompose and purify odorous substances by strong redox action. Representative photocatalysts with electrical semiconductor properties include oxides such as TiO 2 , ZnO, RuO 2 , CoO, Ce 2 O 3 , Cr 2 O 3 , Rh 2 O 3 , V 2 O 5 and sulfides such as ZnS and CdS. can be heard When these photocatalysts are irradiated with ultraviolet light with a short wavelength of 380 nm or less, they become excited and exhibit strong oxidizing power. There are several types of semiconductors with similar behavior as described above, but TiO 2 is attracting attention because it is a material with high chemical stability and has excellent advantages as an optical semiconductor.

반도체 에너지 밴드는 가전자대(valance band), 전도대(conduction band) 및 이들 사이에 금지대(gap)가 존재한다. 산화티탄의 경우, 금지대의 에너지 gap이 3.2eV로, 이 이상의 에너지를 흡수한 가전자대의 전자는 여기되어 전도대로 이동하게 되고, 가전자대에는 정공(hole)이 만들어지고 이동은 자유롭게 된다. 따라서, 광촉매에 자외선(UV)을 조사하게 되면 여기상태 즉, 활성상태가 된다. 전자와 홀은 표면으로 이동하여 각각 산소, 수산기와 결합하여 라디칼을 형성한다. 산화티탄의 경우 정공의 산화력이 좀 더 강력하기 때문에 주로 수산화기 라디칼이 유기물질을 산화해서 탄산가스(CO2)와 물(H2O)로 산화 분해한다. 또한, 산화티탄은 균이 사멸하지 않는 약한 자외선 광량에서도 항균력을 나타낸다.A semiconductor energy band has a valance band, a conduction band, and a gap therebetween. In the case of titanium oxide, the energy gap of the forbidden band is 3.2 eV, and electrons in the valence band absorbing energy above this are excited and move to the conduction band, and holes are created in the valence band and movement is free. Therefore, when the photocatalyst is irradiated with ultraviolet (UV) light, it becomes an excited state, that is, an active state. Electrons and holes move to the surface and combine with oxygen and hydroxyl groups, respectively, to form radicals. In the case of titanium oxide, since the oxidizing power of holes is stronger, hydroxyl radicals mainly oxidize organic materials and oxidize and decompose into carbon dioxide gas (CO 2 ) and water (H 2 O). In addition, titanium oxide exhibits antibacterial activity even with a weak ultraviolet light that does not kill bacteria.

항균금속인 은은 자외선의 영향으로 쉽게 변색하여 황변 현상을 일으키거나 주변의 염소(Cl) 이온과 결합하여 염화은을 형성하기도 한다. 또한, 은은 다른 이온이나 염기와 결합할 경우 항균능력이 현저히 감소하기도 하여 산업적으로 이용하는데 제약이 많다. 본 발명에서는 강력한 자외선 흡수체인 이산화티타늄 광촉매를 은과 같은 항균금속 입자의 표면에 석출, 화합시킴으로써 자외선의 조사로 인한 황변 현상을 방지할 수 있다.Silver, which is an antibacterial metal, easily discolors under the influence of ultraviolet rays, causing yellowing or combining with surrounding chlorine (Cl) ions to form silver chloride. In addition, when silver is combined with other ions or bases, its antibacterial ability is significantly reduced, so there are many restrictions on its industrial use. In the present invention, yellowing caused by UV irradiation can be prevented by depositing and compounding a titanium dioxide photocatalyst, which is a strong UV absorber, on the surface of antibacterial metal particles such as silver.

일반적으로 광촉매를 제조하는 방법은 크게 고상법, 액상법 그리고 기상법을 들 수 있는데, 이 중 가장 널리 알려진 방법이 액상법이며, 이 방법은 다성분계의 조성을 좀 더 균질하게 합성하기 쉬운 장점이 있다. 액상법으로는 중화 적정에 의한 침전법(precipitation), 공침법(coprecipitation), 함침법(impregnation) 그리고 금속 알콕사이드를 전구체로 하는 졸-겔법(sol-gel process) 등을 들 수 있다. 중화 적정을 통하여 티타늄 클로라이드(titanium chloride), 티타늄 설페이트(titanium sulfate), 티타닐 설페이트(titanyl sulfate) 등의 티타늄염을 암모니아수(amonia water), 탄산소다(sodium carbonate), 수산화나트륨 등의 알칼리로 중화하여 티타늄 하이드록사이드(titanium hydroxide)를 생성하고 세척, 건조와 열처리하여 결정형 아나타제(anatase) 상의 티타늄 산화물 분말(titanium oxide powder)을 제조하게 된다. 이 방법은 분말상과 수분산체를 용이하게 제조할 수 있는 방법으로 알려져 있다. 또한, 졸겔법은 티타늄 아이소프로폭사이드(titanium tetraisopropoxide), 티타늄 테트라부톡사이드(titanium tetrabutoxide) 등의 티타늄 알콕사이드를 전구체로 하여 알코올, 물, 촉매 등을 첨가하고 가수분해반응을 통하여 티타니아 졸(titania sol)을 얻는 방법으로 여러 종류의 성분을 합성하기에 용이하며, 고순도의 순수 졸을 얻을 수 있고, 이를 여러 종류의 담체(substrate)에 코팅하고 열처리하여 균질한 박막을 얻을 수 있다.In general, a method for preparing a photocatalyst can be largely divided into a solid phase method, a liquid phase method, and a gas phase method. Among these methods, the most widely known method is the liquid phase method, and this method has an advantage in that it is easy to synthesize the composition of a multi-component system more homogeneously. Examples of the liquid phase method include a precipitation method by neutralization titration, a coprecipitation method, an impregnation method, and a sol-gel process using a metal alkoxide as a precursor. Through neutralization titration, titanium salts such as titanium chloride, titanium sulfate, and titanyl sulfate are neutralized with alkali such as ammonia water, sodium carbonate, and sodium hydroxide. Thus, titanium hydroxide is produced, washed, dried and heat treated to prepare titanium oxide powder in crystalline anatase. This method is known as a method capable of easily preparing powdery and aqueous dispersions. In addition, the sol-gel method uses a titanium alkoxide such as titanium tetraisopropoxide and titanium tetrabutoxide as a precursor, adds alcohol, water, a catalyst, etc. ), it is easy to synthesize various kinds of components, and a pure sol of high purity can be obtained.

본 발명에서는 본 출원인의 선행 특허 (특허 제436240호)와 동일한 방법으로 은과 같은 항균성 금속을 좀 더 안정하게 광촉매 입자와 조합시키기 위하여 공침법을 통하여 항균성 금속을 무기수산화물에 접합시킨 후 티탄산 용액에 분산시키고 수열반응(hydrothermal reaction)을 유도하여 다량의 항균성 금속성분을 함유하는 결정성 광촉매 입자를 얻은 후, 반응성 알콕시실란 및 금속 알콕사이드의 졸겔 공정과 아크릴레이트 단량체의 고분자 중합공정을 동시에 진행하여 유기 구조와 무기 구조가 공유결합으로 연결된 유무기 하이브리드형 올리고머를 포함하는 바인더로 상기 광촉매를 코팅하여 좀 더 안정한 상태의 항균력이 배가된 광촉매 코팅제를 얻었다. 이러한 광촉매 코팅제는 황변 현상을 일으키지 않는 투명 코팅막을 얻을 수 있고, 다양한 피도물에 부착력이 우수하며, 광촉매와 맞닿는 바인더 및/또는 피도물 표면이 분해 또는 손상될 가능성이 낮아진다.In the present invention, in the same manner as in the previous patent (Patent No. 436240) of the present applicant, in order to more stably combine the antimicrobial metal such as silver with the photocatalyst particles, the antimicrobial metal is bonded to the inorganic hydroxide through the co-precipitation method and then added to the titanic acid solution. After dispersing and inducing a hydrothermal reaction to obtain crystalline photocatalyst particles containing a large amount of antimicrobial metal components, the sol-gel process of reactive alkoxysilane and metal alkoxide and the polymer polymerization process of acrylate monomers are simultaneously performed to form an organic structure The photocatalyst was coated with a binder containing an organic-inorganic hybrid oligomer having an inorganic structure and an organic-inorganic hybrid oligomer connected by a covalent bond to obtain a photocatalyst coating agent having a more stable antibacterial activity and doubled. Such a photocatalyst coating agent can obtain a transparent coating film that does not cause yellowing, has excellent adhesion to various objects, and reduces the possibility of decomposition or damage to the binder and/or surface of the object to be coated in contact with the photocatalyst.

항균금속 함유 Contains antibacterial metal 광촉매photocatalyst

본 발명에서는 항균금속 성분을 무기수산화물과 공침법으로 조합하고 이것을 입경 1nm 내지 100nm의 미세한 콜로이드상으로 제조한다. In the present invention, an antibacterial metal component is combined with an inorganic hydroxide by a co-precipitation method, and this is prepared in a fine colloidal form with a particle size of 1 nm to 100 nm.

우선 황산티타늄, 황산티타닐, 염화티타늄 등의 티타늄 염과 황산은, 질산은 등의 은 염 중 각각 1성분 이상을 선택하여 알칼리 성분인 암모니아수(NH4OH), 탄산소다(NaCO3), 수산화나트륨(NaOH) 등을 이용하는 중화 적정법으로 티타늄과 은 성분이 공존하는 항균금속 함유 무기수산화물을 제조한다. 좀 더 구체적으로 설명하면, 상기 티타늄염을 이온교환수나 증류수에 희석한 용액에 은 염을 일정량 첨가하고 충분히 용해하여 혼합한다. 이어서 이를 빙냉 교반하면서 알칼리 용액을 서서히 적하하여 중화하고 이를 8시간 이상 정지하여 항균금속이 함유된 무기수산화물을 얻을 수 있다. First, at least one component is selected from each of a titanium salt such as titanium sulfate, titanyl sulfate, and titanium chloride, and a silver salt such as silver sulfate and silver nitrate, and alkali components such as aqueous ammonia (NH 4 OH), sodium carbonate (NaCO 3 ), and sodium hydroxide. An inorganic hydroxide containing antibacterial metal in which titanium and silver components coexist is prepared by a neutralization titration method using (NaOH) or the like. More specifically, a predetermined amount of a silver salt is added to a solution obtained by diluting the titanium salt in ion-exchanged water or distilled water, and the titanium salt is sufficiently dissolved and mixed. Then, while cooling and stirring with ice, an alkali solution is gradually added dropwise to neutralize it, and it is stopped for at least 8 hours to obtain an inorganic hydroxide containing an antibacterial metal.

이어서 항균금속이 함유된 무기수산화물을 이온교환수로 충분히 세척하고, 염화물을 사용했을 경우 은거울 반응으로 잔류 염소이온의 유무를 확인한다. Then, the inorganic hydroxide containing the antibacterial metal is sufficiently washed with ion-exchanged water, and when chloride is used, the presence or absence of residual chlorine ions is checked by a silver mirror reaction.

그런 다음, 적정량의 이온교환수를 혼합한 후 고점도 분산기를 이용하여 항균금속이 함유된 무기수산화물을 이온교환수에 분산 처리하여 항균금속이 함유된 무기수산화물 졸을 얻는다. 이때 고형분 농도는 10중량부가 되도록 한다.Then, after mixing an appropriate amount of ion-exchanged water, the inorganic hydroxide containing the antibacterial metal is dispersed in the ion-exchanged water using a high-viscosity disperser to obtain an inorganic hydroxide sol containing the antibacterial metal. At this time, the solid content concentration is set to 10 parts by weight.

이어서 항균금속이 함유된 무기수산화물 졸을 비정질 이산화티타늄 용액 또는 티탄산 용액에 첨가하고 교반하면서 150℃에서 8시간 동안 수열반응을 진행하여 부분 결정질의 이산화티타늄 수분산체(sol)를 얻게 된다. 이렇게 합성된 이산화티타늄 수분산체를 상온으로 냉각한 후 여과하고 이온교환수로 충분히 세척하였으며 이때의 생성물을 X선 회절분석기(XRD)를 이용하여 분산입자가 아나타제(anatase) 임을 확인하였고, X선 형광분석기(XRF)를 이용하여 은(Ag)성분의 존재를 확인하였다. 이어서 100℃에서 8시간 동안 건조한 후 450℃에서 3시간 동안 열처리하여 항균금속성분이 고정화된 이산화티타늄(TiO2)광촉매 분말을 제조하였다.Then, the inorganic hydroxide sol containing the antibacterial metal is added to the amorphous titanium dioxide solution or titanic acid solution, and hydrothermal reaction is performed at 150° C. for 8 hours while stirring to obtain a partially crystalline titanium dioxide aqueous dispersion (sol). The thus synthesized aqueous dispersion of titanium dioxide was cooled to room temperature, filtered, and thoroughly washed with ion-exchanged water. The presence of a silver (Ag) component was confirmed using an analyzer (XRF). Then, after drying at 100° C. for 8 hours, heat treatment was performed at 450° C. for 3 hours to prepare a titanium dioxide (TiO 2 ) photocatalyst powder having an antibacterial metal component immobilized thereon.

본 발명에서는 유리 외에도 금속, 플라스틱 또는 목재 등 다양한 소재의 표면에 코팅하여 강력한 코팅막을 형성할 수 있도록 하기 위하여 다공성 무기성분 바인더 대신 유기-무기 하이브리드 바인더 혼합물을 제조하였다. 이에 대하여 좀 더 구체적으로 설명한다.In the present invention, an organic-inorganic hybrid binder mixture was prepared instead of a porous inorganic binder in order to form a strong coating film by coating it on the surface of various materials such as metal, plastic, or wood in addition to glass. This will be described in more detail.

본 발명자는 반응성 알콕시실란과 금속 알콕사이드의 졸겔 공정(sol-gel process)과 아크릴레이트 단량체의 고분자 중합 공정(polymerization process)을 동시에 진행하여 유기구조와 무기구조가 공유결합으로 연결된 유무기 하이브리드형 올리고머를 제조하였고, 이를 광촉매 코팅용 바인더로 이용하였다. 이와 같이 제조된 유무기 하이브리드형 광촉매 코팅용 바인더는 기존의 코팅 조성물과는 달리 광촉매 자체에 의한 바인더 손상을 최소화함으로써 코팅막의 내구성을 크게 해치치 않고 금속류나 플라스틱 등의 다양한 소재에도 견고하게 코팅막을 형성할 수 있다.The present inventors simultaneously proceed with a sol-gel process of reactive alkoxysilane and a metal alkoxide and a polymerization process of an acrylate monomer to produce an organic-inorganic hybrid oligomer in which an organic structure and an inorganic structure are covalently linked. prepared, and used as a binder for photocatalytic coating. The organic-inorganic hybrid photocatalyst coating binder prepared in this way minimizes damage to the binder due to the photocatalyst itself, unlike the existing coating composition, thereby forming a coating film firmly on various materials such as metals and plastics without greatly impairing the durability of the coating film. can do.

유무기 하이브리드형 바인더는 출발 물질로 사용되는 반응성 알콕시실란 단량체, 금속 알콕사이드와 아크릴계 단량체를 이용하여 가수분해와 축합반응 동시 진행으로 제조할 수 있다. 반응성 알콕시실란 단량체는 에폭시기, 비닐기, 아크릴로일기, 메타아크릴로일기 등과 같은 반응기를 가지고 있어서, 금속 알콕사이드 및 아크릴레이트 단량체와 열중합에 의해 유기-무기 하이브리드 구조를 형성할 수 있게 된다. 이러한 유무기 하이브리드 재료는 유기 고분자 재료의 특성인 유연성과 인성의 우수성과 무기 재료의 특성인 높은 기계적 강도, 열적 안정성 등의 특성을 모두 가지고 있어 다양한 소재의 피도물에 코팅할 수 있다. 즉, 광촉매 코팅을 위한 유무기 하이브리드 바인더는 졸겔 반응과 고분자 중합 반응을 이용하여 반응성 알콕시실란 단량체, 금속 알콕사이드와 아크릴 단량체의 분자 단위의 화학적 결합을 통하여 제조된다. 이렇게 화학 결합된 유무기 하이브리드 바인더는 다양한 유기 또는 무기 재료의 피도물에 우수한 접착력을 나타내고, 이뿐만 아니라 단순히 유기 재료와 무기 재료가 혼합된 형태의 종래의 유무기 복합체와 달리 유기재료의 특징과 무기재료의 특징을 균일하고 영구적으로 보유하게 된다. The organic-inorganic hybrid binder can be prepared by simultaneous hydrolysis and condensation reaction using reactive alkoxysilane monomers, metal alkoxides, and acrylic monomers used as starting materials. Since the reactive alkoxysilane monomer has a reactive group such as an epoxy group, a vinyl group, an acryloyl group, or a methacryloyl group, an organic-inorganic hybrid structure can be formed by thermal polymerization with a metal alkoxide and an acrylate monomer. These organic-inorganic hybrid materials have characteristics such as flexibility and toughness, which are characteristics of organic polymer materials, and high mechanical strength and thermal stability, which are characteristics of inorganic materials, so that they can be coated on various materials to be coated. That is, the organic-inorganic hybrid binder for the photocatalytic coating is prepared through the chemical bonding of the molecular unit of the reactive alkoxysilane monomer, the metal alkoxide, and the acrylic monomer using a sol-gel reaction and a polymer polymerization reaction. The organic-inorganic hybrid binder chemically bonded in this way shows excellent adhesion to the substrate of various organic or inorganic materials. uniformly and permanently retain the characteristics of

본 발명에서는 오랜 연구를 통하여 금속 알콕사이드, 특히 티타늄 알콕사이드 또는 지르코늄 알콕사이드 중 1종 이상을 바인더 총중량 대비 고형분 농도로 5%(w/w) 이상, 바람직하게는 10%(w/w) 이상 50%(w/w) 이하로 혼합하여 유무기 하이브리드형 올리고머 바인더를 제조하였다. 이를 광촉매 코팅제에 적용하는 경우 광촉매에 의한 바인더 및/또는 피도물 표면의 분해나 손상을 대폭 저감할 수 있음을 확인하였다.In the present invention, 5% (w/w) or more, preferably 10% (w/w) or more, 50% ( w / w) or less to prepare an organic-inorganic hybrid oligomer binder. When this is applied to the photocatalyst coating agent, it was confirmed that the decomposition or damage of the binder and/or the surface of the object to be coated by the photocatalyst can be significantly reduced.

아래에서는 본 발명의 유무기 하이브리드형 광촉매 코팅제를 제조하는 각 성분의 특징에 대하여 자세히 살펴본다.Below, the characteristics of each component for preparing the organic-inorganic hybrid photocatalyst coating agent of the present invention will be described in detail.

반응성 Reactivity 알콕시실란alkoxysilane

본 발명에서 사용할 수 있는 상기 아크릴레이트 단량체와 반응할 수 있는 작용기를 가진 반응성 알콕시실란의 예로는 아크릴 수지의 카르복시기와 반응할 수 있는 반응기, 예컨대 메틸기, 에틸기, n-프로필기, i-프로필기 등의 알킬기, 기타 γ-클로로프로필기, 비닐기, 3,3,3-트리플루오로 프로필기, γ-글리시드옥시프로필기, γ-메타크릴옥시프로필기, γ-메르캅토프로필기, 페닐기, 3,4-에폭시시클로헥실에틸기 등의 작용기를 가진 실란 화합물을 들 수 있다.Examples of the reactive alkoxysilane having a functional group capable of reacting with the acrylate monomer that can be used in the present invention include a reactive group capable of reacting with a carboxy group of the acrylic resin, such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group, etc. of alkyl group, other γ-chloropropyl group, vinyl group, 3,3,3-trifluoropropyl group, γ-glycidoxypropyl group, γ-methacryloxypropyl group, γ-mercaptopropyl group, phenyl group, and silane compounds having a functional group such as a 3,4-epoxycyclohexylethyl group.

또한, 본 발명에서 사용할 수 있는 유기 실란 중 오르가노알콕시실란은 탄소 원자수 1∼5의 알킬기 또는 탄소 원자수 1∼4의 아실기로서, 예를 들면 메틸기, 에틸기, n-프로필기, i-프로필기, n-부틸기, sec-부틸기, tert-부틸기, 아세틸기 등의 작용기를 가진 오르가노알콕시실란을 들 수 있다.In addition, among the organic silanes usable in the present invention, organoalkoxysilane is an alkyl group having 1 to 5 carbon atoms or an acyl group having 1 to 4 carbon atoms, for example, a methyl group, an ethyl group, an n-propyl group, i- and organoalkoxysilanes having functional groups such as propyl group, n-butyl group, sec-butyl group, tert-butyl group and acetyl group.

이들 오르가노알콕시실란의 구체적인 예로는 메틸트리메톡시실란, 메틸트리에톡시실란, 에틸트리메톡시실란, 에틸트리에톡시실란, n-프로필트리메톡시실란, 트리에톡시실란, i-프로필트리메톡시실란, i-프로필트리에톡시실란, γ-클로로프로필트리메톡시실란, γ-클로로프로필트리에톡시실란, 비닐트리메톡시실란, 3,3,3-트리플루오로프로필트리메톡시실란, 3,3,3-트리플루오로프로필트리에톡시실란, γ-글리시드옥시프로필트리 메톡시실란, γ-글리시드옥시프로필트리에톡시실란 ,γ-메타크릴옥시프로필트리메톡시실란, γ-메타크릴옥시프로필트리에톡시실란, γ-메르캅토프로필트리메톡시실란, γ-메르캅토프로필트리에톡시실란, 페닐트리메톡시실란, 페닐트리에톡시실란, 3,4-에폭시시클로헥실에틸트리메톡시실란, 3,4-에폭시시클로헥실에틸트리에톡시실란 등을 들 수 있지만, 바람직하기로는 메틸트리메톡시실란, 메틸트리에톡시실란을 사용한다. 이들 오르가노알콕시실란은 1종을 단독으로 사용할 수 있고, 또한 2종 이상을 병용할 수도 있다.Specific examples of these organoalkoxysilanes include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, triethoxysilane, i-propyltri Methoxysilane, i-propyltriethoxysilane, γ-chloropropyltrimethoxysilane, γ-chloropropyltriethoxysilane, vinyltrimethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane , 3,3,3-trifluoropropyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ -Methacryloxypropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, 3,4-epoxycyclohexylethyl Although trimethoxysilane, 3,4-epoxycyclohexylethyltriethoxysilane, etc. are mentioned, Preferably methyltrimethoxysilane and methyltriethoxysilane are used. These organoalkoxysilanes can be used individually by 1 type, and can also use 2 or more types together.

금속 metal 알콕사이드alkoxide (Metal (Metal alkoxidealkoxide ))

본 발명의 광촉매용 유무기 하이브리드 바인더 제조에 사용되는 유기금속 화합물은 아래 화학식으로 나타내는 금속 알콕사이드, 이의 가수분해물, 이의 축합 생성물 또는 킬레이트 화합물을 사용할 수 있다.As the organometallic compound used for preparing the organic-inorganic hybrid binder for a photocatalyst of the present invention, a metal alkoxide represented by the following formula, a hydrolyzate thereof, a condensation product thereof, or a chelate compound may be used.

M(OR)n (단, M = Ti, Zr, Al, Sn, W, Co 및 Sn 중에서 선택된 1종 이상의 금속, n = 금속의 원자가, R = 탄소수 1-6의 유기기).M(OR)n (provided that M = at least one metal selected from Ti, Zr, Al, Sn, W, Co and Sn, n = the valence of the metal, R = an organic group having 1-6 carbon atoms).

상기 화학식으로 나타내는 금속 알콕사이드의 구체적인 예로는 테트라에톡시지르코늄, 테트라프로폭시지르코늄, 테트라부톡시지르코늄, 테트라벤톡시지르코늄, 펜타에톡시텅스텐, 헥사에톡시텅스텐, 테트라메톡시실란, 테트라에톡시실란, 테트라(2-에틸헥실)티타네이트, 트리에탄올아민티타네이트, 테트라(이소프로비닐옥시)티타네이트, 오가노실록시티탄, β-카보닐티탄, 테트라이소프로필티타네이트, 테트라부틸티타네이트, 티탄아세틸아세토네이트, 알루미늄트리이소프로폭사이드, 알루미늄아세틸아세토네이트, 과염소산알루미늄, 염화알루미늄, 코발트옥틸레이트, 코발트아세틸아세토네이트, 페로아세틸아세토네이트, 틴아세틸아세토네이트, 디부틸틴옥틸레이트, 디부틸틴라우레이트 등을 들 수 있으며 이중 테트라이소프로필티타네이트, 테트라부틸티타네이트, 티탄아세틸아세토네이트 등 티타늄유기금속화합물이 좀 더 바람직하다.Specific examples of the metal alkoxide represented by the above formula include tetraethoxyzirconium, tetrapropoxyzirconium, tetrabutoxyzirconium, tetrabentoxyzirconium, pentaethoxytungsten, hexaethoxytungsten, tetramethoxysilane, tetraethoxysilane, Tetra (2-ethylhexyl) titanate, triethanolamine titanate, tetra (isoprovinyloxy) titanate, organosiloxy titanium, β-carbonyl titanium, tetraisopropyl titanate, tetrabutyl titanate, titanium acetyl aceto Nate, aluminum triisopropoxide, aluminum acetylacetonate, aluminum perchlorate, aluminum chloride, cobalt octylate, cobalt acetylacetonate, ferroacetylacetonate, tinacetylacetonate, dibutyltinoctylate, dibutyltin laurate and the like, and among them, titanium organometallic compounds such as tetraisopropyl titanate, tetrabutyl titanate, and titanium acetylacetonate are more preferable.

특히 본 발명에서는 금속 알콕사이드 중 바람직하게는 티타늄 알콕사이드, 지르코 늄알콕사이드 및 각각의 축합 생성물 또는 킬레이트 화합물을 사용할 수 있다. In particular, among the metal alkoxides, titanium alkoxide, zirconium alkoxide, and each condensation product or chelate compound may be used in the present invention.

티타늄 알콕사이드의 구체적인 예로는 테트라(2-에틸헥실)티타네이트, 트리에탄올아민티타네이트, 테트라(이소프로비닐옥시)티타네이트, 오가노실록시티탄, β-카보닐티탄, 테트라에틸티타네이트, 테트라메틸티타네이트, 테트라이소프로필티타네이트(테트라이소프로폭시티타늄, 테트라-n-프로폭시티타늄) 테트라부틸티타네이트(테트라-n-부톡시티타늄), 티탄아세틸아세토네이트 등을 들 수 있으며 이중 테트라이소프로필티타네이트, 테트라부틸티타네이트, 티탄아세틸아세토네이트 등 티타늄유기금속화합물이 더욱 바람직하다.Specific examples of the titanium alkoxide include tetra (2-ethylhexyl) titanate, triethanolamine titanate, tetra (isoprovinyloxy) titanate, organosiloxy titanium, β-carbonyl titanium, tetraethyl titanate, tetramethyl titanate. tetraisopropyl titanate (tetraisopropoxytitanium, tetra-n-propoxytitanium), tetrabutyl titanate (tetra-n-butoxytitanium), and titanium acetylacetonate, among which tetraisopropyl titanate Titanium organometallic compounds such as nitrate, tetrabutyl titanate, and titanium acetylacetonate are more preferable.

지르코늄 알콕사이드의 구체적인 예로는 테트라에톡시지르코늄, 테트라메톡시지르코늄, 테트라프로폭시지르코늄(테트라이소프로폭시지르코늄, 테트라-n-프로폭시지르코늄), 테트라부톡시지르코늄(테트라-n-부톡시지르코늄, 테트라-sec-부톡시지르코늄, 테트라-tert-부톡시지르코늄), 테트라벤톡시지르코늄, 등을 들 수 있으며 이중 테트라이소프로폭시지르코늄과 테트라부톡시지르코늄이 더욱 바람직하다.Specific examples of the zirconium alkoxide include tetraethoxyzirconium, tetramethoxyzirconium, tetrapropoxyzirconium (tetraisopropoxyzirconium, tetra-n-propoxyzirconium), tetrabutoxyzirconium (tetra-n-butoxyzirconium, tetra -sec-butoxyzirconium, tetra-tert-butoxyzirconium), tetrabentoxyzirconium, etc. are mentioned, Of these, tetraisopropoxyzirconium and tetrabutoxyzirconium are more preferable.

상기 금속 알콕사이드를 β-디케톤 또는 β-케토에스테르를 사용하여 킬레이트화된 반응물을 사용할 수 있다. 가수분해 억제제의 역할을 할 수 있는 킬레이트화제로는 디에탄올아민, 트리에탄올아민 등의 알카놀아민류, 에틸렌글리콜, 디에틸렌글리콜, 프로필렌글리콜 등의 글리콜류, 아세틸아세톤, 아세토초산에틸 등이 있다. 이중 1종 단독 또는 2종 이상을 혼합하여 사용할 수 있다. 금속 알콕사이드와 β-디케톤 및, 또는 β-케토에스테르와의 반응은 -10~120℃에서 0.5~10시간 정도면 가능하다. 이 반응에 의해 킬레이트 화합물을 얻게 된다. 일반적으로 이러한 킬레이트 화합물은 알콕사이드 단체에 비해 가수분해성이 낮고, 비교적 안정적이다.A reactant in which the metal alkoxide is chelated using β-diketone or β-ketoester may be used. Chelating agents that can act as a hydrolysis inhibitor include alkanolamines such as diethanolamine and triethanolamine, glycols such as ethylene glycol, diethylene glycol, and propylene glycol, acetylacetone, and ethyl acetoacetate. Of these, one type alone or two or more types may be mixed and used. The reaction of the metal alkoxide with β-diketone and or β-ketoester is possible at -10 to 120° C. for about 0.5 to 10 hours. A chelate compound is obtained by this reaction. In general, such chelate compounds have low hydrolysis properties and are relatively stable compared to simple alkoxides.

아크릴레이트acrylate (( acrylateacrylate ))

유무기 하이브리드 올리고머 바인더를 형성하는데 적합한 알킬 아크릴레이트(메타크릴레이트) 단량체는 메틸메타크릴레이트, 에틸 메타크릴레이트, 프로필 메타크릴레이트, 부틸 메타크릴레이트, 이소부틸 메타크릴레이트, 펜틸 메타크릴레이트, 헥실 메타크릴레이트, 옥틸 메타크릴레이트, 노닐 메타크릴레이트, 라우릴 메타크릴레이트 등; 메틸 아크릴레이트, 에틸 아크릴레이트, 프로필 아크릴레이트, 부틸 아크릴레이트, 이소부틸 아크릴레이트, 펜틸 아크릴레이트, 헥실 아크릴레이트, 옥틸 아크릴레이트, 노닐 아크릴레이트, 라우릴 아크릴레이트 등이다. 또한, 예를 들어, 트리메틸시클로헥실 메타크릴레이트, 트리메틸시클로헥실 아크릴레이트, 이소부틸 메타크릴레이트, t-부틸 시클로헥실 아크릴레이트 또는 t-부틸 시클로헥실 메타크릴레이트와 같은 시클로지방족 아크릴레이트(메타크릴레이트)가 사용될 수 있다. 또한, 예를 들어, 벤질 아크릴레이트 및 벤질 메타크릴레이트와 같은 아릴 아크릴레이트(메타크릴레이트)가 사용될 수 있다. 이들 단량체의 2종 이상의 혼합물이 또한 적합하다.Alkyl acrylate (methacrylate) monomers suitable for forming the organic-inorganic hybrid oligomer binder include methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, isobutyl methacrylate, pentyl methacrylate, hexyl methacrylate, octyl methacrylate, nonyl methacrylate, lauryl methacrylate, and the like; methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, isobutyl acrylate, pentyl acrylate, hexyl acrylate, octyl acrylate, nonyl acrylate, lauryl acrylate, and the like. Also, for example, cycloaliphatic acrylates such as trimethylcyclohexyl methacrylate, trimethylcyclohexyl acrylate, isobutyl methacrylate, rate) can be used. Also, for example, aryl acrylates (methacrylates) such as benzyl acrylate and benzyl methacrylate may be used. Mixtures of two or more of these monomers are also suitable.

또한, 아크릴레이트로서 불소계 화합물을 사용 또는 첨가하여 사용할 수 있다. 이는 중합 반응을 일으킬 수 있는 중합성 화합물의 적어도 1개 이상의 수소가 불소로 치환된 화합물을 말한다. 불소계 화합물은 분자간 인력이 작고 표면 에너지가 낮은 성질을 갖고 있어, 표면 코팅시 우수한 발수, 발유 효과를 나타내고, 또한, 광촉매 코팅막의 굴절율을 낮게 만들고, 슬립성, 내마모성 및 오염방지성을 부여하는 역할을 한다.In addition, a fluorine-based compound may be used or added as the acrylate. This refers to a compound in which at least one hydrogen of a polymerizable compound capable of causing a polymerization reaction is substituted with fluorine. Fluorine-based compounds have a small intermolecular attraction and low surface energy, so they exhibit excellent water and oil repellency during surface coating, and also lower the refractive index of the photocatalyst coating film, and play a role in imparting slip properties, abrasion resistance and anti-pollution properties. do.

상기 불소계 아크릴레이트로는 폴리-(트리플루오로메틸메타크릴레이트), 폴리-(헥사플루오로이소프로필-2-플루오르아크릴레이트), 퍼플루오로헥사에틸아크릴레이트, 퍼플루오로옥타에틸아크릴레이트, 퍼플루오로데카에틸아크릴레이트, 퍼플루오로도데카에틸아크릴레이트, 퍼플루오로헥사에틸메타크릴레이트, 퍼플루오로옥타에틸메타크릴레이트, 퍼플루오로데카에틸메타크릴레이트, 퍼플루오로도데카에틸메타크릴레이트, 퍼플루오로헥사에틸렌, 퍼플루오로옥타에틸렌, 퍼플루오로데카에틸에틸렌, 및 퍼플루오로도데카에틸렌 등을 들 수 있다.Examples of the fluorine-based acrylate include poly-(trifluoromethyl methacrylate), poly-(hexafluoroisopropyl-2-fluoroacrylate), perfluorohexaethyl acrylate, perfluorooctaethyl acrylate, Perfluorodecaethyl acrylate, perfluorododecaethyl acrylate, perfluorohexaethyl methacrylate, perfluorooctaethyl methacrylate, perfluorodecaethyl methacrylate, perfluorododecaethyl methacrylate rate, perfluorohexaethylene, perfluorooctaethylene, perfluorodecaethylethylene, and perfluorododecaethylene; and the like.

중합개시제polymerization initiator

본 발명에서는 상기 유기 실란, 금속 알콕사이드 및 아크릴레이트 3성분계 중합반응을 유도하기 위해서 중합개시제를 사용할 수 있다. 개시제는 아크릴계 화합물의 중합 반응에 적합한 것이라면 임의의 개시제를 사용할 수 있다. 상기 개시제의 비제한적인 예로는 과황산염, 아조 화합물, 과산화물, 아세토페논 화합물, 벤조인에테르 화합물, 벤조페논화합물 및 티옥산 화합물로 이루어진 군으로부터 선택된 1 이상일 수 있다.In the present invention, a polymerization initiator may be used to induce the three-component polymerization reaction of the organosilane, metal alkoxide, and acrylate. As the initiator, any initiator may be used as long as it is suitable for the polymerization reaction of the acrylic compound. Non-limiting examples of the initiator may be at least one selected from the group consisting of a persulfate, an azo compound, a peroxide, an acetophenone compound, a benzoin ether compound, a benzophenone compound, and a thioxane compound.

가수분해성기를 함유하는 비닐계 공중합체는 상기 에틸렌성 불포화 결합을 갖는 단량체와 불포화기 함유 규소 화합물 성분을 유기용제 및 중합개시제의 존재하에 50-150℃의 온도에서 반응시켜 얻을 수 있다. 용제로는 메틸알코올, 에틸알코올, 이소프로필알코올과 같은 알코올류 또는 에틸렌글리콜모노메틸에테르, 에틸렌글리콜모노에틸에탄올, 테트라하이드로퓨란, 디옥산 등의 에테르알코올 또는 에테르 그리고 아세톤, 메틸에틸케톤, 디에틸케톤과 같은 케톤류, 초산메틸, 초산에틸, 초산 n-부틸과 같은 에스테르류, n-헥산, 가솔린, 등유, 미네랄스피리트와 같은 지방족탄화수소, 벤젠, 톨루엔, 키실렌 등과 같은 방향족탄화수소 등을 사용할 수 있다.The vinyl copolymer containing a hydrolyzable group can be obtained by reacting the monomer having an ethylenically unsaturated bond with the silicon compound component containing an unsaturated group at a temperature of 50-150° C. in the presence of an organic solvent and a polymerization initiator. Examples of solvents include alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol, or ether alcohols or ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ethanol, tetrahydrofuran, and dioxane, and acetone, methyl ethyl ketone, and diethyl. Ketones such as ketones, esters such as methyl acetate, ethyl acetate, n-butyl acetate, aliphatic hydrocarbons such as n-hexane, gasoline, kerosene, mineral spirit, aromatic hydrocarbons such as benzene, toluene, xylene, etc. can be used. .

용매menstruum

상기 용매는 특별히 한정되지 않으나, 예를 들면 상압에서 200℃ 이하의 비점을 갖는 용매를 사용할 수 있고, 특히 물 또는 물과 유기 용매의 혼합물이 사용될 수 있다. 상기 유기 용매는 알코올 화합물, 케톤 화합물, 에테르 화합물, 에스테르 화합물, 방향족 화합물 및 아미드 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있다.The solvent is not particularly limited, but, for example, a solvent having a boiling point of 200° C. or less at normal pressure may be used, and in particular, water or a mixture of water and an organic solvent may be used. The organic solvent may be at least one selected from the group consisting of an alcohol compound, a ketone compound, an ether compound, an ester compound, an aromatic compound, and an amide compound.

상기 용매, 특히 물은 반응성 알콕시실란 화합물을 가수분해시켜 졸-겔 반응을 촉진하고, 유기용매는 중합반응 진행시 매질 역할을 하여 최초 원료들의 균일한 분산을 돕고, 중합반응시 급격한 온도상승을 방지하고, 필름으로의 균일한 코팅을 제공하는 역할을 한다.The solvent, especially water, promotes the sol-gel reaction by hydrolyzing the reactive alkoxysilane compound, and the organic solvent serves as a medium during the polymerization reaction to help uniform dispersion of the initial raw materials, and to prevent rapid temperature rise during polymerization and serves to provide a uniform coating to the film.

상기 알코올 화합물의 예로서, 메탄올, 에탄올, 아이소프로필알코올, 아이소부탄올, n-부탄올, t-부탄올, 에톡시에탄올, 부톡시에탄올, 아이에틸렌글라이콜 모노에틸 에터, 벤질 알코올, 펜에틸 알코올, 1-메톡시-2-프로판올 등을 들 수 있다. 케톤 화합물의 예로서, 아세톤, 메틸에틸 케톤, 메틸아이소부틸 케톤, 사이클로헥사논 등을 들 수 있다. 에테르 화합물의 예로서, 다이뷰틸 에터, 프로필렌 글라이콜 모노에틸 에터 아세테이트 등을 들 수 있다. 에스테르 화합물의 예로서, 에틸 아세테이트, 부틸 아세테이트, 에틸 락테이트, 메틸 아세토아세테이트, 에틸 아세토아세테이트, 1-메톡시-2-프로판올 아세테이트 등을 들 수 있다. 방향족 화합물의 예로서, 톨루엔, 자일렌 등을 들 수 있다. 아미드 화합물의 예로서, N,N-다이메틸폼아마이드, N,N-다이메틸아세트아마이드, N-메틸피롤리돈 등을 들 수 있다.Examples of the alcohol compound include methanol, ethanol, isopropyl alcohol, isobutanol, n-butanol, t-butanol, ethoxyethanol, butoxyethanol, iethylene glycol monoethyl ether, benzyl alcohol, phenethyl alcohol, 1-methoxy-2-propanol etc. are mentioned. Acetone, methylethyl ketone, methylisobutyl ketone, cyclohexanone etc. are mentioned as an example of a ketone compound. Examples of the ether compound include dibutyl ether, propylene glycol monoethyl ether acetate, and the like. Examples of the ester compound include ethyl acetate, butyl acetate, ethyl lactate, methyl acetoacetate, ethyl acetoacetate, 1-methoxy-2-propanol acetate and the like. Toluene, xylene, etc. are mentioned as an example of an aromatic compound. Examples of the amide compound include N,N-dimethylformamide, N,N-dimethylacetamide, and N-methylpyrrolidone.

아래에서는 본 발명의 유무기 하이브리드형 광촉매 코팅제 및 그 제조방법에 대하여 구체적인 합성예와 실시예를 들어 본 발명의 구성을 좀 더 자세히 설명한다. 그러나, 본 발명의 범위가 아래의 기재에만 한정되는 것이 아니며, 청구범위의 기재를 바탕으로 결정되는 것임은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명하다.Hereinafter, the configuration of the present invention will be described in more detail with reference to specific synthesis examples and examples for the organic-inorganic hybrid photocatalyst coating agent of the present invention and a method for manufacturing the same. However, it is apparent to those of ordinary skill in the art that the scope of the present invention is not limited only to the description below, and is determined based on the description of the claims.

<< 합성예Synthesis example 1: One: 항균금속이 함유된 Contains antibacterial metal 광촉매photocatalyst 분말의 제조> Preparation of powder>

증류수 1000ml를 10℃ 이하의 온도가 유지되도록 빙냉 교반하면서 사염화티타늄(TiCl4) 10ml를 서서히 적하한 후 10분 이상 충분하게 혼합하였다. 그런 후 다른 용기에서 암모니아수 용액(NH4OH, 0.5mol/l)을 제조한 후 사염화티타늄 용액에 서서히 적하하면서 교반하여 pH 7이 될 때까지 계속하여 중화 적정을 행하였다. 유백색의 침전 생성물인 수산화티타늄(Ti(OH)4)이 얻어지면 교반을 멈추고 그 상태에서 12시간 동안 유지하였다. 이어서 이온교환수로 충분히 수세한 후 다시 이온교환수를 첨가하여 총량 700ml가 되도록 했다. 여기에 28% 과산화수소(H2O2), 20m1이상을 첨가하고 교반하여 진노랑색의 과산화티탄산용액을 만들었다. 여기에 이온교환수를 첨가하여 900ml가 되도록 한 다음 30℃로 유지하면서 서서히 교반하고 여기에 상기의 항균금속이 고정화된 수산화티타늄 수분산액, 300ml를 첨가하고 교반하여 혼합하였다. 이와 같이 충분히 혼합된 상태에서 오토클레이브(autoclave) 반응기에 투입하고 800rpm으로 프로펠러 교반(propeller agitation)을 계속하면서 200℃에서 3시간 동안 수열합성 반응을 수행하였다.10 ml of titanium tetrachloride (TiCl 4 ) was slowly added dropwise to 1000 ml of distilled water while ice-cooling and stirring to maintain a temperature of 10° C. or less, followed by sufficient mixing for at least 10 minutes. Then, an aqueous ammonia solution (NH 4 OH, 0.5 mol/l) was prepared in another container and stirred while being slowly added dropwise to the titanium tetrachloride solution, and neutralization titration was continued until pH 7 was reached. When the milky white precipitated product of titanium hydroxide (Ti(OH) 4 ) was obtained, the stirring was stopped and maintained for 12 hours in that state. Then, after sufficiently washing with ion-exchanged water, ion-exchanged water was added again to make a total amount of 700 ml. To this, 28% hydrogen peroxide (H 2 O 2 ), 20m1 or more, was added and stirred to prepare a dark yellow titanic acid solution. Ion-exchanged water was added thereto to make 900 ml, and the mixture was stirred slowly while maintaining at 30° C., and 300 ml of an aqueous dispersion of titanium hydroxide on which the antibacterial metal was immobilized, 300 ml, was added thereto and mixed with stirring. In this sufficiently mixed state, it was put into an autoclave reactor, and a hydrothermal synthesis reaction was performed at 200° C. for 3 hours while propeller agitation was continued at 800 rpm.

상온으로 냉각한 후 여과하고 이온교환수로 충분히 세척하였으며 이때의 생성물을 X선 회절분석기(XRD)를 이용하여 분산입자가 아나타제(anatase) 임을 확인하였고, X선 형광분석기(XRF)를 이용하여 은(Ag)성분의 존재를 확인하였다. After cooling to room temperature, it was filtered and washed thoroughly with ion-exchanged water. The product at this time was confirmed that the dispersed particles were anatase using X-ray diffraction analyzer (XRD), and silver was purified using X-ray fluorescence analyzer (XRF). (Ag) Presence of a component was confirmed.

이어서 수세 후 100℃에서 8시간 동안 건조한 후 450℃에서 3시간 동안 열처리하여 항균금속성분이 고정화된 이산화티타늄(TiO2)광촉매 분말을 제조하였다. Then, after washing with water and drying at 100° C. for 8 hours, heat treatment was performed at 450° C. for 3 hours to prepare a titanium dioxide (TiO 2 ) photocatalyst powder having an antibacterial metal component immobilized thereon.

<< 합성예Synthesis example 2: 유무기 2: organic and inorganic 하이브리드형Hybrid type 바인더의 제조> Preparation of binder>

온도계, 교반기, 냉각기가 부착된 2리터 삼각플라스크에 감마-메타크릴옥시프로필트리메톡시실란(γ-Methacryloxypropyl trimethoxy silane) 36.0g, 티타늄테트라이소프로폭사이드(Titanium tetraisopropoxide) 12.0g 및 메틸메타아크릴레이트(Methyl methacrylate) 4.0g, 그리고 테트라에톡시실란(Tetraethoxy silane) 1.0g 및 이소프로필알코올 20.0g과 프로필렌글리콜모노메틸에테르(Propylene glycol monomethyl ether) 200g을 가해서 30분간 혼합 교반하여 균일한 용액이 되도록 하였다. 그런 다음에 80℃에서 6시간 중합반응을 진행하였다. 그런 후 상온으로 냉각하여 광촉매바인더 (a-1)을 제조하였다.36.0 g of γ-Methacryloxypropyl trimethoxy silane, 12.0 g of titanium tetraisopropoxide and methyl methacrylate in a 2-liter Erlenmeyer flask equipped with a thermometer, stirrer, and cooler (Methyl methacrylate) 4.0 g, tetraethoxy silane 1.0 g, isopropyl alcohol 20.0 g, and propylene glycol monomethyl ether 200 g were added, mixed and stirred for 30 minutes to obtain a uniform solution. . Then, polymerization was carried out at 80° C. for 6 hours. Then, it was cooled to room temperature to prepare a photocatalytic binder (a-1).

<< 합성예Synthesis example 3: 유무기 3: organic and inorganic 하이브리드형Hybrid type 바인더의 제조> Preparation of binder>

온도계, 교반기, 냉각기가 부착된 2리터 삼각플라스크에 감마-메타크릴옥시프로필트리메톡시실란(γ-Methacryloxypropyltrimethoxysilane) 30.0g, 테트라부톡시지르코늄(Tetra-n-butoxyzirconium) 10.0g, 메틸메타아크릴레이트(Methyl methacrylate) 4.0g, 테트라메톡시실란(Tetramethoxysilane) 1.0g, 아조비스이소부치로니트릴 0.5g 그리고 이소프로필알코올 30.0g과 에틸렌글리콜모노부틸에테르(Ethyleneglycolmonobutylether) 200g을 가해서 30분간 혼합 교반하여 균일한 용액이 되도록 하였다. 그런 다음에 80℃에서 6시간 중합반응을 진행하였다. 그런 후 상온으로 냉각하여 광촉매바인더 (a-2)를 제조하였다.Gamma-methacryloxypropyltrimethoxysilane (γ-Methacryloxypropyltrimethoxysilane) 30.0 g, tetra-n-butoxyzirconium 10.0 g, methyl methacrylate ( Add 4.0 g of methyl methacrylate, 1.0 g of Tetramethoxysilane, 0.5 g of azobisisobutchironitrile, 30.0 g of isopropyl alcohol and 200 g of ethylene glycol monobutyl ether, mix and stir for 30 minutes to obtain a uniform solution. made to be Then, polymerization was carried out at 80° C. for 6 hours. Then, it was cooled to room temperature to prepare a photocatalytic binder (a-2).

<합성예 4: 유무기 하이브리드형 바인더의 제조><Synthesis Example 4: Preparation of organic-inorganic hybrid binder>

온도계, 교반기, 냉각기가 부착된 2리터 삼각플라스크에 감마-메타크릴옥시프로필트리메톡시실란(γ-Methacryloxypropyl trimethoxy silane) 36.0g, 티타늄테트라이소프로폭사이드(Titanium tetraisopropoxide) 6.0g, 테트라부톡시지르코늄(Tetra-n-butoxyzirconium) 4.0g, 및 메틸메타아크릴레이트(Methyl methacrylate) 4.0g, 그리고 이소프로필알코올 20.0g과 프로필렌글리콜모노메틸에테르(Propylene glycol monomethyl ether) 200g을 가해서 30분간 혼합 교반하여 균일한 용액이 되도록 하였다. 그런 다음에 80℃에서 6시간 중합반응을 진행하였다. 그런 후 상온으로 냉각하여 광촉매바인더 (a-3)를 제조하였다.In a 2-liter Erlenmeyer flask equipped with a thermometer, stirrer, and cooler, 36.0 g of γ-Methacryloxypropyl trimethoxy silane, 6.0 g of titanium tetraisopropoxide, tetrabutoxyzirconium (Tetra-n-butoxyzirconium) 4.0g, methyl methacrylate 4.0g, and isopropyl alcohol 20.0g and propylene glycol monomethyl ether 200g added, mixed and stirred for 30 minutes to make a uniform to be a solution. Then, polymerization was carried out at 80° C. for 6 hours. Then, it was cooled to room temperature to prepare a photocatalytic binder (a-3).

<합성예 5: 유무기 하이브리드형 바인더의 제조><Synthesis Example 5: Preparation of organic-inorganic hybrid binder>

온도계, 교반기, 냉각기가 부착된 2리터 삼각플라스크에 감마-메타크릴옥시프로필트리메톡시실란(γ-Methacryloxypropyltrimethoxysilane) 30.0g, 메틸메타아크릴레이트(Methyl methacrylate) 15.0g, 아조비스이소부치로니트릴 0.5g 그리고 이소프로필알코올 30.0g과 에틸렌글리콜모노부틸에테르(Ethyleneglycolmonobutylether) 200g을 가해서 30분간 혼합 교반하여 균일한 용액이 되도록 하였다. 그런 다음에 80℃에서 6시간 중합반응을 진행하였다. 그런 후 상온으로 냉각하여 광촉매바인더 (a-4)를 제조하였다.In a 2-liter Erlenmeyer flask equipped with a thermometer, stirrer, and cooler, 30.0 g of γ-Methacryloxypropyltrimethoxysilane, 15.0 g of methyl methacrylate, 0.5 g of azobisisobutchironitrile and 30.0 g of isopropyl alcohol and 200 g of ethylene glycol monobutyl ether were added, mixed and stirred for 30 minutes to obtain a uniform solution. Then, polymerization was carried out at 80° C. for 6 hours. Then, it was cooled to room temperature to prepare a photocatalytic binder (a-4).

<합성예 6: 실리콘 바인더의 제조><Synthesis Example 6: Preparation of silicone binder>

온도계, 교반기, 냉각기가 부착된 2리터 삼각플라스크에 감마-메타크릴옥시프로필트리메톡시실란(γ-Methacryloxypropyl trimethoxy silane) 10.0g, 테트라에톡시실란(Tetraethoxy silane) 20.0g 및 이소프로필알코올 120.0g과 에틸알코올 50g을 그리고 물 15.0g을 가해서 30분간 혼합 교반하여 균일한 용액이 되도록 하였다. 그런 다음에 80℃에서 6시간 가수분해 반응을 진행하였다. 그런 후 상온으로 냉각하여 광촉매바인더 (a-5)를 제조하였다.In a 2-liter Erlenmeyer flask equipped with a thermometer, stirrer, and cooler, 10.0 g of γ-Methacryloxypropyl trimethoxy silane, 20.0 g of tetraethoxy silane, and 120.0 g of isopropyl alcohol were mixed with After adding 50 g of ethyl alcohol and 15.0 g of water, the mixture was stirred for 30 minutes to obtain a uniform solution. Then, the hydrolysis reaction was performed at 80 °C for 6 hours. Then, it was cooled to room temperature to prepare a photocatalytic binder (a-5).

<실시예 1><Example 1>

이소프로필알코올 200ml과 프로필렌글리콜모노메틸에테르 200ml 혼합용매에 합성예 1의 항균금속 함유 TiO2 결정체 광촉매 분말 20g, 유무기 하이브리드형 바인더(a-1) 20g, 그리고 물 2g을 혼합하고 이를 유리비드밀(glass bead의 크기는 2mmØ)에 투입하고 1000 ~ 3000 rpm으로 30분 동안 밀링(milling)하여 유무기 하이브리드형 광촉매 코팅제를 제조하였다.In a mixed solvent of 200 ml of isopropyl alcohol and 200 ml of propylene glycol monomethyl ether, 20 g of the antibacterial metal-containing TiO 2 crystal photocatalyst powder of Synthesis Example 1, 20 g of organic-inorganic hybrid binder (a-1), and 2 g of water were mixed, and this was mixed with a glass bead mill. (The size of the glass bead was 2mmØ) and milled at 1000 to 3000 rpm for 30 minutes to prepare an organic/inorganic hybrid photocatalyst coating agent.

<실시예 2><Example 2>

이소프로필알코올 200ml과 프로필렌글리콜모노메틸에테르 200ml 혼합용매에 합성예 1의 항균금속 함유 TiO2 결정체 광촉매 분말 20g, 합성예 3의 유무기 하이브리드형 바인더(a-2) 15g 그리고 물 3g을 혼합하고 이를 유리비드밀(glass bead의 크기는 2mmØ)에 투입하고 1000 ~ 3000 rpm으로 30분 동안 밀링(milling)하여 유무기 하이브리드형 광촉매 코팅제를 제조하였다.In a mixed solvent of 200 ml of isopropyl alcohol and 200 ml of propylene glycol monomethyl ether, 20 g of the antibacterial metal-containing TiO 2 crystalline photocatalyst powder of Synthesis Example 1, 15 g of the organic-inorganic hybrid binder (a-2) of Synthesis Example 3, and 3 g of water were mixed, and this An organic-inorganic hybrid photocatalyst coating agent was prepared by putting it in a glass bead mill (the size of a glass bead was 2mmØ) and milling at 1000 to 3000 rpm for 30 minutes.

<실시예 3><Example 3>

이소프로필알코올 200ml과 프로필렌글리콜모노메틸에테르 200ml 그리고 아세틸아세토네이트 10ml의 혼합용매에 합성예 1의 항균금속 함유 TiO2 결정체 광촉매 분말 20g, 합성예 4의 유무기 하이브리드형 바인더(a-3) 15g 그리고 물 3g을 혼합하고 이를 유리비드밀(glass bead의 크기는 2mmØ)에 투입하고 1000 ~ 3000 rpm으로 30분 동안 밀링(milling)하여 유무기 하이브리드형 광촉매 코팅제를 제조하였다.In a mixed solvent of 200 ml of isopropyl alcohol, 200 ml of propylene glycol monomethyl ether, and 10 ml of acetylacetonate, 20 g of the antibacterial metal-containing TiO 2 crystalline photocatalyst powder of Synthesis Example 1, 15 g of the organic-inorganic hybrid binder (a-3) of Synthesis Example 4, and After mixing 3 g of water, it was put into a glass bead mill (the size of a glass bead was 2mmØ) and milled at 1000 to 3000 rpm for 30 minutes to prepare an organic-inorganic hybrid photocatalyst coating agent.

<비교예 1><Comparative Example 1>

이소프로필알코올 200ml과 프로필렌글리콜모노메틸에테르 200ml 혼합용매에 합성예 1의 항균금속 함유 TiO2 결정체 광촉매 분말 20g, 합성예 5의 유무기 하이브리드형 바인더(a-4) 20g, 그리고 물 2g을 혼합하고 이를 유리비드밀(glass bead의 크기는 2mmØ)에 투입하고 1000 ~ 3000 rpm으로 30분 동안 밀링(milling)하여 유무기 하이브리드형 광촉매 코팅제를 제조하였다.In a mixed solvent of 200 ml of isopropyl alcohol and 200 ml of propylene glycol monomethyl ether, 20 g of the antibacterial metal-containing TiO 2 crystal photocatalyst powder of Synthesis Example 1, 20 g of the organic-inorganic hybrid binder (a-4) of Synthesis Example 5, and 2 g of water were mixed and This was put into a glass bead mill (the size of a glass bead is 2mmØ) and milled at 1000 to 3000 rpm for 30 minutes to prepare an organic-inorganic hybrid photocatalyst coating agent.

<비교예 2><Comparative Example 2>

이소프로필알코올 200ml과 프로필렌글리콜모노메틸에테르 200ml 혼합용매에 합성예 1의 항균금속 함유 TiO2 결정체 광촉매 분말 20g, 합성예 6의 실란 가수분해형 바인더(a-5) 20g을 혼합하고 이를 유리비드밀(glass bead의 크기는 2mmØ)에 투입하고 1000 ~ 3000 rpm으로 30분 동안 밀링(milling)하여 광촉매 코팅제를 제조하였다.In a mixed solvent of 200 ml of isopropyl alcohol and 200 ml of propylene glycol monomethyl ether, 20 g of the antibacterial metal-containing TiO 2 crystalline photocatalyst powder of Synthesis Example 1 and 20 g of the silane hydrolyzable binder (a-5) of Synthesis Example 6 were mixed, and this was mixed with a glass bead mill. (The size of the glass bead was 2mmØ) and milled at 1000 to 3000 rpm for 30 minutes to prepare a photocatalytic coating agent.

1) 부착력 테스트1) Adhesion test

가로 10cm, 세로 10cm, 두께 2mm 크기의 PMMA(poly methyl methacrylate) 판넬에 광촉매 코팅제를 플루우코팅한 후 상온에서 48시간 방치 후 부착력 테스트 시험편으로 사용하였다. 시판 커터칼을 사용하여 상기 PMMA 시편에 코팅하고 경화가 완료된 상태의 시편 코팅막의 표면을 좌우상하로 절단 즉, 바둑판 모양으로 코팅막을 절단한 후 확대경을 이용하여 절단부위의 들뜸 현상이나 탈리 여부를 육안으로 확인하였다. 이때 들뜸현상과 탈리현상이 모두 없으면 3, 반대로 두가지 현상 중 1가지만 발생할 경우 2, 그리고 두가지 현상이 모두 발생할 경우 1로 표시하였다.A photocatalyst coating agent was flow-coated on a PMMA (poly methyl methacrylate) panel having a width of 10 cm, a length of 10 cm, and a thickness of 2 mm, and then left at room temperature for 48 hours and used as an adhesion test specimen. Using a commercially available cutter knife, coat the PMMA specimen and cut the surface of the specimen coating film in a cured state up and down, that is, cut the coating film in a checkerboard shape, and then use a magnifying glass to visually inspect the lifting or detachment of the cut portion. was confirmed as At this time, if neither lifting nor detachment phenomenon occurred, 3 was indicated, conversely, if only one of the two phenomena occurred, it was indicated as 2, and if both phenomena occurred, it was indicated as 1.

2) 경도 테스트2) Hardness test

상기의 부착력 테스트와 동일하게 코팅샘플을 제작하여 연필경도 테스트 시험편으로 사용하였다. 일본 미쓰비시사제 연필(uniwriting & drowing 9H-6B, Mitsubishi Pencil)을 사용하여 경도측정기에 장착한 후 0.5kg 하중으로 코팅막의 표면 경도를 측정하였다. 경도는 연필경도치를 표시하였다.A coating sample was prepared in the same manner as in the above adhesion test and used as a pencil hardness test specimen. The surface hardness of the coating film was measured with a load of 0.5 kg after it was mounted on a hardness meter using a pencil made by Mitsubishi Japan (uniwriting & drawing 9H-6B, Mitsubishi Pencil). The hardness was indicated by the pencil hardness value.

3) 항균력 테스트3) Antibacterial power test

항균력 시험을 다음과 같이 행하였다. 균주 1인 1.5±0.3X105/ml 농도의 황색포도상구균(Staphylococcus aureus, ATCC 6538)과 균주 2로써 1.3±0.3X105/ml 농도의 대장균(Escherichia coli, ATCC 25922)을 이용하여 광촉매를 0.4g을 적용한 증균용 배지에서 35℃, 18시간 동안 배양하고 균수를 측정하였다.The antibacterial activity test was performed as follows. 0.4 g of a photocatalyst using Strain 1, Staphylococcus aureus, ATCC 6538 at a concentration of 1.5±0.3X10 5 /ml, and E. coli, Escherichia coli, ATCC 25922, at a concentration of 1.3±0.3X10 5 /ml as strain 2 Incubated for 18 hours at 35°C in an enrichment medium to which , and the number of bacteria was measured.

<항균력 테스트 결과><Antibacterial power test result>

다음의 표에서 보듯이 실시예 1, 2 그리고 3의 경우 균주 접종 18시간 후 잔존하는 균주가 육안식별을 할 수 없는 상태로 강한 항균력을 보임을 알 수 있는 반면에 비교예 1의 경우 세균 감소율이 비교적 낮게 나타났다. 원인은 유기 성분의 바인더에 의한 광산화력이 감소하였음을 알 수 있다. 그러나 비교예 2의 경우 실리콘 바인더만을 사용할 경우 실시예 1-3의 경우와 마찬가지로 세균 감소율은 99.9% 이상 나타나 광산화능을 해치지 않는 것으로 나타났다.As shown in the following table, in the case of Examples 1, 2 and 3, it can be seen that the remaining strains exhibit strong antibacterial activity in a state that cannot be visually identified 18 hours after strain inoculation, whereas in Comparative Example 1, the bacterial reduction rate was appeared relatively low. It can be seen that the cause is the decrease in photooxidation power by the binder of the organic component. However, in the case of Comparative Example 2, when only the silicone binder was used, as in Examples 1-3, the bacterial reduction rate was 99.9% or more, indicating that the photooxidation ability was not impaired.

BlankBlank 실시예 1Example 1 실시예 2Example 2 균주 1strain 1 초기 균주early strains 1.5×105 1.5×10 5 1.5×105 1.5×10 5 1.5×105 1.5×10 5 18시간 후after 18 hours 6.2×106 6.2×10 6 <10<10 <10<10 균주 2strain 2 초기 균주early strains 1.3×105 1.3×10 5 1.3×105 1.3×10 5 1.3×105 1.3×10 5 18시간 후after 18 hours 5.9×106 5.9×10 6 <10<10 <10<10 BlankBlank 비교예 1Comparative Example 1 비교예 2Comparative Example 2 균주 1strain 1 초기 균주early strains 1.5×105 1.5×10 5 1.5×105 1.5×10 5 1.5×105 1.5×10 5 18시간 후after 18 hours 6.2×106 6.2×10 6 7.8 × 102 7.8 × 10 2 <10<10 균주 2strain 2 초기 균주early strains 1.3×105 1.3×10 5 1.3×105 1.3×10 5 1.3×105 1.3×10 5 18시간 후after 18 hours 5.9×106 5.9×10 6 6.2×102 6.2×10 2 <10<10

<부착력과 경도 테스트><Adhesiveness and hardness test>

연필경도 측정 결과, 비교예 1을 제외하고는 모두 우수한 경도치를 나타내었다. 반면, 유기와 무기의 바인더만을 사용한 비교예 1의 경우 상대적으로 낮은 경도치를 나타내었다. 부착력은 실시예 1, 2 그리고 3은 매우 양호한 반면, 실리콘 바인더만을 사용한 비교예 2의 경우 PMMA 판넬 부착력이 매우 약함을 알 수 있다. 비교예 1의 경우 중간 정도의 부착력을 보여 반응성 알콕시실란-금속 알콕사이드-아크릴레이트 3성분계 중합반응물을 사용한 광촉매 코팅제가 우수한 광산화 성능과 부착력과 경도면에서 우수한 결과를 보임을 알 수 있다.As a result of measuring pencil hardness, all of them showed excellent hardness values except for Comparative Example 1. On the other hand, Comparative Example 1 using only organic and inorganic binders showed a relatively low hardness value. Adhesion is very good in Examples 1, 2, and 3, but in Comparative Example 2 using only a silicone binder, it can be seen that the adhesion to the PMMA panel is very weak. In the case of Comparative Example 1, it can be seen that the photocatalytic coating agent using a three-component polymerization reaction product of reactive alkoxysilane-metal alkoxide-acrylate shows excellent photo-oxidation performance, adhesion, and hardness by showing moderate adhesion.

실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 비교예 2Comparative Example 2 경도Hardness 4H4H 4H4H 3H3H 4B4B 5H5H 부착력adhesion 33 33 33 22 1One

Claims (8)

반응성 알콕시실란과 금속 알콕사이드의 졸겔 공정과 아크릴레이트 단량체의 고분자 중합공정을 동시에 진행하여 생성되며, 유기 구조와 무기 구조가 공유결합으로 연결된 유무기 하이브리드형 올리고머를 포함하는 광촉매 코팅용 유무기 하이브리드형 바인더.
Organic-inorganic hybrid binder for photocatalyst coating, which is produced by simultaneously performing the sol-gel process of reactive alkoxysilane and metal alkoxide and the polymer polymerization process of acrylate monomers, and includes an organic-inorganic hybrid oligomer in which organic and inorganic structures are covalently linked .
청구항 1에 있어서,
상기 아크릴레이트 단량체는 메틸 메타크릴레이트, 에틸 메타크릴레이트, 프로필 메타크릴레이트, 부틸 메타크릴레이트, 이소부틸 메타크릴레이트, 펜틸 메타크릴레이트, 헥실 메타크릴레이트, 옥틸 메타크릴레이트, 노닐 메타크릴레이트, 라우릴 메타크릴레이트, 메틸 아크릴레이트, 에틸 아크릴레이트, 프로필 아크릴레이트, 부틸 아크릴레이트, 이소부틸 아크릴레이트, 펜틸 아크릴레이트, 헥실 아크릴레이트, 옥틸 아크릴레이트, 노닐 아크릴레이트, 라우릴 아크릴레이트, 트리메틸시클로헥실 메타크릴레이트, 트리메틸시클로헥실 아크릴레이트, 이소부틸 메타크릴레이트, t-부틸시클로헥실 아크릴레이트, t-부틸시클로헥실 메타크릴레이트, 벤질 아크릴레이트 및 벤질 메타크릴레이트 중 선택된 1종 이상인, 광촉매 코팅용 유무기 하이브리드형 바인더.
The method according to claim 1,
The acrylate monomer is methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, isobutyl methacrylate, pentyl methacrylate, hexyl methacrylate, octyl methacrylate, nonyl methacrylate , lauryl methacrylate, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, isobutyl acrylate, pentyl acrylate, hexyl acrylate, octyl acrylate, nonyl acrylate, lauryl acrylate, trimethyl At least one selected from cyclohexyl methacrylate, trimethylcyclohexyl acrylate, isobutyl methacrylate, t-butylcyclohexyl acrylate, t-butylcyclohexyl methacrylate, benzyl acrylate and benzyl methacrylate, a photocatalyst Organic-inorganic hybrid binder for coating.
청구항 1에 있어서,
상기 반응성 알콕시실란은 메틸 트리메톡시실란, 메틸 트리에톡시실란, 에틸 트리메톡시실란, 에틸 트리에톡시실란, n-프로필 트리메톡시실란, 트리에톡시실란, i-프로필 트리메톡시실란, i-프로필 트리에톡시실란, γ-클로로프로필 트리메톡시실란, γ-클로로프로필 트리에톡시실란, 비닐 트리메톡시실란, 3,3,3-트리플루오로프로필 트리메톡시실란, 3,3,3-트리플루오로프로필 트리에톡시실란, γ-글리시드옥시프로필 트리메톡시실란, γ-글리시드옥시프로필 트리에톡시실란, γ-메타크릴옥시 프로필 트리메톡시실란, γ-메타크릴옥시프로필 트리에톡시실란, γ-메르캅토프로필 트리메톡시실란, γ-메르캅토프로필 트리에톡시실란, 페닐 트리메톡시실란, 페닐 트리에톡시실란, 3,4-에폭시시클로헥실에틸 트리메톡시실란 및 3,4-에폭시시클로헥실에틸 트리에톡시실란 중 선택된 1종 이상인, 광촉매 코팅용 유무기 하이브리드형 바인더.
The method according to claim 1,
The reactive alkoxysilane is methyl trimethoxysilane, methyl triethoxysilane, ethyl trimethoxysilane, ethyl triethoxysilane, n-propyl trimethoxysilane, triethoxysilane, i-propyl trimethoxysilane, i-propyl triethoxysilane, γ-chloropropyl trimethoxysilane, γ-chloropropyl triethoxysilane, vinyl trimethoxysilane, 3,3,3-trifluoropropyl trimethoxysilane, 3,3 , 3-trifluoropropyl triethoxysilane, γ-glycidoxypropyl trimethoxysilane, γ-glycidoxypropyl triethoxysilane, γ-methacryloxy propyl trimethoxysilane, γ-methacryloxy Propyl triethoxysilane, γ-mercaptopropyl trimethoxysilane, γ-mercaptopropyl triethoxysilane, phenyl trimethoxysilane, phenyl triethoxysilane, 3,4-epoxycyclohexylethyl trimethoxysilane And at least one selected from 3,4-epoxycyclohexylethyl triethoxysilane, an organic-inorganic hybrid binder for photocatalytic coating.
청구항 1에 있어서,
상기 금속 알콕사이드는 M(OR)n (단, M = Ti, Zr, Al, Sn, W, Co 및 Sn 중 선택된 1종 이상의 금속, n = 금속의 원자가, R = 탄소수 1~6의 유기기)로 표시되는 금속 알콕사이드, 이의 가수분해물, 이의 축합 생성물 또는 이들의 킬레이트 화합물인, 유무기 하이브리드형 바인더.
The method according to claim 1,
The metal alkoxide is M(OR)n (provided that M = at least one metal selected from Ti, Zr, Al, Sn, W, Co and Sn, n = the valence of the metal, R = an organic group having 1 to 6 carbon atoms) A metal alkoxide represented by, a hydrolyzate thereof, a condensation product thereof, or a chelate compound thereof, an organic-inorganic hybrid binder.
청구항 1에 있어서,
상기 금속 알콕사이드는 티타늄 알콕사이드, 알루미늄 알콕사이드, 지르코늄 알콕사이드 및 세륨 알콕사이드로 이루어진 군에서 선택된 1종 이상인, 유무기 하이브리드형 바인더.
The method according to claim 1,
The metal alkoxide is at least one selected from the group consisting of titanium alkoxide, aluminum alkoxide, zirconium alkoxide and cerium alkoxide, an organic-inorganic hybrid binder.
가) Pt, Au, Ag, Pd, Ru, Co, Ni, Fe, Cu, Zn 및 Cr 중 선택된 1종 이상의 항균금속과 무기수산화물을 공침법을 통해 화합물로 제조하고 이를 수중에 분산하여 콜로이드화하여 항균금속 함유 무기수산화물 졸을 제조하는 단계;
나) 과산화티타늄산 용액을 제조하고 상기 항균금속 함유 무기수산화물 졸을 혼합한 후 수열합성반응을 통하여 결정형(anatase) 이산화티타늄(TiO2)과 항균금속을 함유하는 항균금속 함유 이산화티타늄 결정체를 제조하는 단계;
다) 상기 항균금속 함유 이산화티타늄 결정체에 상기 청구항 1 내지 청구항 5 중 어느 한 항의 광촉매 코팅용 유무기 하이브리드형 바인더를 첨가하여 항균금속 함유 이산화티타늄 결정체의 입자 표면을 코팅 처리하는 단계;를 포함하는 유무기 하이브리드형 광촉매 코팅제의 제조방법.
A) One or more antibacterial metals and inorganic hydroxides selected from Pt, Au, Ag, Pd, Ru, Co, Ni, Fe, Cu, Zn and Cr are prepared as a compound through co-precipitation and dispersed in water to form a colloid. Preparing an inorganic hydroxide sol containing antibacterial metal;
B) preparing a titanic acid solution and mixing the antibacterial metal-containing inorganic hydroxide sol through a hydrothermal synthesis reaction to prepare an antibacterial metal-containing titanium dioxide crystal containing anatase titanium dioxide (TiO 2 ) and an antibacterial metal step;
C) adding the organic-inorganic hybrid binder for photocatalytic coating of any one of claims 1 to 5 to the antibacterial metal-containing titanium dioxide crystal to coat the particle surface of the antibacterial metal-containing titanium dioxide crystal; A method for producing a group-hybrid type photocatalyst coating agent.
청구항 6에 있어서,
상기 무기수산화물은 Ti, Al, Zr, Ce 또는 Zn 중 1종의 수산화물인, 유무기 하이브리드형 광촉매 코팅제의 제조방법.
7. The method of claim 6,
The inorganic hydroxide is a hydroxide of one of Ti, Al, Zr, Ce, or Zn.
청구항 6의 방법에 의해 제조되며,
Ti, Al, Zr, Ce 또는 Zn 중 1종의 수산화물인 무기수산화물로 안정화시킨 Pt, Au, Ag, Pd, Ru, Co, Ni, Fe, Cu, Zn 및 Cr 중 선택된 1종 이상의 항균금속염과 결정형 아나타제 이산화티타늄을 함유하는 항균금속 함유 이산화티타늄 결정체의 표면에 반응성 알콕시실란과 금속 알콕사이드의 졸겔 공정과 아크릴레이트 단량체의 고분자 중합공정을 동시에 진행하여 생성되는 유기 구조와 무기 구조가 공유결합으로 연결된 유무기 하이브리드형 올리고머가 코팅된 유무기 하이브리드형 광촉매 코팅제.
It is prepared by the method of claim 6,
One or more antibacterial metal salts selected from among Pt, Au, Ag, Pd, Ru, Co, Ni, Fe, Cu, Zn, and Cr stabilized with an inorganic hydroxide, which is one of Ti, Al, Zr, Ce or Zn, and crystalline form Organic and inorganic structures produced by simultaneously performing the sol-gel process of reactive alkoxysilane and metal alkoxide and the polymer polymerization process of acrylate monomers on the surface of antibacterial metal-containing titanium dioxide crystals containing anatase titanium dioxide are covalently linked organic and inorganic structures An organic-inorganic hybrid-type photocatalyst coating agent coated with a hybrid-type oligomer.
KR1020210016797A 2021-02-05 2021-02-05 Organic-inorganic hybrid photocatalyst coating agent and its manufacturing method KR20220113066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210016797A KR20220113066A (en) 2021-02-05 2021-02-05 Organic-inorganic hybrid photocatalyst coating agent and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210016797A KR20220113066A (en) 2021-02-05 2021-02-05 Organic-inorganic hybrid photocatalyst coating agent and its manufacturing method

Publications (1)

Publication Number Publication Date
KR20220113066A true KR20220113066A (en) 2022-08-12

Family

ID=82803951

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210016797A KR20220113066A (en) 2021-02-05 2021-02-05 Organic-inorganic hybrid photocatalyst coating agent and its manufacturing method

Country Status (1)

Country Link
KR (1) KR20220113066A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100436240B1 (en) 2001-11-01 2004-06-16 김대승 Titanium dioxide photocatalyst comprising an antimicrobial metallic component and method of preparation thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100436240B1 (en) 2001-11-01 2004-06-16 김대승 Titanium dioxide photocatalyst comprising an antimicrobial metallic component and method of preparation thereof

Similar Documents

Publication Publication Date Title
KR100696201B1 (en) Titanium oxide sol, thin film, and processes for producing these
EP1775120A1 (en) Fine particles of tin-modified rutile-type titanium dioxide
US20070298259A1 (en) Polymer coated metal oxide fine particles and their applications
JP6579274B2 (en) Photocatalyst laminate
KR20140011959A (en) Core-shell type tetragonal titanium oxide solid solution aqueous dispersion, method for making the same, uv-shielding silicone coating composition, and coated article
JP4017389B2 (en) Method for producing photocatalyst body
TW200934732A (en) Modified metal oxide complex sol, coating composition and optical member
JP4823045B2 (en) Water-based photocatalytic composition
JP4846088B2 (en) Titanium oxide-containing photocatalyst coating liquid, production method thereof, and titanium oxide photocatalyst structure
CN1671798A (en) Photocatalyst-containing silicone resin composition, and coated article having cured coating film therefrom
KR20150047429A (en) Photo-curable coating material, layered product and sheet for coating head lamp of automobile
US20190225821A1 (en) Coating composition and coated article
JP4237518B2 (en) Method for producing organic group composite metal oxide fine particles
WO2021200135A1 (en) Method for producing zirconia-coated titanium oxide microparticles, zirconia-coated titanium oxide microparticles and use thereof
JP2004337740A (en) Photocatalyst body
JP6080583B2 (en) Surface-modified inorganic composite oxide fine particles, production method thereof, dispersion containing the fine particles, coating solution for optical substrate, coating film for optical substrate, and coated substrate
KR102430624B1 (en) Hybrid type photocatalyst coating materials and manufacturing method thereof with enhanced antibacterial function
KR20220113066A (en) Organic-inorganic hybrid photocatalyst coating agent and its manufacturing method
JP5915717B2 (en) Room temperature curable highly active photocatalyst coating liquid and photocatalytic thin film obtained therefrom
JP2002273234A (en) Method for manufacturing photocatalytic body
WO2019239808A1 (en) Photocatalyst composite material, display protection member for signage, protective member for touch panel, protective member for solar cell, protective member for sensor cover, display for signage, touch panel, solar cell, and sensor cover
KR101760060B1 (en) Titanium dioxide photocatalyst composition for glass coating and preparation method thereof
KR20080004723A (en) Photocatalyst coating solution
KR100417790B1 (en) Manufacturing Method for Coating-Composition for Photo-Catalisys, and Coating-Composition for Photo-Catalisys by the Method
JP2001294423A (en) Surface modified inorganic fine particle and surface modifying method of inorganic fine particle

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application