KR20210019585A - 쌍안정 전기영동 유체를 포함하는 스위칭가능한 광 콜리메이팅 층 - Google Patents

쌍안정 전기영동 유체를 포함하는 스위칭가능한 광 콜리메이팅 층 Download PDF

Info

Publication number
KR20210019585A
KR20210019585A KR1020217004124A KR20217004124A KR20210019585A KR 20210019585 A KR20210019585 A KR 20210019585A KR 1020217004124 A KR1020217004124 A KR 1020217004124A KR 20217004124 A KR20217004124 A KR 20217004124A KR 20210019585 A KR20210019585 A KR 20210019585A
Authority
KR
South Korea
Prior art keywords
layer
light
film
collimating
chambers
Prior art date
Application number
KR1020217004124A
Other languages
English (en)
Other versions
KR102551978B1 (ko
Inventor
크레이그 린
샤오롱 정
이-밍 캉
홍메이 장
Original Assignee
이 잉크 캘리포니아 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이 잉크 캘리포니아 엘엘씨 filed Critical 이 잉크 캘리포니아 엘엘씨
Publication of KR20210019585A publication Critical patent/KR20210019585A/ko
Application granted granted Critical
Publication of KR102551978B1 publication Critical patent/KR102551978B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1391Bistable or multi-stable liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1676Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1677Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1679Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F2001/1678Constructional details characterised by the composition or particle type

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Liquid Crystal (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

스위칭가능한 광 콜리메이팅 필름은 컴퓨터 모니터 또는 기타 디스플레이 장치의 프라이버시 필터로 사용할 수 있다. 필름은 적용된 전기장에 의해 그 위치가 제어 될 수있는 안료 입자를 갖는 복수의 세장 챔버를 포함한다. 챔버의 한쪽면에 집중되는 것과는 반대로 세장 챔버 전체에 안료 입자의 분포는 필름을 통과하는 빛에 대한 시인각을 좁히고 사용자에게 시청 이미지의 프라이버시를 제공한다.

Description

쌍안정 전기영동 유체를 포함하는 스위칭가능한 광 콜리메이팅 층
본 출원은 2018년 8월 10일자로 출원된 미국 가출원 제 62/717,124 호에 대한 우선권을 주장하며, 그것은 그 전체가 참조에 의해 포함된다.
본 발명은 예를 들어 투명하거나 반투명한 기판을 통과하는 입사광의 방향성을 제어하기 위해 사용될 수 있는 스위칭가능한 광 콜리메이팅 필름들에 관한 것이다. 이러한 능력을 갖는 수동 필름들은 한동안 상업적으로 이용가능했고, 컴퓨터 모니터를 위한 “프라이버시 필터” 로서의 사용을 위해 널리 판매되었다. 예를 들어, 미네아폴리스, 세인트 폴, 3M 사로부터의 제공들 뿐아니라 US 8,213,082 와 같은 여러 US 특허들을 참조하라. 통상적으로, 프라이버시 필터는 사용자가 사용자에 의해서만 시인가능한 “프라이버시 콘” 에 디스플레이상의 이미지를 제한시키기를 원할 때 비디오 디스플레이의 전방 표면에 적용된다. 프라이버시 필름은 통상적으로 플라스틱 기판으로부터 상이한 굴절률을 갖는 재료로 백필링 (backfilling) 되는 플라스틱의 마이크로패브릭 채널들을 채용한다. 재료들의 계면은 굴절 표면을 생성하고 올바른 방향으로 배향되는 빛만이 그 필터를 통과할 것인 반면, 올바르지 않은 방향으로 배향되는 다른 입사 광은 다시 반사되고 및/또는 흡수될 것이다. 이러한 동일한 기술은 또한 예를 들어 외부 창문을 통과하는 햇빛의 방향성을 변경하는 창문 처리 (window treatment) 로서 사용될 수 있다.
수개의 그룹들이 프라이버시와 넌-프라이버시 상태 사이에서 스위칭가능한될 수 있는 능동 매체를 제조하기를 시도해왔다. 예를 들어, US 특허 공보 제 2016/0179231 호 ('231 출원) 는 디스플레이 디바이스와 함께 사용될 수 있는 전기활성 프라이버시 층을 기술한다. '231 출원은 유전체 폴리머와 같은 전기적 이방성 재료를 사용하는 것을 교시한다. 전기장이 인가되면, 그 이방성 재료는 그 전기장과 정렬되어, 광을 평행화하고 사용자에게 프라이버시 구역을 제공한다. 그러나, 프라이버시 상태를 유지하기 위해 그 재료를 정렬된 채로 유지하기 위해 프라이버시 층에 일정한 전위를 제공하는 것이 필요하다. 프라이버시 디바이스가 프라이버시 상태를 유지하기 위해 일정한 전기장을 요구하기 때문에, 그 디바이스는 모니터에 대해 필요한 통상적인 에너지를 넘는 추가적인 에너지를 소비한다. 배터리 전원공급 디바이스, 예를 들어 랩탑 컴퓨터와 함께 사용되는 경우, 프라이버시 층에 전력을 공급하는데 요구되는 추가의 에너지는 배터리의 동작 시간을 단축시킬 것이다. PCT 공보 제 WO2013/048846 호는 또한 전기장와 정렬된 위치에 유지되는 이방성 입자들을 또한 채용하는 대안적인 스위칭가능한 프라이버시 필름을 기술한다. '231 출원과 유사하게, '846 공보의 디바이스들은 또한 일정한 에너지가 프라이버시 상태에서 공급될 요구한다.
이방성 입자들의 정렬과 대조적인 채널 내의 블록킹 입자들의 이동에 의존하는 다른 능동 스위칭가능한 프라이버시 디바이스들이 기술되었다. 예를 들어, US 특허 공보 제 2016/0011441 호 ('441 출원) 는 프라이버시 층의 길이를 따라 늘어선 마이크로구조화 리브들 (microstructured ribs) 에 배치되는 전기적 스위칭가능 일렉트로크로믹 재료를 기술한다. '441 출원에서, 일렉트로크로믹 재료의 흡수 스펙트럼은 전류가 일렉트로크로믹 재료에 공급될 때 변경된다. 실제의 전환 과정이 공정한 에너지량 (~ 5 분의 DC 전류) 을 요구하지만, '441 출원의 프라이버시 층은 일단 변환이 완료하면 소정 시간 동안 그것의 상태를 유지할 수 있다. 다른 대안은 US 특허 공보 제 2017/0097554 호에 기술되어 있으며, 이것에 의해 긴 광 제어 채널들이 투명 전도성 필름들 사이에 형성되고, 그 채널들은 투과성 분산제 및 광 차폐 입자를 포함하는 전기영동 부재로 채워진다. 그 전기영동 부재는 에어 갭 내의 광 차폐 입자들의 분산을 제어하기 위해 3 개의 성형 전극들의 세트를 사용함으로써 좁은 시계 모드 및 넓은 시계 모드 사이에서 토글링될 수 있다. 성형 전극들의 제조는 매우 많은 가깝게 이격된, 개별적으로 어드레싱가능한 전극들을 생성할 필요로 인해 기술적 과제 (및 고가) 일 수 있다.
예를 들어 이방성 입자 정렬을 사용하는 스위칭가능한 프라이버시 필터의 이용가능성에도 불구하고, 전력이 부족하지 않은 저렴한 프라이버시 필름에 대한 필요가 여전히 존재한다. 이에 따라, 본 발명은 광 산란 안료를 포함하는 쌍안정 전기영동 유체들의 복수의 세장 챔버들을 포함하는 광 콜리메이팅 필름을 기술한다. 세장 챔버들의 적절한 배열로, 필름들은 필름을 통과하는 광에 대한 뷰잉 각도의 2x 내로우잉 (narrowing) (또는 그 이상) 를 제공할 수 있다. 중요하게는, 광 콜리메이팅 필름들이 쌍안정 전기영동 유체들을 포함하기 때문에, 광 콜리메이팅 필름들은 넓은 상태 또는 좁은 상태에서 긴 시간 주기들 동안 안정하고, 단지 에너지가 하나의 상태로부터 다른 상태로 변화할 것을 요구한다. 추가적으로, 쌍안전 전기영동 유체는 복수의 세장 챔버들로 파티셔닝되기 때문에, 전기영동 재료들은 동일한 광 콜리메이팅 필름이 중력에 대해 상이한 배향들로 적용되는 경우 침강 (settling) 에 덜 민감하다. 추가적으로, 넓은 상태 및 좁은 상태 사이의 천이 속도가 개선되고, 쌍안정 전기영동 유체가 다수의 세장 챔버들로 파티셔닝되는 경우, 전체 효과는 디바이스에 걸쳐 더 일관된다.
더욱이, 광 콜리메이팅 필름이 복수의 작은 챔버들을 포함하기 때문에, 다량의 전기영동 유체를 손실하지 않고 제조 후에 원하는 형상/크기로 필름을 절단하기가 용이하다. 이것은 동일한 장비가 대면적 및 소면적 광 콜리메이팅 필름들 양자 모두를 생성하는데 사용되는 것을 허용한다. 예를 들어, 광 콜리메이팅 필름의 제곱미터 섹션 시트 또는 광 콜리메이팅 필름의 롤은 전기영동 유체의 상당한 손실 없이 바람직한 크기의 칩들로 절단될 수 있다. 일부 챔버들이 절단 과정 동안 개방될 것이지만, 각각의 챔버는 소량의 유체만을 유지하고 있어서, 전체 손실은 작다. 일부 경우들에서, (예를 들어, 이동 전화들을 위한) 수백 장의 소형 시트들이 단일 섹션 시트 또는 롤로부터 절단될 수 있다. 일부 실시형태들에서, 세장 챔버들은 시트 절단이 전기영동 유체의 손실을 초래하지 않도록 미리 결정된 패턴으로 제조될 수 있다.
따라서, 하나의 양태에서, 본 발명은 제 1 광 투과성 전극 층, 적어도 20 ㎛ 의 두께를 갖는 복수의 세장 챔버들을 포함하는 평행화 층, 및 제 2 광 투과성 전극 층을 포함하고, 제 1 및 제 2 광 투과성 전극 층들은 평행화 층의 양 측면에 배치되는 스위칭가능한 광 콜리메이팅 필름을 포함한다. 각각의 세장 챔버는 개구를 갖고 안료 입자들을 포함하는 쌍안정 전기영동 유체가 각각의 세장 챔버 내에 배치된다. 세장 챔버들은 세장 챔버의 개구에 걸침으로써 내부에 쌍안정 전기영동 유체를 밀봉하는 밀봉 층으로 밀봉된다. 스위칭가능한 광 콜리메이팅 필름은 통상적으로 500 ㎛ 미만의 두께를 갖고, 세장 챔버들의 높이는 평행화 층의 두께 이하이다. 통상적으로, 세장 챔버들은 폭이 5 ㎛ 와 150 ㎛ 사이, 길이가 200 ㎛ 와 5 mm 사이이다. 예를 들어, 세장 챔버들은 폭이 5 ㎛ 와 50 ㎛ 사이, 길이가 50 ㎛ 와 5 mm 사이일 수 있다.
스위칭가능한 광 콜리메이팅 필름은 통상적으로 폴리머, 예를 들어 아크릴레이트 모노머, 우레탄 모노머, 스티렌 모노머, 에폭시드 모노머, 실란 모노머, 티오-엔 모노머, 티오-아인 모노머, 또는 비닐 에테르 모노머로부터 제조된 폴리머로부터 제조된다. 제 1 또는 제 2 광 투과성 전극 층들은 인듐-주석-산화물로부터 제조될 수 있다.
쌍안정 전기영동 유체는 통상적으로 비극성 용매에 폴리머-기능화된 안료 입자들 및 자유 폴리머를 포함한다. 종종, 그 안료는 폴리아크릴레이트, 폴리스티렌, 폴리나프탈렌, 또는 폴리디메틸실록산으로 기능화된다. 자유 폴리머는 폴리이소부틸렌 또는 에틸렌, 프로필렌, 또는 스티렌 모노머를 포함하는 코폴리머를 포함할 수 있다. 밀봉 층은 셀룰로오스 또는 젤라틴과 같은 자연 발생 수용성 폴리머, 또는 폴리아크릴레이트, 폴리비닐 알코올, 폴리에틸렌, 폴리(비닐) 아세테이트, 폴리(비닐) 피롤리돈, 폴리우레탄, 또는 이들의 코폴리머와 같은 합성 폴리머와 같은 수용성 폴리머 또는 수분산성 폴리머를 포함할 수 있다.
일 실시형태에서, 세장 챔버들은 평행화 층이 위로부터 관찰될 때 행들 및 열들로 배열되며, 여기서 세장 챔버들 중 더 긴 치수는 행들을 따라 늘어서 있고, 행들은 세장 챔버들의 폭의 적어도 3 배만큼 서로로부터 분리된다. 종종, 세장 챔버들은 평행화 층이 위로부터 관찰될 때 행들 및 열들로 배열되고, 동일한 행 내의 인접한 세장 챔버들은 30 ㎛ 미만의 갭에 의해 분리된다. 일부 실시형태들에서, 제 1 행에서의 인접한 세장 챔버들 사이의 갭들은 제 2 행에서의 인접한 세장 챔버들 사이의 갭들로부터 수평으로 오프셋된다. 일부 실시형태들에서, 세장 챔버들의 대칭은 세장 챔버들의 길이, 세장 챔버들의 폭, 세장 챔버들의 피치, 또는 세장 챔버들 사이의 갭의 폭 또는 배치를 변경함으로써 파괴된다.
다른 양태에서, 본 발명은 광원, 스위칭가능한 광 콜리메이팅 필름, 박막 트랜지스터들의 능동 매트릭스, 액정층, 및 컬러 필터 어레이를 갖는 디스플레이를 포함한다. 스위칭가능한 광 콜리메이팅 필름은 제 1 광 투과성 전극 층, 복수의 세장 챔버들을 포함하는 적어도 20 ㎛ 의 두께를 갖는 평행화 층, 및 제 2 광 투과성 전극 층을 포함하며, 여기서 제 1 및 제 2 광 투과성 층들은 평행화 층의 양 측면에 배치된다. 세장 챔버들은 안료 입자들을 포함하는 쌍안정 전기영동 유체를 유지하고 세장 챔버들은 세장 챔버의 개구에 걸치는 밀봉 층으로 밀봉된다.
일부 실시형태들에서, 광 콜리메이팅 필름 또는 디스플레이는 추가적으로 전압원 및 제어기를 포함하여 제 1 및 제 2 광 투과성 전극 층들 사이에 전압 임펄스를 제공한다. 일부 실시형태들에서, 디스플레이는 광원과 스위칭가능한 광 콜리메이팅 필름 사이에 배치된 프리즘 필름을 포함한다. 일부 실시형태들에서, 디스플레이는 프리즘 필름과 광원 사이에 확산층을 포함한다. 일부 실시형태들에서, 디스플레이는 터치 스크린 층을 포함한다.
도 1a 는 전기영동 입자들이 평행화 층의 챔버들 전체에 걸쳐 분포되는 스위칭가능한 광 콜리메이팅 필름의 제 1 상태를 도시한다.
도 1b 는 전기영동 입자들이 전위의 인가로 제 1 광 투과성 전극을 향해 구동되는 스위칭가능한 광 콜리메이팅 필름의 제 2 상태를 도시한다.
도 1c 는 전기영동 입자들이 제 1 광 투과성 전극에 근접하여 모이는 스위칭가능한 광 콜리메이팅 필름의 제 3 상태를 도시한다. 입자들은 전위가 제거된 후에도 이 위치에서 안정하다.
도 1d 는 전기영동 입자들이 평행화 층의 챔버들 전체에 걸쳐 분포되는 상태로의 복귀를 도시한다.
도 1e 는 전기영동 입자들이 도 1b 의 반대 극성을 갖는 전위의 인가로 제 2 광 투과성 전극을 향해 구동되는 스위칭가능한 광 콜리메이팅 필름의 제 4 상태를 도시한다.
도 1f 는 전기영동 입자들이 제 2 광 투과성 전극에 근접하여 모이는 스위칭가능한 광 콜리메이팅 필름의 제 5 상태를 도시한다. 입자들은 전위가 제거된 후에도 이 위치에서 안정하다.
도 2a 는 전기영동 입자들이 평행화 층의 챔버들 전체에 걸쳐 분포된 경우 소스로부터 방출된 광선들이 각도 θ1 로 제한되는 것을 도시한다.
도 2b 는 전기영동 입자들이 광원에 가장 가까운 광 투과성 전극에 대해 모일 때 광선들이 광원으로부터 각도 θ2 로 방출되는 것을 도시하며, 여기서 θ2 >> θ1 이다.
도 2c 는 전기영동 입자들이 광원으로부터 가장 먼 광 투과성 전극에 대해 모일 때 광선들이 광원으로부터 각도 θ3 로 방출되는 것을 도시하며, 여기서 θ3 >> θ1 이다. 광 콜리메이팅 필름의 방출 측에서의 안료 입자들의 존재에 기인하여 최소 광 손실이 존재한다는 것이 관찰된다.
도 3 은 스위칭가능한 광 콜리메이팅 필름을 포함하는 액정 디스플레이 어셈블리의 동작 층들을 도시한다. 그 층들은 일정한 비율이 아니다.
도 4 는 스위칭가능한 광 콜리메이팅 필름 및 터치 스크린을 포함하는 액정 디스플레이 어셈블리의 동작 층들을 도시한다. 그 층들은 일정한 비율이 아니다.
도 5 는 스위칭가능한 광 콜리메이팅 필름 및 프리즘 필름을 포함하는 액정 디스플레이 어셈블리의 동작 층들을 도시한다. 그 층들은 일정한 비율이 아니다.
도 6 은 하위 기판상에 배치된 스위칭가능한 광 콜리메이팅 필름의 실시형태를 도시한다. 스위칭가능한 광 콜리메이팅 필름은 추가적으로 가장자리 밀봉을 포함한다. 그 분해도는 쌍안정 전기영동 유체로 채워진 세장 챔버 위의 밀봉 층을 상세히 나타낸다.
도 7 은 일 측면상에 광학적으로 투명한 접착제 및 릴리스 시트를 갖는 스위칭가능한 광 콜리메이팅 필름을 도시한다.
도 8 은 복수의 세장 챔버들을 갖는 평행화 층을 형성하고 후속적으로 쌍안정 전기영동 유체로 그 세장 챔버들을 충전하고 그 충전된 세장 챔버들을 밀봉하기 위해 사용될 수 있는 롤-투-롤 공정을 도시한다.
도 9a 및 도 9b 는 단순화된 엠보싱 공정을 도시한다.
도 10 은 본 발명의 평행화 층들을 생성하는 엠보싱 툴을 형성하기 위한 방법을 상세히 나타낸다.
도 11 은 엠보싱 툴에 사용될 심 (shim) 을 형성하기 위한 방법을 상세히 나타낸다.
도 12 는 엠보싱 툴에 사용될 심을 형성하기 위한 대안적인 방법을 상세히 나타낸다.
도 13 은 세장 챔버들이 행-열 포맷으로 배열되는 스위칭가능한 광 콜리메이팅 필름의 실시형태의 평면도이다.
도 14 는 세장 챔버들이 행-열 포맷으로 배열되는 스위칭가능한 광 콜리메이팅 필름의 실시형태의 평면도이다.
도 15 는 동일한 행의 세장 챔버들 사이의 갭의 위치가 연속적인 행들 사이에서 일 방향으로 전진하여, 열 대칭을 깨뜨리는 스위칭가능한 광 콜리메이팅 필름의 실시형태의 평면도이다.
도 16 은 동일한 행의 갭 세장 챔버의 크기가 연속적인 행들 사이에서 상이하여 열 대칭을 깨뜨리는 스위칭 가능한 광 콜리메이팅 필름의 실시형태의 평면도이다.
도 17 은 연속적인 행 사이의 피치가 변경되어 행 대칭을 깨뜨리는 스위칭가능한 광 콜리메이팅 필름의 실시형태의 평면도이다.
도 18 은 챔버들의 길이 및/또는 폭이 연속적인 행들 사이에서 변화되어, 행 및 열 대칭을 깨뜨리는 스위칭 가능한 광 콜리메이팅 필름의 실시형태의 평면도이다.
전술 한 바와 같이, 본 발명은 쌍 안정 전기 영동 유체의 세장 챔버를 포함하는 광 콜리메이팅 필름을 제공한다. 이러한 필름은 투과성 기판에 입사되는 광의 양 및/또는 방향을 제어하기 위해 자체적으로 사용될 수 있다. 이러한 필름은 또한 LCD 디스플레이와 같은 디바이스들에 통합되어 LCD 디스플레이를 보는 사용자에게 프라이버시의 구역과 같은 유용한 특징을 제공 할 수 있다. 광 콜리메이팅 필름은 스위칭 가능하기 때문에, 그것은 사용자가 필요에 따라 방출 된 빛의 콜리메이션을 변경하는 것을 허용한다. 추가로, 매체가 쌍 안정하기 때문에, 콜리메이션 상태는 광 콜리메이팅 필름에 추가 에너지를 제공 할 필요없이 일정 시간, 예를 들어 몇 분, 예를 들어 몇 시간, 예를 들어 며칠, 예를 들어 몇 달 동안 안정 할 것이다.
본 발명은 롤-투-롤 공정을 사용하여 스위칭가능한 광 콜리메이팅 필름의 비용 효과적인 제조를 가능하게한다. 따라서, LCD 디스플레이의 제조와 같은 다른 조립 공정 동안 디바이스에 통합 될 수 있는 스위칭가능한 광 콜리메이팅 필름의 큰 시트를 생산하는 것이 가능하다. 이러한 필름은 보조의 광학적으로 투명한 접착층 및 릴리스 시트를 포함 할 수 있으며, 이에 따라 광 콜리메이팅 필름이 마무리된 제품으로 배송 및 배포되는 것을 허용할 수 있다. 광 콜리메이팅 필름은 또한 예를 들어 회의실 창문, 건물의 외부 창문, 선 루프 및 채광창에 대한 애프터-마켓 조명 제어에도 사용될 수 있다.
전기영동 디스플레이는 보통, 전기영동 재료의 층 및 전기영동 재료의 대향 측들 상에 배치된 적어도 2 개의 다른 층들을 포함하며, 이들 2 개의 층들 중 하나는 전극 층이다. 대부분의 그러한 디스플레이들에 있어서, 그 층들 양자 모두는 전극 층들이고, 전극 층들 중 하나 또는 양자 모두는 디스플레이의 픽셀들을 정의하도록 패터닝된다. 예를 들어, 하나의 전극 층은 세장 (elongate) 행 전극들로 패터닝되고 다른 전극 층은 그 행 전극들에 직각으로 있는 세장형 열 전극들로 패터닝될 수도 있으며, 픽셀들은 행 및 열 전극들의 교차점들에 의해 정의된다. 대안적으로 및 더 일반적으로, 하나의 전극 층은 단일의 연속 전극의 형태를 갖고, 다른 전극 층은 디스플레이의 하나의 픽셀을 각각 정의하는 픽셀 전극들의 매트릭스로 패터닝된다. 일부 실시형태에서, 2 개의 광 투과성 전극 층이 사용되어 광이 전기 영동 디스플레이를 통과 할 수 있게 한다.
용어 "쌍안정" 및 "쌍안정성" 은, 적어도 하나의 광학 특성에 있어서 상이한 제 1 및 제 2 디스플레이 상태들을 갖는 디스플레이 엘리먼트들을 포함하고, 따라서, 유한 지속기간의 어드레싱 펄스에 의해, 임의의 주어진 엘리먼트가 구동된 후, 어드레싱 펄스가 완료된 후의, 그 제 1 또는 제 2 디스플레이 상태 중 어느 하나를 가정하기 위해, 그 상태가 디스플레이 엘리먼트의 상태를 변화시키도록 요구된 어드레싱 펄스의 최소 지속기간의 적어도 수 배, 예를 들어, 적어도 4 배 동안 지속될, 디스플레이들을 지칭하도록 당해 기술 분야에서의 그 종래의 의미로 본 명세서에서 사용된다. 그레이 스케일이 가능한 일부 입자 기반 전기영동 디스플레이들은 그들의 극단 블랙 및 화이트 상태들 뿐만 아니라 그들의 중간 그레이 상태들에서도 안정하며, 일부 다른 타입들의 전기 광학 디스플레이에서도 마찬가지라는 것이 미국 특허 번호 제7,170,670호에 나타나 있다. 이러한 타입의 디스플레이는 쌍안정이라기 보다는 "멀티-안정" 으로 적절히 불리지만, 편의상, 용어 "쌍안정" 은 본 명세서에서 쌍안정 및 멀티-안정 디스플레이들 양자 모두를 커버하기 위해 사용될 수도 있다.
스위칭 가능한 광 콜리메이팅 필름 (10) 의 일반적인 기능이 도 1a 내지 도 1f 에 도시되어 있다. 필름 (10) 은 제 1 (12) 및 제 2 (14) 광 투과성 전극층을 포함한다. 일반적으로, 각각의 전극 층은 각각 제 1 기판 (16) 및 제 2 기판 (18) 과 연관된다. 제 1 (16) 및 제 2 (18) 기판은 광 투과성 폴리머 (예를 들어, 필름 또는 수지) 또는 유리 일 수 있다. 필름 (10) 이 롤-투-롤 공정으로 제조되는 경우에, 제 1 (16) 및 제 2 (18) 기판은 유연하다. 광 투과성 전극 및 기판은 또한 단일 층, 예를 들어 PET-ITO 필름, PEDOT, 또는 전도성 재료 (예를 들어, 그래핀, 나노튜브, 금속 플레이크, 전도성 금속 산화물 입자, 또는 금속 섬유) 로 도핑되고 및/또는 전도성 모노머 또는 폴리머로 도핑되고 및/또는 염과 같은 이온성 물질로 도핑된 다른 광 투과성 폴리머로 통합 될 수 있다.
광 콜리메이팅 층 (21) 은 전기 영동 입자 (26) 를 포함하는 쌍 안정 전기 영동 유체 (24) 를 보유하기 위해 복수의 세장 챔버 (22) 를 생성하도록 처리 된 광 투과성 폴리머 (20) 를 포함한다. 일 실시형태에서, 쌍안정 전기 영동 유체 (24) 는 탄화수소 용매를 포함하고 전기 영동 입자 (26) 는 (선택적으로 후술되는 바와 같이 기능화된) 카본 블랙 을 포함한다. 광 콜리메이팅 층은 적어도 20㎛ 두께 (즉, 제 1 (12) 및 제 2 (14) 광 투과성 전극 층 사이의 거리) 이다. 광 콜리메이팅 층은 20 ㎛보다 두껍고, 예를 들어 30 ㎛보다 두껍고, 예를 들어 50 ㎛보다 두껍고, 예를 들어 70 ㎛보다 두껍고, 예를 들어 100 ㎛보다 두껍고, 예를 들어 150 ㎛보다 두껍고, 예를 들어 200 ㎛보다 두꺼울 수 있다. 예를 들어 열가소성 수지를 엠보싱하는 것에 의한 세장 챔버의 제조가 아래에서 더 자세히 설명된다. 세장 챔버 (22) 를 채우는 과정 후 또는 그 과정 중에, 세장 챔버 (22)는 밀봉 층 (28)으로 밀봉되며, 그것은 예를 들어 쌍 안정 전기 영동 유체 (24) 와 양립 할 수 없는 친수성 폴리머 일 수 있다.
필름 (10)의 콜리메이팅 특성을 변경하기 위해, 제 1 (12) 및 제 2 (14) 광 투과성 전극 층이 전위의 소스 (30) 에 결합 될 수 있다. 소스는 예를 들어 배터리, 전원 공급 장치, 광전지, 또는 일부 다른 전위 소스 일 수 있다. 소스는 간단한 DC 전위를 제공하거나, 그것은 예를 들어 아래에 설명 된 "파형” 과 같은 시변 전압을 제공하도록 구성 될 수 있다. 제 1 (12) 및 제 2 (14) 광 투과성 전극 층은 전극, 와이어 또는 트레이스 (31) 를 통해 소스 (30) 에 결합 될 수 있다. 일부 실시형태에서, 트레이스 (31) 는 예를 들어 트랜지스터 스위치 일 수 있는 스위치 (32) 로 차단 될 수 있다. 제 1 (12) 및 제 2 (14) 광 투과성 전극층 사이의 전위는 일반적으로 적어도 1 볼트, 예를 들어 적어도 2 볼트, 예를 들어 적어도 5 볼트, 예를 들어 적어도 10 볼트, 예를 들어 적어도 15 볼트, 예를 들어 적어도 18 볼트, 예를 들어 적어도 25 볼트, 예를 들어 적어도 30 볼트, 예를 들어 적어도 30 볼트, 예를 들어 적어도 50 볼트이다.
쌍 안정 전기 영동 유체 (24) 는 쌍 안정이기 때문에, 전기 영동 입자들 (26) 은 전기장의 적용없이 그들의 분포를 유지할 것이다. 이 특징은 여기에 나열된 E Ink Corporation 특허에 잘 설명되어 있지만, 대부분은 전기 영동 입자 (26) 가 고갈 응집을 통해 안정화되도록 쌍 안정 전기 영동 유체 (24) 내에 분산된 폴리머들 (예를 들어, 폴리이소부틸렌 또는 폴리라우릴메타크릴레이트) 의 특정 혼합물을 가지는 것으로부터 야기된다. 이에 따라, 도 1a 에 도시된 제 1 상태에서, 전기 영동 입자 (26) 는 제 1 (12) 및 제 2 (14) 광투과성 전극 층 사이에 전위가 인가되지 않음에도 불구하고 분산된 상태에서 안정하다. 예를 들어, 도 1b 에 도시 된 바와 같이 적절한 전위의 인가로, 전기 영동 입자 (26) 는 적절하게 바이어스된 전극 층을 향해 이동하여 세장 챔버 (22) 의 높이를 따라 광 투과율 구배를 생성한다. 일단 전기 영동 입자 (26) 가 원하는 전극 층으로 구동되면, 소스 (30) 는 전극 층에서 분리되어 전위를 턴 오프 할 수 있다. 그러나, 쌍 안정 전기 영동 유체 (24) 의 쌍안정성으로 인해, 전기 영동 입자 (26) 는 도 1c 에 도시 된 바와 같이 오랜 시간 주기, 예를 들어 분, 예를 들어 시간, 예를 들어 일의 제 2 상태로 유지 될 것이다.
광 콜리메이팅 필름 (10) 의 상태는 도 1d 를 달성하기 위해 수집된 전기 영동 입자 (26) 를 반대 극성 전압 (도시되지 않음) 으로 전극으로부터 멀리 구동함으로써 반전될 수 있다. 초기 상태 (1a 와 등가) 로 되돌아 가면, 아래에서 자세히 설명하는 것처럼 단지 (대략적으로) 콜리메이팅 된 광만 광 콜리메이싱 필름을 통과 할 수 있다. 도 1d 의 상태는 또한 안정하다. 전기 영동 입자 (26) 는 도 1e 에 도시된 바와 같이, 도 1b 와 반대 극성 전압의 인가로 이러한 분포된 상태를 지나 제 2 광투과성 전극 (14) 을 향해 구동 될 수 있다. 결과적으로, 전기 영동 입자 (26) 는 제 2 광 투과성 전극 (14) 에 인접하여 수집될 것이며, 이는 또한 아래에서 논의되는 바와 같이 광 시야각을 초래한다. 도 1f 에 도시 된 광각 투과 상태는 또한 쌍 안정이며, 즉, 이 상태를 유지하는 데 전력이 필요하지 않다. 도 1c 및 도 1f 의 상태들 양자 모두는 광각 투과를 초래하기 때문에, 구동 전자 장치에서 전체 DC 밸런스를 유지하면서 도 1a, 도 1c, 도 1d, 및 도 1f 에 도시된 상태들 사이를 토글링하는 것이 가능하다. 구동 전자 장치를 DC 밸런싱하는 것은 전하 축적을 줄이고 시스템 컴포넌트들의 수명을 연장한다.
전기 영동 매체의 내부 상은 현탁 유체에 하전 된 안료 입자를 포함한다. 본 발명의 가변 투과율 매체에 사용되는 유체들은 통상적으로 저유전 상수 (바람직하게는 10 미만, 원한다면 3 미만) 로 될 것이다. 특히, 바람직한 용매들은 지방족 탄화수소, 이를 테면 헵탄, 옥탄 및 석유 증류액, 이를테면, Isopar® (Exxon Mobil) 또는 Isane® (Total); 테르펜, 이를 테면, 리모넨, 예를 들어, l-리모넨; 및 톨루엔과 같은 방향족 탄화수소를 포함한다. 특히 바람직한 용매는 리모넨인데, 이는 비교적 높은 굴절률 (1.47) 과 낮은 유전 상수 (2.3) 를 결합하기 때문이다. 내부 상의 굴절률은 Cargille-Sacher Laboratories Inc. (Cedar Grove, NJ) 에서 입수 할 수있는 Cargille® 지수 정합 유체와 같은 지수 정합 제의 추가로 수정 될 수 있다. 본 발명의 캡슐화된 매체에서, 입자들의 분산액의 굴절률은 헤이즈를 감소시키기 위해 캡슐화 재료의 굴절률과 가능한 가깝게 매칭하는 것이 바람직하다. 이러한 지수 매칭은 용매의 굴절률이 캡슐화제의 굴절률에 가까울 때 (일반적으로 이용가능한 폴리머 캡슐화제를 사용할 때) 가장 잘 달성된다. 대부분의 경우, 550 nm 에서 1.51 내지 1.57 의 굴절률, 바람직하게는 550 nm 에서 약 1.54 의 굴절률을 갖는 내부 상을 갖는 것이 유리하다.
하전된 안료 입자들은 다양한 컬러들 및 조성물들로 이루어질 수도 있다. 추가적으로, 하전된 안료 입자들은 상태 안정성을 개선하기 위해 표면 폴리머들로 관능화될 수도 있다. 이러한 안료들은 그 전체 내용이 참조로서 본원에 포함되는 미국 특허 공개 제 2016/0085132 호에 설명되어 있다. 예를 들어, 하전된 입자들이 화이트 컬러들로 이루어지면, 이들은 TiO2, ZrO2, ZnO, Al2O3, Sb2O3, BaSO4, PbSO4 등과 같은 무기 안료로부터 형성될 수도 있다. 이들은 또한 백색을 나타내기 위해 높은 굴절률 (> 1.5) 및 특정 크기 (> 100 nm) 를 갖는 폴리머 입자들, 또는 원하는 굴절률을 갖도록 조작된 복합 입자들일 수 있다. 블랙 하전된 입자들인 이들은 CI 안료 블랙 26 또는 28 등 (예를 들어, 망간 페라이트 블랙 스피넬 또는 구리 크로마이트 블랙 스피넬) 또는 카본 블랙일 수도 있다. 다른 컬러들 (비화이트 및 비블랙) 은 CI 안료 PR 254, PR122, PR149, PG36, PG58, PG7, PB28, PB15:3, PY83, PY138, PY150, PY155 또는 PY20 와 같은 유기 안료들로부터 형성될 수도 있다. 다른 예들은 Clariant Hostaperm 레드 D3G 70-EDS, Hostaperm 핑크 E-EDS, PV 패스트 레드 D3G, Hostaperm 레드 D3G 70, Hostaperm 블루 B2G-EDS, Hostaperm 옐로우 H4G-EDS, Novoperm 옐로우 HR-70-EDS, Hostaperm 그린 GNX, BASF Irgazine 레드 L 3630, Cinquasia 레드 L 4100 HD 및 Irgazin 레드 L 3660 HD; Sun Chemical 프탈로시아닌 블루, 프탈로시아닌 그린, 디아릴라이드 옐로우 또는 디아릴라이드 AAOT 옐로우를 포함한다. 컬러 입자들은 또한 CI 피그먼트 블루 28, CI 피그먼트 그린 50, CI 피그먼트 옐로우 227 등과 같은 무기 안료로부터 형성될 수 있다. 하전 된 입자의 표면은 미국 특허 번호 6,822,782, 7,002,728, 9,366,935 및 9,372,380 뿐아니라 미국 공개 번호 2014-0011913 에 기재된 바와 같이, 요구된 입자들의 전하 극성 및 전하 레벨에 기초하여 알려진 기법들에 의해 수정될 수도 있고, 이들 모두의 내용은 그 전체가 본원에 참조로 여기에 포함된다.
입자들은 고유 전하를 나타낼 수도 있거나 또는 그것들은 전하 제어제를 사용하여 명시적으로 하전될 수 있거나 또는 용매 또는 용매 혼합물에 현택될 때 전하를 획득할 수도 있다. 적합한 전하 제어제는 당업계에 잘 알려져 있다; 이들은 본질적으로 폴리머성 또는 비폴리머성일 수도 있거나 또는 이온성 또는 비이온성일 수도 있다. 전하 제어제의 예는 Solsperse 17000 (활성 폴리머 분산액), Solsperse 9000 (활성 폴리머 분산액), OLOA 11000 (숙신이미드 무회 분산액), Unithox 750 (에톡시레이트들), Span 85 (소르비탄 트리올레이트), Petronate L (황산 나트륨), Alcolec LV30 (소이 레시틴), Petrostep B100 (석유 술포네이트) 또는 B70 (황산 바륨), Aerosol OT, 폴리이소부틸렌 유도체들 또는 폴리(에틸렌 코-부틸렌) 유도체 등을 포함할 수 있지만, 이들에 제한되지 않는다. 현탁 유체 및 하전된 안료 입자들 이외에, 내부상들은 안정화제, 계면활성제 및 전하 제어제를 포함할 수 있다. 안정화 재료는 입자들이 용매에 분산될 때, 하전된 안료 입자들 상에 흡착될 수도 있다. 이 안정화 재료는 입자들이 서로 분리된 상태로 유지하여, 입자들이 자신들의 분산된 상태에 있을 때 가변 투과 매체가 실질적으로 비투과성이도록 한다. 당해 기술에 알려진 바와 같이, 낮은 유전 상수의 용매로 된 하전된 입자들을 분산시키는 것 (통상적으로 위에 설명된 바와 같은 카본 블랙) 은 계면활성제의 사용에 의해 도움받을 수 있다. 이러한 계면활성제는 통상적으로 용매와 양립가능하고 용해가능한 극성 "헤드기" 및 비극성 "테일기" 를 포함한다. 본 발명에서, 비극성 테일 기는 포화 또는 불포화 탄화수소 모이어티, 또는 예를 들어 폴리 (디알킬실록산) 과 같은 탄화수소 용매에 가용성인 다른 기인 것이 바람직하다. 극성 기는 암모늄, 술포네이트 또는 포스포네이트 염과 같은 이온성 재료들을 포함하는 임의의 극성 유기 관능기, 또는 산성 또는 염기성기일 수도 있다. 특히 선호되는 헤드 기들은 카르복실산 또는 카르복실레이트기이다. 본 발명에 사용하기에 적합한 안정화제는 폴리이소부틸렌 및 폴리스티렌을 포함한다. 일부 실시형태들에서, 분산액들, 이를 테면, 폴리이소부틸렌 숙신이미드 및/또는 소르비탄 트리올레이트 및/또는 2-헥실데칸 산이 첨가된다.
본 발명의 전기 영동 매체들은 전형적으로 전하 조절제 (CCA) 를 포함하고 전하 디렉터를 포함 할 수 있다. 이들 전기영동 매체들은 전형적으로 저분자량 계면 활성제, 폴리머성 제제 (polymeric agent) 또는 하나 이상의 성분의 블렌드를 포함하고 전기영동 입자 상의 전하의 부호 및/또는 크기를 안정화시키거나 또는 그렇지 않으면 개질하는 역할을 한다. CCA 는 일반적으로 이하에서는 헤드 기로서 지칭되는 이온성 또는 다른 극성 그룹핑들,을 포함하는 분자이다. 양이온 성 또는 음이온 성 헤드 기 중 적어도 하나는 바람직하게는 이후 테일 기으로 지칭되는 비극성 사슬 (전형적으로 탄화수소 사슬) 에 부착된다. CCA 는 내부 상에서 역 미셀을 형성하고 그것은 일반적으로 전기 영동 유체로 사용되는 매우 비극성 유체에서 전기 전도도를 유발하는 하전 된 역 미셀의 작은 집단이라고 생각된다.
역 미셀은 CCA 분자의 비극성 테일 기로 둘러싸인 1 nm 에서 수십 나노 미터까지 크기가 다양 할 수 있는 (및 구형, 원통형 또는 기타 기하학을 가질 수 있는) 고도로 극성인 코어 (일반적으로 물을 포함함) 를 포함한다. 역 미셀은 특히 기름/물/계면활성제 혼합물과 같은 삼원 혼합물에서 광범위하게 연구되었다. 일 예는 Fayer et al., J. Chem. Phys., 131, 14704 (2009) 에 설명 된 이소-옥탄/물/AOT 혼합물이다. 전기 영동 매체에서, 세 가지 상들이 일반적으로 구별 될 수 있다: 표면을 가진 고체 입자, 극히 작은 액적 (역 미셀) 의 형태로 분포되는 고 극성 상, 및 유체를 포함하는 연속상. 하전 된 입자와 하전 된 역 미셀은 모두 전기장을 가하면 유체를 통해 이동할 수 있고, 따라서 (일반적으로 사라질 정도로 작은 전기 전도도를 갖는) 유체를 통한 전기 전도를 위한 두 개의 병렬 경로가 존재한다.
CCA 의 극성 코어는 표면상으로의 흡착에 의해 표면상의 전하에 영향을 미치는 것으로 생각된다. 전기 영동 디스플레이에서, 이러한 흡착은 전기 영동 입자의 표면 또는 마이크로캡슐의 내부 벽 (또는 마이크로 셀의 벽과 같은 다른 고체상) 으로 여서 역 미셀과 유사한 구조를 형성 할 수 있으며, 이들 구조는 이하에 반 (hemi) 미셀로서 지칭된다. 이온 쌍의 한 이온이 (예를 들어, 공유 결합에 의해) 다른 이온보다 표면에 더 강하게 부착 될 때, 반 미셀과 결합되지 않은 역 미셀 사이의 이온 교환은 더 강하게 결합 된 이온이 입자와 연관된 상태로 남아있고 덜 강하게 결합 된 이온은 자유 역 미셀의 코어로 통합되는 전하 분리로 이어질 수 있다.
CCA 의 헤드 기를 형성하는 이온 물질이 전기 영동 입자 (또는 다른) 표면에서 이온 쌍 형성을 유도 할 수도 있다. 따라서, CCA 는 표면에서의 전하 생성과 표면으로부터의 전하 분리라는 두 가지 기본 기능을 수행 할 수 있다. 전하 생성은 CCA 분자에 존재하거나 그렇지 않으면 역 미셀 코어 또는 유체에 통합되는 일부 모이어티와 입자 표면 사이의 산-염기 또는 이온 교환 반응으로 인해 발생할 수 있다. 따라서, 유용한 CCA 재료들은, 당업계에 공지된 바와 같은 반응 또는 임의의 다른 하전 반응에 참여 가능한 재료들이다. CCA 분자는 또한 입자에 빛을 조사 할 때 전기 영동 입자에 의해 생성되는 광 여기자의 수용체로 추가로 작용할 수 있다.
본 발명의 매체들에 유용한 전하 조절제들의 비한정적인 부류들은 유기 설페이트 또는 술포네이트, 금속 비누, 블록 또는 콤 코폴리머, 유기 아미드, 유기 양성이온, 및 유기 포스페이트 및 포스포네이트를 포함한다. 유용한 유기 설페이트 및 술포네이트는 나트륨 비스(2-에틸헥실) 술포숙시네이트, 칼슘 도데실벤젠술포네이트, 칼슘 페트로리움 술포네이트, 중성 또는 염기성 바륨 디노닐나프탈렌 술포네이트, 중성 또는 염기성 칼슘 디노닐나프탈렌 술포네이트, 도데실벤젠술폰산 나트륨 염, 및 암모늄 라우릴 설페이트를 포함하지만 이에 한정되지 않는다. 유용한 금속 비누는 염기성 또는 중성 바륨 페트로네이트, 칼슘 페트로네이트, 코발트, 칼슘, 구리, 망간, 마그네슘, 니켈, 아연, 알루미늄 및 나프텐산, 옥탄산, 올레산, 팔미트산, 스테아르산 및 미리스트산 등의 카르복실산의 철염을 포함하지만 이에 제한되지 않는다. 유용한 블록 또는 콤 코폴리머는 (A) 메틸 p-톨루엔술포네이트로 4급화된 2-(N,N-디메틸아미노)에틸 메타크릴레이트의 폴리머들 및 (B) 폴리(2-에틸헥실 메타크릴레이트) 의 AB 디블록 코폴리머들, 및 폴리(메틸 메타크릴레이트-메타크릴산)의 유용성 앵커기 상에 펜던트된 약 1800 의 분자량을 갖고 폴리(12-하이드록시스테아르산) 의 유용성 테일을 갖는 콤 그래프트 코폴리머를 포함하지만 이에 한정되지 않는다. 유용한 유기 아미드/아민은 OLOA 371 또는 1200 (미국 텍사스 주 휴스턴 소재의 Chevron Oronite Company LLC에서 입수 가능) 또는 Solsperse 17000 (미국 오하이오 주 위클리프 소재의 Lubrizol 로부터 입수 가능: Solsperse 가 등록 상표 임) 과 같은 폴리이소부틸렌 숙신이미드, 및 N-비닐피롤리돈 폴리머를 포함하지만, 이들에 제한되지 않는다. 유용한 유기 양성이온은 레시틴을 포함하지만 이에 한정되지 않는다. 유용한 유기 포스페이트 및 포스포네이트는 포화 및 불포화 산 치환체들을 갖는 포스페이트화 모노- 및 디-글리세라이드의 나트륨 염을 포함하지만 이에 한정되지 않는다. CCA 에 유용한 테일 기들은 분자량이 200 - 10,000 범위인 폴리(이소부틸렌) 과 같은 올레핀 폴리머를 포함한다. 헤드 기는 술폰산, 인산 또는 카복실산 또는 아미드 일 수 있거나, 대안적으로 1 차, 2 차, 3 차 또는 4 차 암모늄기와 같은 아미노기일 수 있다.
본 발명의 매체에 사용되는 전하 보조제는 아래에 더 상세히 설명되는 바와 같이 전기 영동 입자 표면에 전하를 바이어싱시킬 수 있다. 이러한 전하 보조제는 브론스테드 또는 루이스 산 또는 염기 일 수 있다.
입자 분산 안정제들이 캡슐 또는 다른 벽 또는 표면에의 입자 응집 또는 부착을 방지하기 위해 첨가될 수도 있다. 전기영동 디스플레이에서 유체로서 사용되는 전형적인 고 저항율 액체의 경우, 비수성 계면활성제가 사용될 수도 있다. 이들은 글리콜 에테르, 아세틸렌 글리콜, 알칸올아미드, 소르비톨 유도체, 알킬 아민, 4 급 아민, 이미다졸린, 디알킬 옥사이드 및 설포숙시네이트를 포함하지만 이에 한정되지는 않는다.
미국 특허 제 7,170,670 호에 기재된 바와 같이, 전기영동 매체의 쌍안정성은 약 20,000 을 초과하는 수 평균 분자량을 갖는 폴리머를 현탁 유체에 포함시킴으로써 향상될 수 있으며, 이러한 폴리머는 전기영동 입자들에 대해 본질적으로 비-흡수성이고; 폴리(이소부틸렌) 이 이러한 목적으로 선호되는 폴리머이다.
또한, 예를 들어 미국 특허 제 6,693,620 호에 설명 된 바와 같이, 그 표면에 고정 된 전하를 갖는 입자는 주변 유체에서 반대 전하의 전기 이중층을 구성한다. CCA 의 이온 헤드 기는 전기 영동 입자 표면에서 하전 된 기들과 이온 쌍을 이루어 고정되거나 부분적으로 고정 된 하전 된 종의 층을 형성 할 수 있다. 이러한 층 외부에는, 유체에 CCA 분자를 포함하는 하전 (역) 미셀을 포함하는 확산 층이 존재한다. 기존의 DC 전기 영동에서, 인가된 전기장은 고정 표면 전하에 힘을 가하고 이동 카운터 전하에 반대 힘을 가하여, 확산층 내에서 슬리피지 (slippage) 가 발생하고 입자가 유체에 대해 상대적으로 이동한다. 슬립면의 전위는 제타 전위로서 알려져 있다.
결과로서 생성된 광 콜리메이팅 필름 (10) 은 도 2a, 도 2b, 및 도 2c 에 도시 된 바와 같이 광 (33) 을 좁히도록 (콜리메이팅하도록) 사용될 수 있다. 도 2a 에 도시된 제 1 의, 좁아진 상태에서, 전기 영동 입자 (26) 는 세장 챔버 (22) 전체에 분포되어 투과 각 θ 1 을 야기하며, 투과 각은 세장 챔버들 (22) 사이의 피치 (A), 각각의 세장 챔버 (22) 의 폭 (W), 광 콜리메이팅 필름 (10) 의 높이 (H), 및 광원 (33) 으로부터의 현재의 기판 (도 2a 의 예에서, 기판 (18)) 까지의 거리에 의해 정의된다. 도 2a 에서 알수 있듯이, 각도 θ 1 은 광선 X-X’ 및 Y-Y’ 에 의해 대략적으로 정의되며, 광선 X-X’ 및 Y-Y’ 는 빛이 광원 (33) 을 떠나 전체에 걸쳐 분포된 전기 영동 입자 (26) 를 갖는 세장 챔버 (22) 의 상단과 하단을 모두 클리어링 할 수 있는 법선으로부터의 최대 각도를 정의한다.
위의 도 1c 와 등가인 제 1 광각 상태에서, 전기 영동 입자 (26) 는 더 가까운 기판 (16) 으로 구동되고, 새로운 투과 각 θ 2 이 도 2b 에 도시 된 바와 같이 광선들 X-X’ 및 Y-Y’ 에 대해 확립된다. 새로운 투과 각 θ 2 은 도 2b 에 도시 된 바와 같이 θ 1 보다 훨씬 넓을 것이며, 즉 θ 2 >>θ 1. 다시, 투과 각 θ 2 의 효과적인 내로우잉 (narrowing) 은 세장 챔버들 (22) 사이의 피치 (A), 각각의 세장 챔버 (22) 의 폭 (W), 및 광 콜리메이팅 필름 (10) 의 높이 (H) 의 함수이다.
위의 도 1f 와 등가인 제 2 광각 상태에서, 전기 영동 입자 (26) 는 더 광원 (33) 으로부터 먼 기판 (16) 으로 구동되고, 새로운 투과 각 θ 3 이 도 2c 에 도시 된 바와 같이 광선들 X-X’ 및 Y-Y’ 에 대해 확립된다. 새로운 투과 각 θ 3 은 도 2c 에 도시 된 바와 같이 θ 1 보다 훨씬 넓을 것이며, 즉 θ 3 >>θ 1. 도 2b 와 마찬가지로, 투과 각 θ 3 의 효과적인 내로우잉은 세장 챔버들 (22) 사이의 피치 (A), 각각의 세장 챔버 (22) 의 폭 (W), 및 광 콜리메이팅 필름 (10) 의 높이 (H) 의 함수이다. 더욱이, 제 2 기판 (18) 에 인접하여 축적 된 전기 영동 입자 (26) 에 의해 그림자가 드리워 질 수 있는 것처럼 보이지만, 이것은 관찰되지 않는다. 광 콜리메이팅 필름 (10) 을 통한 충분한 산란 광이 존재하여 이러한 효과를 씻어 내낸다고 추정된다.
대부분의 구성들에서, 본 발명의 광 콜리메이팅 필름 (10) 은 광 투과각 (도 2b 및 도 2c) 으로부터 협 투과각 (도 2a) 으로 천이함에 있어서 (법선으로부터의 각도의 함수로서 50% 미만의 퍼센트 상대 투과율로 정의되는 바와 같은) 유효 뷰잉 영역에서의 적어도 2 배 감소를 제공할 것으로 예상된다. 일부 실시형태들에서, 뷰잉 영역에서의 감소는 2 배 이상, 예를 들어 3 배, 예를 들어 4 배일 것이다. 이러한 기능성으로 인해, 광 콜리메이팅 필름 (10) 은 유리창, 예를 들어 내부 사무실 창문에 간단히 적용될 때 유용할 수 있으며, 이로 인해 유리의 투과각이 크게 감소될 수 있어, 양호한 양의 광이 창문을 통과하는 것을 허용하면서 사무실의 사용자들에 대한 프라이버시를 증가시킨다.
광 콜리메이팅 필름 (10) 은 도 3 에 도시된 바와 같이 액정 디스플레이 (LCD) 스택으로 통합될 수 있다. LCD 스택에 대한 다수의 상이한 구성들이 존재하기 때문에, 도 3 은 예시적이다. 도 3 에 도시된 바와 같이, 통상적으로 하나 이상의 발광 다이오드 (LED) 인 광 (33) 은 도광판 (34) 및 확산판 (35) 의 조합에 의해 능동 층을 포함하는 디스플레이 스택을 통해 지향된다. 뷰어 (도 3 의 상부의 눈) 의 방향으로 이동하는, 확산판 (35) 을 떠나는 광은 다음에 상술된 유형의 광 콜리메이팅 필름 (10) 을 만난다. 도 3 에 도시된 상태에서, 광 콜리메이팅 필름 (10) 은 단지 광이 더 좁은 투과 각도 (도 2 참조) 내에서 이동하고 있을 때 그러한 광이 능동 층으로 전달되는 것을 허용할 것이다. 광 콜리메이팅 필름 (10) 을 통과하는 광은 다음에 제 1 편광 필름 (36), 복수의 픽셀 전극 (42) 을 포함하는 능동 매트릭스 박막 트랜지스터 (AM-TFT) 어레이 (40) 을 통과하여 진행할 것이다. AM-TFT (40) 및 픽셀 전극 (42) 을 통과하는 편광된 광은 그 후 액정층 (44) 을 만날 것이고, 이로 인해 광의 편광이 액정에 의해 조작되어 광이 제 2 편광 필름 (37) 을 통과하여 투과되거나 거절될 것이다. 구체적으로, 액정층 (44) 의 광학 상태는 LCD 디스플레이의 기술에서 알려져 있듯이, 픽셀 전극과 프론트 전극 (45) 사이에 전기장을 제공함으로써 변경된다. 광 콜리메이팅 필름 (10), AM-TFT (40), 픽셀 전극 (42), 액정층 (44), 및 프론트 전극 (45) 을 통해 투과되는 광은 그 후 하부 픽셀 전극 (42) 와 연관되어야 하는 컬러의 스펙트럼만을 통과시킬 컬러 필터 어레이 (46) 를 통해 투과될 것이다. 마지막으로, (액정층에 의해 결정된 바와 같은) 올바른 컬러 및 올바른 편광을 갖는 일정량의 광이 제 2 편광 필름 (37) 을 횡단하고 뷰어에 의해 관찰될 것이다. 광학 접착제 (47) 의 여러 추가적인 층이 필요한 경우에 스택에 포함될 수 있다. 스택은 또한 예를 들어 유리 또는 플라스틱일 수 있는 보호 커버 층 (49) 을 포함할 수 있다. 용량성 터치 감응 층 (48) 또는 디지털화 층 (미도시) 과 같은 추가적인 엘리먼트가 또한 터치 스크린 능력 또는 기입 능력 등을 달성하기 위해 스택에 추가될 수 있다. 도 4 는 보호 커버 층 (49) 및 용량성 터치 감응 층 (48) 의 포함을 도시한다.
도 3 에 도시된 광 콜리메이팅 필름 (10) 을 포함하는 LCD 스택의 네트 효과는 LCD 디스플레이, 예를 들어 컴퓨터 모니터, 스마트 폰, 데이터 단말기, 또는 다른 LCD 디스플레이로부터 내뿜는 광의 투과각을 독립적으로 제어하는 것이 가능하다는 점이다. 또한, 스위칭 매체가 쌍안정이기 때문에, 디바이스는 실제로 무기한으로 “와이드” 또는 “내로우 (narrow) ” 상태에 유지될 수 있다. 진보된 실시형태들에서, 내로우잉의 양은 세장 챔버의 시인측을 향해 구동되는 안료의 상대적인 양을 제어함으로써 조정될 수 있다. 투과각은 LCD 의 상태에 완전히 독립적으로 조정될 수 있다. 즉, 프라이버시 및 넌-프라이버시 모드 사이의 스위칭을 위해 모니터의 전원을 차단할 필요가 없다.
다른 실시형태들에서, 광 콜리메이팅 필름 (10) 을 통과하도록 올바른 배향으로 광 콜리메이팅 필름 (10) 을 향해 지향되는 입사광의 양을 증가시키 위해, 도 5 에 도시된 바와 같이, 추가의 프리즘 필름 (50) 이 광학 엘리먼트들의 스택에 추가될 수 있다. 프리즘 필름 (50) 을 통합시키는 것은 약간의 각도 의존성을 갖는 디스플레이의 강도를 야기할 것이지만, 디스플레이 스택의 전체 효율은 개선되고 더 작은 전력 소비를 야기한다. 이러한 특징은 예를 들어 랩탑 또는 전화와 같은 이동 디바이스에서 특히 바람직할 수 있다.
밀봉 층 (28) 의 분해도가 도 6 에 도시되어 있다. 일부 실시형태들에서, 밀봉 층 (28) 은 쌍안정 전기영동 유체 (24) 를 유지하기 위해 분해도에 도시된 바와 같이 세장 챔버 (22) 의 상부 부분을 밀봉한다. 이것은 쌍안정 전기영동 유체 (24) 로 세장 챔버 (22) 를 언더-충전 (under-filling) 하고 그 후 (이하에 논의되는) 밀봉 포뮬레이션으로 가장 많이 채워진 세장 챔버 (22) 를 오버코팅함으로써 달성될 수 있다. 다른 실시형태들에서, 밀봉 조성물은 충전 시에 쌍안정 전기영동 유체 (24) 에 분산되지만, 밀봉 포뮬레이션이 세장 챔버 (22) 의 상부로 올라오게 하도록 정확한 친수성 및 밀도를 갖도록 설계되며, 이로 인해 그것은 예를 들어 광, 열, 또는 활성화 화학 작용제에 대한 노출을 사용하여 경화된다. 대안적인 실시형태들 (도 6 에 미도시) 에서, 세장 챔버 (22) 는 상부까지 충전되고 밀봉 층이 광투과성 폴리머 (20) 의 상부의 전체에 확산될 수 있으며, 이로 인해 세장 챔버 내에 쌍안정 전기영동 유체 (24) 를 밀봉할 수 있다.
밀봉 층을 위한 밀봉 조성물의 필수 성분들의 예들은 열가소성수지 또는 열경화성 수지 및 그들의 전구체를 포함할 수 있지만, 이들에 제한되지 않는다. 특정의 예들은 단일 작용기 아크릴레이트, 단일 작용기 메타크릴레이트, 다작용기 아크릴레이트, 다작용기 메타크릴레이트, 폴리비닐 알코올, 폴리아크릴산, 셀룰로오스, 젤라틴 등과 같은 재료를 포함할 수 있다. 중합 결합제 또는 증점제 (thickener), 광개시제, 촉매, 경화제, 충전제, 착색제 또는 계면활성제와 같은 첨가제가 밀봉 조성물에 첨가되어 물리 기계적인 특성 및 광 콜리메이팅 필름을 개선할 수 있다.
밀봉 조성물은 밀봉 용매로서 물을 갖는 수용성 폴리머일 수 있다. 적절한 수용성 폴리머 또는 수용성 폴리머 전구체의 예는 폴리비닐 알코올; 폴리에틸렌 글리콜, 폴리프로필렌 글리콜과의 그것의 코폴리머, 및 그것의 유도체, 예를 들어 PEG-PPG-PEG, PPG-PEG, PPG-PEG-PPG; 폴리(비닐피롤리돈) 및 그것의 코폴리머 예를 들어 폴리(비닐피롤리돈)/비닐 아세테이트 (PVP/VA); 폴리사카라이드 예를 들어 셀룰로오스 및 그것의 유도체, 폴리(클루코사민), 텍스트란, 구아 껌, 및 녹말; 젤라틴; 멜라민-포름알데히드; 폴리(아크릴산), 그것의 염 형태, 및 그것의 코폴리머; 폴리(메타크릴산), 그것의 염 형태, 및 그것의 코폴리머; 폴리(말레산), 그것의 염 형태, 및 그것의 코폴리머; 폴리(2-디메틸아미노에틸메타크릴레이트); 폴리(2-에틸-2-옥사졸린); 폴리(2-비닐피리딘); 폴리(알릴아민); 폴리아크릴아미드; 폴리에틸렌이민; 폴리메타크릴아미드; 폴리(소듐 스티렌 술포네이트); 4 차 암모늄 기로 기능화된 양이온성 폴리머 예를 들어 폴리(2-메타크릴옥시에틸트리메틸암모늄 브로마이드), 폴리(알릴아민 하이드로클로라이드) 를 포함하지만 이들에 제한되지 않는다.
밀봉 재료는 또한 포뮬레이팅 용매로서 물을 갖는 수분산성 폴리머를 포함할 수 있다. 적절한 폴리머 수분산물의 예들은 폴리우렌탄 수분산물 및 라텍스 수분산물을 포함할 수 있다. 수분산물 중의 절적한 라텍스들은 폴리아크릴레이트, 폴리비닐 아세테이트 및 그것의 코폴리머, 예를 들어 에틸렌 비닐 아세테이트, 및 폴리스티렌 코폴리머, 예를 들어 폴리스티렌 부타디엔 및 폴리스티렌/아크릴레이트를 포함한다.
예를 들어 접착제 조성물 중에 존재할 수 있는 추가 성분들의 예들은 아크릴, 스티렌-부타디엔 코폴리머, 스티렌-부타디엔-스티렌 블록 코폴리머, 스티렌-이소프렌-스티렌 블록 코폴리머, 폴리비닐부티랄, 셀룰로오스 아세테이트 부티레이트, 폴리비닐피롤리돈, 폴리우레탄, 폴리아미드, 에틸렌-비닐아세테이트 코폴리머, 에폭시드, 다작용기 아크릴레이트, 비닐, 비닐에테르, 및 그들의 올리고머, 폴리머 및 코폴리머를 포함할 수 있지만, 이들에 제한되지 않는다. 접착제 층들은 또한 폴리우레탄 분산물 및 다음으로 이루어지는 그룹으로부터 선택되는 수용성 폴리머를 포함할 수 있다: 폴리비닐 알코올; 폴리에틸렌 글리콜 및 그것의 폴리프로필렌 글리콜과의 코폴리머; 폴리(비닐피롤리돈) 및 그것의 코폴리머; 폴리사카라이드, 젤라틴; 폴리(아크릴산), 그것의 염 형태, 및 그것의 코폴리머; 폴리(메타크릴산), 그것의 염 형태, 및 그것의 코폴리머; 폴리(2-디메틸아미노에틸 메타크릴레이트); 폴리(2-에틸-2-옥사졸린); 폴리(2-비닐피리딘); 폴리(알릴아민); 폴리아크릴아미드; 폴리메타크릴아미드; 및 4 차 암모늄 기로 기능화된 양이온성 폴리머. 접착제 층은 예를 들어 적층 후에 UV 와 같은 방사선이나 열에 의해 사후 경화될 수 있다.
예를 들어 기판 (53) 을 포함하는 스택의 전체는 도 6 에 도시된 바와 같이 에지 밀봉 (51) 으로 밀봉될 수 있다. 에지 밀봉 (51) 은 상술된 밀봉 조성물 중 임의의 것을 포함할 수 있다. 에지 밀봉 (51) 은 광 콜리메이팅 층 (10) 및 기판 (53) 주위에서 연속적일 수 있거나, 에지 밀봉 (51) 은 스택의 일부만, 예를 들어 광 콜리메이팅 층 (10) 의 외부 에지만을 커버할 수 있다. 일부 실시형태들에서, 에지 밀봉 (51) 은 추가의 보호층, 예를 들어 물에 대해 불침투성인 층, 예를 들어 투명한 폴리에틸렌을 포함할 수 있다. 보호층은 습기 또는 기체 배리어 특성을 제공할 수 있다. 보호층의 에지 및 또는 에지 밀봉은 습기 또는 기체 배리어 특성을 제공하는 열 또는 UV 경화성 또는 열 활성화 에지 밀봉 재료로 밀봉될 수 있다. 일 실시형태에서, 에지 밀봉은 2 개의 보호 기판에 의해 샌드위치된다.
일부 실시형태들에서, 에지 밀봉 (51) 은 실제로 전체 스택을 둘러싸서 밀봉된 조립체를 생성한다. 도지되지 않지만, 제 1 (12) 및 제 2 (14) 전극들에 전기 연결을 제공하기 위해 하나 이상의 전기 연결이 에지 밀봉 (51) 을 가로질러야 할 수도 있다. 그러한 연결은 유연성 리본 커넥터에 의해 제공될 수도 있다.
밀봉층 (28) 의 상세를 도시하는 것에 추가하여, 도 6 은 또한 광 콜리메이팅 층 (10) 이 유리 또는 다른 투명한 내구성 재료와 같은 기판 (53) 상에 적층될 수 있는 방법을 도시한다. 도 6 에 도시되지 않지만, 광 콜리메이팅 층 (10) 이 기판으로 상부 및 하부 양자 모두에서 보호될 수 있다. 2 개이 기판들은 상이하거나 동일할 수 있으며, 예를 들어 제 1 기판은 유리이고 제 2 기판은 폴리에틸렌일 수 있다. 에지 밀봉 (51) 은 상부 및 하부 기판들 및 기판들 사이의 광 콜리메이팅 층 (10) 주위에 연장될 수 있다. 통상적으로, 예를 들어 Delo Adhesives 로부터 이용가능한 광학 접착제 (52) 가 기판(들) (53) 에 광 콜리메이팅 층 (10) 을 접착시키기 위해 사용된다. 대안적으로, 광 콜리메이팅 층 (10) 은 광학 접착제 (52) 및 릴리스 시트 (release sheet) (54) 의 조합으로 코팅될 수 있으며, 이로 인해 릴리스 시트 (54) 를 갖는 광 콜리메이팅 층 (10) 은 말려질 수 있고 조립 시설로 운송되어 여기서 그것이 원하는 크기로 절단될 것이다. 전개되기 전에, 릴리스 시트 (54) 가 제거될 수 있고, 광 콜리메이팅 층 (10) 은 도 7 에 도시된 바와 같이 기판 (53) 에 직접 부착될 수 있다. 기판은 회의실 창문, 자동차 유리, 또는 LCD 스택의 디퓨저 (diffuser) 와 같은, 광 콜리메이션이 요구되는 임의의 투명한 표면일 수 있다.
광 콜리메이팅 층의 제조
광 콜리메이팅 필름은 도 8 에 도시된 바와 같은 롤-투-롤 공정을 사용하여 제조될 수 있고 US 9,081,250 에 상세히 설명되어 있다. 도 8 에 도시된 바와 같이, 그 공정은 다수의 단계들을 수반한다: 제 1 단계에서 엠보싱 조성물, 예를 들어, 선택적으로 용매를 갖는 열가소성수지, 열경화성수지, 또는 그것의 전구체의 층 (60) 이 인듐-주석 산화물의 층을 포함하는 폴리에틸렌 테레프탈레이트 (PET) (PET-ITO) 의 필름과 같은 전도성 투명 필름 (61) 상에 디포짓된다. (존재하는 경우, 용매는 쉽게 증발한다.) 프라이머 층 (예를 들어, 전극 보호층) 은 엠보싱 조성물의 층과 PET 일 수도 있는 지지층 사이의 접착을 증가시키기 위해 사용될 수 있다. 또한, 접착 증진제가 프라이머 층에 사용되어 지지층에 대한 접착을 향상킬 수 있다. 제 2 단계에서, 층 (60) 은 아하에 그 제조가 설명되는 미리 패턴화된 엠보싱 툴 (62) 에 의해 층 재료의 유리 전이 온도보다 높은 온도에서 엠보싱된다. (프라이머 및/또는 접착 증진제는 엠보싱 툴 (62) 에 대한 접착을 감소시키도록 조정될 수도 있다.) 제 3 단계에서, 패턴화된 층 (60) 은 예를 들어 냉각에 의해 바람직하게는 그것이 경화되는 동안 또는 경화된 후에 엠보싱 툴 (62) 로부터 릴리스된다. (위에서 설명된) 세장 챔버의 특징적 패턴이 이제 확립된다. 제 4 단계에서, 세장 챔버 (63) 가 상술된 쌍안정 전기영동 유체 (64) 로 충전된다. 일부 실시형태들에서, 쌍안정 전기영동 유체는 전기영동 유체 (64) 와 양립할 수 없고 전기영동 유체 (64) 내의 용매 및 안료 입자보다 더 낮은 비중을 갖는 밀봉 조성물을 포함할 것이다. 그러한 실시형태에서, 밀봉 조성물은 세장 챔버 (63) 의 상부로 올라올 것이고, 이로 인해 그것은 후속 단계들에서 경화될 수 있다. 대안 (도 8 에 미도시) 으로서, 밀봉 조성물은 세장 챔버 (63) 가 전기영동 유체 (64) 로 충전된 후 오버코팅될 수 있다. 다음 단계에서, 전기영동 유체 (64) 로 충전된 세장 챔버 (63) 는 예를 들어 UV 방사선 (65) 으로, 또는 열, 또는 습기에 의해 밀봉 조성물을 경화시킴으로써 밀봉된다. 제 6 단계에서, 밀봉된 세장 챔버는 압력 감응 접착제, 고온 용융 접착제, 열, 습기, 또는 방사선 경화성 접착제일 수 있는 광학적으로 투명한 접착제 층 (67) 으로 미리 코팅될 수 있는 제 2 투명 전도성 필름 (66) 에 적층된다. [광학적으로 투명한 접착제를 위한 바람직한 재료는 아크릴, 스티렌-부타디엔 코폴리머, 스티렌-부타디엔-스티렌 블록 코폴리머, 스티렌-이소프렌-스티렌 블록 코폴리머, 폴리비닐부티랄, 셀룰로오스 아세테이트 부티레이트, 폴리비닐피롤리돈, 폴리우레탄, 폴리아미드, 에틸렌-비닐아세테이트 코폴리머, 에폭시드, 다작용기 아크릴레이트, 비닐, 비닐에테르, 및 그들의 올리고머, 폴리머 및 코폴리머를 포함한다.] 마지막 단계에서, 스위칭가능 광 콜리메이팅 필름의 마무리된 시트가 예를 들어 칼날 (69) 로, 또는 레이저 절단기로 절단될 수 있다. 일부 실시형태들에서, 다른 광학적으로 투명한 접착제 및 릴리스 시트를 적층하는 것을 포함하는 제 8 단계가 마무리된 스위칭가능 광 콜리메이팅 필름상에서 수행되어 그 필름이 섹션 시트 또는 롤로 선적되고 예를 들어 디스플레이, 창문, 또는 다른 디바이스/기판으로의 통합을 위해 사용되어야 할 때 원하는 크기로 절단된다.
엠보싱 툴 (62) 은 에칭 또는 전기도금이 후속되는 포토레지스트 공정에 의해 준비될 수 있다. 그것은 그 후 포토레지스트의 층으로 코팅되고 UV 에 노출된다. 마스크가 UV 와 포토레지스트의 층 사이에 배치된다. 일부 실시형태들에서, 비노출 또는 노출 영역들은 그 후 적절한 유기 용매 또는 수용액을 그들을 세정함으로써 제거된다. 나머지 포토레지스트는 건조되고 박층의 시드 금속으로 다시 스퍼터링된다. 마스터가 그 후 전해주조 (electroforming) 를 위해 준비된다. 전해주조에 상용되는 통상적인 재료는 니켈 코발트이다. 대안적으로, 마스터는 술파민산 니켈 전해주조 또는 무전해 니켈 증착에 의해 니켈로 제조될 수 있다. 엠보싱 툴의 바닥은 통상 50 과 5000 미크론 사이의 두께이다. 마스터는 또한 “Replication techniques for micro-optics”, SPIE Proc. Vol. 3099, pp 76-82 (1997) 에 기술된 바와 같은 e-빔 라이팅, 드라이 에칭, 화학적 에칭, 레이저 라이팅 또는 레이저 간섭을 포함하는 다른 마이크로엔지니어링 기법들을 사용하여 제조될 수 있다. 대안적으로, 엠보싱 툴은 플라스틱, 세라믹 또는 금속을 사용하여 포토머시닝에 의해 제조될 수 있다. 엠보싱 툴 제조를 위한 수개의 방법들이 이하에 더 상세히 기술된다.
도 9a 및 도 9b 는 그 표면에 3차원 마이크로구조 (원안) 를 갖는 엠보싱 툴 (111) 을 사용한 엠보싱 공정을 도시한다. 도 9a 및 도 9b 에 도시된 바와 같이, 엠보싱 툴 (111) 이 적어도 20 ㎛ 두께, 예를 들어 적어도 40 ㎛ 두께, 예를 들어 적어도 50 ㎛ 두께, 예를 들어 적어도 60 ㎛ 두께, 예를 들어 적어도 80 ㎛ 두께, 예를 들어 적어도 100 ㎛ 두께, 예를 들어 적어도 150 ㎛ 두께, 예를 들어 적어도 200 ㎛ 두께, 예를 들어 적어도 250 ㎛ 두께의 엠보싱 조성물 (112) 에 적용된 후. 엠보싱 조성물이 (예를 들어, 방사선에 의해) 경화되거나, 고온 엠보싱가능 재료가 열 및 압력에 의해 엠보싱된 후, 엠보싱된 재료는 엠보싱 툴로부터 릴리스되어 (도 9b 참조), 필요한 치수의 세장 챔버를 남기며, 예를 들어, 그 세장 챔버의 높이는 콜리메이팅 층 (엠보싱 조성물) 의 두께 이하이고, 세장 챔버이 폭은 9 ㎛ 와 150 ㎛ 사이이고, 그 챔버의 길이는 200 ㎛ 와 5 mm 사이이다.
종래의 엠보싱 툴을 사용하면, 경화된 또는 고온 엠보싱된 재료는 때때로 경화된 또는 고온 엠보싱된 재료와 엠보싱 툴의 표면 사이의 바람직하지 않은 강한 접착으로 인해 툴로부터 완전히 릴리스되지 않는다. 이러한 경우에, 엠보싱 툴의 표면으로 전사되거나 그것에 들러붙은 일부 경화된 또는 고온 엠보싱된 재료가 존재하여, 그 공정으로부터 형성된 물체상에 불균일한 표면을 남긴다.
이러한 문제는 그 물체가 투명한 전도성 층 또는 폴리머 층과 같은 지지층 상에 형성되는 경우 훨씬 더 확연하다. 경화된 또는 고온 엠보싱된 재료와 지지층 사이의 접착이 경화된 또는 고온 엠보싱된 재료와 엠보싱 툴의 표면 사이의 접착보다 약한 경우, 엠보싱 툴로부터의 경화된 또는 고온 엠보싱된 재료의 릴리스 공정은 지지층으로부터 그 물체의 분리를 야기할 수도 있다.
일부 경우들에서, 물체는 층들의 스택상에 형성될 수 있다. 이 경우, 인접한 층들 중 임의의 2 개 사이의 접착이 경화된 또는 고온 엠보싱된 재료와 엠보싱 툴의 표면 사이의 접착보다 약한 경우, 엠보싱 툴로부터의 경화된 또는 고온 엠보싱된 재료의 릴리스 공정은 그 2 개의 층들 사이에 고장을 야기할 수 있다.
상술된 문제들은 특히 경화된 엠보싱 조성물 또는 고온 엠보싱된 재료가 특정의 지지층에 잘 부착되지 않는 경우 문제가 된다. 예를 들어, 지지층이 폴리머 층인 경우, 폴리머 층과 경화된 또는 고온 엠보싱된 엠보싱 조성물 사이의 접착은 그들 중 하나가 친수성이고 다른 것이 소수성인 경우 약하다. 따라서, 엠보싱 조성물 및 지지층 양자 모두가 소수성이거나 양자 모두가 친수성인 것이 바람직하다.
엠보싱 층 또는 지지층을 형성하는 적절한 친수성 조성물은 극성 올리고머 또는 폴리머 재료를 포함할 수 있다. 미국 특허 제 7,880,958 호에 기술된 바와 같이, 그러한 극성 올리고머 또는 폴리머 재료는 니트로 (-NO2), 히드록시 (-OH), 카르복시 (-COO), 알콕시 (-OR 여기서 R 은 알킬기이다), 할로 (예를 들어, 플루오로, 클로로, 브로모 또는 요도), 시아노 (-CN), 술포네이트 (-SO3) 등과 같은 기들 중 적어도 하나를 갖는 올리고머 또는 폴리머로 이루어지는 그룹으로부터 선택될 수 있다. 극성 폴리머 재료의 유리 전이 온도는 바람직하게는 약 100℃ 아래이고 더욱 바람직하게는 약 60℃ 아래이다. 절적한 극성 올리고머 또는 폴리머 재료의 특정의 예들은 폴리비닐 알코올, 폴리아크릴산, 폴리(2-히드록실에틸 메타크릴레이트), 폴리히드록시 기능화된 폴리에스테르 아크릴레이트 (예를 들어, BDE 1025, Bomar Specialties Co, Winsted, CT) 또는 알콕시레이티드 아크릴레이트, 예를 들어 에톡시레이티드 노닐 페놀 아크릴레이트 (예를 들어, SR504, Sartomer Company), 에톡시레이티드 트리메틸올프로판 트리아크릴레이트 (예를 들어, SR9035, Sartomer Company), 또는 에톡시레이티드 펜타에리트리톨 테트라아크릴레이트 (예를 들어, SR494, Sartomer Company) 를 포함하지만 이들에 제한되지 않는다.
엠보싱 툴 (111) 은 조성물 (112) 을 엠보싱하기 위해 직접 사용될 수 있다. 더 통상적으로, 엠보싱 툴 (111) 은 엠보싱 조성물 (112) 위로 엠보싱 슬리브의 회전을 허용하도록 평드럼상에 장착된다. 엠보싱 드럼 또는 슬리브 (121) 는 보통 금속 (예를 들어, 알루미늄, 구리, 아연, 니켈, 크롬, 철, 티타늄, 코발트 등), 상술된 금속들 중 임의의 것으로부터 유도된 합금, 또는 스테인리스 스틸과 같은 도전성 재료로 형성된다. 드럼 또는 슬리브를 형성하기 위해 상이한 재료들이 사용될 수 있다. 예를 들어, 드럼 또는 슬리브의 중심은 스테인리스 스틸로 형성될 수 있고 니켈 층이 그 스테인리스 스틸과 구리층일 수 있는 최외측 층 사이에 샌드위치된다.
방법 A: 엠보싱 드럼 또는 슬리브 (121) 는 도 10 에 도시된 바와 같이 그 외측 표면상에 전도성 코팅 또는 전도성 시드층을 갖는 비전도성 재료로 형성될 수 있다. 도 10 의 단계 B 에서 도시된 바와 같이, 드럼 또는 슬리브 (121) 의 외측 표면상에 감광성 재료 (122) 를 코팅하기 전에, 정밀 연마 및 폴리싱이 드럼 또는 슬리브의 외측 표면의 평활화를 보장하기 위해 사용될 수 있다. 감광성 재료 (122), 예를 들어 포토레지스트는 그 후 드럼 또는 슬리브 (121) 의 외측 표면상에 코팅될 수 있다. 감광성 재료는 포지티브 톤, 네거티브 톤 또는 듀얼 톤일 수 있다. 감광성 재료는 또한 화학적으로 증폭된 포토레지스트일 수 있다. 코팅은 딥, 스프레이 또는 링 코팅을 사용하여 수행될 수 있다. 건조 및/또는 베이킹 후에, 감광성 재료는 예를 들어 광원에 감광성 재료를 노출시킴으로써 도 10 의 단계 C 에 도시된 바와 같이 노출에 종속될 수 있다. 대안적으로, 감광성 재료 (122) 는 드럼 또는 슬리브 (121) 의 외측 표면상으로 적층되는 드라이 필름 포토레지스트일 수 있다. 드라이 필름이 사용되는 경우, 그것은 또한 기술된 바와 같이 광원에 노출된다.
도 10 의 단계 C 에서, 적절한 광원 (123), 예를 들어, IR, UV, e-빔 또는 레이저가 드럼 또는 슬리브 (121) 상에 코팅된 감광성 재료 또는 적층된 드라이 필름 포토레지스트 (122) 를 노출시키는데 사용된다. 광원은 연속 광이거나 펄스 광일 수 있다. 포토마스크 (124) 가 선택적으로 형성될 3차원 마이크로구조를 정의하기 위해 사용된다. 마이크로구조에 따라, 노출은 스텝-바이-스텝이거나, 연속이거나 또는 이들이 조합일 수 있다. 노출 후에, 감광성 재료 (122) 는 현상 전에 노출 후 처리, 예를 들어 베이킹이 행해진다. 감광성 재료의 톤에 의존하여, 노출된 또는 비노출된 영역들은 현상액을 사용함으로써 제거될 것이다. 현상 후에, (도 10 의 단계 D 에 도시된 바와 같이) 그 외측 표면상에 패턴화된 감광성 재료 (125) 를 갖는 드럼 또는 슬리브는 증착 (예를 들어, 전기도금, 무전해 도금, 물리 기상 증착, 화학적 기상 증착 또는 스퍼터링 증착) 전에 베이킹 또는 블링킷 노출될 수 있다. 패턴화된 감광성 재료의 두께는 바람직하게는 형성될 3차원 마이크로구조의 깊이 또는 높이보다 크다.
금속 또는 합금 (예를 들어, 니켈, 코발트, 크롬, 아연 또는 전술된 금속들 중 임의의 것으로부터 유도된 합금) 이 드럼 또는 슬리브 상으로 전해도금 및/또는 무전해 도금될 수 있다. 도금 재료 (126) 는 패턴화된 감광성 재료에 의해 커버되지 않은 영역들에서 드럼 또는 슬리브의 외측 표면상에 증착된다. 증착 두께는 바람직하게는 도 10 의 단계 E 에서 도시된 바와 같이, 감광성 재료의 두께보다 작다. 전체 드럼 또는 슬리브 위의 증착의 두께 변동은 도금 조건들, 예를 들어 전해도금이 사용되는 경우 애노드와 캐소드 (즉, 드럼 또는 슬리브) 사이의 거리, 드럼 또는 슬리브의 회전 속도 및/또는 도금액의 순환을 조정함으로써 1% 미만이 되도록 제어될 수 있다.
대안적으로, 도금 재료 (126) 를 증착하기 위해 전해도금을 사용하는 경우, 드럼 또는 슬리브의 전체 표면 상의 증착의 두께 변동은 미국 특허 제 8,114,262 호에 기술된 바와 같이 캐소드 (즉, 드럼 또는 슬리브) 와 애노드 사이에 비전도성 두께 유니포머를 삽입함으로써 제어될 수 있고, 그 내용이 전체로 참조에 의해 여기에 포함된다.
도금 후에, 패턴화된 감광성 재료 (125) 는 박리제 (예를 들어, 유기 용매 또는 수용액) 에 의해 박리될 수 있다. 정밀 폴리싱은 드럼 또는 슬리브 위의 증착물 (126) 의 허용가능한 두께 변동 및 거칠기의 정도를 보장하기 위해 선택적으로 채용될 수 있다. 도 10 의 단계 F 는 그 위에 형성된 3 차원 패턴 마이크로구조를 갖는 엠보싱 드럼 또는 슬리브의 단면도를 보여준다.
방법 B: 대안적으로, 3 차원 마이크로구조는 도 11 에 도시 된 바와 같이 평평한 기판 상에 형성 될 수 있다. 도 11 의 단계 A 에서, 기판 층 (141) (예를 들어, 유리 기판) 상에 감광성 재료 (142) 가 코팅된다. 전술 한 바와 같이, 감광성 재료 (142) 는 포지티브 톤, 네거티브 톤 또는 이중 톤일 수 있다. 감광성 재료 (142) 는 또한 화학적으로 증폭된 포토레지스트 일 수 있다. 코팅은 딥, 스프레이, 슬롯 다이 또는 스핀 코팅을 사용하여 수행 할 수 있다. 건조 및/또는 베이킹 후, 감광성 재료는 포토 마스크 (미도시)를 통해 적절한 광원 (미도시)에 노출된다. 대안적으로, 감광성 재료 (142)는 기판 (141) 상에 적층되는 드라이 필름 포토 레지스트 (일반적으로 상업적으로 입수 가능함) 일 수 있다. 드라이 필름은 또한 위에서 설명한 바와 같이 광원에 노출된다.
도 11 의 단계 B 에서, 노출 후, 감광성 재료의 톤에 따라, 감광성 재료의 노출 된 영역 또는 노출되지 않은 영역이 현상액을 사용하여 제거 될 것이다. 현상 후, 감광성 재료 (142) 남아있는 기판 층 (141)은 단계 C 전에 베이킹 또는 블랭킷 노출을 받을 수 있다. 나머지 감광성 재료의 두께는 형성 될 3차원 마이크로구조의 깊이 또는 높이와 동일해야 한다. 단계 C 에서, 전기 전도성 시드 층 (143) 은 감광성 재료가 차지하지 않는 영역에서 나머지 감광성 재료 (142) 및 기판 (141) 위에 코팅된다. 전기 전도성 시드 층은 일반적으로 은으로 형성된다; 그러나 금이나 니켈과 같은 다른 전도성 재료도 사용할 수 있다.
단계 D 에서 금속 또는 합금 (144) (예를 들어, 니켈, 코발트, 크롬, 구리, 아연 또는 앞서 언급 한 금속에서 파생 된 합금) 이 전기 전도성 시드 층으로 덮인 표면에 전기 도금 및/또는 무전해 도금된다. 패턴화 된 감광성 재료 위에 충분한 도금 된 재료 두께 (h) 가 존재할 때까지 도금 공정이 수행된다. 도 11 의 단계 D 에서의 두께 (h) 는 바람직하게는 25 내지 5000 미크론이고, 더욱 바람직하게는 25 내지 1000 미크론이다.
도금 후, 도금 된 재료 (144) 는 박리되는 기판 층 (141)으로부터 분리된다. 감광성 재료 (142)는 전기 전도성 시드 층 (143)과 함께 제거된다. 감광성 재료는 스트리퍼 (예를 들어, 유기 용매 또는 수용액)에 의해 제거 될 수 있다. 전기 전도성 시드 층 (143)은 산성 용액 (예를 들어, 황/질소 혼합물) 또는 시판되는 화학 스트리퍼에 의해 제거 될 수 있어, 일측면에 3 차원 구조를 갖고 타측면이 편평한 금속 시트 (144) 만을 남긴다. 금속 시트 (144) 에 정밀 폴리싱을 적용한 후, 편평한 심을 엠보싱에 직접 사용하거나 외부 표면에 3 차원 마이크로구조가 있는 드럼에 장착하여 (즉, 감싸) 엠보싱 툴을 형성할 수 있다. 귀금속 또는 그 합금은 전술 한 바와 같이 최종적으로 엠보싱 도구의 전체 표면에 코팅된다. 위에서 언급했듯이 금 또는 그 합금은 반응성이 부족하기 때문에 다른 귀금속 및 합금보다 선호된다.
방법 C: 또 다른 대안적인 방법이 도 12 에서 설명된다. 이 방법은 도 11 의 방법과 유사하지만, 단순화되었다. 은과 같은 전기 전도성 시드 층 대신에, 귀금속 또는 그 합금 층 (153) 이 감광성 재료 (152) 위에 단순히 코팅된다. 위에서 언급했듯이 금 또는 그 합금이 선호된다. 결과적으로, 단계 E 에서, 도금 된 재료 (154)가 기판 (151)에서 분리 된 후, 감광성 재료 (152) 만 제거되고 금 또는 합금 코팅 (153)이 일측면에 3 차원 구조를 갖고 타측면이 평평한 금속 시트 (154) 와 함께 남아 있다.
콜리메이팅 층을 형성하기 위한 조성물의 성분의 예는 아크릴레이트, 메타크릴레이트, 알릴, 비닐 벤젠, 비닐 에테르, 다작용기 에폭시드 및 올리고머 또는 이들의 폴리머 등을 포함 하나 이에 제한되지 않는 다작용기 비닐과 같은 열가소성 또는 열경화성 재료 또는 이의 전구체를 포함 할 수 있으나 이에 제한되지 않는다. 다작용기 아크릴레이트 및 그의 올리고머가 종종 사용된다. 다작용기 에폭시드 및 다작용기 아크릴레이트의 조합은 또한 콜리메이팅 층의 바람직한 물리-기계적 특성을 달성하는데 유용하다. 또한, 엠보싱된 프라이버시 층의 굴곡 저항성을 향상시키기 위해 우레탄 아크릴레이트 또는 폴리에스테르 아크릴레이트와 같은, 가요성을 부여하는 낮은 Tg (유리 전이 온도) 바인더 또는 가교성 올리고머가 추가될 수도 있다.
콜리메이팅 층을 위한 조성물의 추가 예는 극성 올리고머 또는 폴리머 물질을 포함 할 수 있다. 이러한 극성 올리고머 또는 폴리머 물질은 니트로 (-NO2), 히드록시 (-OH), 카르복시 (-COO), 알콕시 (-OR 여기서 R 은 알킬기 임), 할로 (예를 들어, 플루오로, 클로로, 브로 모 또는 요오도), 시아노 (-CN), 설포네이트 (-SO3) 등과 같은 기 중 적어도 하나를 갖는 올리고머 또는 폴리머로 구성된 군으로부터 선택 될 수 있다. 극성 폴리머 물질의 유리 전이 온도는 바람직하게는 약 100 °C 미만, 보다 바람직하게는 약 60 °C 미만이다. 적합한 극성 올리고머 또는 폴리머 물질의 특정 예는 폴리히드록시 가능화 된 폴리 에스테르 아크릴 레이트 (예를 들어, BDE 1025, Bomar Specialties Co, Winsted, Conn.) 또는 알콕실레이티드 아크릴 레이트, 예를 들어 에톡실레이티드 노닐 페놀 아크릴 레이트 (예를 들어, SR504, Sartomer Company), 에톡실레이티드 트리메틸올프로판 트리아크릴레이트 (예를 들어, SR9035, Sartomer Company) 또는 에톡실레이티드 펜타에리트리톨 테트라아크릴레이트 (예를 들어, Sartomer Company 의 SR494)를 포함하지만 이들에 제한되지 않는다.
대안적으로, 콜리메이팅 층 조성물은 (a) 적어도 하나의 이작용기 UV 경화성 성분, (b) 적어도 하나의 광개시제, 및 (c) 적어도 하나의 이형제를 포함 할 수 있다. 적합한 이작용기 성분은 약 200 이상의 분자량을 가질 수 있다. 이작용기 아크릴 레이트가 바람직하고, 우레탄 또는 에톡실레이티드 골격을 갖는 이작용기 아크릴 레이트가 특히 바람직하다. 보다 구체적으로, 적합한 이작용기 성분은 디에틸렌 글리콜 디아크릴레이트 (예를 들어, Sartomer 의 SR230), 트리에틸렌 글리콜 디아크릴레이트 (예를 들어, Sartomer 의 SR272), 테트라에틸렌 글리콜 디아크릴레이트 (예를 들어, Sartomer 의 SR268), 폴리에틸렌 글리콜 디아크릴 레이트 (예를 들어, Sartomer 의 SR295, SR344 또는 SR610), 폴리에틸렌 글리콜 디메타크릴레이트 (예를 들어, Sartomer 의 SR603, SR644, SR252 또는 SR740), 에톡실레이티드 비스페놀 A 디아크릴레이트 (예를 들어, Sartomer 의 CD9038, SR349, SR601 또는 SR602), 에톡실레이티드 비스페놀 A 디메타크릴레이트 (예를 들어, Sartomer 의 CD540, CD542, SR101, SR150, SR348, SR480 또는 SR541) 및 우레탄 디아크릴레이트 (예를 들어, Sartomer의 CN959, CN961, CN964, CN965, CN980 또는 CN981; Cytec 의 Ebecryl 230, Ebecryl 270, Ebecryl 8402 , Ebecryl 8804, Ebecryl 8807 또는 Ebecryl 8808) 을 포함 할 수 있지만 이에 제한되지는 않는다. 적합한 광개시제는 비스-아실-포스핀 옥사이드, 2-벤질-2-(디메틸아미노)-1-[4-(4-모르폴리닐)페닐]-1-부타논, 2,4,6-트리메틸벤조일 디페닐 포스핀 옥사이드, 2-이소프로필-9H-티오크산텐-9-온, 4-벤조일-4'-메틸디페닐설파이드 및 1-히드록시-시클로헥실-페닐-케톤, 2-히드록시-2-메틸-1-페닐-프로판-1-온, 1-[4-(2-히드록시에톡시)-페닐]-2-히드록시-2-메틸-1-프로판-1-온, 2,2-디메톡시-1,2-디페닐에탄-1-온 또는 2-메틸-1[4-(메틸티오)페닐]-2-모르폴리노프로판-1-온을 포함 할 수 있지만 이에 제한되지는 않는다. 적합한 이형제는 실리콘 아크릴레이트 (예를 들어, Cytec 의 Ebercryl 1360 또는 Ebercyl 350), 실리콘 폴리에테르 (예를 들어, Momentive 의 Silwet 7200, Silwet 7210, Silwet 7220, Silwet 7230, Silwet 7500, Silwet 7600 또는 Silwet 7607) 와 같은 유기변형 실리콘 코폴리머를 포함 할 수 있지만 이에 제한되지 않는다. 조성물은 다음의 성분들, 공개시제, 단일 작용기 UV 경화성 성분, 다작용기 UV 경화성 성분 또는 안정화제 중 하나 이상을 선택적으로 추가로 포함할 수 있다.
세장 챔버의 배열
위에서 설명한 제조 방법으로 야기된 광 콜리메이팅 층의 두 가지 지오메트리들이 도 13 및 도 14 (평면도) 에 도시되어 있다. 이들 지오메트리들은 한 방향 (L) 이 다른 방향 (W) 보다 길다는 점에서 세장 챔버 (22)의 종횡비에서의 일반적인 경향을 보여준다. 즉, 세장 챔버의 길이 (L) 는 일반적으로 세장 챔버의 폭 (W)의 적어도 두 배, 예를 들어 세장 챔버의 폭의 적어도 3 배, 예를 들어, 세장 챔버의 폭의 적어도 4 배, 예를 들어, 세장 챔버 폭의 적어도 5 배, 예를 들어, 세장 챔버 폭의 적어도 10 배이다. [위에서 논의 된 바와 같이, 세장 챔버의 (도 13 및 도 14 의 페이지의 평면으로부터 밖으로의) 높이 (H) 는 콜리메이팅 층의 두께와 같거나 더 작다.] 일반적으로, 각각의 세장 챔버의 폭은 9 ㎛ 와 150 ㎛ 사이이다. 일반적으로, 각각의 세장 챔버의 길이는 200 μm 와 5 mm 사이이다.
행들 사이의 간격 (A) ( "피치"라고도 함) 은 이전에 논의한 바와 같이 전기 영동 안료 (26)가 세장 챔버 (22)에 완전히 분포 될 때 시인각이 얼마나 감소하는지 결정하는 데 중요한 역할을 한다. 세장 챔버 (22)의 높이가 일정하게 유지되면, "A"간격이 줄어들면서 시인각이 좁아진다. 그러나 "A” 를 줄이면 빛이 가로 지르는 안료 입자를 갖는 쌍 안정성 전기 영동 유체 (24) 가 더 많이 존재하고 광 콜리메이팅 필름의 전체적인 광 투과율이 감소한다. 유사한 방식으로, 동일한 행 내의 인접한 세장 챔버 사이의 갭 폭 "G"는 광원과 관찰자 사이의 산란 입자의 양으로 인해 광 콜리메이팅 층의 전체 투과율에도 영향을 미친다. 따라서, 도 13 의 전체 투과율은 도 14 의 전체 투과율보다 낮다. 그러나, 입사광이 세장 챔버를 통과하여 이동할 축외 경로가 더 적기 때문에 도 13 에서는 콜리메이팅되지 않은 광의 "누설"이 적다.
일부 실시형태에서, 세장 챔버가 예를 들어 전술 한 바와 같이 롤링 엠보싱 툴로 생성 될 때, 세장 챔버는 (위에서 본 바와 같이) 행과 열로 형성된다. 누출을 최소화하기 위한 노력으로, 제 1행의 인접한 세장 챔버 사이의 갭은 도 13 및 도 14 의 제 2 행의 인접한 세장 챔버 사이의 갭으로부터 수평으로 오프셋된다. 일반적으로, 동일한 행 내의 인접한 세장 챔버 사이의 갭 폭 "G"는 30 ㎛ 미만, 예를 들어 25 ㎛ 미만, 예를 들어 20 ㎛ 미만, 예를 들어 15 ㎛ 미만, 예를 들어 10 ㎛ 미만이다. 연속적인 행에서 인접한 세장 챔버 사이의 갭은 적어도 1 ㎛, 예를 들어 적어도 2 ㎛, 예를 들어 적어도 3 ㎛, 예를 들어 적어도 5 ㎛만큼 오프셋 될 수 있다. 일부 실시형태에서, 제 1 행의 전체 갭은 도 14 에 도시 된 바와 같이 제 2 행의 세장 챔버에 의해 걸쳐진다. 대부분의 실시형태에서, L>G 이다. 많은 실시형태에서, L>>G 이다. 대부분의 실시형태에서 A>W 이다. 많은 실시형태에서 A>>W 이다.
세장 챔버 사이의 간격은 가시광의 파장 정도이기 때문에, 도 13 및 도 14 와 같은 반복되는 패턴은 뷰에 대해 원치 않는 간섭 효과를 생성 할 수 있으며, 이는 스폿, 모아레, 얼룩 또는 다른 가시적 결함으로 나타날 수 있다. 이러한 간섭 효과를 없애기 위해 광 콜리메이팅 층 (10) 의 설계에 여러 가지 변경이 이루어질 수 있다. 예를 들어, 인접한 세장 챔버 (22) 사이의 갭의 위치는 도 15 에 도시 된 바와 같이 각각의 연속적인 행과 함께 측면으로 "보행"될 수 있다. 대안적으로 또는 추가적으로, 갭 폭 (G) 은 도 16 에 도시 된 바와 같이 상이한 행에 대해 인접한 세장 챔버 (22) 사이에서 변경 될 수 있다. 또한, 갭 폭 (G) 은 동일한 행 내의 세장 챔버 (22) 사이에서 변경 될 수 있다. 대안적으로 또는 추가적으로, 행 사이의 피치 (A) 는 도 17 에 도시 된 바와 같이 광 콜리메이팅 필름을 가로 질러 수정 될 수 있다. 대안적으로 또는 추가로, 각각의 세장 챔버 (22)의 길이 (L)는 단일 행 내에서 및/또는 행 사이에서 수정 될 수 있다. 더욱이, 각각의 세장 챔버 (22)의 폭 (W)은 도 18 에 도시 된 바와 같이 단일 행 내에서 및/또는 행 사이에서 수정 될 수 있다. 여기에 설명 된 엠보싱 프로세스는 롤링 툴로 수행된다는 점에서 반복적이지만, 롤의 대부분의 피쳐를 비대칭으로 만들어 대칭을 무력화 할 수 있다. 롤링 엠보싱 툴로 인한 반복 패턴은 일반적으로 20 cm 정도이므로 간섭 효과를 생성하지 않는다.
MIT (Massachusetts Institute of Technology), E Ink Corporation, E Ink California, LLC. 및 관련 회사들에 양도되거나 또는 이들 명의로 된 다수의 특허들 및 출원들이 캡슐화 및 마이크로셀의 전기 영동 및 다른 전기 광학 매체에 사용되는 다양한 기술들을 설명한다. 캡슐화된 전기 영동 매체는 다수의 소형 캡슐들을 포함하고, 이들 각각은 자체가 유체 매질에 전기 영동적으로 이동가능한 입자를 함유하는 내부 상 (internal phase), 및 그 내부 상을 둘러싸는 캡슐 벽을 포함한다. 통상적으로, 캡슐들은 그들 자체가 폴리머 바인더 내에 유지되어 2 개의 전극들 사이에 위치되는 코히런트 층 (coherent layer) 을 형성한다. 마이크로셀 전기영동 디스플레이에 있어서, 하전된 입자 및 유체는 마이크로캡슐들 내에 캡슐화되지 않지만, 대신 캐리어 매질, 통상, 폴리머 필름 내에 형성된 복수의 캐비티(cavity)들 내에 보유된다.
이들 특허들 및 출원들에서 설명된 기술들은 다음을 포함한다:
(a) 전기영동 입자들, 유체들 및 유체 첨가제들; 예를 들어, 미국 특허 번호들 제7,002,728호 및 제7,679,814호를 참조; 마찬가지로 미국 특허 출원 공개 번호 제2016/0170106호 참조;
(b) 캡슐, 결합제 및 캡슐화 공정; 예를 들어 미국 특허 번호 6,922,276 및 7,411,719 참조; 뿐만 아니라 미국 특허 출원 공개 번호 2011/0286081 참조.
(c) 마이크로셀 구조, 벽 재료 및 마이크로셀 형성 방법; 예를 들어 미국 특허 번호 6,672,921; 6,751,007; 6,753,067; 6,781,745; 6,788,452; 6,795,229; 6,806,995; 6,829,078; 6,833,177; 6,850,355; 6,865,012; 6,870,662; 6,885,495; 6,906,779; 6,930,818; 6,933,098; 6,947,202; 6,987,605; 7,046,228; 7,072,095; 7,079,303; 7,141,279; 7,156,945; 7,205,355; 7,233,429; 7,261,920; 7,271,947; 7,304,780; 7,307,778; 7,327,346; 7,347,957; 7,470,386; 7,504,050; 7,580,180; 7,715,087; 7,767,126; 7,880,958; 8,002,948; 8,154,790; 8,169,690; 8,441,432; 8,582,197; 8,891,156; 9,279,906; 9,291,872; 및 9,388,307; 및 미국 특허 출원 공개 번호 2003/0175480; 2003/0175481; 2003/0179437; 2003/0203101; 2013/0321744; 2014/0050814; 2015/0085345; 2016/0059442; 2016/0004136; 및 2016/0059617을 참조;
(d) 마이크로셀을 충전하고 밀봉하기 위한 방법; 예를 들어 미국 특허 번호 6,545,797; 6,751,008; 6,788,449; 6,831,770; 6,833,943; 6,859,302; 6,867,898; 6,914,714; 6,972,893; 7,005,468; 7,046,228; 7,052,571; 7,144,942; 7,166,182; 7,374,634; 7,385,751; 7,408,696; 7,522,332; 7,557,981; 7,560,004; 7,564,614; 7,572,491; 7,616,374; 7,684,108; 7,715,087; 7,715,088; 8,179,589; 8,361,356; 8,520,292; 8,625,188; 8,830,561; 9,081,250; 및 9,346,987; 및 미국 특허 출원 공개 번호 2002/0188053; 2004/0120024; 2004/0219306; 2006/0132897; 2006/0164715; 2006/0238489; 2007/0035497; 2007/0036919; 2007/0243332; 2015/0098124; 및 2016/0109780 을 참조;
(e) 전기 광학 재료를 포함하는 필름 및 서브 어셈블리; 예를 들어 미국 특허 번호 6,825,829; 6,982,178; 7,112,114; 7,158,282; 7,236,292; 7,443,571; 7,513,813; 7,561,324; 7,636,191; 7,649,666; 7,728,811; 7,729,039; 7,791,782; 7,839,564; 7,843,621; 7,843,624; 8,034,209; 8,068,272; 8,077,381; 8,177,942; 8,390,301; 8,482,835; 8,786,929; 8,830,553; 8,854,721; 9,075,280; 및 9,238,340; 및 미국 특허 출원 공개 번호 2007/0237962; 2009/0109519; 2009/0168067; 2011/0164301; 2014/0115884; 및 2014/0340738 참조;
(f) 백플레인, 접착제 층 및 다른 보조 층 및 디스플레이에 사용되는 방법; 예를 들어, 미국 특허 번호 7,116,318; 7,535,624; 및 9,310,661; 뿐아니라 미국 특허 출원 공개 번호 2016/0103380; 및 2016/0187759 를 참조.
(g) 디스플레이들을 구동하기 위한 방법들; 예를 들어 미국 특허 번호들 제5,930,026호; 제6,445,489호; 제6,504,524호; 제6,512,354호; 제6,531,997호; 제6,753,999호; 제6,825,970호; 제6,900,851호; 제6,995,550호; 제7,012,600호; 제7,023,420호; 제7,034,783호; 제7,061,166호; 제7,061,662호; 제7,116,466호; 제7,119,772호; 제7,177,066호; 제7,193,625호; 제7,202,847호; 제7,242,514호; 제7,259,744호; 제7,304,787호; 제7,312,794호; 제7,327,511호; 제7,408,699호; 제7,453,445호; 제7,492,339호; 제7,528,822호; 제7,545,358호; 제7,583,251호; 제7,602,374호; 제7,612,760호; 제7,679,599호; 제7,679,813호; 제7,683,606호; 제7,688,297호; 제7,729,039호; 제7,733,311호; 제7,733,335호; 제7,787,169호; 제7,859,742호; 제7,952,557호; 제7,956,841호; 제7,982,479호; 제7,999,787호; 제8,077,141호; 제8,125,501호; 제8,139,050호; 제8,174,490호; 제8,243,013호; 제8,274,472호; 제8,289,250호; 제8,300,006호; 제8,305,341호; 제8,314,784호; 제8,373,649호; 제8,384,658호; 제8,456,414호; 제8,462,102호; 제8,514,168호; 제8,537,105호; 제8,558,783호; 제8,558,785호; 제8,558,786호; 제8,558,855호; 제8,576,164호; 제8,576,259호; 제8,593,396호; 제8,605,032호; 제8,643,595호; 제8,665,206호; 제8,681,191호; 제8,730,153호; 제8,810,525호; 제8,928,562호; 제8,928,641호; 제8,976,444호; 제9,013,394호; 제9,019,197호; 제9,019,198호; 제9,019,318호; 제9,082,352호; 제9,171,508호; 제9,218,773호; 제9,224,338호; 제9,224,342호; 제9,224,344호; 제9,230,492호; 제9,251,736호; 제9,262,973호; 제9,269,311호; 제9,299,294호; 제9,373,289호; 제9,390,066호; 제9,390,661호; 및 제9,412,314호; 및 미국 특허 출원 공개 번호들 제2003/0102858호; 제2004/0246562호; 제2005/0253777호; 제2007/0091418호; 제2007/0103427호; 제2007/0176912호; 제2008/0024429호; 제2008/0024482호; 제2008/0136774호; 제2008/0291129호; 제2008/0303780호; 제2008/0174651호; 제2009/0195568호; 제2009/0322721호; 제2009/0194733호; 제2010/0194789호; 제2010/0220121호; 제2010/0265561호; 제2010/0283804호; 제2010/0063314호; 제2011/0175875호; 제2011/0193840호; 제2011/0193841호; 제2011/0199671호; 제2011/0221740호; 제2011/0001957호; 제2012/0098740호; 제2012/0063333호; 제2013/0194250호; 제2013/0249782호; 제2013/0321278호; 제2013/0009817호; 제2014/0085355호; 제2014/0204012호; 제2014/0218277호; 제2014/0240210호; 제2014/0240373호; 제2014/0253425호; 제2014/0292830호; 제2014/0293398호; 제2014/0333685호; 제2014/0340734호; 제2014/0070744호; 제2015/0097877호; 제2015/0109283호; 제2015/0213749호; 제2015/0213765호; 제2015/0221257호; 제2015/0262255호; 제2015/0262551호; 제2016/0071465호; 제2016/0078820호; 제2016/0093253호; 제2016/0140910호; 및 제2016/0180777호를 참조한다;
3 층 전기 광학 디스플레이의 제조에는 일반적으로 적어도 한 번의 적층 작업이 포함된다. 예를 들어, 앞서 언급 한 MIT 및 E Ink 특허 및 출원 중 일부에서, 바인더에 캡슐을 포함하는 캡슐화 된 전기 영동 매체가 플라스틱 필름 상에 인듐-주석-산화물 (ITO) 또는 유사한 전도성 코팅 (최종 디스플레이의 한 전극 역할을 함) 을 포함하는 유연한 기판 위에 코팅되는 캡슐화 된 전기 영동 디스플레이를 제조하는 방법이 설명되어 있으며, 캡슐/바인더 코팅이 건조되어 기판에 단단히 부착 된 전기 영동 매체의 응집성 층을 형성한다. 별도로, 픽셀 전극 어레이 및 구동 회로에 픽셀 전극을 연결하기 위한 적절한 도체 배열을 포함하는 백플레인이 준비된다. 최종 디스플레이를 형성하기 위해, 그 위에 캡슐/바인더 층을 갖는 기판은 적층 접착제를 사용하여 백플레인에 적층된다. 일 실시형태에서, 백플레인은 그 자체로 가요성이고 플라스틱 필름 또는 다른 가요성 기판 상에 픽셀 전극 및 전도체를 인쇄함으로써 준비된다. 다른 실시형태에서, 두 전극 모두 가요성이며, 그에 따라 구성된 전기 영동 디스플레이가 가요성이도록 허용한다. 이 공정에 의한 디스플레이 양산을 위한 명백한 적층 기법은 적층 접착제를 사용한 롤 적층이다. 유사한 제조 기법이 다른 유형의 전기 광학 디스플레이와 함께 사용될 수 있다. 예를 들어, 마이크로 셀 전기 영동 매체는 캡슐화 된 전기 영동 매체와 실질적으로 동일한 방식으로 백플레인 또는가요성 전극에 적층 될 수 있다.
미국 특허 번호 제6,982,178호는 대량 생산에 적합한 (캡슐화된 전기영동 디스플레이를 포함하는) 고체 전기 광학 디스플레이를 어셈블링하는 방법을 설명한다. 본질적으로, 이 특허는 광 투과성 전기 전도성 층; 전기 전도성 층과 전기적으로 접촉하는 고체 전기광학 매체의 층; 접착제 층; 및 박리 시트를 이 순서로 포함하는 소위 “프론트 평면 라미네이트” (front plane laminate; “FPL”) 를 설명한다. 통상적으로, 광 투과성 전기 전도성 층은, 기판이 영구 변형 없이 (말하자면) 직경 10 인치 (254 mm) 의 드럼 주위에 수동으로 감겨질 수 있다는 의미에서, 바람직하게는 가요성인, 광 투과성 기판 상에 담지될 것이다. 용어 "광 투과성" 은 이렇게 지정된 층이, 그 층을 살펴보는, 관찰자로 하여금, 보통 전기 전도성 층 및 인접한 기판 (존재할 경우) 을 통해 뷰잉될, 전기 광학 매체의 디스플레이 상태들의 변화를 관찰할 수 있게 하기에 충분한 광을 투과시킨다는 것을 의미하도록 이 특허 및 본 명세서에서 사용되고; 전기 광학 매체가 비-가시성 파장들에서 반사율의 변화를 디스플레이하는 경우들에서, 용어 "광 투과성" 은 물론, 관련 비-가시성 파장들의 투과를 지칭하는 것으로 해석되어야 한다. 기판은 통상적으로 폴리머 필름일 것이고, 보통 약 1 내지 약 25 밀 (25 내지 634 ㎛), 바람직하게는 약 2 내지 약 10 밀 (51 내지 254 ㎛) 의 범위의 두께를 가질 것이다. 전기전도성 층은 편리하게는 예를 들어 알루미늄 또는 ITO 의 얇은 금속 또는 금속 산화물 층이거나 전도성 폴리머일 수도 있다. 알루미늄 또는 ITO 로 코팅된 폴리(에틸렌 테레프탈레이트)(PET) 필름들은 예를 들어 독일 윌밍턴에 소재한 E.I du Pont de Nemours & Company 사 제조의 “알루미늄화 Mylar” (“Mylar” 는 등록 상표이다) 로서 상업적으로 입수 가능하며, 이러한 상업적 재료들은 프론트 평면 라미네이트에서 양호한 결과들을 갖고 이용될 수도 있다.
그러한 프론트 평면 라미네이트를 사용한 전기영동 디스플레이의 어셈블리는, 프론트 평면 라미네이트로부터 이형 시트를 제거하고 접착제 층이 백플레인에 들러붙게 하는데 효과적인 조건들 하에서 접착제 층을 백플레인과 접촉시켜, 이에 의해 접착제 층, 전기영동 매체의 층 및 전기 전도성 층을 백플레인에 고정시키는 것에 의해 달성될 수도 있다. 이 프로세스는 프론트 평면 라미네이트가 통상적으로 롤-투-롤 코팅 기술들을 이용하여 대량 제조될 수 있고 특정 백플레인과 함께 이용하는데 필요한 임의의 사이즈의 단편으로 절단될 수도 있기 때문에 대량 제조에 적합할 수도 있다.
용어 "임펄스" 는 본 명세서에서 시간에 대한 전압의 적분의 그 종래의 의미로 사용된다. 그러나, 일부 쌍안정 전기영동 매체들은 전하 트랜스듀서들로서 작동하고, 그러한 매체들로, 임펄스의 대안적인 정의, 즉, 시간에 걸친 전류의 적분 (이는 인가된 총 전하와 동일함) 이 사용될 수도 있다. 매체가 전압-시간 임펄스 트랜스듀서로서 작동하는지 또는 전하 임펄스 트랜스듀서로서 작동하는지에 의존하여, 임펄스의 적절한 정의가 사용되어야 한다.
전기 영동 디스플레이 구동의 또 다른 복잡성은 소위 "DC 밸런스” 가 필요하다는 것이다. 미국 특허 번호 6,531,997 및 6,504,524 는 디스플레이를 구동하는 데 사용 된 방법이 전기 영동 매체에 걸쳐 순 시간 평균 적용 전기장을 0 또는 0 에 가깝게 만들지 않으면 문제가 발생할 수 있으며 디스플레이의 작동 수명이 감소한다고 논의한다. 전기 영동 매체에 걸쳐 순 시간 평균 적용 전계를 0 으로 만드는 구동 방법은 편리하게 "직류 밸런스” 또는 "DC 밸런스” 이라고 한다.
이미 언급 한 바와 같이, 캡슐화 된 전기 영동 매체는 전형적으로 폴리머 바인더에 배치 된 전기 영동 캡슐을 포함하며, 이것은 개별 캡슐을 응집성 층으로 형성하는 역할을 한다. 폴리머 분산 전기 영동 매체의 연속 상과 마이크로셀 매체의 셀 벽은 유사한 기능을 한다. E Ink 연구자들은 전기 영동 매체에서 바인더로 사용되는 특정 물질이 매체의 전기 광학 특성에 영향을 미칠 수 있음을 발견했다. 바인더의 선택에 의해 영향을 받는 전기 영동 매체의 전기 광학 특성 중에는 소위 "드웰 타임 의존성"이 있다. 미국 특허 제 7,119,772 호 (특히 도 34 및 관련 설명 참조)에서 논의 된 바와 같이, 일부 경우들에서, 쌍안정 전기 영동 디스플레이의 두 가지 특정 광학 상태 사이의 전이에 필요한 임펄스는 픽셀의 체류 시간에 따라 달라지고, 이 현상을 "드웰 타임 의존성” 또는 "DTD” 라고 한다. 분명히, DTD 는 디스플레이 구동의 어려움에 영향을 미치고 생성 된 이미지의 품질에 영향을 미칠 수 있으므로 DTD를 가능한 한 작게 유지하는 것이 바람직하다; 예를 들어, DTD 는 균일한 회색 영역을 형성해야하는 픽셀을 회색 레벨에서 서로 약간 씩 다르게 만들 수 있으며 인간의 눈은 이러한 변화에 매우 민감하다. 바인더의 선택이 DTD 에 영향을 미치는 것으로 알려져 있지만, 임의의 특정 전기 영동 매체에 대한 적합한 바인더를 선택하는 것은 지금까지 시행 착오를 기반으로 해 왔으며 본질적으로 DTD 와 바인더의 화학적 특성 사이의 관계를 이해하지 못했다.
미국 특허 출원 공개 번호 2005/0107564 는 다음의 반응 생성물을 포함하는 폴리우레탄 폴리머를 포함하는 수성 폴리우레탄 분산액을 기술한다 : (a) (i) a,a,a,a-테트라메틸크실렌 디이소시아네이트 [체계적 명칭 1.3-비스(1-이소시아네이토-1-메틸에틸)벤젠; 이러한 재료는 이하 "TMXDI” 라고 할 수 있다] 를 포함하는 적어도 하나의 폴리이소시아네이트; (ii) 폴리프로필렌 글리콜을 포함하는 적어도 하나의 이작용기 폴리올, 및 (iii) 산 작용기 및 하이드록시, 1 차 아미노, 2 차 아미노 및 이들의 조합으로부터 선택된 적어도 2 개의 이소시아네이트 반응성 기를 포함하는 이소시아네이트 반응성 화합물의 반응 생성물을 포함하는 이소시아네이트 종결된 프리폴리머; (b) 3 차 아미노기를 포함하는 중화제; (c) 단일 작용기 사슬 종결제; (d) 유기 디아민을 포함하는 사슬 연장제; 및 (e) 물. 이하 "TMXDI/PPO” 분산액으로 지칭 될 수 있는 이러한 폴리우레탄 분산액은 전기 영동 디스플레이에서 적층 접착제로 유용한 것으로 밝혀졌다.
이상으로부터, 본 발명은 스위칭 가능한 광 콜리메이팅 필름 및 스위칭 가능한 광 콜리메이팅 필름을 포함하는 디바이스를 제공 할 수 있음을 알 수 있다. 특히, 본 발명은 쌍 안정이고 추가적인 에너지 입력없이 넓고 좁은 시야 조건을 유지할 수 있는 광 콜리메이팅 필름을 제공한다.
다수의 변경들 및 수정들이 본 발명의 범위로부터 일탈함 없이 상기 설명된 본 발명의 특정 실시형태들에서 이루어질 수 있음이 당업자에게 자명할 것이다. 이에 따라, 전술한 설명의 전부는 한정적인 의미가 아닌 예시적인 의미로 해석되어야 한다.

Claims (22)

  1. 스위칭가능한 광 콜리메이팅 필름으로서,
    제 1 광투과성 전극층;
    적어도 20 ㎛ 의 두께를 갖고, 각각이 개구를 갖는 복수의 세장 (elongated) 챔버들을 포함하는 콜리메이팅 층;
    각각의 세장 챔버에 배치된 안료 입자들을 포함하는 쌍안정 전기영동 유체;
    상기 세장 챔버의 상기 개구에 걸침으로써 상기 복수의 세장 챔버들 중 적어도 하나 내에 상기 쌍안정 전기영동 유체를 밀봉하는 밀봉층; 및
    제 2 광투과성 전극층으로서, 상기 제 1 및 제 2 광투과성 층들은 상기 콜리메이팅 층의 양측에 배치되는, 상기 제 2 광투과성 전극층을 포함하는, 스위칭가능한 광 콜리메이팅 필름.
  2. 제 1 항에 있어서,
    상기 콜리메이팅 층은 500 ㎛ 미만의 두께를 갖는, 스위칭가능한 광 콜리메이팅 필름.
  3. 제 1 항에 있어서,
    상기 세장 챔버들의 높이는 상기 콜리메이팅 층의 두께 이하이고, 상기 세장 챔버들의 폭은 5 ㎛ 와 150 ㎛ 사이이고, 상기 챔버들의 길이는 200 μm 와 5 mm 사이인, 스위칭가능한 광 콜리메이팅 필름.
  4. 제 1 항에 있어서,
    상기 콜리메이팅 층은 아크릴레이트 모노머, 우레탄 모노머, 스티렌 모노머, 에폭시드 모노머, 실란 모노머, 티오-엔 모노머, 티오-아인 모노머, 또는 비닐 에테르 모노머를 포함하는 폴리머를 포함하는, 스위칭가능한 광 콜리메이팅 필름.
  5. 제 4 항에 있어서,
    상기 콜리메이팅 층은 폴리아크릴레이트를 포함하는, 스위칭가능한 광 콜리메이팅 필름.
  6. 제 1 항에 있어서,
    상기 제 1 또는 제 2 광투과성 전극층은 인듐-주석-산화물을 포함하는, 스위칭가능한 광 콜리메이팅 필름.
  7. 제 1 항에 있어서,
    상기 쌍안정 전기영동 유체는 비극성 용매에 폴리머-기능화된 안료 입자 및 자유 폴리머를 포함하는, 스위칭가능한 광 콜리메이팅 필름.
  8. 제 7 항에 있어서,
    상기 안료는 폴리아크릴레이트, 폴리스티렌, 폴리나프탈렌, 또는 폴리디메틸실록산을 포함하는, 스위칭가능한 광 콜리메이팅 필름.
  9. 제 7 항에 있어서,
    상기 자유 폴리머는 폴리이소부틸렌 또는 에틸렌, 프로필렌 또는 스티렌 모노머들을 포함하는 코폴리머를 포함하는, 스위칭가능한 광 콜리메이팅 필름.
  10. 제 1 항에 있어서,
    상기 밀봉층은 셀룰로오스, 젤라틴, 폴리아크릴레이트, 폴리비닐 알코올, 폴리에틸렌, 폴리(비닐)아세테이트, 폴리(비닐)피롤리돈, 폴리우레탄, 또는 전술한 폴리머들 중 임의의 것의 코폴리머를 포함하는, 스위칭가능한 광 콜리메이팅 필름.
  11. 제 1 항에 있어서,
    상기 콜리메이팅 층을 위에서 볼 때 상기 세장 챔버들은 행들과 열들로 배열되고, 상기 세장 챔버들의 더 긴 치수는 행을 따라 이어지고, 상기 행들은 상기 세장 챔버들의 폭의 적어도 3 배만큼 서로 분리되는, 스위칭가능한 광 콜리메이팅 필름.
  12. 제 1 항에 있어서,
    상기 콜리메이팅 층을 위에서 볼 때 상기 세장 챔버들은 행들과 열들로 배열되고, 동일한 행 내의 인접한 세장 챔버들은 30 ㎛ 미만의 갭으로 분리되는, 스위칭가능한 광 콜리메이팅 필름.
  13. 제 12 항에 있어서,
    세장 챔버들의 상기 제 1 및 제 2 행들은 인접한 세장 챔버들 사이의 갭들을 포함하고, 상기 제 1 행의 인접한 세장 챔버들 사이의 갭들은 상기 제 2 행의 인접한 세장 챔버들 사이의 갭들으로부터 수평으로 오프셋되는, 스위칭가능한 광 콜리메이팅 필름.
  14. 제 1 항에 있어서,
    광학적으로 투명한 접착제 층을 추가로 포함하는, 스위칭가능한 광 콜리메이팅 필름.
  15. 제 14 항에 있어서,
    상기 광학적으로 투명한 접착제 층에 인접한 릴리스 층을 추가로 포함하는, 스위칭가능한 광 콜리메이팅 필름.
  16. 제 1 항 내지 제 14 항 중 어느 한 항의 스위칭가능한 광 콜리메이팅 필름을 포함하는 디스플레이.
  17. 유리 기판 및 제 1 항 내지 제 14 항 중 어느 한 항의 스위칭가능한 광 콜리메이팅 필름을 포함하는 창문 또는 문.
  18. 디스플레이로서,
    광원;
    스위칭가능한 광 콜리메이팅 필름으로서,
    제 1 광투과성 전극층;
    적어도 20 ㎛ 의 두께를 갖고, 각각이 개구를 갖는 복수의 세장 챔버들을 포함하는 콜리메이팅 층;
    각각의 세장 챔버에 배치된 안료 입자들을 포함하는 쌍안정 전기영동 유체;
    상기 개구에 걸침으로써 세장 챔버 내에 상기 쌍안정 전기영동 유체를 밀봉하는 밀봉층; 및
    제 2 광투과성 전극층으로서, 상기 제 1 및 제 2 광투과성 층들은 상기 콜리메이팅 층의 양측에 배치되는, 상기 제 2 광투과성 전극층
    을 포함하는, 상기 스위칭가능한 광 콜리메이팅 필름, 및
    박막 트랜지스터들의 능동 매트릭스;
    액정층; 및
    컬러 필터 어레이를 포함하는, 디스플레이.
  19. 제 18 항에 있어서,
    상기 제 1 및 제 2 광투과성 전극층들 사이에 전압 임펄스를 제공하는 전압원 및 제어기를 더 포함하는, 디스플레이.
  20. 제 18 항에 있어서,
    상기 광원과 상기 스위칭가능한 광 콜리메이팅 필름 사이에 배치된 프리즘 필름을 더 포함하는, 디스플레이.
  21. 제 20 항에 있어서,
    상기 프리즘 필름과 상기 광원 사이에 확산층을 더 포함하는, 디스플레이.
  22. 제 20 항에 있어서,
    터치 스크린 층을 더 포함하는, 디스플레이.




KR1020217004124A 2018-08-10 2019-07-29 쌍안정 전기영동 유체를 포함하는 스위칭가능한 광 콜리메이팅 층 KR102551978B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862717124P 2018-08-10 2018-08-10
US62/717,124 2018-08-10
PCT/US2019/043888 WO2020033175A1 (en) 2018-08-10 2019-07-29 Switchable light-collimating layer including bistable electrophoretic fluid

Publications (2)

Publication Number Publication Date
KR20210019585A true KR20210019585A (ko) 2021-02-22
KR102551978B1 KR102551978B1 (ko) 2023-07-05

Family

ID=69405862

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217004124A KR102551978B1 (ko) 2018-08-10 2019-07-29 쌍안정 전기영동 유체를 포함하는 스위칭가능한 광 콜리메이팅 층

Country Status (7)

Country Link
US (2) US11397366B2 (ko)
EP (1) EP3834035A4 (ko)
JP (2) JP7128952B2 (ko)
KR (1) KR102551978B1 (ko)
CN (2) CN115453794A (ko)
TW (3) TWI773095B (ko)
WO (1) WO2020033175A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11435606B2 (en) 2018-08-10 2022-09-06 E Ink California, Llc Driving waveforms for switchable light-collimating layer including bistable electrophoretic fluid
US11397366B2 (en) 2018-08-10 2022-07-26 E Ink California, Llc Switchable light-collimating layer including bistable electrophoretic fluid
JP7108779B2 (ja) 2018-08-10 2022-07-28 イー インク カリフォルニア, エルエルシー 反射体を伴う切り替え可能な光コリメート層
WO2021071134A1 (ko) * 2019-10-11 2021-04-15 엘지이노텍 주식회사 광 경로 제어 부재 및 이를 포함하는 디스플레이 장치
TWI746017B (zh) * 2020-06-18 2021-11-11 宏碁股份有限公司 像素結構與使用其的顯示裝置
CN114187846B (zh) * 2020-08-28 2024-01-09 宏碁股份有限公司 像素结构与使用其的显示装置
DE102020007974B3 (de) 2020-12-22 2021-10-07 Sioptica Gmbh Optisches Element mit variabler Transmission und Bildschirm mit einem solchen optischen Element
US20220251364A1 (en) * 2021-02-04 2022-08-11 E Ink California, Llc Sealing layers for sealing microcells of electro-optic devices
US20220291432A1 (en) * 2021-03-15 2022-09-15 E Ink Corporation Switchable light modulator having regions of varying opacity
CN115240534A (zh) * 2021-04-25 2022-10-25 群创光电股份有限公司 显示装置
CN113703155B (zh) * 2021-09-08 2023-09-26 武汉华星光电技术有限公司 一种显示装置
US20240004255A1 (en) * 2022-07-01 2024-01-04 E Ink Corporation Sealing Films and Sealing Compositions for Sealing Microcells of Electro-Optic Devices
CN117130204A (zh) * 2023-04-19 2023-11-28 荣耀终端有限公司 显示模组及其制备方法、显示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070139765A1 (en) * 2005-12-21 2007-06-21 Xerox Corporation Microfabricated light collimating screen
US20160077363A1 (en) * 2014-09-12 2016-03-17 Nlt Technologies, Ltd. Optical element, and display device, electronic apparatus, lighting device using the same

Family Cites Families (304)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3034209A (en) 1956-07-31 1962-05-15 Bianca Edoardo Giuseppe Method of making tapered tubular sections
FR2666804B1 (fr) 1990-09-14 1993-05-28 Saint Gobain Vitrage Int Vitrage electrochrome.
US7411719B2 (en) 1995-07-20 2008-08-12 E Ink Corporation Electrophoretic medium and process for the production thereof
US7259744B2 (en) 1995-07-20 2007-08-21 E Ink Corporation Dielectrophoretic displays
US7956841B2 (en) 1995-07-20 2011-06-07 E Ink Corporation Stylus-based addressing structures for displays
US7583251B2 (en) 1995-07-20 2009-09-01 E Ink Corporation Dielectrophoretic displays
US7327511B2 (en) 2004-03-23 2008-02-05 E Ink Corporation Light modulators
US8089453B2 (en) 1995-07-20 2012-01-03 E Ink Corporation Stylus-based addressing structures for displays
US7999787B2 (en) 1995-07-20 2011-08-16 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US7193625B2 (en) 1999-04-30 2007-03-20 E Ink Corporation Methods for driving electro-optic displays, and apparatus for use therein
US8139050B2 (en) 1995-07-20 2012-03-20 E Ink Corporation Addressing schemes for electronic displays
CA2260947A1 (en) 1996-07-19 1998-01-29 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US5930026A (en) 1996-10-25 1999-07-27 Massachusetts Institute Of Technology Nonemissive displays and piezoelectric power supplies therefor
US6825829B1 (en) 1997-08-28 2004-11-30 E Ink Corporation Adhesive backed displays
US6822782B2 (en) 2001-05-15 2004-11-23 E Ink Corporation Electrophoretic particles and processes for the production thereof
US7002728B2 (en) 1997-08-28 2006-02-21 E Ink Corporation Electrophoretic particles, and processes for the production thereof
EP1064584B1 (en) 1998-03-18 2004-05-19 E Ink Corporation Electrophoretic display
US6753999B2 (en) 1998-03-18 2004-06-22 E Ink Corporation Electrophoretic displays in portable devices and systems for addressing such displays
ATE228681T1 (de) 1998-07-08 2002-12-15 E Ink Corp Verfahren und vorrichtung zum messen des zustandes einer elektrophoretischen anzeigevorrichtung
US20030102858A1 (en) 1998-07-08 2003-06-05 E Ink Corporation Method and apparatus for determining properties of an electrophoretic display
US7012600B2 (en) 1999-04-30 2006-03-14 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US6504524B1 (en) 2000-03-08 2003-01-07 E Ink Corporation Addressing methods for displays having zero time-average field
US6531997B1 (en) 1999-04-30 2003-03-11 E Ink Corporation Methods for addressing electrophoretic displays
US7119772B2 (en) 1999-04-30 2006-10-10 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US6693620B1 (en) 1999-05-03 2004-02-17 E Ink Corporation Threshold addressing of electrophoretic displays
DE19927359A1 (de) 1999-06-16 2000-12-21 Creavis Tech & Innovation Gmbh Elektrophoretische Displays aus lichtstreuenden Trägermaterialien
US6672921B1 (en) 2000-03-03 2004-01-06 Sipix Imaging, Inc. Manufacturing process for electrophoretic display
US6930818B1 (en) 2000-03-03 2005-08-16 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
US6933098B2 (en) 2000-01-11 2005-08-23 Sipix Imaging Inc. Process for roll-to-roll manufacture of a display by synchronized photolithographic exposure on a substrate web
US7557981B2 (en) 2000-03-03 2009-07-07 Sipix Imaging, Inc. Electrophoretic display and process for its manufacture
US6972893B2 (en) 2001-06-11 2005-12-06 Sipix Imaging, Inc. Process for imagewise opening and filling color display components and color displays manufactured thereof
US6885495B2 (en) 2000-03-03 2005-04-26 Sipix Imaging Inc. Electrophoretic display with in-plane switching
US6545797B2 (en) 2001-06-11 2003-04-08 Sipix Imaging, Inc. Process for imagewise opening and filling color display components and color displays manufactured thereof
US6829078B2 (en) 2000-03-03 2004-12-07 Sipix Imaging Inc. Electrophoretic display and novel process for its manufacture
US6831770B2 (en) 2000-03-03 2004-12-14 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
US6788449B2 (en) 2000-03-03 2004-09-07 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
US7715087B2 (en) 2000-03-03 2010-05-11 Sipix Imaging, Inc. Segment electrophoretic displays and methods for their manufacture
US6833943B2 (en) 2000-03-03 2004-12-21 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
US7715088B2 (en) 2000-03-03 2010-05-11 Sipix Imaging, Inc. Electrophoretic display
US7233429B2 (en) 2000-03-03 2007-06-19 Sipix Imaging, Inc. Electrophoretic display
US6865012B2 (en) 2000-03-03 2005-03-08 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
US7408696B2 (en) 2000-03-03 2008-08-05 Sipix Imaging, Inc. Three-dimensional electrophoretic displays
US6947202B2 (en) 2000-03-03 2005-09-20 Sipix Imaging, Inc. Electrophoretic display with sub relief structure for high contrast ratio and improved shear and/or compression resistance
US7158282B2 (en) 2000-03-03 2007-01-02 Sipix Imaging, Inc. Electrophoretic display and novel process for its manufacture
US20070237962A1 (en) 2000-03-03 2007-10-11 Rong-Chang Liang Semi-finished display panels
US7052571B2 (en) 2000-03-03 2006-05-30 Sipix Imaging, Inc. Electrophoretic display and process for its manufacture
JP4006925B2 (ja) 2000-05-30 2007-11-14 セイコーエプソン株式会社 電気泳動表示装置の製造方法
WO2002045061A2 (en) 2000-11-29 2002-06-06 E Ink Corporation Addressing circuitry for large electronic displays
TW556044B (en) 2001-02-15 2003-10-01 Sipix Imaging Inc Process for roll-to-roll manufacture of a display by synchronized photolithographic exposure on a substrate web
US7679814B2 (en) 2001-04-02 2010-03-16 E Ink Corporation Materials for use in electrophoretic displays
US7230750B2 (en) 2001-05-15 2007-06-12 E Ink Corporation Electrophoretic media and processes for the production thereof
DE60210949T2 (de) 2001-04-02 2006-09-21 E-Ink Corp., Cambridge Elektrophoresemedium mit verbesserter Bildstabilität
US6753067B2 (en) 2001-04-23 2004-06-22 Sipix Imaging, Inc. Microcup compositions having improved flexure resistance and release properties
US8361356B2 (en) 2001-06-04 2013-01-29 Sipix Imaging, Inc. Composition and process for the sealing of microcups in roll-to-roll display manufacturing
US20020188053A1 (en) 2001-06-04 2002-12-12 Sipix Imaging, Inc. Composition and process for the sealing of microcups in roll-to-roll display manufacturing
US7205355B2 (en) 2001-06-04 2007-04-17 Sipix Imaging, Inc. Composition and process for the manufacture of an improved electrophoretic display
US7385751B2 (en) 2001-06-11 2008-06-10 Sipix Imaging, Inc. Process for imagewise opening and filling color display components and color displays manufactured thereof
US6788452B2 (en) 2001-06-11 2004-09-07 Sipix Imaging, Inc. Process for manufacture of improved color displays
US6982178B2 (en) 2002-06-10 2006-01-03 E Ink Corporation Components and methods for use in electro-optic displays
US7535624B2 (en) 2001-07-09 2009-05-19 E Ink Corporation Electro-optic display and materials for use therein
JP3909812B2 (ja) 2001-07-19 2007-04-25 富士フイルム株式会社 表示素子及び露光素子
TW527529B (en) 2001-07-27 2003-04-11 Sipix Imaging Inc An improved electrophoretic display with color filters
TW550529B (en) 2001-08-17 2003-09-01 Sipix Imaging Inc An improved electrophoretic display with dual-mode switching
US7038670B2 (en) 2002-08-16 2006-05-02 Sipix Imaging, Inc. Electrophoretic display with dual mode switching
TW539928B (en) 2001-08-20 2003-07-01 Sipix Imaging Inc An improved transflective electrophoretic display
TWI308231B (en) 2001-08-28 2009-04-01 Sipix Imaging Inc Electrophoretic display
TW573204B (en) 2001-09-12 2004-01-21 Sipix Imaging Inc An improved electrophoretic display with gating electrodes
US6825970B2 (en) 2001-09-14 2004-11-30 E Ink Corporation Methods for addressing electro-optic materials
TWI229763B (en) 2001-10-29 2005-03-21 Sipix Imaging Inc An improved electrophoretic display with holding electrodes
US8558783B2 (en) 2001-11-20 2013-10-15 E Ink Corporation Electro-optic displays with reduced remnant voltage
US9412314B2 (en) 2001-11-20 2016-08-09 E Ink Corporation Methods for driving electro-optic displays
US7952557B2 (en) 2001-11-20 2011-05-31 E Ink Corporation Methods and apparatus for driving electro-optic displays
US7202847B2 (en) 2002-06-28 2007-04-10 E Ink Corporation Voltage modulated driver circuits for electro-optic displays
US7528822B2 (en) 2001-11-20 2009-05-05 E Ink Corporation Methods for driving electro-optic displays
US8593396B2 (en) 2001-11-20 2013-11-26 E Ink Corporation Methods and apparatus for driving electro-optic displays
US8125501B2 (en) 2001-11-20 2012-02-28 E Ink Corporation Voltage modulated driver circuits for electro-optic displays
US6900851B2 (en) 2002-02-08 2005-05-31 E Ink Corporation Electro-optic displays and optical systems for addressing such displays
US6950220B2 (en) 2002-03-18 2005-09-27 E Ink Corporation Electro-optic displays, and methods for driving same
US7580180B2 (en) 2002-03-21 2009-08-25 Sipix Imaging, Inc. Magnetophoretic and electromagnetophoretic displays
TWI223729B (en) 2002-04-23 2004-11-11 Sipix Imaging Inc Improved segment electrophoretic displays and methods for their manufacture
US7261920B2 (en) 2002-04-24 2007-08-28 Sipix Imaging, Inc. Process for forming a patterned thin film structure on a substrate
US8002948B2 (en) 2002-04-24 2011-08-23 Sipix Imaging, Inc. Process for forming a patterned thin film structure on a substrate
US7156945B2 (en) 2002-04-24 2007-01-02 Sipix Imaging, Inc. Process for forming a patterned thin film structure for in-mold decoration
US7307778B2 (en) 2002-04-24 2007-12-11 Sipix Imaging, Inc. Compositions and processes for format-flexible, roll-to-roll manufacturing of electrophoretic displays
JP2005524110A (ja) 2002-04-24 2005-08-11 イー−インク コーポレイション 電子表示装置
TWI268813B (en) 2002-04-24 2006-12-21 Sipix Imaging Inc Process for forming a patterned thin film conductive structure on a substrate
TWI310098B (en) 2002-05-03 2009-05-21 Sipix Imaging Inc Methods of surface modification for improving electrophoretic display performance
TW583497B (en) 2002-05-29 2004-04-11 Sipix Imaging Inc Electrode and connecting designs for roll-to-roll format flexible display manufacturing
US7843621B2 (en) 2002-06-10 2010-11-30 E Ink Corporation Components and testing methods for use in the production of electro-optic displays
US7554712B2 (en) 2005-06-23 2009-06-30 E Ink Corporation Edge seals for, and processes for assembly of, electro-optic displays
US7110164B2 (en) 2002-06-10 2006-09-19 E Ink Corporation Electro-optic displays, and processes for the production thereof
US7649674B2 (en) 2002-06-10 2010-01-19 E Ink Corporation Electro-optic display with edge seal
US20110199671A1 (en) 2002-06-13 2011-08-18 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US20080024482A1 (en) 2002-06-13 2008-01-31 E Ink Corporation Methods for driving electro-optic displays
US7347957B2 (en) 2003-07-10 2008-03-25 Sipix Imaging, Inc. Methods and compositions for improved electrophoretic display performance
US7271947B2 (en) 2002-08-16 2007-09-18 Sipix Imaging, Inc. Electrophoretic display with dual-mode switching
US7839564B2 (en) 2002-09-03 2010-11-23 E Ink Corporation Components and methods for use in electro-optic displays
CN101109885B (zh) 2002-09-03 2012-06-13 伊英克公司 电光显示器
US7166182B2 (en) 2002-09-04 2007-01-23 Sipix Imaging, Inc. Adhesive and sealing layers for electrophoretic displays
TW575646B (en) 2002-09-04 2004-02-11 Sipix Imaging Inc Novel adhesive and sealing layers for electrophoretic displays
TWI327251B (en) 2002-09-23 2010-07-11 Sipix Imaging Inc Electrophoretic displays with improved high temperature performance
US7616374B2 (en) 2002-09-23 2009-11-10 Sipix Imaging, Inc. Electrophoretic displays with improved high temperature performance
US20130063333A1 (en) 2002-10-16 2013-03-14 E Ink Corporation Electrophoretic displays
TWI229230B (en) 2002-10-31 2005-03-11 Sipix Imaging Inc An improved electrophoretic display and novel process for its manufacture
TWI297089B (en) 2002-11-25 2008-05-21 Sipix Imaging Inc A composition for the preparation of microcups used in a liquid crystal display, a liquid crystal display comprising two or more layers of microcup array and process for its manufacture
US7365733B2 (en) 2002-12-16 2008-04-29 E Ink Corporation Backplanes for electro-optic displays
US6922276B2 (en) 2002-12-23 2005-07-26 E Ink Corporation Flexible electro-optic displays
TWI230832B (en) 2003-01-24 2005-04-11 Sipix Imaging Inc Novel adhesive and sealing layers for electrophoretic displays
US9346987B2 (en) 2003-01-24 2016-05-24 E Ink California, Llc Adhesive and sealing layers for electrophoretic displays
US7572491B2 (en) 2003-01-24 2009-08-11 Sipix Imaging, Inc. Adhesive and sealing layers for electrophoretic displays
US20040246562A1 (en) 2003-05-16 2004-12-09 Sipix Imaging, Inc. Passive matrix electrophoretic display driving scheme
JP2004356206A (ja) 2003-05-27 2004-12-16 Fuji Photo Film Co Ltd 積層構造体及びその製造方法
US8174490B2 (en) 2003-06-30 2012-05-08 E Ink Corporation Methods for driving electrophoretic displays
US20060187187A1 (en) 2003-07-03 2006-08-24 Koninklijke Philips Electronics N.V. Display device
WO2005010598A2 (en) 2003-07-24 2005-02-03 E Ink Corporation Electro-optic displays
EP1656658A4 (en) 2003-08-19 2009-12-30 E Ink Corp METHOD FOR CONTROLLING ELECTRIC OPTICAL DISPLAYS
EP1665214A4 (en) 2003-09-19 2008-03-19 E Ink Corp METHOD FOR REDUCING EDGE EFFECTS IN DISPLAYS
JP2007507737A (ja) 2003-10-03 2007-03-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電気泳動ディスプレイユニット
US7061662B2 (en) 2003-10-07 2006-06-13 Sipix Imaging, Inc. Electrophoretic display with thermal control
US8514168B2 (en) 2003-10-07 2013-08-20 Sipix Imaging, Inc. Electrophoretic display with thermal control
JP4848280B2 (ja) 2003-10-08 2011-12-28 イー インク コーポレイション 電気泳動媒質
CN101393369B (zh) * 2003-10-08 2013-03-27 伊英克公司 电泳介质
US7177066B2 (en) 2003-10-24 2007-02-13 Sipix Imaging, Inc. Electrophoretic display driving scheme
US8177942B2 (en) 2003-11-05 2012-05-15 E Ink Corporation Electro-optic displays, and materials for use therein
US20110164301A1 (en) 2003-11-05 2011-07-07 E Ink Corporation Electro-optic displays, and materials for use therein
US7342068B2 (en) 2003-11-18 2008-03-11 Air Products And Chemicals, Inc. Aqueous polyurethane dispersion and method for making and using same
WO2005052905A1 (en) 2003-11-25 2005-06-09 Koninklijke Philips Electronics N.V. A display apparatus with a display device and a cyclic rail-stabilized method of driving the display device
US8928562B2 (en) 2003-11-25 2015-01-06 E Ink Corporation Electro-optic displays, and methods for driving same
US7504050B2 (en) 2004-02-23 2009-03-17 Sipix Imaging, Inc. Modification of electrical properties of display cells for improving electrophoretic display performance
US7492339B2 (en) 2004-03-26 2009-02-17 E Ink Corporation Methods for driving bistable electro-optic displays
US8289250B2 (en) 2004-03-31 2012-10-16 E Ink Corporation Methods for driving electro-optic displays
US7470386B2 (en) 2004-04-26 2008-12-30 Sipix Imaging, Inc. Roll-to-roll embossing tools and processes
US7374634B2 (en) 2004-05-12 2008-05-20 Sipix Imaging, Inc. Process for the manufacture of electrophoretic displays
US8625188B2 (en) 2004-05-12 2014-01-07 Sipix Imaging, Inc. Process for the manufacture of electrophoretic displays
US20050253777A1 (en) 2004-05-12 2005-11-17 E Ink Corporation Tiled displays and methods for driving same
US7564614B2 (en) 2004-05-20 2009-07-21 Sipix Imaging, Inc. Electrode protection film for electrophoretic displays
WO2006015044A1 (en) 2004-07-27 2006-02-09 E Ink Corporation Electro-optic displays
US20080136774A1 (en) 2004-07-27 2008-06-12 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US7453445B2 (en) 2004-08-13 2008-11-18 E Ink Corproation Methods for driving electro-optic displays
TWI263105B (en) 2004-10-22 2006-10-01 Ind Tech Res Inst Transflective electrophoretic displayer device
US8643595B2 (en) 2004-10-25 2014-02-04 Sipix Imaging, Inc. Electrophoretic display driving approaches
US7304780B2 (en) 2004-12-17 2007-12-04 Sipix Imaging, Inc. Backplane design for display panels and processes for their manufacture
JP4718859B2 (ja) 2005-02-17 2011-07-06 セイコーエプソン株式会社 電気泳動装置とその駆動方法、及び電子機器
JP4690079B2 (ja) 2005-03-04 2011-06-01 セイコーエプソン株式会社 電気泳動装置とその駆動方法、及び電子機器
JP4778261B2 (ja) * 2005-04-26 2011-09-21 日本電気株式会社 表示装置及び端末装置
KR20070000551A (ko) * 2005-06-27 2007-01-03 엘지.필립스 엘시디 주식회사 디스플레이와 그 구동방법 및 그 제조방법
KR101206285B1 (ko) * 2005-06-29 2012-11-29 엘지디스플레이 주식회사 시야각 조절이 가능한 표시장치 및 그 제조방법
US7767126B2 (en) 2005-08-22 2010-08-03 Sipix Imaging, Inc. Embossing assembly and methods of preparation
US7880958B2 (en) 2005-09-23 2011-02-01 Sipix Imaging, Inc. Display cell structure and electrode protecting layer compositions
US8441432B2 (en) 2005-09-23 2013-05-14 Sipix Imaging, Inc. Display cell structure and electrode protecting layer compositions
US7408699B2 (en) 2005-09-28 2008-08-05 Sipix Imaging, Inc. Electrophoretic display and methods of addressing such display
US20070176912A1 (en) 2005-12-09 2007-08-02 Beames Michael H Portable memory devices with polymeric displays
US8114262B2 (en) 2006-01-11 2012-02-14 Sipix Imaging, Inc. Thickness distribution control for electroplating
JP4899503B2 (ja) 2006-02-01 2012-03-21 ソニー株式会社 表示装置
US7843624B2 (en) 2006-03-08 2010-11-30 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8390301B2 (en) 2006-03-08 2013-03-05 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US7982479B2 (en) 2006-04-07 2011-07-19 Sipix Imaging, Inc. Inspection methods for defects in electrophoretic display and related devices
JP4382791B2 (ja) 2006-05-16 2009-12-16 Nec液晶テクノロジー株式会社 光線方向制御素子の製造方法
US7683606B2 (en) 2006-05-26 2010-03-23 Sipix Imaging, Inc. Flexible display testing and inspection
US7349147B2 (en) 2006-06-23 2008-03-25 Xerox Corporation Electrophoretic display medium containing solvent resistant emulsion aggregation particles
US7903319B2 (en) 2006-07-11 2011-03-08 E Ink Corporation Electrophoretic medium and display with improved image stability
US8830561B2 (en) 2006-07-18 2014-09-09 E Ink California, Llc Electrophoretic display
US20080020007A1 (en) 2006-07-18 2008-01-24 Zang Hongmei Liquid-containing film structure
US20080024429A1 (en) 2006-07-25 2008-01-31 E Ink Corporation Electrophoretic displays using gaseous fluids
JP5200344B2 (ja) 2006-08-02 2013-06-05 富士ゼロックス株式会社 画像表示媒体、画像書込み装置、および画像形成装置
JP5110350B2 (ja) * 2006-09-29 2012-12-26 Nltテクノロジー株式会社 光学素子およびこれを用いた照明光学装置、表示装置、電子機器
US7649666B2 (en) 2006-12-07 2010-01-19 E Ink Corporation Components and methods for use in electro-optic displays
JP2008152017A (ja) * 2006-12-18 2008-07-03 Toyo Ink Mfg Co Ltd 接着性光学フィルター及びその製造方法、並びにその利用
US7826129B2 (en) 2007-03-06 2010-11-02 E Ink Corporation Materials for use in electrophoretic displays
US8274472B1 (en) 2007-03-12 2012-09-25 Sipix Imaging, Inc. Driving methods for bistable displays
US8243013B1 (en) 2007-05-03 2012-08-14 Sipix Imaging, Inc. Driving bistable displays
JP4549363B2 (ja) 2007-05-18 2010-09-22 株式会社リコー 電気泳動粒子及びこれを利用した画像表示装置
KR20090130211A (ko) 2007-05-21 2009-12-18 이 잉크 코포레이션 비디오 전기 광학 디스플레이를 구동하는 방법
US20080303780A1 (en) 2007-06-07 2008-12-11 Sipix Imaging, Inc. Driving methods and circuit for bi-stable displays
US8034209B2 (en) 2007-06-29 2011-10-11 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US9224342B2 (en) 2007-10-12 2015-12-29 E Ink California, Llc Approach to adjust driving waveforms for a display device
EP2235570A4 (en) 2007-12-21 2014-10-15 3M Innovative Properties Co LIGHTING CONTROL FILM
WO2009105385A1 (en) 2008-02-21 2009-08-27 Sipix Imaging, Inc. Color display devices
CN102067200B (zh) 2008-04-11 2013-11-13 伊英克公司 用于驱动电光显示器的方法
US8373649B2 (en) 2008-04-11 2013-02-12 Seiko Epson Corporation Time-overlapping partial-panel updating of a bistable electro-optic display
JP2011520137A (ja) 2008-04-14 2011-07-14 イー インク コーポレイション 電気光学ディスプレイを駆動する方法
US8462102B2 (en) 2008-04-25 2013-06-11 Sipix Imaging, Inc. Driving methods for bistable displays
CN102113046B (zh) 2008-08-01 2014-01-22 希毕克斯影像有限公司 用于电泳显示器的带有误差扩散的伽马调节
US8558855B2 (en) 2008-10-24 2013-10-15 Sipix Imaging, Inc. Driving methods for electrophoretic displays
US9019318B2 (en) 2008-10-24 2015-04-28 E Ink California, Llc Driving methods for electrophoretic displays employing grey level waveforms
US8154790B2 (en) 2008-10-28 2012-04-10 Sipix Imaging, Inc. Electrophoretic display structures
US9025234B2 (en) 2009-01-22 2015-05-05 E Ink California, Llc Luminance enhancement structure with varying pitches
US9251736B2 (en) 2009-01-30 2016-02-02 E Ink California, Llc Multiple voltage level driving for electrophoretic displays
US20100194789A1 (en) 2009-01-30 2010-08-05 Craig Lin Partial image update for electrophoretic displays
US20100194733A1 (en) 2009-01-30 2010-08-05 Craig Lin Multiple voltage level driving for electrophoretic displays
US8576259B2 (en) 2009-04-22 2013-11-05 Sipix Imaging, Inc. Partial update driving methods for electrophoretic displays
US9460666B2 (en) 2009-05-11 2016-10-04 E Ink California, Llc Driving methods and waveforms for electrophoretic displays
US20160170106A1 (en) 2009-08-18 2016-06-16 E Ink California, Llc Color tuning for electrophoretic display device
US9390661B2 (en) 2009-09-15 2016-07-12 E Ink California, Llc Display controller system
US20110063314A1 (en) 2009-09-15 2011-03-17 Wen-Pin Chiu Display controller system
US8810525B2 (en) 2009-10-05 2014-08-19 E Ink California, Llc Electronic information displays
US8576164B2 (en) 2009-10-26 2013-11-05 Sipix Imaging, Inc. Spatially combined waveforms for electrophoretic displays
JP5706910B2 (ja) 2009-11-12 2015-04-22 ポール リード スミス ギターズ、リミテッド パートナーシップ デジタル信号処理のための方法、コンピュータ可読ストレージ媒体および信号処理システム
US8928641B2 (en) 2009-12-02 2015-01-06 Sipix Technology Inc. Multiplex electrophoretic display driver circuit
US7859742B1 (en) 2009-12-02 2010-12-28 Sipix Technology, Inc. Frequency conversion correction circuit for electrophoretic displays
US11049463B2 (en) 2010-01-15 2021-06-29 E Ink California, Llc Driving methods with variable frame time
US8558786B2 (en) 2010-01-20 2013-10-15 Sipix Imaging, Inc. Driving methods for electrophoretic displays
US9224338B2 (en) 2010-03-08 2015-12-29 E Ink California, Llc Driving methods for electrophoretic displays
TWI409767B (zh) 2010-03-12 2013-09-21 Sipix Technology Inc 電泳顯示器的驅動方法
KR101533490B1 (ko) 2010-04-09 2015-07-02 이 잉크 코포레이션 전기광학 디스플레이의 구동 방법
KR101226226B1 (ko) 2010-04-22 2013-01-28 주식회사 엘지화학 프라이버시 보호필터 및 그 제조방법
US9013394B2 (en) 2010-06-04 2015-04-21 E Ink California, Llc Driving method for electrophoretic displays
TWI444975B (zh) 2010-06-30 2014-07-11 Sipix Technology Inc 電泳顯示器及其驅動方法
TWI436337B (zh) 2010-06-30 2014-05-01 Sipix Technology Inc 電泳顯示器及其驅動方法
TWI455088B (zh) 2010-07-08 2014-10-01 Sipix Imaging Inc 用於電泳顯示裝置的三維驅動方案
TWI421576B (zh) * 2010-07-15 2014-01-01 Au Optronics Corp 可調整視角之液晶顯示面板
US8665206B2 (en) 2010-08-10 2014-03-04 Sipix Imaging, Inc. Driving method to neutralize grey level shift for electrophoretic displays
JP5527129B2 (ja) 2010-09-16 2014-06-18 セイコーエプソン株式会社 電気泳動表示装置、電気泳動表示装置の駆動方法および電子機器
TWI518652B (zh) 2010-10-20 2016-01-21 達意科技股份有限公司 電泳式顯示裝置
TWI493520B (zh) 2010-10-20 2015-07-21 Sipix Technology Inc 電泳顯示裝置及其驅動方法
TWI409563B (zh) 2010-10-21 2013-09-21 Sipix Technology Inc 電泳式顯示裝置
TWI598672B (zh) 2010-11-11 2017-09-11 希畢克斯幻像有限公司 電泳顯示器的驅動方法
US20160180777A1 (en) 2010-11-11 2016-06-23 E Ink California, Inc. Driving method for electrophoretic displays
EP2652547B1 (en) 2010-12-15 2019-10-23 Switch Materials, Inc. Variable transmittance optical filter with substantially co- planar electrode system
US20140011913A1 (en) 2011-02-03 2014-01-09 Sipix Imaging, Inc. Electrophoretic fluid
US9372380B2 (en) 2011-02-03 2016-06-21 E Ink California, Llc Electrophoretic fluid
CN106932996B (zh) 2011-02-03 2020-04-28 伊英克加利福尼亚有限责任公司 电泳液
US8605354B2 (en) 2011-09-02 2013-12-10 Sipix Imaging, Inc. Color display devices
US9514667B2 (en) 2011-09-12 2016-12-06 E Ink California, Llc Driving system for electrophoretic displays
US9019197B2 (en) 2011-09-12 2015-04-28 E Ink California, Llc Driving system for electrophoretic displays
US8611692B2 (en) 2011-09-26 2013-12-17 Northrop Grumman Systems Corporation Automated image registration with varied amounts of a priori information using a minimum entropy method
EP2761360A4 (en) 2011-09-30 2015-06-10 3M Innovative Properties Co ELECTRONICALLY SWITCHED PRIVACY FILMS AND DISPLAY DEVICE THEREFOR
CN103827736B (zh) 2011-09-30 2017-09-12 3M创新有限公司 电子可切换式保密膜和具有电子可切换式保密膜的显示器件
EP3220383A1 (en) 2012-02-01 2017-09-20 E Ink Corporation Methods for driving electro-optic displays
US9291872B1 (en) 2012-02-07 2016-03-22 E Ink California, Llc Electrophoretic display design
EP3564745B1 (en) 2012-02-14 2022-05-04 E Ink California, LLC Microcups designs for electrophoretic display
JP2013190763A (ja) 2012-03-15 2013-09-26 Mitsubishi Electric Corp 視野角制御パネルおよび表示装置
TWI537661B (zh) 2012-03-26 2016-06-11 達意科技股份有限公司 電泳式顯示系統
WO2013180971A1 (en) 2012-05-30 2013-12-05 Sipix Imaging, Inc. Display device with watermark
US9513743B2 (en) 2012-06-01 2016-12-06 E Ink Corporation Methods for driving electro-optic displays
TWI470606B (zh) 2012-07-05 2015-01-21 Sipix Technology Inc 被動式顯示面板的驅動方法與顯示裝置
CN104583853B (zh) 2012-07-27 2018-01-26 伊英克公司 用于生产电光显示器的工艺
US20140049808A1 (en) 2012-08-14 2014-02-20 Bo-Ru Yang Portable projector utilizing electrophoretic displays
US20140050814A1 (en) 2012-08-17 2014-02-20 Gary Yih-Ming Kang Embossing assembly and methods of preparation
US9279906B2 (en) 2012-08-31 2016-03-08 E Ink California, Llc Microstructure film
TWI550580B (zh) 2012-09-26 2016-09-21 達意科技股份有限公司 電泳式顯示器及其驅動方法
US9388307B2 (en) 2012-11-27 2016-07-12 E Ink California, Llc Microcup compositions
US9218773B2 (en) 2013-01-17 2015-12-22 Sipix Technology Inc. Method and driving apparatus for outputting driving signal to drive electro-phoretic display
US9792862B2 (en) 2013-01-17 2017-10-17 E Ink Holdings Inc. Method and driving apparatus for outputting driving signal to drive electro-phoretic display
TWI600959B (zh) 2013-01-24 2017-10-01 達意科技股份有限公司 電泳顯示器及其面板的驅動方法
TWI490839B (zh) 2013-02-07 2015-07-01 Sipix Technology Inc 電泳顯示器和操作電泳顯示器的方法
TWI490619B (zh) 2013-02-25 2015-07-01 Sipix Technology Inc 電泳顯示器
US9721495B2 (en) 2013-02-27 2017-08-01 E Ink Corporation Methods for driving electro-optic displays
EP2962295A4 (en) 2013-03-01 2017-05-17 E Ink Corporation Methods for driving electro-optic displays
US20140253425A1 (en) 2013-03-07 2014-09-11 E Ink Corporation Method and apparatus for driving electro-optic displays
TWI502573B (zh) 2013-03-13 2015-10-01 Sipix Technology Inc 降低被動式矩陣耦合效應的電泳顯示器及其方法
WO2014164257A1 (en) 2013-03-13 2014-10-09 3M Innovative Properties Company Electronically switchable privacy device
KR20130040997A (ko) 2013-03-13 2013-04-24 주식회사 나노브릭 입자를 이용한 투과도 및 반사도 조절 방법 및 장치
US20140293398A1 (en) 2013-03-29 2014-10-02 Sipix Imaging, Inc. Electrophoretic display device
WO2014186449A1 (en) 2013-05-14 2014-11-20 E Ink Corporation Colored electrophoretic displays
WO2014186597A1 (en) 2013-05-17 2014-11-20 Sipix Imaging, Inc. Driving methods for color display devices
TWI526765B (zh) 2013-06-20 2016-03-21 達意科技股份有限公司 電泳顯示器及操作電泳顯示器的方法
US9620048B2 (en) 2013-07-30 2017-04-11 E Ink Corporation Methods for driving electro-optic displays
US9436058B2 (en) 2013-09-09 2016-09-06 E Ink California, Llc Electrophoretic display film for anti-counterfeit application
EP3049863B1 (en) 2013-09-23 2019-03-20 E Ink California, LLC Display panel with pre-patterned images
TWI537642B (zh) 2013-10-04 2016-06-11 電子墨水加利福尼亞有限責任公司 密封微單元之組成物及方法
TWI550332B (zh) 2013-10-07 2016-09-21 電子墨水加利福尼亞有限責任公司 用於彩色顯示裝置的驅動方法
US9874799B2 (en) 2014-02-17 2018-01-23 Nlt Technologies, Ltd. Optical device, manufacturing method of optical device, and display device, electronic device and illuminating device including optical device
US20150262255A1 (en) 2014-03-12 2015-09-17 Netseer, Inc. Search monetization of images embedded in text
WO2015141740A1 (ja) 2014-03-18 2015-09-24 Nltテクノロジー株式会社 調光素子及びスマートガラス
US9919553B2 (en) 2014-09-02 2018-03-20 E Ink California, Llc Embossing tool and methods of preparation
US20160059442A1 (en) 2014-09-02 2016-03-03 E Ink California, Llc Embossing tool and methods of preparation
TWI591412B (zh) 2014-09-10 2017-07-11 電子墨水股份有限公司 彩色電泳顯示器及其驅動方法
JP6566304B2 (ja) 2014-09-12 2019-08-28 Tianma Japan株式会社 光学素子及びこれを用いた表示装置,電子機器,照明装置
US9897832B2 (en) 2014-09-12 2018-02-20 Nlt Technologies, Ltd. Optical element, and display device, electronic apparatus, lighting device using the same
JP6601660B2 (ja) 2014-09-12 2019-11-06 Tianma Japan株式会社 光学素子およびこれを用いた表示装置,電子機器,照明装置
CN107077039B (zh) 2014-10-17 2020-04-28 伊英克加利福尼亚有限责任公司 用于密封微孔的组合物和方法
JP6664193B2 (ja) 2014-12-12 2020-03-13 三星電子株式会社Samsung Electronics Co.,Ltd. バックライトユニット
CN107112364B (zh) 2014-12-16 2020-09-08 夏普株式会社 半导体装置、其制造方法、及具备半导体装置的显示装置
WO2016096091A1 (en) * 2014-12-19 2016-06-23 Merck Patent Gmbh Particles for electrophoretic displays
US9898114B2 (en) 2014-12-23 2018-02-20 Intel Corporation Electroactive privacy layer of a display device
EP3243105A4 (en) 2015-01-05 2018-08-08 E Ink Corporation Electro-optic displays, and methods for driving same
US10013947B2 (en) 2015-02-02 2018-07-03 Sony Corporation Switchable privacy display based on striped polarizer
EP3309608B1 (en) 2015-06-12 2020-05-27 LG Chem, Ltd. Display device and method of manufacturing the same
US20180173073A1 (en) 2015-07-08 2018-06-21 Hewlett-Packard Development Company, L.P. Electrophoretic privacy devices
KR101836841B1 (ko) 2015-07-13 2018-03-09 신화인터텍 주식회사 광학 부재 및 이를 포함하는 표시 장치
CN107636521B (zh) 2015-07-30 2021-04-02 惠普发展公司,有限责任合伙企业 具有聚合物分散液晶的设备
TWI589965B (zh) 2015-08-14 2017-07-01 矽光學公司 可切換式照明裝置及其用途
CN107851419B (zh) * 2015-10-01 2021-06-29 伊英克公司 可变颜色和透射覆盖物
WO2017074307A1 (en) 2015-10-27 2017-05-04 Hewlett-Packard Development Company, L.P. Electrochromic display
JP6487606B2 (ja) 2015-11-27 2019-03-20 ジオプティカ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングSioptica Gmbh 自由動作モード及び制限動作モード用のスクリーン
US20190005891A1 (en) 2015-12-04 2019-01-03 Hewlett-Packard Development Company, L.P. Electrophoretic display device with anti-reflective nanoparticles
US10209530B2 (en) 2015-12-07 2019-02-19 E Ink Corporation Three-dimensional display
US10705358B2 (en) 2016-02-02 2020-07-07 Apple, Inc. Display apparatus with adjustable angles-of-view comprising backlight structures having an electrically adjustable lens array that adjusts backlight illumination
US11016336B2 (en) 2016-02-12 2021-05-25 Microsoft Technology Licensing, Llc Bragg grating-based display filtering
WO2017151114A1 (en) 2016-03-01 2017-09-08 Hewlett-Packard Development Company, L.P. Light absorption privacy film
CN105700226A (zh) * 2016-04-25 2016-06-22 京东方科技集团股份有限公司 视角控制机构、导光板、背光模组、阵列基板及显示面板
EP3465337A4 (en) 2016-05-23 2019-12-25 Clearink Displays, Inc. HYBRID REFLECTIVE-EMISSIVE IMAGE DISPLAY
WO2018022098A1 (en) 2016-07-29 2018-02-01 Hewlett-Packard Development Company, L.P. Display control in display devices
CN106154604B (zh) 2016-08-19 2020-03-06 京东方科技集团股份有限公司 防窥膜及防窥***、显示基板及显示装置
WO2018067147A1 (en) 2016-10-05 2018-04-12 Hewlett-Packard Development Company, L.P. Display control films
WO2018125091A1 (en) 2016-12-28 2018-07-05 Leia Inc. Multiview displays having a reflective support structure
CN106838849B (zh) 2017-02-23 2019-11-26 京东方科技集团股份有限公司 准直光源组件、显示装置及制造准直光源组件的方法
JP7083100B2 (ja) 2017-09-29 2022-06-10 天馬微電子有限公司 光線方向制御素子及びこれを用いた表示装置、照明装置
JP7036312B2 (ja) 2017-09-29 2022-03-15 天馬微電子有限公司 光線方向制御タッチパネル装置及び表示装置
CN109613783B (zh) 2017-10-04 2023-07-21 天马日本株式会社 光束方向控制元件及其制造方法以及显示装置
CN108375858A (zh) 2018-04-26 2018-08-07 京东方科技集团股份有限公司 防窥结构、显示装置及其显示方法
US11397366B2 (en) 2018-08-10 2022-07-26 E Ink California, Llc Switchable light-collimating layer including bistable electrophoretic fluid
JP7108779B2 (ja) 2018-08-10 2022-07-28 イー インク カリフォルニア, エルエルシー 反射体を伴う切り替え可能な光コリメート層

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070139765A1 (en) * 2005-12-21 2007-06-21 Xerox Corporation Microfabricated light collimating screen
US20160077363A1 (en) * 2014-09-12 2016-03-17 Nlt Technologies, Ltd. Optical element, and display device, electronic apparatus, lighting device using the same

Also Published As

Publication number Publication date
TW202016610A (zh) 2020-05-01
JP2021532414A (ja) 2021-11-25
EP3834035A4 (en) 2022-05-25
JP7128952B2 (ja) 2022-08-31
TWI823498B (zh) 2023-11-21
TWI716961B (zh) 2021-01-21
CN112470062B (zh) 2022-10-25
KR102551978B1 (ko) 2023-07-05
CN112470062A (zh) 2021-03-09
TW202305461A (zh) 2023-02-01
WO2020033175A1 (en) 2020-02-13
JP2022105720A (ja) 2022-07-14
EP3834035A1 (en) 2021-06-16
TWI773095B (zh) 2022-08-01
JP7236582B2 (ja) 2023-03-09
CN115453794A (zh) 2022-12-09
US11656526B2 (en) 2023-05-23
US20200050075A1 (en) 2020-02-13
US20220317541A1 (en) 2022-10-06
TW202131062A (zh) 2021-08-16
US11397366B2 (en) 2022-07-26

Similar Documents

Publication Publication Date Title
KR102551978B1 (ko) 쌍안정 전기영동 유체를 포함하는 스위칭가능한 광 콜리메이팅 층
TWI724492B (zh) 可切換光準直膜及顯示器
KR102521144B1 (ko) 쌍안정 전기영동 유체를 포함하는 전환가능한 광 시준층에 대한 구동 파형들
US20230080781A1 (en) Switchable light-collimating layer with improved transmittance

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant