KR20210129597A - 구동 시스템, 리소그래피 장치 및 물품의 제조방법 - Google Patents

구동 시스템, 리소그래피 장치 및 물품의 제조방법 Download PDF

Info

Publication number
KR20210129597A
KR20210129597A KR1020210046237A KR20210046237A KR20210129597A KR 20210129597 A KR20210129597 A KR 20210129597A KR 1020210046237 A KR1020210046237 A KR 1020210046237A KR 20210046237 A KR20210046237 A KR 20210046237A KR 20210129597 A KR20210129597 A KR 20210129597A
Authority
KR
South Korea
Prior art keywords
magnetic flux
relative position
flux density
density information
motor
Prior art date
Application number
KR1020210046237A
Other languages
English (en)
Inventor
나오키 키타
Original Assignee
캐논 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 캐논 가부시끼가이샤 filed Critical 캐논 가부시끼가이샤
Publication of KR20210129597A publication Critical patent/KR20210129597A/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/006Controlling linear motors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Control Of Linear Motors (AREA)
  • Linear Motors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

정밀도가 높은 구동을 행할 수 있는 구동 시스템을 제공하기 위해, 구동 시스템에 있어서, 고정자와 가동자를 포함하는 모터와, 상기 모터의 고정자와 가동자의 상대 위치를 검출하는 위치 검출부와, 상기 상대 위치에 따른 기준이 되는 자속밀도 정보를 취득하는 취득부와, 상기 상대 위치에 따른 실제의 자속밀도 정보를 측정하는 측정수단과, 상기 기준이 되는 자속밀도 정보의 크기가 소정의 설정값과 일치할 때의 상기 상대 위치를 제1 상대 위치로 하고, 상기 측정수단에 의해 측정된 자속밀도 정보의 크기가 상기 소정의 설정값과 일치할 때의 상기 상대 위치를 제2 상대 위치로 하고, 상기 제1 상대 위치와 상기 제2 상대 위치의 차이를, 상기 측정된 자속밀도 정보가 1주기 변화하는 기간에 있어서 복수회 취득하고, 상기 복수회의 각각의 차이에 근거하여, 상기 모터의 구동을 제어하는 제어수단을 갖는다.

Description

구동 시스템, 리소그래피 장치 및 물품의 제조방법{DRIVE SYSTEM, LITHOGRAPHY APPARATUS AND METHOD OF MANUFACTURING ARTICLE}
본 발명은, 구동 시스템, 리소그래피 장치 및 물품 제조방법에 관한 것이다.
모터를 정확하게 구동하기 위해서는, 가동자 또는 고정자가 발생시키는 자속밀도의 공간 분포에 맞춘 전류 지령값을 주지 않으면 안된다. 그러나, 전류 지령값이 참조하는 위치 검출부의 값을 기초로 계산된 자속밀도와 가동자 또는 고정자가 실제로 발생시키는 자속밀도에는 오차가 생긴다.
이 오차를 저감시키기 위해서 일본국 특허 제3765287호 및 일본국 특개 2008-178237호 공보에는, 계산 상의 자속밀도가 제로가 되는 위치와 측정한 자속밀도가 제로가 되는 위치의 차이를 구해서 위치 검출부의 값 또는 전류 지령값을 보정하는 시스템이 개시되어 있다. 일본국 특허 제3765287호 및 일본국 특개 2008-178237호 공보에서는 자속밀도 대신에 자속밀도에 비례하는 모터의 역기전압을 측정하고, 자속밀도가 제로가 되는 위치를 산출함으로써 위치 검출부의 값 또는 전류 지령값을 보정하고 있다.
즉, 일본국 특허 제3765287호 및 일본국 특개 2008-178237호 공보에서는 구동 영역 전체 또는 자속이 1주기 변화하는 중에서 계산 상의 자속밀도가 제로가 되는 위치와 측정한 자속밀도가 제로가 되는 위치의 차이를 구해서 위치 검출부의 값 또는 전류 지령값을 보정하고 있다. 그렇지만, 종래 방법에서는 구동 영역 전체 또는 자속이 1주기 변화하는 중에서 1개의 차이밖에 나오지 않기 때문에, 정밀도가 낮아, 복수의 자석의 부착 오차에 의해 발생하는 자속밀도의 1주기 내의 어긋남까지는 보정할 수 없다. 따라서 예를 들면 리소그래피 장치 등에 적용하기 위해서는 불충분하였다.
본 발명은, 정밀도가 높은 위치 제어가 가능한 구동 시스템을 제공하는 것을 목적으로 한다.
그 목적을 달성하기 위해, 본 발명의 일측면의 구동 시스템은,
고정자와 가동자를 포함하는 모터와,
상기 모터의 고정자와 가동자의 상대 위치를 검출하는 위치 검출부와,
상기 상대 위치에 따른 기준이 되는 자속밀도 정보를 취득하는 취득부와,
상기 상대 위치에 따른 실제의 자속밀도 정보를 측정하는 측정수단과,
상기 기준이 되는 자속밀도 정보의 크기가 소정의 설정값과 일치할 때의 상기 상대 위치를 제1 상대 위치로 하고, 상기 측정수단에 의해 측정된 자속밀도 정보의 크기가 상기 소정의 설정값과 일치할 때의 상기 상대 위치를 제2 상대 위치로 하고, 상기 제1 상대 위치와 상기 제2 상대 위치의 차이를, 상기 측정된 자속밀도 정보가 1주기 변화하는 기간에 있어서 복수회 취득하고, 상기 복수회의 각각의 차이에 근거하여, 상기 모터의 구동을 제어하는 제어수단을 갖는 것을 특징으로 한다.
본 발명의 일측면에 따르면, 정밀도가 높은 위치 제어가 가능한 구동 시스템을 제공할 수 있다.
도1은 실시예에 있어서의, 리니어 모터를 사용한 위치결정 스테이지의 개략 구성을 나타내는 평면도다.
도2는 실시예에 있어서의, 리니어 모터의 구성도다.
도3은 실시예에 있어서, 자석이나 코일, 위치 검출기의 원점의 배치가 모두 설계값대로 되어 있을 때의 배치와 자속밀도의 관계도다.
도4는 실시예에 있어서, 코일(121a∼121c)로부터 가동자가 받는 힘을 나타낸 도면이다.
도5는 실시예에 있어서, 자석이나 코일, 위치 검출기의 원점의 배치가 어긋나 있을 때의 배치와 자속밀도의 관계를 설명하는 도면으로서, 도5a는 자석 114, 119이나 코일(121)은 설계값대로 배치되고, 위치 검출기의 원점만 어긋나 버렸을 때의 도면, 도5b는 위치 검출기의 원점은 설계값대로의 장소에 있고, 자석 114, 119이나 코일(121)이 제조 오차나 부착 오차 등에 의해 배치가 어긋나 있을 때의 도면이다.
도6은 본 실시예에 있어서의 구동 시스템의 제어 블록선도다.
도7은 실시예에 있어서, 설정값이 1개일 때의 보정방법을 나타내는 플로우차트다.
도8은 실시예에 있어서, 실제의 자속밀도와 이상적인 자속밀도의 어긋남과 1개의 설정값을 나타내는 도면이다.
도9는 실시예에 있어서, 설정값이 복수일 때의 보정방법을 나타내는 플로우차트다.
도10은 실시예에 있어서, 실제의 자속밀도와 이상적인 자속밀도의 어긋남과 복수의 설정값을 나타내는 도면이다.
도11은 실시예에 있어서, 주사 노광장치의 예를 나타낸 도면이다.
도12는 실시예에 있어서, 노광장치의 시퀀스를 나타낸 플로우차트다.
이하에서, 본 발명의 바람직한 구동 시스템의 실시형태를 실시예 및 첨부도면에 근거하여 상세하게 설명한다. 이때, 각 도면에 있어서, 동일한 부재 또는 요소에 대해서는 동일한 참조번호를 붙이고, 중복하는 설명은 생략 또는 간략화한다.
[실시예 1]
도1은, 실시예에 있어서의, 리니어 모터를 사용한 위치결정 스테이지의 개략 구성을 나타내는 평면도다. 본 실시예에서는 예를 들면 리소그래피 장치의 기판을 탑재한 스테이지를 예로서 설명한다. 이때, 본 실시예에서는, 복수의 코일을 갖는 고정자와 복수의 영구자석을 필요로 하는 가동자를 포함하는 리니어 모터를 사용하지만, 복수의 코일을 갖는 가동자와 복수의 영구자석을 필요로 하는 고정자를 포함하는 리니어 모터이어도 된다. 또는, 리니어 모터가 아니어도 통상의 회전 타입의 모터이어도 된다.
도1에 있어서 스테이지(11)에는 구동방향(Y축 방향)의 좌우 양측에 한쌍의 가동자(31)가 설치되어 있다. 이들 한쌍의 가동자(31)는 대응하는 한쌍의 고정자(32)와 협동해서 리니어 모터 13A 및 리니어 모터 13B를 구성하고 있다. 리니어 모터의 구성에 관해서는 후술한다.
스테이지(11)에는 반사경(12)이 설치되어 있고, 미도시의 레이저 간섭계(계측부)로부터의 계측 광을 반사함으로써, 스테이지(11)의 Y축 방향으로의 변위량 또는 위치인 P1[m]이 계측된다. 또한, 리니어 모터 13A 및 리니어 모터 13B에는 미도시의 인코더가 구비되어 있어, 이것에 의해 리니어 모터 13A 및 리니어 모터 13B의 고정자(32)의 Y축 방향으로의 변위량 또는 위치 P2[m]이 계측된다.
이때 스테이지(11)와 고정자(32)의 상대 위치(이하 커뮤테이션 위치)인 C[m]은 식(1)으로 표시된다.
C=P1-P2 …(1)
도2는 실시예에 있어서의, 리니어 모터의 구성도이며, 리니어 모터 13A 및 리니어 모터 13B의 구체적인 구성 예를 나타내고 있다.
도1의 가동자(31)는, 복수의 영구자석으로 이루어진 자석군으로서 구성되는 자석 열 111A와 자석 열 111B를 갖는다. 또한, 이 자석 열 111A와 자석 열 111B를 유지하고 스테이지면에 부착하기 위한 요크(115)와 하우징(116)을 갖는다.
자석 열 111A와 자석 열 111B는 자극의 방향이 Z방향인 주 극 자석(114)과, Y방향인 보조 극 자석(119)으로 이루어진다.
주 극 자석(114)의 자극 방향은 1개 걸러 보조 극 자석(119)을 거쳐 반대 방향으로 되어 있고, Y방향으로 등간격으로 배치되어 있다.
보조 극 자석(119)은 주 극 자석(114)의 코일(121)에 면한 부위의 극성이 보조 극 자석(119)과 반발하는 방향으로 설치되어 있다.
도1의 고정자(32)는, 재킷(122)의 내부에 Y방향으로 등간격으로 코일(121)을 갖고, 상하로부터 가동자(31)에 끼워지도록 배치되어 있다. 여기에서, 주 극 자석(119)의 피치 MP과 코일(121)의 피치 CP에는 하기 식 (2)으로 표시되는 관계가 있다.
CP=1.5*MP …(2)
도3은 실시예에 있어서, 자석 114, 119이나 코일(121), 위치 검출기의 원점의 배치가 모두 설계값대로 되어 있을 때의 배치와 자속밀도의 관계도이다. 설계값대로이면, 이상적인 자속밀도와 실제의 자속밀도는 일치한다. 여기에서의 이상적인 자속밀도란, 레이저 간섭계나 인코더 등의 센서로부터 구해진 커뮤테이션 위치 C와 주 극 자석(114)의 설계값 상의 피치 MP로 결정되는 자속밀도다. 즉, 기준이 되는 자속밀도 정보는, 가동자 또는 고정자의 자석 피치와 상대 위치부터 구해지는 값이다.
또한, 실제의 자속밀도란 가동자(31)가 갖는 자석이 고정자(32)의 코일(121)에 발생시키는 자속밀도다.
도4는, 실시예에 있어서, 코일(121a∼121c)로부터 가동자가 받는 힘을 나타낸 도면이다. 즉, 도2에 나타내는 코일(121a, 121b, 121c)에 같은 방향으로 일정 전류를 흘려, 가동자(31)를 Y축 방향으로 이동시켰을 때에 각 코일로부터 가동자(31)가 받는 힘을 나타내고 있다. 코일 121a에서는 -2.5MP∼0.5MP 사이에 있어서 정현파의 힘이 되고, 그 전후의 -2.5MP 이하와 0.5MP 이상의 위치에서는 코일의 일부밖에 가동자 13의 자석에 대면하지 않기 때문에 힘이 작아진다. 코일 121b에서는 -1MP∼2MP에 있어서 정현파의 힘이 되고, 위상은 코일 121a와 90도 어긋나 있다.
코일 121c에서는 0.5MP∼3.5MP에 있어서 정현파의 힘이 되고, 위상은 121a와 180도 어긋나 있다. 여기에서, 코일 121a와 121c에 있어서, 0.5MP까지는 코일 121a에 전류를 흘리고, 0.5MP 이상에 있어서 코일 121c에 상기와 역방향의 전류를 흘리면, 연속적으로 정현파 형상의 힘을 발생할 수 있다. 이때 1개의 전류 드라이버를 사용하여, 121a와 121c에서 코일의 방향을 반대 방향으로 접속하고, 코일과 자석의 위치 관계에 따라 선택 스위치를 사용해서 어느 한쪽의 코일에만 전류를 흘려보내도록 하면, 전류 드라이버를 각각 코일에 준비하지 않아도 된다.
마찬가지로 3MP의 간격으로 1개 걸러 코일을 교대의 방향으로 전류를 흘려보내는 것에 의해, 연속적으로 정현파의 힘을 발생할 수 있다. 완전히 동일하게 하여 121b를 대표로 하는 코일과 그것의 1개 걸러의 코일에 교대의 방향으로 전류를 흘려보내는 것에 의해, 연속적으로 정현파의 힘을 발생할 수 있다. 여기에서, 121a로 대표되는 코일 군을 A상, 121b로 대표되는 코일 군을 B상으로 부르기로 한다.
가동자(31)에 발생하는 추력 F는, A상으로부터 받는 추력과 B상으로부터 받는 추력의 합계가 되어 식 (3)과 같이 표시된다.
F=L*Ba(C)'*Ia(C)+L*Bb(C)'*Ib(C) …(3)
L은 코일의 도체의 길이로 모든 코일에서 동일하다.
Ba(C)'은 가동자(31)가 갖는 자석이 고정자(32)의 A상의 코일에 발생시키는 실제의 자속밀도이고, Ia(C)은 고정자(32)의 A상의 코일에 흐르는 전류이다. 또한, Bb(C)'은 가동자(31)가 갖는 자석이 고정자(32)의 B상의 코일에 발생시키는 실제의 자속밀도이고, Ib(C)은 고정자(32)의 B상의 코일에 흐르는 전류이다. 이때 이상적인 자속밀도 Ba(C) 및 Bb(C)이 이하의 식 (4), (5)로 표시되는 것으로 한다.
Ba(C)=B*sin(2×π×C/MP) …(4)
Bb(C)=B*cos(2×π×C/MP) …(5)
B는 자속밀도의 진폭이고, C는 커뮤테이션 위치이다. 자석 114, 119이나 코일(121), 위치 검출기의 원점의 배치가 모두 설계값대로 되어 있는 것으로 하면, 실제의 자속밀도 Ba(C)' 및 Bb(C)'과 이상적인 자속밀도 Ba(C) 및 Bb(C)은 일치하므로, 등가가 된다.
가동자(31)에 발생하는 추력 F를 일정하게 하기 위해서는, 코일(121)의 A상 및 B상에 흘리는 전류 Ia(C), Ib(C)을 이상적인 자속밀도에 맞춰서 식 (6), (7)과 같이 하면 된다.
Ia(C)=I*sin(2×π×C/MP) …(6)
Ib(C)=I*cos(2×π×C/MP) …(7)
식 (4), (5), (6), (7)을 식 (3)에 대입하면
F=L*B*I* sin(2×π×C/MP)^2+ L*B*I* cos(2×π×C/MP)^2
=L*B*I …(8)
가 되어, 자석 114, 119나 코일(121), 위치 검출기의 원점의 배치가 모두 설계값대로 되어 있으면, B는 자속밀도의 진폭, I는 전류의 진폭에서 일정하므로 추력 F는 일정하게 된다.
도5는 실시예에 있어서, 자석이나 코일, 위치 검출기의 원점의 배치가 어긋나 있을 때의 배치와 자속밀도의 관계도이다. 도5a는 자석 114, 119나 코일(121)은 설계값대로 배치되고, 위치 검출기의 원점만 어긋나 버렸을 때의 도면이다. 이때 이상적인 자속밀도와 실제의 자속밀도에 어긋남이 생겨 버린다. 이것은, 커뮤테이션 위치 C 및 주 극 자석(114)의 피치 MP에 의해 산출되고 있는 이상적인 자속밀도가, 원점이 어긋난 위치 검출기가 출력한 커뮤테이션 위치를 기초로 산출되어 있기 때문이다.
도5b는 위치 검출기의 원점은 설계값대로의 장소에 있고, 자석 114, 119나 코일(121)이 제조 오차나 부착 오차 등에 의해 배치가 어긋나 있을 때의 도면이다. 자석 114, 119나 코일(121)의 배치에 의존해서 실제의 자속밀도가 이상적인 자속밀도와 어긋나 버리고 있다. 이것은 이상적인 자속밀도에서는 일정한 피치 MP이 장소에 따라 다른 것이 원인이다. 현실의 리니어 모터에서는 도5a, 도5b의 요인이 조합하여, 이상적인 자속밀도와 실제의 자속밀도에 복잡한 어긋남이 생겨 버린다.
그 때문에, 리니어 모터(13)에 이상적인 자속밀도에 대하여 추력 F가 일정하게 되도록 하는 전류 Ia(C) 및 Ib(C)을 흘려도, 식 (8)이 성립하지 않기 때문에, 리니어 모터 13에 생기는 추력은 일정하게 되지 않는다. 이 추력을 일정하게 하기 위해 본 실시예에서는, 가동자(31)의 자석에 의해 발생하는 실제의 자속밀도에 맞춰서 전류 Ia(C) 및 Ib(C)을 보정하고 있다.
도6은 본 실시예에 있어서의 구동 시스템의 제어 블록도다. 전류 드라이버(42), 전환 스위치(43), 역기전압 입력구(48), 커뮤테이션 위치 산출기(51), 이상적인 자속밀도 산출기(52), 실제의 자속밀도 산출기(53), 어긋남량 산출기(54)는 리니어 모터 13A, 리니어 모터 13B에서 개별적으로 구성한다. 커뮤테이션 위치 산출기(51), 이상적인 자속밀도 산출기(52), 실제의 자속밀도 산출기(53), 어긋남량 산출기(54)는 처리부(44)를 구성한다.
점선 프레임으로 나타낸 EEPROM(45), 제어부(41), 스테이지(11)는, 리니어 모터 13A, 리니어 모터 13B에 공통되는 구성이다. 이때, 제어부(41)에는 컴퓨터로서의 CPU가 내장되어 있고, 미도시의 메모리에 기억된 컴퓨터 프로그램에 근거하여 장치 전체의 각종 동작을 실행시키는 제어수단으로서 기능한다.
커뮤테이션 위치 산출기(51)는 레이저 간섭계에서 취득한 스테이지(11)의 위치 P1과 인코더에서 얻은 고정자(32)의 위치 P2를 사용해서 식(1)에 의해 커뮤테이션 위치 C를 산출한다.
여기에서, 커뮤테이션 위치 산출기(51)는 모터의 고정자와 가동자의 상대 위치(커뮤테이션 위치)를 검출하는 위치 검출부로서 기능하고 있다.
이상적인 자속밀도 산출기(52)에서는, 식(4), (5)로부터 이상적인(기준이 되는) 자속밀도를 산출한다. 여기에서 이상적인 자속밀도 산출기(52)는, 상기 상대 위치에 따른 기준이 되는 자속밀도 정보(자속에 대응한 전압값)를 취득하는 취득부로서 기능하고 있다.
또한, 실제의 자속밀도 산출기(53)에서는 역기전압 입력구(48)로부터 입력한 역기전압을 기초로 실제의 자속밀도를 구한다. 즉, 실제의 자속밀도 산출기(53)는, 상기 상대 위치에 따른 실제의 자속밀도 정보(전압값)를 측정하는 측정수단으로서 기능하고 있다.
어긋남량 산출기(54)에서는 이상적인 자속밀도와 실제의 자속밀도를 비교하여, 자속밀도의 크기가 설정값 H로 될 때의 커뮤테이션 위치의 차이(어긋남량)를 산출한다. 어긋남량 산출기(54)에서 산출된 ΔC를 EEPROM(45) 등의 기억매체에 커뮤테이션 위치와 연결시켜 보존한다.
제어부(41)는 EEPROM(45)에 보존된 어긋남량을 기초로 전류 지령값을 보정하여 전류 드라이버(42)에 지령을 보낸다.
전류 드라이버(42)는 리니어 모터(13)에 지령값대로의 전류를 흘려 모터를 구동한다. 그것에 의해 스테이지(11)는 구동을 행한다.
이하에서 제어부(41)(제어수단)에 의한 전류 지령값의 보정방법에 대해 상세하게 서술한다. 제어부(41)는 미도시의 메모리에 기억된 프로그램에 근거하여 도7에 나타낸 처리를 실행한다.
도7은, 실시예에 있어서, 설정값이 1개일 때의 보정방법을 나타낸 플로우차트이며, 도7의 플로우차트에 따라, 전류 지령값의 보정방법에 대해 상세하게 설명한다. S101에서는 리니어 모터 13B를 일정 속도 v로 구동한다.
S102에서는, 리니어 모터 13B를 일정 속도 v로 구동했을 때의 리니어 모터 13A의 A상 및 B상의 코일(121)에 발생하는 역기전압 Va(C) 및 Vb(C)을, 리니어 모터 13A의 전환 스위치(43)를 역기전압 입력구(48)에 접속해서 측정한다. 즉, 상기 측정된 자속밀도 정보는, 가동자를 움직였을 때에 얻어지는 역기전압에 근거하여 결정된다.
다음에 S103에서 실제의 자속밀도 산출기(53)가 측정한 역기전압을 기초로 실제의 자속밀도 Ba(C)' 및 Bb(C)'를 산출한다.
여기에서 실제의 자속밀도의 산출방법을 설명한다. 가동자(31)를 움직였을 때의 역기전압 Va(C) 및 Vb(C)은 이하의 식으로 표시된다.
Va(C)=v*Ba(C)'*L …(9)
Vb(C)=v*Bb(C)'*L …(10)
이때 가동자(31)를 일정 속도 v로 움직이면, L은 도체의 길이로 모든 코일에서 동일하기 때문에, 역기전압 Va(C) 및 Vb(C)은 실제의 자속밀도 Ba(C)' 및 Bb(C)'에 비례한다. 따라서, 조금전에 취득한 역기전압 Va(C) 및 Vb(C)은, 리니어 모터 13A의 실제의 자속밀도 Ba(C)' 및 Bb(C)'로 간주할 수 있다.
S104에서는 이상적인 자속밀도 산출기(52)가, 커뮤테이션 위치 산출기(51)가 산출한 커뮤테이션 위치와 주 극 자석(114)의 피치 MP을 사용해서 이상적인 자속밀도를 산출한다.
S105에서는 실제의 자속밀도와 이상적인 자속밀도를 정규화한다. 즉, 진폭을 같게 한 상태에서 상대 위치의 차이를 취득하도록 하고 있다. 실제의 자속밀도 Ba(C)' 및 Bb(C)'는 역기전압 Va(C) 및 Vb(C)과 등가이므로, Ba(C)' 및 Bb(C)'를 역기전압의 진폭 V로 나눔으로써 정규화한 실제의 자속밀도 Ba_nor(C)' 및 Bb_nor(C)'를 구할 수 있다. 동일하게 하여, S104에서 구한 이상적인 자속밀도 Bb(C)도 진폭 B로 나눔으로써 정규화한 이상적인 자속밀도 Ba_nor(C) 및 Bb_nor(C)를 구할 수 있다.
이 정규화는 이상적인 자속밀도 Ba(C) 및 Bb(C)과 실제의 자속밀도 Ba(C)' 및 Bb(C)'의 어긋남량을 산출할 때에 진폭을 맞추기 위해서 행해지고 있고, 이에 따라, 도8의 -1∼1의 임의인 설정값에서 어긋남량을 산출할 수 있다.
도8은 실시예에 있어서, 실제의 자속밀도와 이상적인 자속밀도의 어긋남과 1개의 설정값을 나타낸 도면이다.
S106에서는 조금전에 구한 정규화한 실제의 자속밀도 Ba_nor(C)'과 정규화한 이상적인 자속밀도 Ba_nor(C)에서, 어긋남량의 산출을 행한다.
도8에 나타낸 것과 같이, 임의의 소정의 설정값 H를 -1∼1의 범위에서 설정하고, 실제의 자속밀도 Ba_nor(C)' 및 이상적인 자속밀도 Ba_nor(C)와 설정값 H의 교점으로부터 제1 커뮤테이션 위치, 제2 커뮤테이션 위치를 구한다. 여기에서, 설정값 H는 기준이 되는 자속밀도 정보 및 측정된 자속밀도 정보의 진폭 내의 소정의 설정값이다.
제1 커뮤테이션 위치, 제2 커뮤테이션 위치는 자속이 1주기 변화하는 중에서 복수 구할 수 있다.
H와 Ba_nor(C)의 교점인 제1 커뮤테이션 위치(제1 상대 위치)를 C1, C2, C3,…로 하고, H와 Ba_nor(C)'의 교점인 제2 커뮤테이션 위치(제2 상대 위치)를 C1', C2', C3'…으로 한다. 즉, 제어수단은, 기준이 되는 자속밀도 정보(전압)의 크기가 소정의 설정값과 일치할 때의 상대 위치를 제1 상대 위치로 하고, 측정수단에 의해 측정된 자속밀도 정보의 크기가 상기 소정의 설정값과 일치할 때의 상기 상대 위치를 제2 상대 위치로 하고 있다.
C1, C1'과 같이 커뮤테이션 위치가 가장 가까운 것끼리를 1개의 쌍으로 한다.
ΔC1=C1-C1' …(11)
상기 식 (11)과 같이 각각의 쌍에서 어긋남량 ΔC를 산출한다.
S107에서는 도8에 나타낸 것과 같이, 제2 커뮤테이션 위치 C1'과 다음의 제2 커뮤테이션 위치 C2' 사이의 구간을 INT1로 하고, 산출된 어긋남량 ΔC1과 INT1을 연결시켜 EEPROM(45) 등의 기억매체에 보존한다.
마찬가지로 제2 커뮤테이션 위치 C2'과 다음의 제2 커뮤테이션 위치 C3' 사이의 구간을 INT2로 하고, 산출된 어긋남량 ΔC2와 INT2를 연결시켜 보존한다. 이들 동작을 모든 어긋남량에서 행한다. 즉, 상기 제1 상대 위치와 상기 제2 상대 위치의 차이(어긋남량 ΔC)를, 상기 측정된 자속밀도 정보가 1주기 변화하는 기간에 있어서 복수회 취득하여 보존하고 있다.
S108에서는 리니어 모터 13B에서 어긋남량을 산출한 것을 확인한다. 행하지 않고 있는 경우에는 S109에서 이번에는 리니어 모터 13A를 일정 속도 v로 구동한다. 그후에는 S102∼S108을 행하고 종료한다. 이것에 의해 리니어 모터 13A의 어긋남량 데이터와 리니어 모터 13B의 어긋남량을 양쪽 취득한다.
이렇게, 본 실시예에서는 모터 13A와, 다른 모터 13B를 갖고, 제어수단은, 다른 모터 13B를 구동함으로써, 모터 13A의 역기전압을 측정하도록 하고 있다. 또한, 모터 13A를 구동함으로써, 다른 모터 13B의 역기전압을 측정하도록 하고 있는 점에 특징을 갖는다. 더구나 양쪽의 모터를 동시에 구동함으로써 스테이지(대상물)를 같은 방향으로 이동시키는 것이 가능하도록 구성되어 있는 점에도 특징을 갖는다.
다음에, 이들 어긋남량을 사용해서 전류 지령값을 보정하는 방법을 설명한다. INT1의 구간의 커뮤테이션 위치에서는 이하의 식 (12), (13)의 ΔC에 ΔC1을 대입해서 전류 지령값을 보정한다. 마찬가지로 INT2의 구간의 커뮤테이션 위치에서는 식 (12), (13)의 ΔC에 ΔC2를 대입해서 전류 지령값을 보정한다. 즉, 제어수단은, 상기 복수회의 각각의 차이에 근거하여, 상기 모터의 구동전류를 제어하고 있다.
Ia(C)=I*sin(2×π×(C-ΔC)/MP) …(12)
Ib(C)=I*cos(2×π×(C-ΔC)/MP) …(13)
이렇게 각 커뮤테이션 위치에서, 커뮤테이션 위치가 포함되는 구간과 연결된 어긋남량을 가산해서 전류 지령값을 미세하게 보정함으로써, 1주기 내의 어긋남량의 변동을 미세하게 보정할 수 있다.
즉, 도5b에 나타내는 이상적인 자속밀도 커브와 실제의 자속밀도 커브를 정밀하게 일치시킬 수 있다. 이때, 최초의 어긋남량을 산출할 때까지의 구간은 최초의 어긋남량인 ΔC1을 사용해서 보정을 행한다.
전류 드라이버(42)는 리니어 모터(13)에 보정한 지령값의 전류를 흘려 모터를 구동한다. 그것에 의해 스테이지(11)는 고정밀도의 구동을 행한다.
이때, 상기한 설명에서는 고정자에 코일, 가동자에 영구자석을 사용하는 리니어 모터를 사용했지만 이것은 반대의 구성이어도 된다.
[실시예2]
도9는 실시예에 있어서, 설정값이 복수일 때의 보정방법을 나타낸 플로우차트이며, 도9를 사용하여, 보다 미세한 보정을 행하는 경우의 처리에 대해 설명한다.
S201로부터 S205까지는, S101로부터 S105의 처리와 같으므로 설명을 생략한다.
S206에서는, 실시예 1에서는 1개이었던 설정값 H의 수를, 도10과 같이 복수 설정한다. 도10은 실시예에 있어서, 실제의 자속밀도와 이상적인 자속밀도의 어긋남과 복수의 설정값을 나타낸 도면이다.
본 실시예에서는, 그 설정값 H를 위에서부터 H1, H2로 한다. S207에서는 S106과 동일하게 하여 S206에서 설정한 설정값을 사용해서 어긋남량의 산출을 행한다.
S208에서는 S206에서 설정한 설정값의 전체에서 S207을 행하였는지를 판정하여, 행하지 않은 경우는 다음의 설정값 H에서 S207을 반복한다. 1개의 설정값에서 산출할 수 있는 어긋남량의 수를 N_sh, 설정값의 수를 N_st로 하면 전부 N_sh*N_st개의 어긋남량을 구할 수 있다.
S209에서는 산출된 ΔC를 제2 커뮤테이션 위치 C가 작은 순서로 정렬한다. 그리고 S210에서는 도10에서 나타낸 것과 같이, 제2 커뮤테이션 위치 C1'과 S209에서 정렬된 순서에서 다음의 제2 커뮤테이션 위치인 C2' 사이의 구간을 INT1로 한다. 그리고, 산출된 어긋남량 ΔC1과 INT1을 연결시켜 EEPROM(45) 등의 기억매체에 보존한다.
마찬가지로 제2 커뮤테이션 위치 C2'과 S209에서 정렬된 순서에서 다음의 제2 커뮤테이션 위치가 되는 C5' 사이의 구간을 INT2로 해서, 산출된 어긋남량 ΔC2와 INT2를 연결시켜 보존한다.
이들 동작을 모든 어긋남량에서 행한다. S211에서는 리니어 모터 13B에서 어긋남량을 산출한 것을 확인한다. 행하지 않고 있는 경우에는 S212에서 리니어 모터 13A를 일정 속도 v로 구동한다. 그후에는 S202∼S211을 행하고 종료한다. 이것에 의해 리니어 모터 13A의 어긋남량 데이터와 리니어 모터 13B의 어긋남량을 양쪽 취득한다.
보정은 실시예 1과 마찬가지로 각 커뮤테이션 위치에서, 커뮤테이션 위치가 속하는 구간과 연결된 어긋남량을 사용해서 보정을 행한다. 이에 따라, 보다 미세한 구간으로 구획을 지어 보정을 행할 수 있기 때문에 보다 정확한 보정이 순차 가능해 진다.
이때, 이 설명에서도 고정자에 코일, 가동자에 영구자석을 사용하는 리니어 모터를 사용했지만 이것은 반대의 구성이어도 된다.
또한, 본 실시예에서 구한 어긋남량은 전류 지령값(구동전류)을 보정하는 것 이외에, 코일의 전환의 타이밍을 보정하는 것에도 사용할 수 있다. 전술한 것과 같이, 리니어 모터는 전류를 흘려보내는 코일을 제어해서 구동을 행하고 있다. 코일을 전환할 때에는 상 전체에서 본 전류가 매끄럽게 되도록 전환하는 것이 이상적이다.
전환 타이밍은 코일의 설계값을 기초로 결정하고 있지만, 도5b에서 도시한 것과 같이 자석 114, 119이나 코일(121)은 제조 오차나 부착 오차 등으로 어긋나고 있다. 설계값을 기초로 한 전환 타이밍인 T1의 커뮤테이션 위치에서 전환하여 버리면 보정한 전류 지령값이 매끄럽게 되지 않는다. 따라서, 본 실시예에서 구한 어긋남량을 사용해서 전환 타이밍 T1을 보정해서 T2로 함으로써 전류를 매끄럽게 전환할 수 있다.
다음에, 자속밀도의 1주기 내의 어긋남을 고려한 보정을 행하는 구동 시스템을 주사 노광장치(600)에 적용한 예에 대해 설명한다.
도11은 실시예에 있어서, 주사 노광장치의 예를 나타낸 도면이며, 주사 노광장치(600)는, 슬릿에 의해 정형된 슬릿 광에 의해 기판(14)을 주사 노광하는 스텝 앤드 스캔 방식의 노광장치이다. 주사 노광장치(600)는, 조명 광학계(23), 원판 스테이지(26), 투영 광학계(27), 기판 스테이지(15), 원판 스테이지 위치 계측부(17), 기판 스테이지 위치 계측부(18), 기판 마크 계측부(21), 기판 반송부(22), 제어부(24)를 포함한다.
이때 기판 스테이지(15)는 기판을 유지하여 이동시키기 위한 스테이지이며, 실시예의 구동 시스템에 의해 구동된다.
제어부(24)는, 조명 광학계(23), 원판 스테이지(26), 투영 광학계(27), 기판 스테이지(15), 원판 스테이지 위치 계측부(17), 기판 스테이지 위치 계측부(18), 기판 마크 계측부(21), 기판 반송부(22)를 제어한다.
제어부(24)는, 원판에 형성된 패턴을 기판(14)에 전사하는 처리(기판(14)을 주사 노광하는 처리)를 제어한다.
제어부(24)는, 예를 들면, FPGA(Field Programmable Gate Array의 약자) 등의 PLD(Programmable Logic Device의 약자)로 구성된다.
혹은, ASIC(Application Specific Integrated Circuit의 약자), 또는, 프로그램이 내장된 범용 컴퓨터, 또는, 이들의 전부 또는 일부의 조합으로 구성해도 된다. 또한, 제어부(24)는 액추에이터를 제어하는 드라이버도 포함한다.
조명 광학계(23)는, 원판(25)을 조명한다. 조명 광학계(23)는, 마스킹 블레이드 등의 차광부재에 의해, 광원(미도시)으로부터 출사된 빛을, 예를 들면 X방향으로 긴 띠 형상 또는 원호 형상의 형상을 갖는 슬릿 광으로 정형하고, 그 슬릿 광으로 원판(25)의 일부를 조명한다. 원판(25) 및 기판(14)은, 원판 스테이지(26) 및 기판 스테이지(15)에 의해 각각 유지되어 있고, 투영 광학계(27)를 거쳐 광학적으로 거의 공역의 위치(투영 광학계(27)의 물체면 및 상면)에 각각 배치된다.
투영 광학계(27)는, 소정의 투영 배율(예를 들면 1/2배나 1/4배)을 갖고, 원판(25)의 패턴을 슬릿 광에 의해 기판(14) 위에 투영한다. 원판(25)의 패턴이 투영된 기판(14) 위의 영역(슬릿 광이 조사되는 영역)은, 조사 영역으로 불린다. 원판 스테이지(26) 및 기판 스테이지(15)는, 투영 광학계(27)의 광축 방향(Z방향)에 직교하는 방향(Y방향)으로 이동가능하게 구성되어 있다. 원판 스테이지(26) 및 기판 스테이지(15)는, 서로 동기하면서, 투영 광학계(27)의 투영 배율에 따른 속도비로 상대적으로 주사된다.
이에 따라, 조사 영역에 대하여 기판(14)이 Y방향으로 주사되어, 원판(25)에 형성된 패턴이 기판(14) 위의 숏 영역에 전사된다. 그리고, 이러한 주사 노광을, 기판 스테이지(15)를 이동시키면서, 기판(14)의 복수의 숏 영역의 각각에 대해 순차적으로 행함으로써, 1매의 기판(14)에 있어서의 노광 처리가 완료한다.
원판 스테이지 위치 계측부(17)는, 예를 들면 레이저 간섭계를 포함하고, 원판 스테이지(26)의 위치를 계측한다. 레이저 간섭계는, 예를 들면, 레이저 광을 원판 스테이지(26)에 설치된 반사판(미도시)을 향해 조사하고, 반사판에서 반사된 레이저 광과 기준면에서 반사된 레이저 광의 간섭에 의해 원판 스테이지(26)의 변위(기준 위치로부터의 변위)를 검출한다.
원판 스테이지 위치 계측부(17)는, 해당 변위에 근거하여 원판 스테이지(26)의 현재 위치를 취득할 수 있다. 여기에서, 원판 스테이지 위치 계측부(17)는, 레이저 광을 사용한 레이저 간섭계에 의해 원판 스테이지(26)의 위치를 계측하고 있지만, 그것에 한정되는 것은 아니고, 예를 들면, 인코더에 의해 원판 스테이지(26)의 위치를 계측해도 된다.
기판 스테이지 위치 계측부(18)는, 예를 들면 레이저 간섭계를 포함하고, 기판 스테이지(15)의 위치를 계측한다. 레이저 간섭계는, 예를 들면, 레이저 광을 기판 스테이지(15)에 설치된 반사판(미도시)을 향해 조사하고, 반사판에서 반사된 레이저 광과 기준면에서 반사된 레이저 광의 간섭에 의해 기판 스테이지(15)의 변위(기준 위치로부터의 변위)를 검출한다. 기판 스테이지 위치 계측부(18)는, 해당 변위에 근거하여 기판 스테이지(15)의 현재 위치를 취득할 수 있다.
여기에서, 원판 스테이지 위치 계측부(17)는, 레이저 광을 사용한 레이저 간섭계에 의해 기판 스테이지(15)의 위치를 계측하고 있지만, 그것에 한정되는 것은 아니고, 예를 들면, 인코더에 의해 기판 스테이지(15)의 위치를 계측해도 된다.
기판 마크 계측부(21)는, 예를 들면 촬상 소자를 포함하고, 기판 위에 설치된 마크의 위치를 검출할 수 있다.
여기에서, 본 실시예의 기판 마크 계측부(21)는, 촬상 소자에 의해 마크가 검출되지만, 그것에 한정되는 것은 아니고, 예를 들면 투과형 센서에 의해 마크가 검출되어도 된다.
기판 반송부(22)는, 기판을 기판 스테이지(15)에 공급 및 회수한다.
노광장치의 원판의 패턴을 기판에 새길 때의 시퀀스에 대해 도12의 플로우차트를 사용하여 설명한다. 도12는 실시예에 있어서, 노광장치의 시퀀스를 나타낸 플로우차트다.
스텝 S700에서 노광 시퀀스를 개시하여, 스텝 S701에서 기판 반송부(22)가 기판(웨이퍼)(14)을 기판 스테이지(15) 위에 공급(로드)한다. 다음에, 스텝 S702에서, 노광 레시피에 정의된 기판(14) 위의 마크가 기판 마크 계측부(21)의 계측 시야 내에 들어가도록, 기판 스테이지(15)를 구동하여, 기판의 얼라인먼트를 실시한다.
그후, 스텝 S703에서 원판 스테이지(26)와 기판 스테이지(15)를 동기시켜 주사 구동을 행하고, 원판의 패턴을, 투영 광학계(27)를 통해 기판(14) 위에 순차 노광한다.
이때, 노광 레시피에 정의된 노광 순서와 노광 화각을 따른다. 최후에, 스텝 S704에서 기판 반송부(22)가 기판(14)을 기판 스테이지로부터 회수(언로드)한다. 이상에서 기판에 패턴을 노광하는 공정은 완료한다.
다음에 실시예 1의 구성을, 실시예 2의 기판 스테이지(15)의 제어에 적용하는 경우에 대해 설명한다. 도6에 있어서의 제어부 41은 제어부 24, 전류 드라이버(42)는 제어부 24, 처리부(44)는 제어부 24, EEPROM(45)은 제어부 24, 리니어 모터 13은 기판 스테이지(15), 스테이지(11)는 기판 스테이지(15)에 해당한다.
자속밀도의 1주기 내의 어긋남을 고려한 구동 시스템을 기판 스테이지(15)에 적용함으로써, 스테이지의 추력을 일정하게 가깝게 할 수 있으므로, 노광장치의 정밀도를 향상시킬 수 있다.
이때, 주사 노광장치의 기판 스테이지(15)에 적용하는 경우, 실시예 1과 같이 설정값을 1개 설정하는 적용방법과 실시예 2와 같이 설정값을 복수 설정하는 적용방법의 어느쪽을 적용해도 된다.
또한, 도7, 도9에 나타낸 어긋남량의 보존 플로우는, 도12에 나타낸 노광 동작을 행하기 전에 실시해 둔다. 그리고 사전에 보존한 어긋남량을 사용하여, 실시예 1 또는 실시예 2에 나타낸 것과 같은 전류 지령값의 보정방법을 적용하면서 기판 스테이지(15)를 구동한다.
이렇게, 기판 스테이지(15)의 제어를 행하는 것에 있어서, 어긋남량을 복수 보존해서 그것들을 사용해서 전류 지령값을 보정하는 구동 시스템을 적용함으로써, S703의 노광 시퀀스에 있어서 높은 정밀도로 노광을 행할 수 있다고 하는 효과가 얻어진다.
이때, 실시예 1 또는 실시예 2의 제어를, 원판 스테이지(26)의 위치 제어에 적용할 경우, 도6에 있어서의 제어부 41, 전류 드라이버(42), 처리부(44), EEPROM(45) 등은 제어부 24에 포함된다. 또한, 리니어 모터(13)는 원판 스테이지(26) 구동용의 모터, 스테이지(11)는 원판 스테이지(26)에 해당하게 된다.
기판 스테이지(15)에 적용한 경우와 마찬가지로, 원판을 유지하는 원판 스테이지(26)에도 본 실시예를 적용할 수 있고, 원판 스테이지(26)에 적용한 경우에 있어서도, 어긋남량의 보존이나 전류 지령값의 보정을 정밀하게 행할 수 있다.
즉, 원판 스테이지(26)도 기판 스테이지(15)와 마찬가지로, 어긋남량을 복수 보존해서 그것들을 사용해서 전류 지령값을 보정함으로써, S703의 노광 시퀀스에 있어서, 높은 정밀도로 노광을 행할 수 있다고 하는 효과가 얻어진다.
다음에, 전술한 노광장치를 이용한 물품(반도체 IC 소자, 액정 표시 소자, MEMS 등)의 제조방법을 설명한다.
물품은, 예를 들면 전술한 노광장치를 사용하여, 감광제가 도포된 기판(웨이퍼, 글래스 기판 등)을 노광하는 공정과, 그 기판(감광제)을 현상하는 공정과, 현상된 기판을 후처리의 공정에서 처리함으로써 제조된다.
혹은 임프린트 장치에 있어서, 원판으로서의 형틀을 사용하여, 임프린트재가 도포된 기판을 압인하는 공정과 이형하는 공정을 거쳐, 후처리의 공정(압인된 기판으로부터 물품을 제조하는 공정)을 실행함으로써 제조된다.
이때, 후처리의 공정으로서는, 에칭, 레지스트 박리, 다이싱, 본딩, 패키징 등이 포함된다.
이렇게 본 발명을 사용한 물품 제조방법에 따르면, 고정밀도의 위치 제어를 할 수 있으므로, 종래보다도 고품위의 물품을 제조할 수 있다.
이상, 본 발명의 바람직한 실시예에 대해 설명했지만, 본 발명은, 이들 실시예에 한정되지 않고, 그 요지의 범위 내에서 다양한 변형 및 변경이 가능하다.
예를 들면, 실시예에서는 스테이지 제어장치 및 노광장치를 사용하여 설명했지만, 다른 리소그래피 장치에 적용해도 된다.
예를 들면 리소그래피 장치로서는 요철 패턴이 없는 평면부를 갖는 몰드(평면 템플릿)를 사용해서 기판의 조성물을 평탄화하도록 성형하는 평탄화 장치이어도 된다.
또한, 리소그래피 장치의 다른 예로서, 하전 입자 광학계를 거쳐 하전 입자선(전자선이나 이온빔 등)으로 기판에 묘화를 행하고, 기판에 패턴 형성을 행하는 묘화장치 등의 장치이어도 된다.
이때, 본 실시예에 있어서의 제어의 일부 또는 전부를 전술한 실시예의 기능을 실현하는 컴퓨터 프로그램을 네트워크 또는 각종 기억매체를 거쳐 구동 시스템에 공급하도록 하여도 된다. 그리고 그 구동 시스템에 있어서의 컴퓨터(또는 CPU나 MPU 등)가 프로그램을 판독해서 실행하도록 하여도 된다. 그 경우, 그 프로그램, 및 해당 프로그램을 기억한 기억매체는 본 발명을 구성하게 된다.
이때, 본 출원은 일본에 있어서 2020년 4월 20일에 출원된 특원 2020-74809의 우선권을 주장하는 동시에, 상기 특원 2020-74809 전체에 기재된 내용을 본 출원의 기재로서 인용한다.

Claims (16)

  1. 고정자와 가동자를 포함하는 모터와,
    상기 모터의 고정자와 가동자의 상대 위치를 검출하는 위치 검출부와,
    상기 상대 위치에 따른 기준이 되는 자속밀도 정보를 취득하는 취득부와,
    상기 상대 위치에 따른 실제의 자속밀도 정보를 측정하는 측정수단과,
    상기 기준이 되는 자속밀도 정보의 크기가 소정의 설정값과 일치할 때의 상기 상대 위치를 제1 상대 위치로 하고, 상기 측정수단에 의해 측정된 자속밀도 정보의 크기가 상기 소정의 설정값과 일치할 때의 상기 상대 위치를 제2 상대 위치로 하고, 상기 제1 상대 위치와 상기 제2 상대 위치의 차이를, 상기 측정된 자속밀도 정보가 1주기 변화하는 기간에 있어서 복수회 취득하고, 상기 복수회의 각각의 차이에 근거하여, 상기 모터의 구동을 제어하는 제어수단을 갖는 것을 특징으로 하는 구동 시스템.
  2. 제 1항에 있어서,
    상기 고정자는 복수의 코일을 포함하고 상기 가동자는 복수의 영구자석을 포함하는 것을 특징으로 하는 구동 시스템.
  3. 제 1항에 있어서,
    상기 고정자는 복수의 영구자석을 포함하고 상기 가동자는 복수의 코일을 포함하는 것을 특징으로 하는 구동 시스템.
  4. 제 1항 내지 제 3항 중 어느 한 항에 있어서,
    상기 기준이 되는 자속밀도 정보는, 가동자 또는 고정자의 자석 피치와 상대 위치부터 구해지는 값인 것을 특징으로 하는 구동 시스템.
  5. 제 1항에 있어서,
    상기 측정된 자속밀도 정보는, 가동자를 움직였을 때에 얻어지는 역기전압에 근거하여 결정되는 것을 특징으로 하는 구동 시스템.
  6. 제 5항에 있어서,
    상기 가동자를 움직이기 위한 다른 모터를 더 갖고, 상기 제어수단은, 상기 모터와 상기 다른 모터를 동시에 구동함으로써 소정의 대상을 같은 방향으로 이동시키는 것을 특징으로 하는 구동 시스템.
  7. 제 6항에 있어서,
    상기 제어수단은, 상기 모터를 구동함으로써 상기 다른 모터의 가동자를 움직였을 때에 얻어지는 역기전압에 근거하여 상기 다른 모터의 자속밀도 정보를 측정하는 것을 특징으로 하는 구동 시스템.
  8. 제 1항에 있어서,
    상기 자속밀도 정보는 자속에 대응한 전압값인 것을 특징으로 하는 구동 시스템.
  9. 제 1항에 있어서,
    상기 소정의 설정값은 0을 포함하는 상기 기준이 되는 자속밀도 정보 및 상기 측정된 자속밀도 정보의 진폭 내의 소정의 설정값인 것을 특징으로 하는 구동 시스템.
  10. 제 1항에 있어서,
    상기 제어수단은, 상기 기준이 되는 자속밀도 정보와 상기 측정된 자속밀도 정보의 진폭을 갖게 한 상태에서 상기 차이를 취득하는 것을 특징으로 하는 구동 시스템.
  11. 제 1항에 있어서,
    상기 설정값은 복수 설정되고, 각각의 설정값에 대해 상기 차이를 취득하는 것을 특징으로 하는 구동 시스템.
  12. 제 1항에 있어서,
    상기 제어수단은 복수회의 각각의 차이에 근거하여, 상기 모터의 구동전류를 제어하는 것을 특징으로 하는 구동 시스템.
  13. 제 1항에 있어서,
    상기 제어수단은 복수회의 각각의 차이에 근거하여, 상기 모터의 코일의 전환 타이밍을 제어하는 것을 특징으로 하는 구동 시스템.
  14. 원판의 패턴을 기판에 형성하는 리소그래피 장치로서,
    상기 기판을 유지하는 스테이지와,
    상기 스테이지를 구동하는 구동 시스템을 갖고,
    상기 구동 시스템은,
    고정자와 가동자를 포함하는 모터와,
    상기 모터의 고정자와 가동자의 상대 위치를 검출하는 위치 검출부와,
    상기 상대 위치에 따른 기준이 되는 자속밀도 정보를 취득하는 취득부와,
    상기 상대 위치에 따른 실제의 자속밀도 정보를 측정하는 측정수단과,
    상기 기준이 되는 자속밀도 정보의 크기가 소정의 설정값과 일치할 때의 상기 상대 위치를 제1 상대 위치로 하고, 상기 측정수단에 의해 측정된 자속밀도 정보의 크기가 상기 소정의 설정값과 일치할 때의 상기 상대 위치를 제2 상대 위치로 하고, 상기 제1 상대 위치와 상기 제2 상대 위치의 차이를, 상기 측정된 자속밀도 정보가 1주기 변화하는 기간에 있어서 복수회 취득하고, 상기 복수회의 각각의 차이에 근거하여, 상기 모터의 구동을 제어하는 제어수단을 구비한 것을 특징으로 하는 리소그래피 장치.
  15. 원판의 패턴을 기판에 형성하는 리소그래피 장치로서,
    상기 원판을 유지하는 스테이지와,
    상기 원판을 유지하는 스테이지를 구동하는 구동 시스템을 갖고,
    상기 구동 시스템은,
    고정자와 가동자를 포함하는 모터와,
    상기 모터의 고정자와 가동자의 상대 위치를 검출하는 위치 검출부와,
    상기 상대 위치에 따른 기준이 되는 자속밀도 정보를 취득하는 취득부와,
    상기 상대 위치에 따른 실제의 자속밀도 정보를 측정하는 측정수단과,
    상기 기준이 되는 자속밀도 정보의 크기가 소정의 설정값과 일치할 때의 상기 상대 위치를 제1 상대 위치로 하고, 상기 측정수단에 의해 측정된 자속밀도 정보의 크기가 상기 소정의 설정값과 일치할 때의 상기 상대 위치를 제2 상대 위치로 하고, 상기 제1 상대 위치와 상기 제2 상대 위치의 차이를, 상기 측정된 자속밀도 정보가 1주기 변화하는 기간에 있어서 복수회 취득하고, 상기 복수회의 각각의 차이에 근거하여, 상기 모터의 구동을 제어하는 제어수단을 구비한 것을 특징으로 하는 리소그래피 장치.
  16. 리소그래피 장치를 사용해서 원판의 패턴을 기판에 형성하는 물품의 제조방법으로서,
    상기 리소그래피 장치는,
    상기 기판을 유지하는 기판 스테이지와,
    상기 원판을 유지하는 원판 스테이지와,
    상기 기판 스테이지 또는 상기 원판 스테이지를 구동하는 구동 시스템을 갖고,
    상기 구동 시스템은,
    고정자와 가동자를 포함하는 모터와,
    상기 모터의 고정자와 가동자의 상대 위치를 검출하는 위치 검출부와,
    상기 상대 위치에 따른 기준이 되는 자속밀도 정보를 취득하는 취득부와,
    상기 상대 위치에 따른 실제의 자속밀도 정보를 측정하는 측정수단과,
    상기 기준이 되는 자속밀도 정보의 크기가 소정의 설정값과 일치할 때의 상기 상대 위치를 제1 상대 위치로 하고, 상기 측정수단에 의해 측정된 자속밀도 정보의 크기가 상기 소정의 설정값과 일치할 때의 상기 상대 위치를 제2 상대 위치로 하고, 상기 제1 상대 위치와 상기 제2 상대 위치의 차이를, 상기 측정된 자속밀도 정보가 1주기 변화하는 기간에 있어서 복수회 취득하고, 상기 복수회의 각각의 차이에 근거하여, 상기 모터의 구동을 제어하는 제어수단을 구비하고,
    상기 물품의 제조방법은,
    상기 리소그래피 장치를 사용해서 상기 기판에 상기 원판의 패턴을 형성하는 공정과,
    상기 기판에 형성된 패턴에 근거하여, 상기 기판으로부터 물품을 제조하는 공정을 갖는 것을 특징으로 하는 물품의 제조방법.
KR1020210046237A 2020-04-20 2021-04-09 구동 시스템, 리소그래피 장치 및 물품의 제조방법 KR20210129597A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2020-074809 2020-04-20
JP2020074809A JP7490436B2 (ja) 2020-04-20 2020-04-20 駆動システム、リソグラフィ装置および物品の製造方法。

Publications (1)

Publication Number Publication Date
KR20210129597A true KR20210129597A (ko) 2021-10-28

Family

ID=78094591

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210046237A KR20210129597A (ko) 2020-04-20 2021-04-09 구동 시스템, 리소그래피 장치 및 물품의 제조방법

Country Status (3)

Country Link
JP (1) JP7490436B2 (ko)
KR (1) KR20210129597A (ko)
CN (1) CN113541532A (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238672A1 (ja) * 2022-06-06 2023-12-14 ローム株式会社 アクチュエータドライバおよびこれを用いたカメラモジュール、電子機器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001190088A (ja) * 1999-12-28 2001-07-10 Nikon Corp モータ装置、ステージ装置、露光装置、デバイス、モータの駆動方法、ステージ装置の駆動方法、露光方法、および、デバイスの製造方法
JP3413485B2 (ja) 2000-01-31 2003-06-03 住友重機械工業株式会社 リニアモータにおける推力リップル測定方法
JP3765287B2 (ja) 2002-05-09 2006-04-12 トヨタ自動車株式会社 エネルギー変換機制御装置
JP2006211873A (ja) 2005-01-31 2006-08-10 Canon Inc 移動体制御装置及び移動体制御方法
JP4218691B2 (ja) * 2006-04-13 2009-02-04 パナソニック株式会社 磁極位置確認方法
JP5499463B2 (ja) 2008-12-05 2014-05-21 セイコーエプソン株式会社 電気機械装置へのセンサ実装方法及び電気機械装置製造装置
JP6347582B2 (ja) * 2013-07-19 2018-06-27 キヤノン株式会社 回転検出装置、モータ制御装置、モータ被駆動装置、回転検出装置の補正方法および補正プログラム
JP6183424B2 (ja) * 2015-08-11 2017-08-23 日本精工株式会社 モータ制御装置、電動パワーステアリング装置及び車両
JP6741525B2 (ja) * 2015-08-31 2020-08-19 キヤノン株式会社 駆動装置、位置決め装置、リソグラフィー装置、および、物品製造方法
JP6321130B1 (ja) * 2016-12-13 2018-05-09 北斗制御株式会社 電動機の界磁位置誤差補正方法

Also Published As

Publication number Publication date
JP2021175212A (ja) 2021-11-01
CN113541532A (zh) 2021-10-22
JP7490436B2 (ja) 2024-05-27

Similar Documents

Publication Publication Date Title
US7256871B2 (en) Lithographic apparatus and method for calibrating the same
JP7375109B2 (ja) 干渉計における周期誤差の測定および校正の手順
US9436102B2 (en) Movable body system, movable body drive method, pattern formation apparatus, pattern formation method, exposure apparatus, exposure method, and device manufacturing method
US8477289B2 (en) Position measurement using natural frequency vibration of a pattern
US9678433B2 (en) Exposure apparatus and exposure method, and device manufacturing method
JP4990864B2 (ja) 電磁モータにより対象物を位置決めするための方法、ステージ装置およびリソグラフィ装置
JP5036914B2 (ja) デュアルステージエリアリソグラフィ装置における位置測定システムの補正方法
JP4669868B2 (ja) ステージ装置およびリソグラフィ装置
US8278616B2 (en) Position detector and exposure apparatus
JPH02153519A (ja) 露光装置
JP5447388B2 (ja) 誤差補償付きオートフォーカスシステム
NL1036742A1 (nl) Stage system calibration method, stage system and lithographic apparatus comprising such stage system.
KR20210129597A (ko) 구동 시스템, 리소그래피 장치 및 물품의 제조방법
JP2017099277A (ja) リラクタンスアクチュエータアセンブリの較正方法、リラクタンスアクチュエータ、リラクタンスアクチュエータを備えるリソグラフィ装置
US10437160B2 (en) Lorentz actuator, object positioning system, lithographic apparatus and Lorentz actuator operating method
JP2001242269A (ja) ステージ装置及びステージ駆動方法並びに露光装置及び露光方法
JP3613291B2 (ja) 露光装置
JP2019516133A (ja) 位置測定システム、較正方法、リソグラフィ装置及びデバイス製造方法
KR20200029442A (ko) 노광 장치
KR20180066846A (ko) 결정 방법, 광학 장치, 투영 광학계, 노광 장치 및 물품의 제조 방법
JPH05299323A (ja) 投影露光装置
JPH0830744B2 (ja) ガイドレスx−yテーブル