WO2015141740A1 - 調光素子及びスマートガラス - Google Patents

調光素子及びスマートガラス Download PDF

Info

Publication number
WO2015141740A1
WO2015141740A1 PCT/JP2015/058108 JP2015058108W WO2015141740A1 WO 2015141740 A1 WO2015141740 A1 WO 2015141740A1 JP 2015058108 W JP2015058108 W JP 2015058108W WO 2015141740 A1 WO2015141740 A1 WO 2015141740A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
transparent
transparent electrode
electrode
transparent substrate
Prior art date
Application number
PCT/JP2015/058108
Other languages
English (en)
French (fr)
Inventor
国弘 塩田
Original Assignee
Nltテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nltテクノロジー株式会社 filed Critical Nltテクノロジー株式会社
Priority to US15/126,785 priority Critical patent/US9904142B2/en
Priority to JP2016508770A priority patent/JP6508656B2/ja
Priority to CN201580014599.7A priority patent/CN106104374B/zh
Publication of WO2015141740A1 publication Critical patent/WO2015141740A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/166Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
    • G02F1/167Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/16756Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1679Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/165Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on translational movement of particles in a fluid under the influence of an applied field
    • G02F1/1675Constructional details
    • G02F1/1676Electrodes
    • G02F1/16762Electrodes having three or more electrodes per pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/01Function characteristic transmissive
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/48Variable attenuator

Definitions

  • the present invention relates to a light control element for controlling an emission state of transmitted light and a smart glass equipped with the light control element.
  • the smart glass that contributes to the improvement of air conditioning energy efficiency uses an electrochromic element that has the function of switching between a transparent state and a light-shielding state (opaque state).
  • the power consumption is reduced by adjusting the air conditioning load.
  • Patent Document 1 or 2 As a practical example of glass incorporating an electrochromic element, for example, the technical content disclosed in Patent Document 1 or 2 is known.
  • Patent Document 1 discloses a window glass that realizes switching between a transparent state and a light-shielding state by changing a voltage applied to two transparent electrodes arranged to face each other via a variable member (electrochromic element). It is disclosed.
  • a light beam direction control element comprising:
  • a light direction control element for example, as shown in the cross-sectional view of FIG. 29, two transparent substrates 221 and 222 arranged opposite to each other are used, and the transparent photosensitive resin layer is exposed and developed, and cured by heating.
  • a light beam direction control element 210 having a configuration in which a light transmission region 240 is formed and an electrophoretic element 250 is disposed between the light transmission regions 240.
  • transparent conductive films 231 and 232 are formed between the transparent substrates 221 and 222 and the light transmission region 240, respectively.
  • the transparent conductive film 231 is externally provided.
  • 232, the narrow-field mode shown in FIG. 29A and the wide-field mode shown in FIG. 29B are arbitrarily realized by controlling the dispersion state of the electrophoretic element 250 by the electric field applied through 232, The emission state of light (incident light) 450 is switched.
  • the light beam direction control element 310 includes a transparent substrate 321, a transparent conductive film 331 formed on the surface of the transparent substrate 321, and an upper surface 331 a of the transparent conductive film 331.
  • the dimming function disclosed in Patent Document 1 and Patent Document 2 is a technology that realizes only two types of a transparent state and a light shielding state, and in particular in the light shielding state, the entire glass surface is similarly shielded from light. There is an inconvenience that the visibility through the glass is lowered.
  • the optical density at the time of light shielding is set to be low in order to minimize the visibility degradation in the light shielding state, there is a problem that the light shielding effect by the light control function cannot be sufficiently obtained.
  • the present invention has been made in view of the disadvantages of the related art, and in particular, a light control element capable of effectively adjusting and controlling the transmission state of transmitted light according to changes in usage environment and demand, and a smart glass equipped with the same The purpose is to provide.
  • a first transparent substrate a second transparent substrate disposed opposite to the first transparent substrate, and the first transparent substrate, A first transparent electrode disposed on a surface of the transparent substrate facing the second transparent substrate, and a plurality of light transmission regions disposed so as to be separated from each other between the first transparent electrode and the second transparent substrate.
  • a plurality of second transparent electrodes disposed at a position facing the respective light transmission regions of the second transparent substrate at a certain distance from the respective light transmission regions
  • a plurality of third transparent electrodes individually arranged at a predetermined distance between the second transparent electrodes on the second transparent substrate side, each second transparent electrode, each third transparent electrode, and each light Including light-shielding electrophoretic particles disposed in a gap formed by a transmission region. It adopts a configuration that has a focusing member.
  • the smart glass concerning this invention, it has the structure of providing the glass which has translucency, and the light control element as described in any one of the said Claims 1 thru
  • the first transparent substrate provided with the first transparent electrode and the plurality of light transmission regions spaced apart from each other and the second transparent substrate provided with two types of transparent electrodes are arranged to face each other.
  • the electrophoretic member is arranged in the gap formed therein, in particular, there is provided a light control element capable of effectively adjusting and controlling the transmission state of transmitted light in response to changes in the use environment and requirements, and smart glass equipped with the same. It becomes possible.
  • FIG. 2 is a schematic diagram showing a state in the case where a low-density whole-surface light-shielding mode is realized by setting all potentials between transparent electrodes equal in the light control device disclosed in FIG. 1.
  • FIG. 6A is a schematic diagram showing the state of the relative potential between the transparent electrodes in the light control device disclosed in FIG. 2.
  • FIG. 6A shows a high-density whole surface light shielding when the surface charge of the electrophoretic particles is a negative charge ( ⁇ ).
  • FIG. 6B shows a high-density whole-surface light-shielding mode when the surface charge of the electrophoretic particles is a positive charge (+).
  • FIG. 7 (a) shows the narrow-field mode when the surface charge of the electrophoretic particles is negative ( ⁇ ).
  • FIG. 7B shows the narrow-field mode when the surface charge of the electrophoretic particles is positive (+).
  • FIG. 8 (a) shows the wide-field mode when the surface charge of the electrophoretic particles is negative ( ⁇ ).
  • FIG. 8B shows the wide-field mode when the surface charge of the electrophoretic particles is positive (+).
  • FIG. 9A is a low-density whole-surface light-shielding mode
  • FIG. 9B is a high-density whole-surface light-shielding mode
  • FIG. 9D is a schematic diagram showing the wide viewing mode. It is a perspective view which shows the low concentration whole surface light-shielding mode in the light control element disclosed in FIG.
  • FIG. 5 is a perspective view showing a wide-field mode in the light control device disclosed in FIG. 4.
  • FIG. 2 is a surface view illustrating a low-density whole-surface light-shielding mode in the light control device disclosed in FIG. 1.
  • FIG. 3 is a surface view showing a high-density whole surface light-shielding mode in the light control device disclosed in FIG. 2. It is a surface view which shows the narrow visual field mode in the light modulation element disclosed in FIG.
  • FIG. 18 (f) It is a surface view which shows the wide visual field mode in the light modulation element disclosed in FIG. 1 (a) ⁇ FIG. 18 (b) ⁇ FIG. 18 (c) ⁇ FIG. 18 (d) ⁇ FIG. e) It is sectional drawing shown in order of FIG. 18 (f). It is sectional drawing which shows a mode that the spacer was arrange
  • FIG. 27 is a cross-sectional view illustrating a configuration of a smart glass in which a UV cut film is provided between a glass on a side on which more light is incident and a light control element in the configuration disclosed in FIG. 26.
  • FIG. 27 is a cross-sectional view showing a configuration in which a UV cut film is provided between the light control element and each glass in the configuration disclosed in FIG. 26.
  • 29A and 29B are cross-sectional views illustrating the narrow-field mode and FIG. 29B, respectively, illustrating the principle of operation of the light beam direction control element that can switch between two states of light emission. . It is sectional drawing which illustrated the light beam direction control element in related technology. It is sectional drawing which shows the light control element in 3rd Embodiment of this invention.
  • FIG. 5 is a cross-sectional view showing a configuration of a light control element in which a conductive light shielding pattern and a light transmission region are arranged.
  • the light control element 11 of the first embodiment includes a first transparent substrate 21, a first transparent electrode 31 formed on the surface of the first transparent substrate 21, and the first transparent substrate 21.
  • a plurality of light transmission regions 40 formed on the surface of the transparent electrode 31 and spaced apart from each other, and a second opposingly disposed above the light transmission region 40 so as to sandwich a gap 55A above each light transmission region 40
  • Transparent substrate 22 a plurality of second transparent electrodes 32 arranged at positions corresponding to the respective light transmission regions 40 on the second transparent substrate 22, and a plurality of arranged between these second transparent electrodes 32.
  • the electrophoretic member 50 is a mixture of light-shielding electrophoretic particles 51 provided with surface charges and a transmissive dispersant 52. Further, as shown in FIG. 1, there is a state in which a predetermined constant separation distance h1 is secured between each light transmission region 40 and the second transparent electrode. As will be described later, the spacer 56 (see FIG. 19), which is a member for maintaining a separation distance, is realized by interposing between the light transmission region 40 and the second transparent electrode 32.
  • a low-density whole-surface light-shielding mode in which the entire surface is shielded at low density a high-density whole-surface light-shielding mode in which the entire surface is shielded at high density
  • the first transparent electrode 31, the second transparent electrode 32, and the third transparent electrode 33 are set to have the same potential.
  • the electric field applied to a 1st, 2nd and 3rd transparent electrode (31, 32, 33) is adjusted according to the signal from the outside, and each said A configuration is adopted in which electric field application control means 35 for changing the polarity of each of the transparent electrodes (31, 32, 33) is provided.
  • the electric field application control unit 35 may perform switching control according to the four operation modes in accordance with an external signal accompanying a user operation or the like, and detects the brightness level of external light or the like.
  • a sensor may be provided, and operation mode switching control may be appropriately executed in accordance with a signal from the sensor.
  • the electric field application control means 35 sets the first transparent electrode 31, the second transparent electrode 31, and the third transparent electrode 31 to the same potential.
  • the electrophoretic particles 51 are arranged in all the regions in the gap 55 in which the electrophoretic member 50 is arranged.
  • the luminance distribution in the low-density whole-surface light-shielding mode is a distribution in which the luminance near the front is slightly higher than the other angles as shown in FIG. 9 (a). For this reason, the front direction is dim and the diagonal direction is very dark.
  • the 2 is realized by collecting the electrophoretic particles 51 in the vicinity of the second transparent electrode 32 and the third transparent electrode 33 as shown in FIG. At this time, the second transparent electrode 32 and the third transparent electrode 33 are at the same potential, and the relative potential of the second transparent electrode 32 and the third transparent electrode 33 with respect to the first transparent electrode 31 is set as the surface charge of the electrophoretic particles 51.
  • the electrophoretic particles 51 are collected in the vicinity of the second transparent electrode 32 and the third transparent electrode 33 by making the polarity opposite.
  • the electric field application control unit 35 when realizing the high-density whole surface light-shielding mode according to the external signal, the electric field application control unit 35 reverses the relative potential of the third transparent electrode 33 with respect to the first transparent electrode 31 to the surface charge of the electrophoretic particles 51.
  • the electrophoretic particles 51 are arranged in the vicinity of the second transparent substrate 22 by setting the second transparent electrode 32 and the third transparent electrode 33 to the same potential.
  • the electric field application control means 35 uses the second transparent electrode 32 and the third transparent electrode 33 as the positive electrodes as shown in FIG.
  • the electric field application control means 35 uses the second transparent electrode 32 and the third transparent electrode 33 as negative electrodes as shown in FIG. 6B. .
  • the narrow field mode shown in FIG. 3 is realized by arranging the electrophoretic particles 51 between the third transparent electrode 33 and the first transparent electrode 31, as shown in FIG. At this time, the third transparent electrode 33 and the first transparent electrode 31 are at the same potential, and the relative potential of the second transparent electrode 32 with respect to the third transparent electrode 33 and the first transparent electrode 31 is defined as the surface charge of the electrophoretic particles 51. By setting the same polarity, the electrophoretic particles 51 are excluded from the region sandwiched between the second transparent electrode 32 and each light transmission region 40.
  • the electric field application control means 35 sets the first transparent electrode 31 and the third transparent electrode 33 to the same potential, and the second transparent electrode with respect to the third transparent electrode 33.
  • the electrophoretic particles 51 are arranged in a region excluding the gap 55A between the second transparent electrode 32 and the light transmitting region 40 by making the relative potential of the same polarity as the surface charge of the electrophoretic particles 51. Has been.
  • the electric field application control means 35 uses the first transparent electrode 31 and the third transparent electrode 33 as the positive electrodes as shown in FIG.
  • the electric field application control means 35 uses the first transparent electrode 31 and the third transparent electrode 33 as negative electrodes as shown in FIG. 7B. .
  • the luminance distribution in the narrow field mode has a high luminance in the vicinity of the front, and the luminance decreases as the angle increases. Therefore, the appearance in the front direction is bright and the appearance in the oblique direction is very dark.
  • the wide-field mode shown in FIG. 4 is realized by collecting the electrophoretic particles 51 in the vicinity of the first transparent electrode 31 between the patterns of the adjacent light transmission regions 40 as shown in FIG. At this time, the second transparent electrode 32 and the third transparent electrode 33 are at the same potential, and the relative potential of the second transparent electrode 32 and the third transparent electrode 33 with respect to the first transparent electrode 31 is defined as the surface charge of the electrophoretic particles 51. By setting the same polarity, the electrophoretic particles 51 are aggregated in the vicinity of the first transparent electrode 31.
  • the electric field application control unit 35 sets the relative potential of the third transparent electrode 33 with respect to the first transparent electrode 31 to the same polarity as the surface charge of the electrophoretic particles 51,
  • the electrophoretic particles 51 are arranged in the vicinity of the first transparent electrode 31 by setting the second transparent electrode 32 and the third transparent electrode 33 to the same potential.
  • the electric field application control means 35 uses the first transparent electrode 31 as the positive electrode, as shown in FIG.
  • the electric field application control means 35 uses the first transparent electrode 31 as the negative electrode as shown in FIG. 8B.
  • the luminance distribution in the wide field mode has the highest luminance at the front, but there is not much angle dependency at other angles, and the luminance is reduced little. . For this reason, it becomes a bright appearance in all directions.
  • the light control device 11 includes a first transparent substrate 21, a second transparent substrate 22 disposed to face the first transparent substrate 21, and a first transparent substrate 21.
  • a first transparent electrode 31 disposed on a surface of the first transparent substrate 21 facing the second transparent substrate 22, a plurality of light transmission regions 40 disposed on the first transparent electrode 31 so as to be spaced apart from each other,
  • a plurality of second transparent electrodes 32 arranged at a certain distance from each light transmission region 40 at a position opposite to each light transmission region 40 of the second transparent substrate 22, and the second transparent substrate 22 side
  • a plurality of third transparent electrodes 33 individually disposed between the second transparent electrodes 32, a first transparent substrate 21 on which the first transparent electrodes 31 and the light transmission regions 40 are disposed, and the second transparent electrodes.
  • the light control element 11 has the first transparent substrate 21.
  • the first transparent substrate 21 is made of a glass substrate, PET (Poly Ethylene Terephthalate), PC (Poly Carbonate), or PEN (Poly Ethylene Naphthalate) were used.
  • a first transparent electrode 31 is formed on the first transparent substrate 21.
  • the first transparent electrode 31 can be made of a transparent conductive material such as ITO, ZnO, IGZO, or conductive nanowire. In the first embodiment, ITO is used.
  • a plurality of light transmission regions 40 are formed on the first transparent substrate 21. Further, a second transparent substrate 22 on which the second transparent electrode 32 is formed is disposed above each of the light transmission regions 40 with a gap 55A therebetween. That is, the second transparent electrode 32 and the third transparent electrode 33 are formed on the surface of the second transparent substrate 22 on the side of each light transmission region 40.
  • each transparent electrode is formed of ITO.
  • the film thicknesses of the first transparent electrode 31, the second transparent electrode 32, and the third transparent electrode 33 are preferably in the range of 10 [nm] to 1000 [nm]. All the film thicknesses were formed to be 100 [nm].
  • the second transparent electrode 32 is formed at a position facing each light transmission region 40, and the third transparent electrode 33 is formed between the second transparent electrodes 32.
  • an electrophoretic member 50 which is a mixture of electrophoretic particles 51 having a light shielding property and a dispersing agent 52 having a light transmitting property, is disposed. Has been.
  • each light transmission region 40 is preferably in the range of 3 [ ⁇ m] to 1000 [ ⁇ m], and in the first embodiment, this is set to 60 [ ⁇ m].
  • the width of each light transmission region 40 is preferably in the range of 1 [ ⁇ m] to 500 [ ⁇ m], and in the first embodiment, this is set to 20 [ ⁇ m].
  • the width between the light transmission regions 40 is preferably in the range of 0.25 [ ⁇ m] to 40 [ ⁇ m], and in the first embodiment, this is set to 5 [ ⁇ m].
  • or FIG. 13 which shows the outline of the light control element 11
  • the dispersion state of the electrophoretic particle 51 in each operation mode is demonstrated, and FIG. 14 thru
  • the electrophoretic particles 51 in the electrophoretic member 50 located in the formed gap 55 are evenly dispersed in the gap 55 in the case of the low concentration full-surface light shielding mode shown in FIG.
  • the electrophoretic member 50 exists only between each second transparent electrode 32 and each third transparent electrode 33 at the position of each light transmission region 40, whereas between each light transmission region 40. Since a relatively wide space is secured, many electrophoretic members 50 exist. That is, in the stacking direction, many electrophoretic particles 51 exist in the region near the width 40b of the third transparent electrode, and there are few electrophoretic particles 51 present in the region of the width 40a of the second transparent electrode. .
  • the transmittance at the positions of the second transparent electrodes 32 and the light transmission regions 40 is higher than the positions between the light transmission regions 40. Therefore, the diagonal direction is very dark and the front direction is dim.
  • the electrophoretic particles 51 aggregate in the vicinity of the second transparent electrodes 32 and the third transparent electrodes 33, and the amount of dispersion of the electrophoretic particles 51 in the stacking direction is almost the same. Therefore, as shown in FIG. 15, a high density light-shielding property is secured in all external directions.
  • the electrophoretic particles 51 are gathered so as to be continuous in the stacking direction at the positions of the third transparent electrodes 33 between the light transmission regions 40, as shown in FIG. While the light-shielding property is extremely high only at the position of each third transparent electrode 33, the transmittance at the position of each second transparent electrode 32 is very high, so that it has translucency only in the front direction thereof, The oblique direction has a light shielding property.
  • the visible angle in the AB direction in FIG. 12 is limited to about ⁇ 30 °.
  • the visible angle in the AB direction of FIG. 13 is not particularly limited.
  • the first transparent electrode 31 is formed on the surface (main surface) of the first transparent substrate 21 (first transparent electrode forming step), and the first transparent electrode 31 is formed. Further, as shown in FIG. 18B, a transparent photosensitive resin layer 45 is formed as a negative photoresist film on the main surface side of the first transparent substrate 21 (photosensitive resin lamination step).
  • the transparent photosensitive resin layer 45 is a member that becomes the light transmissive region 40 through a transmissive region forming step described later.
  • the transparent photosensitive resin layer 45 is exposed (exposure) by irradiating the transparent photosensitive resin layer 45 with exposure light 95 through a photomask 90 provided with a mask pattern 91. Light irradiation step).
  • the exposed transparent photosensitive resin layer 45 is developed to form a plurality of light transmission regions 40 spaced from each other as shown in FIG. 18D (transmission region forming step).
  • the second transparent substrate 22 including the second transparent electrode 32 and the third transparent electrode 33 is provided above the light transmission region 40 with a gap 55A (separation distance h1). It arrange
  • the positions of the first transparent substrate 21 and the second transparent substrate 22 are set so that each second transparent electrode 32 and each light transmission region 40 are opposed to each other. Adjust the control.
  • the electrophoretic member 50 is filled into a gap (space) 55 sandwiched between the first transparent substrate 21 and the second transparent substrate 22 (electrophoretic element filling step).
  • the film thicknesses of the first transparent electrode 31, the second transparent electrode 32, and the third transparent electrode 33 are all preferably in the range of 10 [nm] to 1000 [nm]. In the first embodiment, all of these are used. The thickness of the transparent electrode was adjusted to 100 nm.
  • the manufacturing method of the light control device in the first embodiment includes the above-described steps (first transparent electrode forming step, photosensitive resin laminating step, exposure light irradiation step, transmissive region forming step, second step, A transparent substrate disposing step and a migration element filling step).
  • the first transparent electrode 31 is formed on the main surface of the first transparent substrate 21 made of glass, PET, PC, or PEN by adopting ITO from ITO, ZnO, IGZO, conductive nanowires, or the like.
  • FIG. 18A first transparent electrode forming step
  • a transparent photosensitive resin layer 45 is formed thereon
  • FIG. 18B photosensitive resin laminating step
  • the transparent photosensitive resin layer 45 for example, any of film forming methods such as a slit die coater, a wire coater, an applicator, dry film transfer, spray coating, and screen printing can be used.
  • the thickness of the transparent photosensitive resin layer 45 is suitably in the range of 30 [ ⁇ m] to 300 [ ⁇ m]. In the first embodiment, the thickness is 60 [ ⁇ m] using the film forming method. ] Was formed.
  • the transparent photosensitive resin used for the transparent photosensitive resin layer 45 a chemically amplified photoresist (trade name “SU-8”) manufactured by Kayaku Microchem Co., Ltd. was employed in the first embodiment.
  • the characteristics of this transparent photosensitive resin are as follows.
  • the first feature is that an epoxy (specifically, glycidyl ether derivative of bisphenol A novolak) that is a photo-initiator generates an acid when irradiated with ultraviolet light and polymerizes a curable monomer using this protonic acid as a catalyst. The point is that it is a resist.
  • the second feature is that it has very high transparency in the visible light region.
  • the third characteristic is that the curable monomer contained in the transparent photosensitive resin has a relatively small molecular weight before curing, and therefore, cyclopentanone, propylene glycol methyl ether acetate (PEGMEA), gamma butyl lactone (GBL), isobutyl. It is easy to form a thick film because it dissolves very well in a solvent such as ketone (MIBK).
  • a solvent such as ketone (MIBK).
  • the fourth feature is that light transmittance is very good even at wavelengths in the near-ultraviolet region, so that even a thick film can transmit ultraviolet light.
  • the fifth feature is that a high aspect ratio pattern having an aspect ratio of 3 or more can be formed because each feature is as described above.
  • the sixth feature is that since there are many functional groups in the curable monomer, it becomes a very high-density cross-link after curing and is very stable both thermally and chemically. . For this reason, processing after pattern formation is also facilitated.
  • photo-curable materials having the same characteristics as the chemically amplified photoresist (trade name “SU-8”), which is a transparent photosensitive resin, are used as the constituent material of the transparent photosensitive resin layer 45. Also good.
  • the transparent photosensitive resin layer 45 is patterned using the mask pattern 91 of the photomask 90 (FIG. 18C: exposure light irradiation process).
  • the exposure light 95 used for exposure in this exposure light irradiation step is parallel light, and in the first embodiment, the light is emitted in a direction parallel to the stacking direction as shown in FIG.
  • a UV light source is used as the light source of the exposure light 95.
  • UV light having a wavelength of 365 [nm] is irradiated as the exposure light 95.
  • the exposure amount in this irradiation is preferably in the range of 50 [mJ / cm 2 ] to 500 [mJ / cm 2 ], and in the first embodiment, this is 200 [mJ / cm 2 ]. It was.
  • the transparent photosensitive resin layer 45 is developed and then subjected to thermal annealing (thermal annealing treatment) under the conditions of 120 [° C.] and 30 [min], whereby the transparent photosensitive resin layer 45 In addition, a plurality of light transmission regions 40 are formed.
  • the space width between the light transmission regions 40 is 5 [ ⁇ m] (FIG. 18D: transmission region formation step).
  • the refractive index of the light transmission region 40 formed of the above chemical amplification type photoresist (trade name “SU-8”) is 1.5 to 1.6.
  • the second transparent substrate 22 including the second transparent electrode 32 and the plurality of third transparent electrodes 33 is disposed on the light transmission region 40 (FIG. 18E: second transparent substrate arrangement). Installation process). Both the second transparent electrode 32 and the third transparent electrode 33 are composed of a plurality of electrodes, and these are alternately arranged with a constant interval as shown in FIG.
  • the light transmitting region 40 A spacer 56 is disposed between the first transparent electrode 32 and the second transparent electrode 32.
  • the spacer 56 can secure the separation distance h ⁇ b> 1 and can form the gap 55 that fills the electrophoretic member 50.
  • the spacer 56 is comprised from the light-shielding spacer in which one part or all has light-shielding property.
  • the second transparent substrate 22 is fixed between the outer periphery of the first transparent substrate 21 using an adhesive (not shown).
  • an adhesive either thermosetting or UV curable may be used.
  • the formed gap 55 is filled with an electrophoretic member 50 that is a mixture of the electrophoretic particles 51 and the dispersant 52.
  • the electrophoretic particles 141 are preliminarily provided with a surface charge (FIG. 18F: electrophoresis element filling step).
  • the existing light direction control element When the existing light direction control element is mounted as a glass built-in blind, it is possible to realize a state of a wide visible range and a state of a narrow visible range, but it is impossible to realize a state of shielding the entire surface of the substrate. was there.
  • the dimming function using the existing electrochromic element has a disadvantage that the dimming state that can be realized is limited to only two types, a transparent state and a light shielding state.
  • the plurality of light transmission regions 40 and the electrophoretic member 50 that are spaced apart from each other are disposed at positions facing the first transparent electrode 31 on the first transparent substrate 21. Since each of the second transparent electrodes 32 and the third transparent electrodes 33 is provided, the entire surface is shielded from light at a low density (low-density full-surface light-shielding mode), and the entire surface is shielded from light at a high density (high Density full-surface shading mode), the front direction is in a translucent state, only the oblique direction is shielded (narrow field mode), and the front and oblique directions both have good translucency (wide field mode).
  • One dimming state can be realized arbitrarily.
  • the degree of light blocking can be arbitrarily controlled and the range of the direction in which the transmitted light is emitted can be controlled, the transmission state of the transmitted light can be effectively adjusted and controlled according to changes in usage environment and requirements. It becomes possible.
  • a first interlayer insulating film (first electrode insulating film) 61 is disposed between the first transparent electrode 31 and the light transmission region 40. This is characterized in that it differs from the first embodiment described above.
  • the film thickness of the first interlayer insulating film 61 is preferably in the range of 10 [nm] to 1000 [nm]. In the second embodiment, the film thickness is formed to be 100 [nm]. .
  • a silicon oxide film, a silicon nitride film, a silicon oxynitride film, or the like can be used as a constituent material of the first interlayer insulating film 61. In the second embodiment, a silicon oxide film is used.
  • the first interlayer insulating film 61 that is an insulating film is formed between the first transparent electrode 31 and the light transmission region 40. Contact between the electrophoretic member 50 and the first transparent electrode 31 can be avoided. Therefore, according to such a configuration, it is possible to prevent the electrophoretic particles 51 from adhering to the first transparent electrode 31, and therefore, it is possible to provide a light control device with stable transmittance in the narrow field mode and the wide field mode. It becomes possible.
  • Other steps of the configuration and the manufacturing method are the same as those described in the first embodiment, and the other operations and effects are also the same.
  • a third embodiment of the light control device according to the present invention will be described with reference to FIG.
  • the same reference numerals are used for the same components as those in the second embodiment described above, and the description thereof is omitted.
  • a first interlayer insulating film (first electrode insulating film) 61 is disposed between the first transparent electrode 31 and the light transmission region 40.
  • a fourth interlayer insulating film (second and third electrode insulating film) 64 is disposed on the surfaces of the second transparent electrode 32 and the third transparent electrode 33. This is different from the second embodiment described above.
  • the film thickness of the fourth interlayer insulating film 64 is preferably in the range of 10 [nm] to 1000 [nm]. In the third embodiment, the film thickness is formed to be 100 [nm]. .
  • a silicon oxide film, a silicon nitride film, a silicon oxynitride film, or the like can be used as a constituent material of the fourth interlayer insulating film 64. In the third embodiment, a silicon oxide film is used. (Effects of the third embodiment)
  • the fourth interlayer insulating film 64 that is an insulating film is formed on the surfaces of the second transparent electrode 32 and the third transparent electrode 33. Contact between the electrophoretic member 50 and the second transparent electrode 32 and the third transparent electrode 33 can be avoided. Therefore, according to such a configuration, it is possible to prevent the electrophoretic particles 51 from adhering to the second transparent electrode 32 and the third transparent electrode 33, and thus light control with stable transmittance in the narrow field mode and the wide field mode.
  • An element can be provided.
  • Other steps of the configuration and the manufacturing method are the same as those described in the first and second embodiments, and the other operations and effects are also the same.
  • a light control device according to a fourth embodiment of the present invention will be described with reference to FIG.
  • the same components as those in the first to third embodiments described above are denoted by the same reference numerals, and the description thereof is omitted.
  • the light control element 13 in the fourth embodiment has a second interlayer insulating film (insulating film on the second electrode) 62 at a position separating the second transparent electrode 32 and the third transparent electrode 33. Is different from the first embodiment described above.
  • the second transparent electrode 32 is disposed on the surface of the second transparent substrate 22, and the second interlayer is formed on the second transparent substrate 22 on which the second transparent electrode 32 is formed.
  • the third transparent electrode 33 is disposed on the surface of the second interlayer insulating film 62 and at a position that does not overlap the second transparent electrode 32 (position that does not overlap in the stacking direction). Yes.
  • a spacer (not shown) similar to that in the first embodiment described above is interposed between the second interlayer insulating film 62 and each light transmission region 40 (see FIG. 19).
  • the separation distance h ⁇ b> 2 is maintained, and thereby a certain distance is secured between the second transparent electrode 32 and each light transmission region 40.
  • the film thickness of the second interlayer insulating film 62 is preferably in the range of 10 [nm] to 1000 [nm]. In the fourth embodiment, the film thickness is formed to be 100 [nm].
  • a silicon oxide film, a silicon nitride film, a silicon oxynitride film, or the like can be used as a constituent material of the second interlayer insulating film 62. In the fourth embodiment, a silicon oxide film is used.
  • the light control element 13 according to the fourth embodiment employs a configuration in which the second transparent electrode 32 and the third transparent electrode 33 are arranged in different layers with the second interlayer insulating film 62 interposed therebetween. Therefore, the insulation between the second transparent electrode 32 and the third transparent electrode 33 can be easily ensured. Therefore, it is possible to suppress the occurrence of malfunction due to a short circuit between the second transparent electrode 32 and the third transparent electrode 33, and as a result, it is possible to provide a light control device with improved operational stability.
  • the second transparent electrode 32 is disposed on the gap 55 side and the third transparent electrode 33 is disposed on the second transparent substrate 22 side via the third interlayer insulating film 63. The same effect can be obtained with the configuration.
  • Other steps of the configuration and the manufacturing method are the same as those described in the first embodiment, and the other operations and effects are also the same.
  • the light control element 14 in the fifth embodiment is formed on the surface of the second interlayer insulating film 62 in which the third transparent electrode 33 is formed in addition to the structure in the fourth embodiment described above.
  • a third interlayer insulating film (third electrode insulating film) 63 is further provided.
  • the film thickness of the third interlayer insulating film 63 is preferably in the range of 10 [nm] to 1000 [nm]. In the fifth embodiment, the film thickness is formed to be 100 [nm]. .
  • a silicon oxide film, a silicon nitride film, a silicon oxynitride film, or the like can be used similarly to the second interlayer insulating film 62. In the fifth embodiment, silicon is used. An oxide film was adopted.
  • the third interlayer insulating film 63 is further formed on the surface of the second interlayer insulating film 62 provided with the third transparent electrode 33. Since the configuration is adopted, contact between the electrophoretic member 50 and the third transparent electrode 33 can be avoided. That is, according to such a configuration, the electrophoretic particles 51 do not adhere to the third transparent electrode 33, and as a result, the light control device with improved transmittance stability in the narrow-field mode and the wide-field mode can be obtained. Can be provided.
  • a configuration may be adopted in which an insulating film is provided on the second transparent substrate 22 on which the second transparent electrode 32 and the third transparent electrode 33 are formed so as to cover these transparent electrodes. Even in this case, contact between the electrophoretic member 50 and the third transparent electrode 33 can be prevented, and it is possible to avoid a situation in which the electrophoretic particles 51 adhere to the third transparent electrode 33. The stability of transmittance in the element can be improved.
  • the light control element 15 in the sixth embodiment includes a first interlayer insulating film that is the same component as the second embodiment described above in addition to the structure in the fifth embodiment described above. 61 is disposed between the first transparent electrode 31 and the light transmission region 40.
  • a silicon oxide film is adopted as a constituent material of the first interlayer insulating film 61 and the film thickness is formed to be 100 [nm].
  • the dimming element 15 in the sixth embodiment includes an insulating film between the first transparent electrode 31 and the light transmission region 40. Since one interlayer insulating film 61 is formed, it is possible to avoid contact between the electrophoretic member 50 and the first transparent electrode 31. That is, according to such a configuration, in addition to the adhesion of the electrophoretic particles 51 to the third transparent electrode 33 and the like, the adhesion of the electrophoretic particles 51 to the first transparent electrode 31 can be prevented. It is possible to improve the stability of transmittance comprehensively in the four operation modes (low-density whole-surface light-shielding mode, high-density whole-surface light-shielding mode, narrow-field mode, and wide-field mode).
  • FIG. 23 shows the structure according to the above-described fifth embodiment, but the first interlayer insulating film 61 is formed only on the second transparent electrode 32 as in the second embodiment.
  • a structure in which the first interlayer insulating film 61 is disposed in the same manner as described above may be employed.
  • Other steps of the configuration and the manufacturing method are the same as those described in the first to fifth embodiments, and the other operations and effects are also the same.
  • a seventh embodiment of the light control device according to the present invention will be described with reference to FIG.
  • the same reference numerals are used for the same components as those in the first embodiment described above, and the description thereof is omitted.
  • the light control element 18 according to the seventh embodiment is characterized in that a conductive light-shielding pattern 38 is disposed on the surface of the first transparent substrate 21. This is different from the first embodiment.
  • the film thickness of the conductive light-shielding pattern 38 is preferably in the range of 10 [nm] to 1000 [nm]. In the seventh embodiment, the film thickness is 300 [nm].
  • a light-shielding conductive material such as aluminum, chromium, copper, chromium oxide, and carbon nanotube can be suitably employed. In the seventh embodiment, aluminum is employed.
  • FIG. 37 illustrates each process.
  • a conductive light shielding pattern 38 is formed on the surface (main surface) of the first transparent substrate 21 (light shielding pattern forming step), and then, as shown in FIG. A transparent photosensitive resin layer 45 is laminated and formed as a negative photoresist film on the main surface side of the first transparent substrate 21 on which the conductive light shielding pattern 30 is formed (photosensitive resin lamination step).
  • the transparent photosensitive resin layer 45 is a member that becomes the light transmissive region 40 through a transmissive region forming step described later.
  • the transparent photosensitive resin layer 45 is exposed by irradiating the exposure light 95 from the back surface side of the first transparent substrate 21 using the conductive light shielding pattern 38 as a photomask. (Exposure light irradiation step).
  • the exposed transparent photosensitive resin layer 45 is developed to form a plurality of light transmission regions 40 spaced apart from each other as shown in FIG. 37 (d) (transmission region formation step).
  • the second transparent substrate 22 including the second transparent electrode 32 and the third transparent electrode 33 is installed on the surface of the light transmission region 40 through the gap 55.
  • Transparent substrate installation process you may arrange
  • the electrophoretic member 50 is filled in the gap formed by the conductive light shielding pattern 38, the light transmission region 40, the second transparent electrode 32, and the third transparent electrode 33 (electrophoresis). Element filling step).
  • the second and third transparent electrodes and the conductive light-shielding pattern (32, 32) according to the signal from the outside. 33, 38), and the electric field application control means 35 for adjusting the respective polarities of the electrodes (32, 33) and the conductive light shielding pattern 38 is adopted.
  • the electric field application control unit 35 may perform switching control related to the four operation modes according to an external signal accompanying a user operation or the like.
  • a sensor for detecting the degree of brightness of external light or the like may be provided, and operation mode switching control may be appropriately executed in accordance with a signal from the sensor.
  • the light transmission region 40 is directly disposed on the surface of the first transparent substrate 21 without the first transparent electrode 31, so that the transmittance is reduced. A rise is possible.
  • Other steps of the configuration and the manufacturing method are the same as those described in the first embodiment, and the other operations and effects are also the same.
  • a first interlayer insulating film 61 is disposed between the conductive light shielding pattern 38 and the light transmission region 40, and the fourth transparent electrode 32 and the third transparent electrode 33 are formed on the surface of the fourth transparent electrode 32.
  • the interlayer insulating film (second and third electrode insulating film) 64 is disposed, the same operation and effect as in the third embodiment can be obtained.
  • the second interlayer insulating film (second electrode insulating film) 62 is interposed as in the sixth embodiment.
  • a third interlayer insulating film (third electrode insulating film) 63 is disposed on the surface of the second transparent electrode 32 and the third transparent electrode 33, and the conductive light shielding is further performed via the first interlayer insulating film 61.
  • the light control element in each embodiment of the present invention described above can be applied to smart glass having a light control function.
  • various usage forms such as a form in which the glass is disposed on one side of the glass and used between two pieces of glass are conceivable.
  • the dimming elements (12 to 20 etc.) according to the other embodiments are dimmed.
  • the optical element 11 may be used instead.
  • the smart glass 100 having a light control function includes a glass 71 and a light control element 11 disposed on one surface of the glass 71.
  • the glass 71 is float glass generally used as glass for windows, and has translucency.
  • the dimmer 11 can realize four operation modes, ie, a low-density whole-surface light-shielding mode, a high-density whole-surface light-shielding mode, a wide-field mode, and a narrow-field mode. Therefore, according to the smart glass 100 in which the dimming element 11 is mounted on one side, significant dimming control according to the surrounding environment can be performed by appropriately switching the four operation modes.
  • the dimming element 11 is set to the wide viewing mode, the translucency is secured in all external directions, and if the dimming element 11 is set to the narrow viewing mode, only the front direction is transmissive. The light property is ensured and the oblique direction is in a state of having a light shielding property.
  • the light control element 11 is set to the high-density full-surface light-shielding mode, a high-density light-shielding property is ensured in all external directions.
  • the direction is dim and the diagonal direction is very dark.
  • the wide field mode is suitable. If you want to ensure the frontal field of view while blocking incident light from sunlight, such as sunlight, the narrow field mode Is preferred.
  • the mode is suitable, and when it is desired to completely block the field of view through the glass, the high-density whole surface light-shielding mode is suitable.
  • the smart glass 100 four types of dimming states based on the four operation modes of the dimming element 11 can be selected and realized according to the user's request.
  • the glass 71 may be provided with a function of absorbing and blocking UV light. Furthermore, a configuration in which a UV cut film 81 is disposed between the glass 71 and the light control element 11 as in the smart glass 110 shown in FIG. As described above, by adopting a configuration with a function of reflecting or absorbing ultraviolet rays, it is possible to reduce inconvenience that the operation state of the light control element 11 is deteriorated due to the influence of light. Glass can be provided.
  • a hard coat layer for preventing scratches or an antireflection layer for preventing reflection of external light may be formed on the surface of the light control element 11.
  • the smart glass 120 includes a first glass 71, a second glass 72, and a light control element 11 provided between the two glasses.
  • the 1st glass 71 and the 2nd glass 72 are the float glass generally used as glass for windows, and have translucency, respectively.
  • the smart glass 120 in which the light control element 11 capable of realizing the above four operation modes is mounted between two glasses, significant light control can be performed according to the surrounding environment.
  • the smart glass 120 is configured such that both surfaces of the light control element 11 are covered with glass, the possibility of physical damage to the light control element 11 is reduced, and at the same time, confidentiality to the light control element 11 is increased. As a result, it is possible to realize a more reliable operation.
  • the smart glass 120 is disposed with the first glass 71 facing the side on which more light is incident, and a glass having a function of blocking UV light is used as the first glass 71. It may be.
  • the UV cut film 81 is disposed between the first glass 71 and the light control element 11, and another light glass is provided between the second glass 72 and the light control element 11.
  • each embodiment mentioned above is a suitable specific example in a light control element and smart glass, and may have attached various limits preferable technically.
  • the technical scope of the present invention is not limited to these embodiments unless specifically described to limit the present invention.
  • Appendix 2 In the light control device according to Appendix 1, An insulating film 61 on the first electrode is disposed on the surface of the first transparent electrode 31, Each light transmission region 40 is arranged on the first electrode insulating film 61, and the light control device according to claim 1.
  • a light control element In the light control device according to the supplementary note 3, A light control element, wherein a third on-electrode insulating film 63 is disposed on the second on-electrode insulating film 62 so as to cover the third transparent electrode 33.
  • a light control device comprising a spacer 56 as a holding member having a certain distance between the light transmission region 40 and the second transparent electrode 32.
  • the electric field application control means 35 sets the relative potential of the third transparent electrode 33 with respect to the first transparent electrode 31 to a polarity opposite to the surface charge of the electrophoretic particles 51, and makes the second transparent electrode 32 and the third transparent electrode 33 the same.
  • a dimming element characterized in that the electrophoretic particles 51 are arranged in the vicinity of the second transparent substrate 22 by applying a potential.
  • the electric field application control means 35 makes the first transparent electrode 31 and the third transparent electrode 33 have the same potential, and the relative potential of the second transparent electrode 32 with respect to the third transparent electrode 33 has the same polarity as the surface charge of the electrophoretic particles 51.
  • the electrophoretic particles 51 are disposed in the region excluding the gap 55A between the second transparent electrode 32 and each light transmission region 40 (in the region in the stacking direction in which the third transparent electrode 33 is disposed and each light transmission).
  • a dimming element characterized in that the dimming element is disposed between the first transparent electrode 31 and the third transparent electrode 33 between the regions 40.
  • the electric field application control means 35 makes the relative potential of the third transparent electrode 33 with respect to the first transparent electrode 31 the same polarity as the surface charge of the electrophoretic particles 51, and makes the second transparent electrode 32 and the third transparent electrode 33 the same potential. By doing so, the electrochromic particle 51 is disposed in the vicinity of the first transparent electrode 31.
  • the electric field application control means 35 makes the first transparent electrode 31, the second transparent electrode 32, and the third transparent electrode 33 have the same potential, so that the electrophoretic particles 51 are placed in the gap 55 in which the electrophoretic member 50 is disposed.
  • a smart glass comprising: a light-transmitting glass 71; and the light control element according to any one of the supplementary notes 1 to 10 disposed on a surface of the glass 71.
  • a first interlayer insulating film is disposed on the surface of the conductive light shielding pattern, Each of the light transmission regions is disposed on the first interlayer insulating film.
  • a light control device comprising a spacer which is a member for holding the predetermined distance between the light transmission region and the second transparent electrode.
  • the present invention can be widely applied to various devices for controlling the range of the emission direction of transmitted light and the transmittance.
  • it can be used as an element for dimming used in smart glass or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

【課題】使用環境の変化や要求に応じて透過光の透過状態を有効に調整制御できる調光素子及びこれを搭載したスマートガラスを提供すること。 【解決手段】対向配置させた第1及び第2の透明基板(21及び22)と、第1の透明基板21の対向面に配置した第1透明電極31と、この第1透明電極31と第2の透明基板22との間に互いに離間するように配置した複数の光透過領域40と、を備えた調光素子11は、さらに、第2の透明基板22の各光透過領域40に対向する位置に、各光透過領域40とは一定の距離を隔てた状態で配置した複数の第2透明電極32と、第2の透明基板22側の各第2透明電極32の間に所定の距離を置いて個別に配置した複数の第3透明電極33と、第1の透明基板21と第2の透明基板22との間に形成された空隙55内に配置した遮光性の電気泳動粒子51を含む電気泳動部材50と、を有する。

Description

調光素子及びスマートガラス
 本発明は、透過光の射出状態を制御する調光素子及びこれを搭載したスマートガラスに関する。
 近年は、エコロジーに対する意識の高まりから、室内等に射し込む光を調整する調光機能を内蔵したスマートガラスへの要求が上昇している。
 こうした空調エネルギー効率の向上に寄与するスマートガラスには、透明状態と遮光状態(不透明状態)とを切り替える機能を有するエレクトロクロミック素子が用いられ、この状態切替にかかる調光機能により、外光による影響を調整して空調負荷を低減することで、電力使用量の削減を実現している。
 エレクトロクロミック素子を内蔵したガラスの実用例としては、例えば特許文献1又は2に開示された技術内容が知られている。
 特許文献1には、可変部材(エレクトロクロミック素子)を介して対向配置された2つの透明電極に対して印加する電圧を変化させることにより、透明状態と遮光状態との切り替えを実現する窓ガラスが開示されている。
 特許文献2に開示されたエレクトロクロミック窓ガラスでは、透明な電気伝導性フィルムとエレクトロクロミック材料のフィルムとをこの順に被覆させた2枚のガラス板が、当該各フィルム側を対向させた状態で配置され、かつ電解質及び対電極によって離間されるという構成を採っている。
 このエレクトロクロミック窓ガラスは、建物や自動車の窓ガラスに適用することができ、それらの内部に取り入れる太陽熱の量を、上記対電極に対する電界の作用によって調整することが可能である。
 一方で、正面方向に対する視野を確保したまま、それ以外の角度については遮光するという状態を任意に実現したい、という要求も高まってきている。例えば、外部又は内部からの視認性を確保した状態で、太陽光のように斜め上方から入射する光を遮断したいといったニーズが存在する。
 かかる要求に応える技術としては、ディスプレイの可視範囲を広視野モード(広い範囲での視認が可能な状態)と狭視野モード(狭い範囲でのみ視認が可能な状態)との間で切り替える調光機能を備えた光線方向制御素子が提案されている。
 こうした光線方向制御素子としては、例えば図29に示す断面図のように、対向配置した2枚の透明基板221,222を使用して、透明感光性樹脂層を露光・現像し、加熱により硬化させて光透過領域240を形成し、この光透過領域240の間に電気泳動素子250を配置するという構成を採った光線方向制御素子210がある。ここでは、各透明基板221,222と光透過領域240との間に、それぞれ透明導電膜231,232が形成されている。
 このように、透明基板221上に平面的に独立して配列した高アスペクト比である光透過領域240の間に電気泳動素子250が配置された光線方向制御素子210では、外部から透明導電膜231,232を介して印加する電界によって電気泳動素子250の分散状態を制御することにより、図29(a)に示す狭視野モードと図29(b)に示す広視野モードとを任意に実現し、光(入射光)450の出射状態を切り替えている。
 また、こうした切替処理が可能な他の構成例としては、特許文献3に開示された光線方向制御素子が知られている。すなわち、図30に示す断面図のように、光線方向制御素子310は、透明基板321と、この透明基板321の表面に形成された透明導電膜331と、この透明導電膜331の上面331aにおいて互いに離間して形成された複数の光透過領域340と、これらの各光透過領域340の相互間に配置された電気泳動素子350と、各光透過領域340に対向する面に別の透明導電膜332を備えた別の透明基板322と、を有している。
特願昭59-191017号公報 特許第3399967号公報 US7,751,667号公報
 しかしながら、特許文献1や特許文献2に開示された調光機能は、透明状態と遮光状態の2種類のみを実現する技術であり、特に遮光状態においては、ガラス全面が同様に遮光されるため、ガラス越しの視認性が低下するという不都合がある。
 また、この遮光状態での視認性低下を最小限に抑えるために、遮光時における光学濃度を低めに設定した場合には、調光機能による遮光効果が十分に得られないといった問題がある。
 加えて、特許文献3に開示された調光機能によれば、広い可視範囲の状態又は狭い可視範囲の状態を任意のタイミングで実現することはできるが、少なくとも正面視野は維持される。すなわち、基板全面を遮光することが出来ないため、完全な遮光性を確保することが出来ないといった不都合がある。
(発明の目的)
 本発明は、上記関連技術の不都合に鑑みてなされたものであり、特に、使用環境の変化や要求に応じて透過光の透過状態を有効に調整制御できる調光素子及びこれを搭載したスマートガラスの提供を目的とする。
 上記目的を達成するために、本発明にかかる調光素子では、第1の透明基板と、この第1の透明基板とは離れた位置に対向配置した第2の透明基板と、前記第1の透明基板の前記第2の透明基板に対向する面に配置した第1透明電極と、この第1透明電極と前記第2の透明基板との間に互いに離間するように配置した複数の光透過領域と、を備えると共に、前記第2の透明基板の前記各光透過領域に対向する位置に、当該各光透過領域とは一定の距離を隔てた状態で配置した複数の第2透明電極と、前記第2の透明基板側の前記各第2透明電極の間に所定の距離を置いて個別に配置した複数の第3透明電極と、前記各第2透明電極及び各第3透明電極と前記各光透過領域とにより形成された空隙内に配置した遮光性の電気泳動粒子を含む電気泳動部材と、を有するという構成を採っている。
 また、本発明にかかるスマートガラスでは、透光性を有するガラスと、このガラスの表面に配置された前記請求項1乃至5のいずれか1つに記載の調光素子とを備える、という構成を採っている。
 本発明では、上記のように、第1透明電極及び互いに離間した複数の光透過領域を設けた第1の透明基板と、2種類の透明電極を設けた第2の透明基板とを対向配置させ、そこに形成した空隙に電気泳動部材を配置したため、特に、使用環境の変化や要求に対応して透過光の透過状態を有効に調整制御できる調光素子及びこれを搭載したスマートガラスの提供が可能となる。
本発明の第1実施形態における調光素子の低濃度全面遮光モードを示す断面図である。 本発明の第1実施形態における調光素子の高濃度全面遮光モードを示す断面図である。 本発明の第1実施形態における調光素子の狭視野モードを示す断面図である。 本発明の第1実施形態における調光素子の広視野モードを示す断面図である。 図1に開示した調光素子において、各透明電極間の電位をすべて等しく設定することにより低濃度全面遮光モードを実現した場合の様子を示す概略図である。 図2に開示した調光素子における各透明電極間の相対電位の様子を示す概略図のうち、図6(a)は電気泳動粒子の表面電荷が負電荷(-)の場合における高濃度全面遮光モードを示し,図6(b)は電気泳動粒子の表面電荷が正電荷(+)の場合における高濃度全面遮光モードを示す。 図3に開示した調光素子における各透明電極間の相対電位の様子を示す概略図のうち、図7(a)は電気泳動粒子の表面電荷が負電荷(-)の場合における狭視野モードを示し,図7(b)は電気泳動粒子の表面電荷が正電荷(+)の場合における狭視野モードを示す。 図4に開示した調光素子における各透明電極間の相対電位の様子を示す概略図のうち、図8(a)は電気泳動粒子の表面電荷が負電荷(-)の場合における広視野モードを示し,図8(b)は電気泳動粒子の表面電荷が正電荷(+)の場合における広視野モードを示す。 第1実施形態の光線方向制御素子における輝度の様子のうち、図9(a)が低濃度全面遮光モード,図9(b)が高濃度全面遮光モード,図9(c)が狭視野モード,図9(d)が広視野モードをそれぞれ示す概略図である。 図1に開示した調光素子における低濃度全面遮光モードを示す斜視図である。 図2に開示した調光素子における高濃度全面遮光モードを示す斜視図である。 図3に開示した調光素子における狭視野モードを示す斜視図である。 図4に開示した調光素子における広視野モードを示す斜視図である。 図1に開示した調光素子における低濃度全面遮光モードを示す表面図である。 図2に開示した調光素子における高濃度全面遮光モードを示す表面図である。 図3に開示した調光素子における狭視野モードを示す表面図である。 図4に開示した調光素子における広視野モードを示す表面図である。 図1に開示した調光素子の製造方法における各工程の様子を、その進行順に則して18(a)→図18(b)→図18(c)→図18(d)→図18(e)→図18(f)の順に示した断面図である。 図1に開示した調光素子の一製造工程において、スペーサを配置した様子を示す断面図である。 本発明の第2実施形態における調光素子を示す断面図である。 本発明の第4実施形態における調光素子を示す断面図である。 本発明の第5実施形態における調光素子を示す断面図である。 本発明の第6実施形態における調光素子を示す断面図である。 図1等に開示した調光素子をガラスの片面に設けた、本発明の第8実施形態におけるスマートガラスの構成を示す断面図である。 図24に開示した調光素子とガラスとの間にUVカットフィルムを設けたスマートガラスの構成を示す断面図である。 図1等に開示した調光素子を2枚のガラスの間に設けた、本発明の第8実施形態におけるスマートガラスの構成を示す断面図である。 図26に開示した構成において、より多くの光が入射する側のガラスと調光素子との間にUVカットフィルムを設けたスマートガラスの構成を示す断面図である。 図26に開示した構成において、調光素子と各ガラスとの間のそれぞれにUVカットフィルムを設けた構成を示す断面図である。 光出射の2つの状態を切り替え可能な光線方向制御素子における動作原理を示す図のうち、図29(a)は狭視野モードを,図29(b)は広視野モードをそれぞれ示す断面図である。 関連技術における光線方向制御素子を例示した断面図である。 本発明の第3実施形態における調光素子を示す断面図である。 本発明の第3実施形態における調光素子の一例を示す断面図である。 本発明の第7実施形態における調光素子を示す断面図である。 本発明の第7実施形態において、第1透明電極と光透過領域との間に第1の層間絶縁膜を配置して、第2透明電極及び第3透明電極の表面に第4の層間絶縁膜を配置した調光素子の構成を示す断面図である。 本発明の第7実施形態において、第2の層間絶縁膜を介して第2透明電極と第3透明電極を配置した調光素子の構成を示す断面図である。 本発明の第7実施形態において、第2の層間絶縁膜を介して配置した第2透明電極と第3透明電極の表面に第3の層間絶縁膜を配置し、第1の層間絶縁膜を介して導電性遮光パターンと光透過領域を配置調光素子の構成を示す断面図である。 図33に開示した調光素子の製造方法における各工程の様子を、その進行順に則して図37(a)→図37(b)→図37(c)→図37(d)→図37(e)→図37(f)の順に示した断面図である。
 以下、各図面を参照しながら、本発明を実施するための形態(以下「実施形態」という。)について説明する。ここで、本明細書及び図面において、実質的に同一の構成要素については同一の符号を用いるものとする。また、図面に描かれた形状は、実際の寸法及び比率とは必ずしも一致していない。
〔第1実施形態〕
 本発明における調光素子の第1実施形態を図1乃至図19に基づいて説明する。
(基本的構成)
 図1に示すように、本第1実施形態の調光素子11は、第1の透明基板21と、この第1の透明基板21の表面に形成された第1透明電極31と、この第1透明電極31の表面上に形成され且つ互いに離間した複数の光透過領域40と、この各光透過領域40の上の間隙55Aを挟むように当該光透過領域40の上方に対向配置された第2の透明基板22と、この第2の透明基板22上の各光透過領域40に相対する位置に配置した複数の第2透明電極32と、これら各第2透明電極32の相互間に配置した複数の第3透明電極33と、第1の透明基板21と第2の透明基板22とによって挟まれた領域内における各光透過領域40,各第2透明電極32,各第3透明電極33,及び第1透明電極31以外の部分(空隙55)に配置された電気泳動部材(電気泳動素子)50と、を有している。
 ここで、電気泳動部材50は、表面電荷を付与された遮光性の電気泳動粒子51と透過性の分散剤52との混合物である。
 また、図1に示すように、各光透過領域40と第2透明電極との間には、予め設定された一定の離間距離h1が確保された状態にあり、この離間距離h1の確保は、後述するように、離間距離保持用の部材であるスペーサ56(図19参照)を光透過領域40と第2透明電極32との間に介在させることによって実現する。
 調光素子11によれば、後述するように、その全面を低濃度に遮光する状態である低濃度全面遮光モードと、その全面を高濃度に遮光する状態である高濃度全面遮光モードと、その正面方向は透光状態にあり斜め方向のみを遮光する状態である狭視野モードと、その正面及び斜め方向が共に良好な透光性を有する状態である広視野モードという4つの調光状態(動作モード)を実現することができる。
 図1に示す低濃度全面遮光モードは、図5にも示すように、電気泳動部材50内の電気泳動粒子51が分散剤52の全ての部分に分散することによって実現している。この場合には、第1透明電極31と第2透明電極32と第3透明電極33とは同電位となるように設定されている。
 ここで、図5乃至図8に示す調光素子11では、外部からの信号に応じて第1,第2,及び第3透明電極(31,32,33)に印加する電界を調整し当該各透明電極(31,32,33)それぞれの極性を変化させる電界印加制御手段35を有する、という構成を採っている。
 すなわち、電界印加制御手段35が、ユーザの操作等に伴う外部信号に応じて上記4つの動作モードにかかる切替制御を行うようにしてもよく、また、外光等の明るさの度合いを検知するセンサを併設すると共に、当該センサからの信号に応じて適宜動作モードの切替制御を実行するように構成してもよい。
 したがって、外部信号に応じて低濃度全面遮光モードを実現するに際しては、電界印加制御手段35が、第1透明電極31と第2透明電極31と第3透明電極31とを同電位とすることにより、電気泳動粒子51を電気泳動部材50が配置された空隙55内のすべての領域に配置させるように構成されている。
 この低濃度全面遮光モードにおける輝度分布は、図9(a)に示すように、正面付近の輝度がそれ以外の角度より少し高い分布となる。このため、正面方向が薄暗くて斜め方向は非常に暗い外観となる。
 図2に示す高濃度全面遮光モードは、図6にも示すように、電気泳動粒子51を第2透明電極32と第3透明電極33の近傍に集めることによって実現している。
 この時、第2透明電極32と第3透明電極33とは同電位であり、第1透明電極31に対する第2透明電極32及び第3透明電極33の相対電位を電気泳動粒子51の表面電荷とは逆の極性にすることで、電気泳動粒子51を第2透明電極32及び第3透明電極33の近傍に集めている。
 すなわち、外部信号に応じて高濃度全面遮光モードを実現するに際しては、電界印加制御手段35が、第1透明電極31に対する第3透明電極33の相対電位を電気泳動粒子51の表面電荷とは逆の極性にし、第2透明電極32と第3透明電極33とを同電位にすることで、電気泳動粒子51を第2の透明基板22の近傍に配置させるように構成されている。
 したがって、電気泳動粒子51の表面電荷が負電荷(-)の場合には、図6(a)に示すように、電界印加制御手段35が第2透明電極32及び第3透明電極33を正極とし、電気泳動粒子51の表面電荷が正電荷(+)の場合には、図6(b)に示すように、電界印加制御手段35が第2透明電極32及び第3透明電極33を負極とする。
 ここで、図6では、電界印加制御手段35の内部構成として、単純な回路構成と共に一般的な直流電源を示す記号を用いて各透明電極の極性を明示しているが、これはあくまで説明上の便宜にすぎない。また、後述する図7及び図8についても同様である。
 この高濃度全面遮光モードにおける輝度分布は、図9(b)に示すように、全ての角度で輝度が低くなっている。このため、全ての方向で非常に暗い外観となる。
 図3に示す狭視野モードは、図7にも示すように、電気泳動粒子51を第3透明電極33と第1透明電極31との間に配置することによって実現している。
 この時、第3透明電極33と第1透明電極31とは同電位であり、第3透明電極33及び第1透明電極31に対する第2透明電極32の相対電位を電気泳動粒子51の表面電荷と同じ極性とすることで、電気泳動粒子51を第2透明電極32と各光透過領域40とで挟まれた領域から排除している。
 すなわち、外部信号に応じて狭視野モードを実現するに際しては、電界印加制御手段35が、第1透明電極31と第3透明電極33とを同電位にし、第3透明電極33に対する第2透明電極32の相対電位を電気泳動粒子51の表面電荷と同じ極性にすることで、電気泳動粒子51を第2透明電極32と光透過領域40との間の間隙55Aを除く領域に配置させるように構成されている。
 したがって、電気泳動粒子51の表面電荷が負電荷(-)の場合には、図7(a)に示すように、電界印加制御手段35が第1透明電極31及び第3透明電極33を正極とし、電気泳動粒子51の表面電荷が正電荷(+)の場合には、図7(b)に示すように、電界印加制御手段35が第1透明電極31及び第3透明電極33を負極とする。
 この狭視野モードにおける輝度分布は、図9(c)に示すように、正面付近の輝度が高く、角度が大きくなるに従って輝度が低くなっている。このため、正面方向の外観は明るくて、斜め方向は非常に暗い外観となる。
 図4に示す広視野モードは、図8にも示すように、電気泳動粒子51を、隣接する各光透過領域40のパターン間における第1透明電極31の近傍に集めることによって実現している。
 このとき、第2透明電極32と第3透明電極33とが同電位であり、第1透明電極31に対する第2透明電極32及び第3透明電極33の相対電位を電気泳動粒子51の表面電荷と同じ極性にすることで、電気泳動粒子51を第1透明電極31の近傍に凝集させている。
 すなわち、外部信号に応じて広視野モードを実現するに際しては、電界印加制御手段35が、第1透明電極31に対する第3透明電極33の相対電位を電気泳動粒子51の表面電荷と同じ極性にし、第2透明電極32と第3透明電極33を同電位にすることで、電気泳動粒子51を第1透明電極31の近傍に配置させるように構成されている。
 したがって、電気泳動粒子51の表面電荷が負電荷(-)の場合には、図8(a)に示すように、電界印加制御手段35が第1透明電極31を正極とし、電気泳動粒子51の表面電荷が正電荷(+)の場合には、図8(b)に示すように、電界印加制御手段35が第1透明電極31を負極とする。
 この広視野モードにおける輝度分布は、図9(d)に示すように、正面での輝度が最も高くなっているが、それ以外の角度でも角度依存性はあまりなく、輝度の低下は少量である。このため、全ての方向で明るい外観となる。
 以上の構成内容をまとめると、本第1実施形態における調光素子11は、第1の透明基板21と、この第1の透明基板21に対向させて配置した第2の透明基板22と、第1の透明基板21の第2の透明基板22に対向する面に配置した第1透明電極31と、この第1透明電極31上に互いに離間するように配置した複数の光透過領域40と、第2の透明基板22の各光透過領域40に相対する位置に、各光透過領域40とは一定の距離を隔てた状態で配置した複数の第2透明電極32と、第2の透明基板22側の各第2透明電極32の間に個別配置した複数の第3透明電極33と、第1透明電極31及び各光透過領域40が配置された第1の透明基板21と、各第2透明電極32及び各第3透明電極33が配置された第2の透明基板22との間に形成された空隙55に配置した電気泳動部材50と、を有すると共に、各光透過領域40と第2透明電極32との間に、上記一定の距離(離隔距離h1)を保持するための部材であるスペーサ56を有するという構成を採っている。
(具体的構成)
 次に、調光素子11の構成内容を、図1等に基づいて、より詳細に説明する。
 前述の通り、調光素子11は、第1の透明基板21を有している。
 本第1実施形態では、この第1の透明基板21として、ガラス基板製,PET(Poly
Ethylene Terephthalate)製,PC(Poly Carbonate)製,又はPEN(Poly Ethylene Naphthalate)製のものを採用した。
 また、第1の透明基板21の上部には、第1透明電極31が形成されている。この第1透明電極31は、ITOやZnO,IGZO,導電性ナノワイヤー等の透明導電性材料にて構成することができ、本第1実施形態ではITOを採用した。
 第1の透明基板21上には、複数の光透過領域40が形成されている。また、これら各光透過領域40の上方には、間隙55Aを隔てて第2透明電極32が形成された第2の透明基板22が配置されている。
 すなわち、第2の透明基板22の各光透過領域40側の表面には、第2透明電極32と第3透明電極33とが形成されている。
 ここで、第2透明電極32と第3透明電極33の構成材料としては、第1透明電極31と同様に、ITOやZnO,IGZO,導電性ナノワイヤー等の透明導電性材料を採用することができ、本第1実施形態ではITOにより各透明電極を形成した。
 また、第1透明電極31,第2透明電極32,及び第3透明電極33の膜厚は、10[nm]から1000[nm]の範囲内が好適であり、本第1実施形態では、これらすべての膜厚が100[nm]となるように形成した。
 ここで、第2透明電極32は、各光透過領域40に相対する位置に形成されており、第3透明電極33は、第2透明電極32の間に形成されている。そして、第1の透明基板21と第2の透明基板22との間のスペースには、遮光性を有する電気泳動粒子51と透過性を有する分散剤52との混合物である電気泳動部材50が配置されている。
 各光透過領域40の高さは、3[μm]~1000[μm]の範囲が好適であり、本第1実施形態では、これを60[μm]とした。
 また、各光透過領域40の幅は、1[μm]~500[μm]の範囲が好適であり、本第1実施形態では、これを20[μm]とした。
 さらに、各光透過領域40の相互間の幅は、0.25[μm]~40[μm]の範囲が好適であり、本第1実施形態では、これを5[μm]とした。
 次に、調光素子11の概略を示す図10乃至図13の斜視図に基づいて、各動作モードにおける電気泳動粒子51の分散状態を説明すると共に、これら各図にそれぞれ対応する図14乃至図17に示す表面図を参照して、電気泳動粒子51の分散状態に起因した遮光の状況を説明する。
 第1透明電極31及び各光透過領域40が配置された第1の透明基板21と、各第2透明電極32及び各第3透明電極33が配置された第2の透明基板22との間に形成された空隙55に位置する電気泳動部材50内の電気泳動粒子51は、図10に示す低濃度全面遮光モードの場合、空隙55内にて均等に分散している。
 ここで、各光透過領域40の位置には、各第2透明電極32と各第3透明電極33との間にのみ電気泳動部材50が存在するのに対し、各光透過領域40の相互間には、相対的に広い空間が確保されているため、多くの電気泳動部材50が存在する。
 すなわち、積層方向についてみると、第3透明電極の幅40b近傍の領域に多くの電気泳動粒子51が存在し、第2透明電極の幅40aの領域に存在する電気泳動粒子51は少ない状態にある。
 したがって、この場合の表面図を示す図14のように、各光透過領域40の相互間の位置に比べて、各第2透明電極32及び各光透過領域40の位置の透過率の方が高くなるため、斜め方向は非常に暗く、正面方向は薄暗い状態となる。
 図11に示す高濃度全面遮光モードの場合は、各第2透明電極32と各第3透明電極33の近傍に電気泳動粒子51が凝集し、積層方向における電気泳動粒子51の分散量もほとんど変わらないことから、図15に示すように、外部のすべての方向に対して高濃度の遮光性を確保した状態となる。
 図12に示す狭視野モードの場合は、各光透過領域40相互間の各第3透明電極33の位置において、積層方向に連なるように電気泳動粒子51が集まるため、図16に示すように、各第3透明電極33の位置においてのみ遮光性が極めて高くなる一方で、各第2透明電極32の位置の透過率が非常に高くなることから、その正面方向にのみ透光性を有し、斜め方向については遮光性を有した状態となる。
 すなわち、積層方向についてみると、第3透明電極の幅40bの領域にのみ電気泳動粒子51が存在しているため、交互に連続する第2透明電極の幅40aと第3透明電極の幅40bとの繰り返し配置により、ブラインド状の遮光状態を形成している。
 この場合、図12のA-B方向における可視角度は、約±30°に制限される。
 図13に示す広視野モードの場合は、各光透過領域40の相互間における第1透明電極31近傍に電気泳動粒子51が凝集するため、図17に示すように、外部のすべての方向に対して透光性を確保した状態となり、全体として明るい外観となる。
 この場合、図13のA-B方向における可視角度は、特に制限されない。
(調光素子の製造方法)
 ここでは、本第1実施形態における調光素子の製造方法を、その各工程を例示する図18に基づいて説明する。
 まず、図18(a)のように、第1の透明基板21の表面(主面)に第1透明電極31を形成し(第1透明電極形成工程)、この第1透明電極31が形成された第1の透明基板21の主面側に、図18(b)のように、ネガ型のフォトレジスト膜として透明感光性樹脂層45を形成する(感光性樹脂積層工程)。
 なお、透明感光性樹脂層45は、後述する透過領域形成工程を経て光透過領域40となる部材である。
 次に、図18(c)のように、マスクパターン91を備えたフォトマスク90を通して、透明感光性樹脂層45に露光光95を照射することにより、透明感光性樹脂層45を露光する(露光光照射工程)。
 次いで、露光された透明感光性樹脂層45に対して現像処理を施すことにより、図18(d)に示すような、互いに離間した複数の光透過領域40を形成する(透過領域形成工程)。
 続いて、図18(e)のように、光透過領域40の上方に、第2透明電極32及び第3透明電極33を備えた第2の透明基板22を、間隙55A(離隔距離h1)を確保した状態で配置する(第2の透明基板配設工程)。
 この第2の透明基板配設工程に際しては、各第2透明電極32と各光透過領域40とが対向する状態となるように、第1の透明基板21と第2の透明基板22との位置を調整制御する。
 そして、図18(f)のように、第1の透明基板21と第2の透明基板22とで挟まれた空隙(空間)55に電気泳動部材50を充填する(泳動素子充填工程)。
 第1透明電極31,第2透明電極32,及び第3透明電極33の膜厚は、いずれも10[nm]から1000[nm]の範囲が好適であり、本第1実施形態では、これら全ての透明電極の膜厚が100[nm]となるように調整した。
 以上のように、本第1実施形態における調光素子の製造方法は、上述した各工程(第1透明電極形成工程,感光性樹脂積層工程,露光光照射工程,透過領域形成工程,第2の透明基板配設工程,泳動素子充填工程)を含んで構成されている。
 次に、調光素子11の製造方法を、図18に加え、離隔距離h1を確保するために用いるスペーサを示す図19を参照して、更に詳しく説明する。
 まず、ガラス,PET,PC,又はPENからなる第1の透明基板21の主面に、ITOやZnO,IGZO,導電性ナノワイヤー等の内からITOを採択して第1透明電極31を形成し(図18(a):第1透明電極形成工程)、その上に透明感光性樹脂層45を形成する(図18(b):感光性樹脂積層工程)。
 透明感光性樹脂層45の形成方法としては、例えば、スリットダイコータ,ワイヤコータ,アプリケータ,ドライフィルム転写,スプレイ塗布,スクリーン印刷等といった成膜方法の何れかを用いることができる。
 透明感光性樹脂層45の厚さは、30[μm]~300[μm]の範囲内が妥当であり、本第1実施形態では、上記成膜方法を用いて、その厚さが60[μm]となるように形成した。
 また、透明感光性樹脂層45に用いる透明感光性樹脂として、本第1実施形態では、化薬マイクロケム(Microchem)社の化学増幅型フォトレジスト(商品名「SU-8」)を採用した。この透明感光性樹脂の特徴は、次のとおりである。
 第1の特徴は、紫外線を照射することにより光開始剤が酸を発生し、このプロトン酸を触媒として硬化性モノマーを重合させるエポキシ系(具体的にはビスフェノールAノボラックのグリシジルエーテル誘導体)のネガレジストであるという点にある。
 第2の特徴は、可視光領域において、非常に透明性の高い特性を有しているという点である。
 第3の特徴としては、透明感光性樹脂に含まれる硬化性モノマーは、硬化前の分子量が比較的小さいため、シクロペンタノンやプロピレングリコールメチルエーテルアセテート(PEGMEA),ガンマブチルラクトン(GBL),イソブチルケトン(MIBK)などの溶媒に非常に良く溶けることから、厚膜形成が容易であるという点が挙げられる。
 第4の特徴は、近紫外領域の波長においても光透過性が非常に良いため、厚膜であっても紫外線を透過させるという特徴を有している点である。
 第5の特徴は、前述したような各特徴を有することから、アスペクト比が3以上の高アスペクト比のパターンを形成できるという点にある。
 第6の特徴は、硬化性モノマーには官能基が多く存在していることから、硬化後、非常に高密度な架橋となり、熱的にも化学的にも非常に安定であるという点である。このため、パターン形成後の加工も容易となる。
 もっとも、透明感光性樹脂である化学増幅型フォトレジスト(商品名「SU-8」)と同様の特性を有する他の光硬化性材料を、透明感光性樹脂層45の構成材料として用いるようにしてもよい。
 次に、上述した露光光照射工程では、フォトマスク90のマスクパターン91を用いて、透明感光性樹脂層45をパターニングする(図18(c):露光光照射工程)。
 この露光光照射工程での露光に用いる露光光95は平行光であり、本第1実施形態では、図18(c)に示す通り、積層方向に対して平行な方向に出射する。
 露光光95の光源としては、UV光源を用いており、本第1実施形態では、波長365[nm]のUV光を露光光95として照射した。また、この照射の際の露光量は、50[mJ/cm]~500[mJ/cm]の範囲内が好適であり、本第1実施形態では、これを200[mJ/cm]とした。
 上記露光の後には、透明感光性樹脂層45に現像を施し、次に熱アニール(熱アニール処理)を120[℃]かつ30[分]という条件で実施することにより、透明感光性樹脂層45に、複数に区画された光透過領域40が形成される。各光透過領域40相互間のスペース幅は、5[μm]となるように形成されている(図18(d):透過領域形成工程)。
 なお、上記化学増幅型フォトレジスト(商品名「SU-8」)で形成された光透過領域40の屈折率は、1.5~1.6となる。
 続いて、光透過領域40の上に、第2透明電極32と複数の第3透明電極33とを備えた第2の透明基板22を配置させる(図18(e):第2の透明基板配設工程)。
 第2透明電極32及び第3透明電極33は、双方共に複数の電極から成り、これらは図18(e)等に示すように、一定の間隔をあけて交互に配置されている。
 この第2の透明基板配設工程では、後述する泳動素子充填工程にて充填する電気泳動部材50を有効に機能させるための空隙55を確保すべく、図19に示すように、光透過領域40と第2透明電極32との間にスぺーサ56を配置する。
 このスぺーサ56により、離隔距離h1を確保することができ、電気泳動部材50を充填する空隙55を形成することが可能となる。なお、スペーサ56は、そのうちの一部又は全部が遮光性を有する遮光スペーサから構成される。
 そして、第2の透明基板22を、第1の透明基板21の外周部との間で接着剤(図示せず)を用いて固定する。この接着剤としては、熱硬化性,UV硬化性の何れを用いてもよい。
 最後に、第1の透明基板21上の第1透明電極31及び光透過領域40と、第2の透明基板22及びそこに形成された第2透明電極32,第3透明電極33との間に形成された空隙55に、電気泳動粒子51と分散剤52との混合物である電気泳動部材50を充填する。電気泳動粒子141には、予め表面電荷が付与されている(図18(f):泳動素子充填工程)。
(第1実施形態の効果等)
 既存の光線方向制御素子をガラス内臓ブラインドとして搭載する場合には、広い可視範囲の状態及び狭い可視範囲の状態を実現することはできるが、基板全面を遮光する状態を実現することはできないという問題があった。また、既存のエレクトロクロミック素子による調光機能では、実現できる調光状態が、透明状態と遮光状態の2種類のみに限られているという不都合があった。
 しかしながら、本第1実施形態における調光素子11では、第1の透明基板21上の第1透明電極31に対向する位置に、互いに離間した複数の光透過領域40及び電気泳動部材50を介して、各第2透明電極32及び各第3透明電極33を設けるという構成を採ったため、その全面を低濃度に遮光する状態(低濃度全面遮光モード),その全面を高濃度に遮光する状態(高濃度全面遮光モード),その正面方向は透光状態にあり斜め方向のみを遮光した状態(狭視野モード),その正面及び斜め方向が共に良好な透光性を有する状態(広視野モード)という4つの調光状態を任意に実現することができる。
 すなわち、光の遮光度合いを任意に制御すると共に、透過光の射出方向の範囲を制御することができるため、使用環境の変化や要求に応じて透過光の透過状態を有効に調整制御することが可能となる。
〔第2実施形態〕
 本発明における調光素子の第2実施形態を図20に基づいて説明する。前述した第1実施形態と同等の構成部材には同一の符号を用いるものとし、その説明は省略する。
 本第2実施形態における調光素子12は、図20に示すように、第1透明電極31と光透過領域40との間に第1の層間絶縁膜(第1電極上絶縁膜)61を配置している点に特徴があり、この点において前述の第1実施形態と相違する。
 この第1の層間絶縁膜61の膜厚は、10[nm]から1000[nm]の範囲が好適であり、本第2実施形態では、当該膜厚が100[nm]となるように形成した。
 第1の層間絶縁膜61の構成材料としては、シリコン酸化膜やシリコン窒化膜,シリコン酸窒化膜等を用いることができ、本第2実施形態ではシリコン酸化膜を採用した。
(第2実施形態の効果等)
 以上のように、本第2実施形態における調光素子12では、第1透明電極31と光透過領域40との間に、絶縁膜である第1の層間絶縁膜61が形成されているため、電気泳動部材50と第1透明電極31との接触を回避することができる。
 したがって、かかる構成によれば、第1透明電極31への電気泳動粒子51の付着等を防ぐことができるため、狭視野モードと広視野モードにおける透過率が安定した調光素子を提供することが可能となる。
 その他の構成及び製造方法にかかる工程については、前述の第1実施形態において述べた内容と同様であり、他に生じる作用及び効果も同様である。
〔第3実施形態〕
 本発明における調光素子の第3実施形態を図31に基づいて説明する。前述した第2実施形態と同等の構成部材には同一の符号を用いるものとし、その説明は省略する。
 本第3実施形態における調光素子16は、図31に示すように、第1透明電極31と光透過領域40との間に第1の層間絶縁膜(第1電極上絶縁膜)61を配置しているのに加えて、第2透明電極32及び第3透明電極33の表面に第4の層間絶縁膜(第2、第3電極上絶縁膜)64を配置している点に特徴があり、この点において前述の第2実施形態と相違する。
 この第4の層間絶縁膜64の膜厚は、10[nm]から1000[nm]の範囲が好適であり、本第3実施形態では、当該膜厚が100[nm]となるように形成した。
 第4の層間絶縁膜64の構成材料としては、シリコン酸化膜やシリコン窒化膜,シリコン酸窒化膜等を用いることができ、本第3実施形態ではシリコン酸化膜を採用した。
(第3実施形態の効果等)
 以上のように、本第3実施形態における調光素子16では、第2透明電極32及び第3透明電極33の表面に、絶縁膜である第4の層間絶縁膜64が形成されているため、電気泳動部材50と第2透明電極32及び第3透明電極33との接触を回避することができる。
 したがって、かかる構成によれば、第2透明電極32及び第3透明電極33への電気泳動粒子51の付着等を防ぐことができるため、狭視野モードと広視野モードにおける透過率が安定した調光素子を提供することが可能となる。
 その他の構成及び製造方法にかかる工程については、前述の第1乃至第2実施形態において述べた内容と同様であり、他に生じる作用及び効果も同様である。
〔第4実施形態〕
 本発明における調光素子の第4実施形態を図21に基づいて説明する。上述した第1乃至第3実施形態と同等の構成部材には同一の符号を用いるものとし、その説明は省略する。
 本第4実施形態における調光素子13は、図21に示すように、第2透明電極32と第3透明電極33とを隔てる位置に第2の層間絶縁膜(第2電極上絶縁膜)62が形成されている点に特徴があり、この点において前述の第1実施形態と相違する。
 より具体的に説明すると、第2の透明基板22の表面には第2透明電極32のみを配置し、この第2透明電極32が形成された第2の透明基板22の上に第2の層間絶縁膜62を形成した上で、この第2の層間絶縁膜62の表面であり且つ第2透明電極32とは重ならない位置(積層方向について重ならない位置)に第3透明電極33が配置されている。
 かかる構成の場合は、第2の層間絶縁膜62と各光透過領域40との間に、上述した第1実施形態と同様のスペーサ(図示せず)を介在させることにより(図19参照)、離隔距離h2を保持し、これにより第2透明電極32と各光透過領域40との間にも一定の距離を確保するという構成を採っている。
 第2の層間絶縁膜62の膜厚は、10[nm]から1000[nm]の範囲が好適であり、本第4実施形態では、当該膜厚が100[nm]となるように形成した。
 第2の層間絶縁膜62の構成材料としては、シリコン酸化膜やシリコン窒化膜,シリコン酸窒化膜等を用いることができ、本第4実施形態ではシリコン酸化膜を採用した。
(第4実施形態の効果等)
 以上のように、本第4実施形態における調光素子13では、第2透明電極32と第3透明電極33とを、第2の層間絶縁膜62を介して異なる層に配置するという構成を採ったため、第2透明電極32と第3透明電極33との絶縁性を容易に確保することができる。したがって、第2透明電極32と第3透明電極33との短絡に因る動作不良等の発生を抑止することができ、その結果、動作安定性が向上した調光素子を提供することが可能となる。尚、図32に示すように、第3の層間絶縁膜63を介して、第2透明電極32を空隙55側に配置して第3透明電極33を第2の透明基板22側に配置するという構成でも、同様の効果が得られる。
 その他の構成及び製造方法にかかる工程については、前述の第1実施形態において述べた内容と同様であり、他に生じる作用及び効果も同様である。
〔第5実施形態〕
 本発明における調光素子の第5実施形態を図22に基づいて説明する。ここでは、上述した第1乃至第4実施形態と同等の構成部材に同一の符号を用いるものとし、その説明は省略する。
 本第5実施形態における調光素子14は、図22に示すように、前述の第4実施形態における構造に加えて、第3透明電極33が形成された第2の層間絶縁膜62の表面上に、さらに第3の層間絶縁膜(第3電極上絶縁膜)63を配置している点に特徴がある。
 かかる構成の場合は、第3の層間絶縁膜63と各光透過領域40との間に、上述した第1実施形態と同様のスペーサ(図示せず)を介在させることにより(図19参照)、離隔距離h3を保持し、これにより第2透明電極32と各光透過領域40との間にも一定の距離を確保するという構成を採っている。
 この第3の層間絶縁膜63の膜厚は、10[nm]から1000[nm]の範囲が好適であり、本第5実施形態では、当該膜厚が100[nm]となるように形成した。
 第3の層間絶縁膜63の構成材料としても、第2の層間絶縁膜62と同様に、シリコン酸化膜やシリコン窒化膜,シリコン酸窒化膜等を用いることができ、本第5実施形態ではシリコン酸化膜を採用した。
(第5実施形態の効果等)
 以上のように、本第5実施形態における調光素子14では、第3透明電極33を配設した第2の層間絶縁膜62の表面上に、さらに第3の層間絶縁膜63を形成するという構成を採ったため、電気泳動部材50と第3透明電極33との接触を回避することができる。
 すなわち、かかる構成によれば、第3透明電極33への電気泳動粒子51の付着等が発生しないため、その結果、狭視野モード及び広視野モードにおける透過率の安定性が向上した調光素子を提供することができる。
 また、第2透明電極32及び第3透明電極33を形成した第2の透明基板22上に、これら各透明電極を覆うように絶縁膜を設けるという構成を採ってもよい。このようにしても、電気泳動部材50と第3透明電極33との接触を防止でき、第3透明電極33に電気泳動粒子51が付着するといった事態を回避することが可能となるため、調光素子における透過率の安定性を向上させることができる。
 その他の構成及び製造方法にかかる工程については、前述の第1又は第4実施形態において述べた内容と同様であり、他に生じる作用及び効果も同様である。
〔第6実施形態〕
 本発明における調光素子の第6実施形態を図23に基づいて説明する。前述した第1乃至第5実施形態と同等の構成部材には同一の符号を用いるものとし、その説明は省略する。
 本第6実施形態における調光素子15は、図23に示すように、前述の第5実施形態における構造に加えて、上述した第2実施形態と同様の構成部材である第1の層間絶縁膜61を第1透明電極31と光透過領域40との間に配置している。
 したがって、本第6実施形態においても、この第1の層間絶縁膜61の構成材料としてシリコン酸化膜を採用すると共に、その膜厚が100[nm]となるように形成した。
(第6実施形態の効果等)
 以上のように、本第6実施形態における調光素子15には、前述した第5実施形態における構造に加えて、第1透明電極31と光透過領域40との間にも絶縁膜である第1の層間絶縁膜61が形成されているため、電気泳動部材50と第1透明電極31との接触をも回避することが可能となる。
 すなわち、かかる構成によれば、第3透明電極33への電気泳動粒子51の付着等に加え、第1透明電極31への電気泳動粒子51の付着等をも防止することができるため、上述した4つの動作モード(低濃度全面遮光モード,高濃度全面遮光モード,狭視野モード,広視野モード)において総合的に透過率の安定性を向上することが可能となる。
 また、図23では、前述の第5実施形態に準じた構造を示しているが、上記第2実施形態のように第2透明電極32上にのみ第1の層間絶縁膜61が形成されている構造(第3透明電極33のみが露出している構造)に加えて、上記同様に第1の層間絶縁膜61を配置するという構成を採ってもよい。
 その他の構成及び製造方法にかかる工程については、前述の第1乃至第5実施形態において述べた内容と同様であり、他に生じる作用及び効果も同様である。
〔第7実施形態〕
 本発明における調光素子の第7実施形態を図33に基づいて説明する。前述した第1実施形態と同等の構成部材には同一の符号を用いるものとし、その説明は省略する。
 本第7実施形態における調光素子18は、図33に示すように、第1の透明基板21の表面に導電性遮光パターン38を配置している点に特徴があり、この点において前述の第1実施形態と相違する。
 この導電性遮光パターン38の膜厚は、10[nm]から1000[nm]の範囲が好適であり、本第7実施形態では、当該膜厚が300[nm]となるように形成した。導電性遮光パターン38の構成材料としては、アルミニウムやクロム,銅,酸化クロム,カーボンナノチューブ等の遮光性導電材料を好適に採用することができ、本第7実施形態では、アルミニウムを採用した。
 次に、本第7実施形態にかかる調光素子18の製造方法を、その各工程を例示する図37に基づいて説明する。
 まず、図37(a)のように、第1の透明基板21の表面(主面)に導電性遮光パターン38を形成し(遮光パターン形成工程)、次いで、図37(b)のように、導電性遮光パターン30が形成された第1の透明基板21の主面側に、ネガ型のフォトレジスト膜として透明感光性樹脂層45を積層して形成する(感光性樹脂積層工程)。なお、透明感光性樹脂層45は、後述する透過領域形成工程を経て光透過領域40となる部材である。
 次に、図37(c)のように、導電性遮光パターン38をフォトマスクとして用い、第1の透明基板21の裏面側から露光光95を照射することにより、透明感光性樹脂層45を露光する、(露光光照射工程)。
 次いで、露光された透明感光性樹脂層45に対して現像処理を施すことにより、図37(d)に示すような、互いに離間した複数の光透過領域40を形成する(透過領域形成工程)。
 続いて、図37(e)のように、光透過領域40の表面上に、空隙55を介して、第2透明電極32及び第3透明電極33を備えた第2の透明基板22を設置する(透明基板設置工程)。尚光透過領域40と第2透明電極32及び第3透明電極33の間には、図19と同様にスペーサーを設置することで空隙55を配置してもよい。
 そして、図37(f)のように、導電性遮光パターン38と光透過領域40と第2透明電極32及び第3透明電極33とで形成された空隙に、電気泳動部材50を充填する(泳動素子充填工程)。
 ここで、図33に示す調光素子18では、第1実施形態に示した調光素子11と同様に、外部からの信号に応じて第2,第3透明電極及び導電性遮光パターン(32,33,38)に印加する電界を調整し当該各電極(32,33)及び導電性遮光パターン38それぞれの極性を変化させる電界印加制御手段35を有する、という構成を採っている。
 すなわち第1実施形態に示した調光素子11と同様に、電界印加制御手段35が、ユーザの操作等に伴う外部信号に応じて上記4つの動作モードにかかる切替制御を行うようにしてもよく、また、外光等の明るさの度合いを検知するセンサを併設すると共に、当該センサからの信号に応じて適宜動作モードの切替制御を実行するように構成してもよい。
(第7実施形態の効果等)
 以上のように、本第7実施形態における調光素子18では、第1透明電極31を介さずに第1の透明基板21の表面に直接光透過領域40が配置されているため、透過率の上昇が可能となる。
 その他の構成及び製造方法にかかる工程については、前述の第1実施形態において述べた内容と同様であり、他に生じる作用及び効果も同様である。
 また図34に示すように、導電性遮光パターン38と光透過領域40との間に第1の層間絶縁膜61を配置して、第2透明電極32及び第3透明電極33の表面に第4の層間絶縁膜(第2、第3電極上絶縁膜)64を配置した場合は、第3実施形態と同様の作用及び効果が得られる。
 また図35に示すように、第4実施形態と同様に第2の層間絶縁膜(第2電極上絶縁膜)62を介して第2透明電極32と第3透明電極33を配置することで、第4実施形態と同様の作用及び効果が得られ、また図36に示すように、前述の第6実施形態と同様に、第2の層間絶縁膜(第2電極上絶縁膜)62を介して配置した第2透明電極32と第3透明電極33の表面に第3の層間絶縁膜(第3電極上絶縁膜)63を配置して、さらに第1の層間絶縁膜61を介して導電性遮光パターン38と光透過領域40を配置してすることで、第6実施形態と同様の作用及び効果が得られる。
〔第8実施形態〕
 以上説明した本発明の各実施形態における調光素子は、調光機能を有するスマートガラス等に適用することができる。その使用形態としては、ガラスの片側の面に配置して使用する形態や2枚のガラスの間に搭載する形態など、種々の使用形態が考えられる。
 そこで、上記各実施形態における調光素子(11乃至15)を搭載することを想定したスマートガラスに係る本発明の第8実施形態を、図24及び図28に基づいて説明する。前述した第1乃至第7実施形態と同等の構成部材には同一の符号を用いるものとし、その説明は省略する。
 また、図24及び図28では、上述した第1実施形態における調光素子11を搭載したスマートガラスを例示しているが、上記他の実施形態における各調光素子(12乃至20等)を調光素子11に替えて採用するようにしてもよい。
(ガラスの片側の面に配置した構成)
 まず、調光素子11をガラスの片面に張り付けた形態のスマートガラスについて、図24及び図25をもとに説明する。
 図24に示すように、調光機能を備えたスマートガラス100は、ガラス71と、このガラス71の片面に配置された調光素子11とから成る。ここで、ガラス71は、窓用ガラスとして一般的に用いられるフロートガラスであり、透光性を有している。
 調光素子11は、上述した第1実施形態にて説明した通り、低濃度全面遮光モード,高濃度全面遮光モード,広視野モード,及び狭視野モードという4つの動作モードを実現することができる。
 したがって、この調光素子11を片面に搭載するスマートガラス100によれば、上記4つの動作モードを適宜切り替えることで、周辺環境に応じた有意な調光制御が可能となる。
 具体的には、調光素子11を広視野モードにすれば、外部のすべての方向に対して透光性を確保した状態となり、調光素子11を狭視野モードにすれば、正面方向のみ透光性を確保して斜め方向は遮光性を有した状態となる。
 また、調光素子11を高濃度全面遮光モードにすれば、外部のすべての方向に対して高濃度の遮光性を確保した状態となり、調光素子11を低濃度全面遮光モードにすれば、正面方向が薄暗くて斜め方向は非常に暗い状態となる。
 例えば、ガラス越しの視界を広範囲に確保したい場合には、広視野モードが好適であり、太陽光のような斜め上方からの入射光を遮りつつ正面方向の視界は確保したい場合は、狭視野モードが好適である。
 また、日中のように、ガラス内部よりも外部の方が明るい状況下において、外部からの視界は遮断して、内部から外部へのある程度の視界は確保したいといった場合には、低濃度全面遮光モードが好適であり、ガラス越しの視界を完全に遮断したいような場合には、高濃度全面遮光モードが好適である。
 このように、スマートガラス100によれば、使用者の要求に応じて、調光素子11の4つの動作モードに基づく4種類の調光状態を選択し実現することができる。
 また、ガラス71を屋外側に向けた状態でスマートガラス100を配置する場合には、ガラス71にUV光を吸収及び遮断する機能を付与するようにしてもよい。
 さらに、図25に示すスマートガラス110のように、ガラス71と調光素子11の間にUVカットフィルム81を配置するという構成を採ってもよい。
 このように、紫外線を反射又は吸収させる機能を付加した構成を採れば、調光素子11の動作状態が光の影響により劣化するといった不都合を低減することができるため、より動作信頼性の高いスマートガラスを提供することが可能となる。
 また、調光素子11の表面に、傷つきがないようにするハードコート層や、外光の写りこみを防止する反射防止層を形成するようにしてもよい。
(2枚のガラスの間に配置した構成)
 次に、調光素子11を2枚のガラスの間に配置して使用する形態スマートガラスについて、図26乃至図28をもとに説明する。
 図26に示すように、スマートガラス120は、第1ガラス71と、第2ガラス72と、これら2枚のガラスの間に設けられた調光素子11とから成る。ここで、第1ガラス71及び第2ガラス72は、窓用ガラスとして一般的に用いられるフロートガラスであり、それぞれ透光性を有している。
 このように、上記4つの動作モードを実現できる調光素子11を2枚のガラスの間に搭載したスマートガラス120によれば、周辺環境に応じた有意な調光制御が可能となる。
 また、スマートガラス120では、調光素子11の両面がガラスでカバーされるように構成したため、調光素子11を物理的に損傷する可能性が低くなり、同時に調光素子11に対する機密性が高まることから、さらに信頼性の高い動作を実現することが可能となる。
 加えて、より多くの光が入射する側に第1ガラス71を向けた状態でスマートガラス120を配置すると共に、この第1ガラス71として、UV光を遮断する機能が付与されたガラスを用いるようにしてもよい。
 また、図27に示すスマートガラス130のように、第1ガラス71と調光素子11との間にUVカットフィルム81を配置するという構成を採ってもよい。
 かかる場合は、より多くの光が入射するガラス側にUVカットフィルム81を配置するという構成がより好適である(ここでは、第1ガラス71を入光側ガラスとし、第2ガラス72を出光側ガラスとする場合を想定している)。
 このように、紫外線を遮断する機能を付加した構成を採れば、光に起因した調光素子11の動作劣化を低減することができるため、より動作信頼性の高いスマートガラスを提供することが可能となる。
 さらに、図28に示すスマートガラス140のように、第1ガラス71と調光素子11との間にUVカットフィルム81を配置すると共に、第2ガラス72と調光素子11との間に別のUVカットフィルム82を配置するという構成を採ってもよい。
 かかる構成によれば、調光素子11の光による動作劣化をさらに低減することが可能となるため、スマートガラスの動作信頼性の更なる向上を図ることができる。
 なお、上述した各実施形態は、調光素子及びスマートガラスにおける好適な具体例であり、技術的に好ましい種々の限定を付している場合もある。しかし、本発明の技術範囲は、特に本発明を限定する記載がない限り、これらの態様に限定されるものではない。
 以下は、上述した実施形態についての新規な技術的内容の要点をまとめたものであるが、本発明は必ずしもこれに限定されるものではない。
(付記1)
 第1の透明基板21と、この第1の透明基板21とは離れた位置に対向配置した第2の透明基板22と、第1の透明基板21の第2の透明基板22に対向する面に配置した第1透明電極31と、この第1透明電極31と第2の透明基板22との間に互いに離間するように配置した複数の光透過領域40と、を備えると共に、
 第2の透明基板22の各光透過領域40に対向する位置に、当該各光透過領域40とは一定の距離を隔てた状態で配置した複数の第2透明電極32と、
 第2の透明基板22側の各第2透明電極32の間に所定の距離を置いて個別に配置した複数の第3透明電極33と、
 各第2透明電極32及び各第3透明電極33と前記各光透過領域40とにより形成された空隙55内に配置した遮光性の電気泳動粒子51を含む電気泳動部材50と、を有することを特徴とした調光素子。
(付記2)
 前記付記1に記載の調光素子において、
 第1透明電極31の表面には第1電極上絶縁膜61が配置されており、
 各光透過領域40は、第1電極上絶縁膜61の上に配置されていることを特徴とする調光素子。
(付記3)
 前記付記1又は2に記載の調光素子において、
 第2の透明基板22の上に、第2透明電極32を覆うように第2電極上絶縁膜62が配置されており、
 第3透明電極33は、第2電極上絶縁膜62の上に配置されていることを特徴とする調光素子。
(付記4)
 前記付記3に記載の調光素子において、
 第2電極上絶縁膜62の上に、第3透明電極33を覆うように第3電極上絶縁膜63が配置されていること、を特徴とする調光素子。
(付記5)
 前記付記1乃至4の何れか1つに記載の調光素子において、
 光透過領域40と第2透明電極32との間に、上記一定の距離の保持用部材であるスペーサ56を有すること、を特徴とした調光素子。
(付記6)
 前記付記1乃至5の何れか1つに記載の調光素子において、
 外部からの信号に応じて第1,第2,及び第3透明電極(32,32,33)に印加する電界を調整し当該各透明電極(32,32,33)それぞれの極性を変化させる電界印加制御手段35を有することを、特徴とした調光素子。
(付記7:高濃度全面遮光モード)
 前記付記6に記載の調光素子において、
 電界印加制御手段35が、第1透明電極31に対する第3透明電極33の相対電位を電気泳動粒子51の表面電荷とは逆の極性にし、第2透明電極32と第3透明電極33とを同電位にすることで、電気泳動粒子51を第2の透明基板22の近傍に配置させること、を特徴とする調光素子。
(付記8:狭視野モード)
 前記付記6又は7に記載の調光素子において、
 電界印加制御手段35が、第1透明電極31と第3透明電極33とを同電位にし、第3透明電極33に対する第2透明電極32の相対電位を電気泳動粒子51の表面電荷と同じ極性にすることで、電気泳動粒子51を、第2透明電極32と各光透過領域40との間の間隙55Aを除く領域に(第3透明電極33が配置された積層方向の領域で且つ各光透過領域40相互間の第1透明電極31から第3透明電極33に至る全域に)配置させること、を特徴とした調光素子。
(付記9:広視野モード)
 前記付記6乃至8の何れか1つに記載の調光素子において、
 電界印加制御手段35が、第1透明電極31に対する第3透明電極33の相対電位を、電気泳動粒子51の表面電荷と同じ極性にし、第2透明電極32と第3透明電極33を同電位にすることで、電気泳動粒子51を第1透明電極31の近傍に配置させること、を特徴とした調光素子。
(付記10:低濃度全面遮光モード)
 前記付記6乃至9の何れか1つに記載の調光素子において、
 電界印加制御手段35が、第1透明電極31と第2透明電極32と第3透明電極33とを同電位とすることにより、電気泳動粒子51を、電気泳動部材50が配置された空隙55内のすべての領域に配置させること、を特徴とした調光素子。
(付記11)
 透光性を有するガラス71と、このガラス71の表面に配置された前記付記1乃至10のいずれか1つに記載の調光素子と、を備えたことを特徴とするスマートガラス。
(付記12)
 透光性を有する第1のガラス71と、
 この第1のガラス71に対向させて配置した透光性を有する第2のガラス72と、
 第1のガラス71と第2のガラス72との間に配置された前記付記1乃至10のいずれか1つに記載の調光素子と、を備えたことを特徴とするスマートガラス。
(付記13)
 第1の透明基板と、この第1の透明基板とは離れた位置に対向配置した第2の透明基板と、前記第1の透明基板の前記第2の透明基板に対向する面に配置した導電性遮光パターンと、この導電性遮光パターンと前記第2の透明基板との間に互いに離間するように配置した複数の光透過領域と、を備えると共に、
 前記第2の透明基板の前記各光透過領域に対向する位置に、当該各光透過領域とは一定の距離を隔てた状態で配置した複数の第2透明電極と、
 前記第2の透明基板側の前記各第2透明電極の間に所定の距離を置いて個別に配置した複数の第3透明電極と、
 前記各第2透明電極及び各第3透明電極と前記各光透過領域とにより形成された空隙内に配置した遮光性の電気泳動粒子を含む電気泳動部材と、を有することを特徴とした調光素子。
(付記14)
 前記付記13に記載の調光素子において、
 前記導電性遮光パターンの表面には第1の層間絶縁膜が配置されており、
 前記各光透過領域は、この第1の層間絶縁膜の上に配置されていること、を特徴とする調光素子。
(付記15)
 前記付記13又は14に記載の調光素子において、
 前記第2の透明基板の上に、前記第2透明電極を覆うように第2電極上絶縁膜が配置されており、
 前記第3透明電極は、この第2電極上絶縁膜の上に配置されていること、を特徴とする調光素子。
(付記16)
 前記付記15に記載の調光素子において、
 前記第2電極上絶縁膜の上に、前記第3透明電極を覆うように第3電極上絶縁膜が配置されていること、を特徴とする調光素子。
(付記17)
 前記付記13乃至16の何れか1つに記載の調光素子において、
 前記光透過領域と前記第2透明電極との間に、前記一定の距離の保持用部材であるスペーサを有すること、を特徴とした調光素子。
(付記18)
 前記付記13乃至17の何れか1つに記載の調光素子において、
 外部からの信号に応じて前記第2,第3透明電極及び導電性遮光パターンに印加する電界を調整し当該各透明電極それぞれの極性を変化させる電界印加制御手段を有すること、を特徴とした調光素子。
 この出願は2014年3月18日に出願された日本出願特願2014-054761を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は、透過光の射出方向の範囲や透過率の制御にかかる種々の装置等に広く適用することができる。例えば、スマートガラスなどに用いられる調光用の素子として利用可能である。
  11,12,13,14,15,16,17,18,19,20 調光素子
  21 第1の透明基板
  22 第2の透明基板
  25 調光素子
  31 第1透明電極
  32 第2透明電極
  33 第3透明電極
  35 電界印加制御手段
  38 導電性遮光パターン
  40 光透過領域
  40a 第2透明電極の幅
  40b 第3透明電極の幅
  45 透明感光性樹脂層(フォトレジスト膜)
  50 電気泳動部材(電気泳動素子)
  51 電気泳動粒子
  52 分散剤
  55 空隙
  55A 間隙
  56 スペーサ
  61 第1の層間絶縁膜(第1電極上絶縁膜)
  62 第2の層間絶縁膜(第2電極上絶縁膜)
  63 第3の層間絶縁膜(第3電極上絶縁膜)
  64 第4の層間絶縁膜(第2、第3電極上絶縁膜)
  71 第1ガラス(ガラス,入光側ガラス)
  72 第2ガラス(出光側ガラス)
  81 UVカットフィルム
  82 別のUVカットフィルム
  90 フォトマスク
  91 マスクパターン
  95 露光光
  100,110,120,130 スマートガラス
  210,310 光線方向制御素子
  221,222,321 透明基板
  322 別の透明基板
  231,232,331 透明導電膜
  332 別の透明導電膜
  240,340 光透過領域
  250,350 電気泳動素子
  450 光(入射光)

Claims (14)

  1.  第1の透明基板と、この第1の透明基板とは離れた位置に対向配置した第2の透明基板と、前記第1の透明基板の前記第2の透明基板に対向する面に配置した第1透明電極と、この第1透明電極と前記第2の透明基板との間に互いに離間するように配置した複数の光透過領域と、を備えると共に、
     前記第2の透明基板の前記各光透過領域に対向する位置に、当該各光透過領域とは一定の距離を隔てた状態で配置した複数の第2透明電極と、
     前記第2の透明基板側の前記各第2透明電極の間に所定の距離を置いて個別に配置した複数の第3透明電極と、
     前記各第2透明電極及び各第3透明電極と前記各光透過領域とにより形成された空隙内に配置した遮光性の電気泳動粒子を含む電気泳動部材と、を有することを特徴とした調光素子。
  2.  前記請求項1に記載の調光素子において、
     前記第1透明電極の表面には第1電極上絶縁膜が配置されており、
     前記各光透過領域は、この第1電極上絶縁膜の上に配置されていること、を特徴とする調光素子。
  3.  前記請求項1又は2に記載の調光素子において、
     前記第2の透明基板の上に、前記第2透明電極を覆うように第2電極上絶縁膜が配置されており、
     前記第3透明電極は、この第2電極上絶縁膜の上に配置されていること、を特徴とする調光素子。
  4.  前記請求項3に記載の調光素子において、
     前記第2電極上絶縁膜の上に、前記第3透明電極を覆うように第3電極上絶縁膜が配置されていること、を特徴とする調光素子。
  5.  前記請求項1乃至4の何れか1つに記載の調光素子において、
     前記光透過領域と前記第2透明電極との間に、前記一定の距離の保持用部材であるスペーサを有すること、を特徴とした調光素子。
  6.  前記請求項1乃至5の何れか1つに記載の調光素子において、
     外部からの信号に応じて前記第1,第2,及び第3透明電極に印加する電界を調整し当該各透明電極それぞれの極性を変化させる電界印加制御手段を有すること、を特徴とした調光素子。
  7.  第1の透明基板と、この第1の透明基板とは離れた位置に対向配置した第2の透明基板と、前記第1の透明基板の前記第2の透明基板に対向する面に配置した導電性遮光パターンと、この導電性遮光パターンと前記第2の透明基板との間に互いに離間するように配置した複数の光透過領域と、を備えると共に、
     前記第2の透明基板の前記各光透過領域に対向する位置に、当該各光透過領域とは一定の距離を隔てた状態で配置した複数の第2透明電極と、
     前記第2の透明基板側の前記各第2透明電極の間に所定の距離を置いて個別に配置した複数の第3透明電極と、
     前記各第2透明電極及び各第3透明電極と前記各光透過領域とにより形成された空隙内に配置した遮光性の電気泳動粒子を含む電気泳動部材と、を有することを特徴とした調光素子。
  8.  前記請求項7に記載の調光素子において、
     前記導電性遮光パターンの表面には第1の層間絶縁膜が配置されており、
     前記各光透過領域は、この第1の層間絶縁膜の上に配置されていること、を特徴とする調光素子。
  9.  前記請求項7又は8に記載の調光素子において、
     前記第2の透明基板の上に、前記第2透明電極を覆うように第2電極上絶縁膜が配置されており、
     前記第3透明電極は、この第2電極上絶縁膜の上に配置されていること、を特徴とする調光素子。
  10.  前記請求項9に記載の調光素子において、
     前記第2電極上絶縁膜の上に、前記第3透明電極を覆うように第3電極上絶縁膜が配置されていること、を特徴とする調光素子。
  11.  前記請求項7乃至10の何れか1つに記載の調光素子において、
     前記光透過領域と前記第2透明電極との間に、前記一定の距離の保持用部材であるスペーサを有すること、を特徴とした調光素子。
  12.  前記請求項7乃至11の何れか1つに記載の調光素子において、
     外部からの信号に応じて前記第2,第3透明電極及び導電性遮光パターンに印加する電界を調整し当該各透明電極それぞれの極性を変化させる電界印加制御手段を有すること、を特徴とした調光素子。
  13.  透光性を有するガラスと、このガラスの表面に配置された前記請求項1乃至12のいずれか1つに記載の調光素子と、を備えたことを特徴とするスマートガラス。
  14.  透光性を有する第1のガラスと、
     この第1のガラスに対向させて配置した透光性を有する第2のガラスと、
     前記第1のガラスと前記第2のガラスとの間に配置された前記請求項1乃至12のいずれか1つに記載の調光素子と、を備えたことを特徴とするスマートガラス。
PCT/JP2015/058108 2014-03-18 2015-03-18 調光素子及びスマートガラス WO2015141740A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/126,785 US9904142B2 (en) 2014-03-18 2015-03-18 Light-modulating element and smart glass
JP2016508770A JP6508656B2 (ja) 2014-03-18 2015-03-18 調光素子及びスマートガラス
CN201580014599.7A CN106104374B (zh) 2014-03-18 2015-03-18 光调制元件和智能玻璃

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-054761 2014-03-18
JP2014054761 2014-03-18

Publications (1)

Publication Number Publication Date
WO2015141740A1 true WO2015141740A1 (ja) 2015-09-24

Family

ID=54144704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058108 WO2015141740A1 (ja) 2014-03-18 2015-03-18 調光素子及びスマートガラス

Country Status (4)

Country Link
US (1) US9904142B2 (ja)
JP (1) JP6508656B2 (ja)
CN (1) CN106104374B (ja)
WO (1) WO2015141740A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019066821A (ja) * 2017-10-04 2019-04-25 Tianma Japan株式会社 光線方向制御素子、表示デバイス、及び光線方向制御素子の製造方法
JP2019066621A (ja) * 2017-09-29 2019-04-25 Tianma Japan株式会社 光線方向制御素子及びこれを用いた表示装置、照明装置
JP2019101101A (ja) * 2017-11-29 2019-06-24 Tianma Japan株式会社 光線方向制御デバイス及び表示装置
JP2020067655A (ja) * 2018-10-23 2020-04-30 Tianma Japan株式会社 光線方向制御装置及び電子機器
US11086185B2 (en) * 2017-10-04 2021-08-10 Tianma Japan, Ltd. Light beam direction control element, display device, and manufacturing method for light beam direction control element
JP2021532419A (ja) * 2018-08-10 2021-11-25 イー インク カリフォルニア, エルエルシー 反射体を伴う切り替え可能な光コリメート層
JP2021532414A (ja) * 2018-08-10 2021-11-25 イー インク カリフォルニア, エルエルシー 双安定電気泳動流体を含む、切替可能な光コリメート層
JP2021533410A (ja) * 2018-08-10 2021-12-02 イー インク カリフォルニア, エルエルシー 双安定電気泳動流体を含む切り替え可能な光コリメート層のための駆動波形
JP2022177222A (ja) * 2017-12-11 2022-11-30 Tianma Japan株式会社 光線方向制御装置及び光線方向制御素子の駆動方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106659107B (zh) * 2017-03-01 2021-12-03 索曼电子(深圳)有限公司 一种纳米压印屏蔽玻璃及其制作方法
JP7036312B2 (ja) * 2017-09-29 2022-03-15 天馬微電子有限公司 光線方向制御タッチパネル装置及び表示装置
JP7083101B2 (ja) * 2017-11-24 2022-06-10 Tianma Japan株式会社 表示装置
US11474385B1 (en) * 2018-12-02 2022-10-18 Cardinal Ig Company Electrically controllable privacy glazing with ultralow power consumption comprising a liquid crystal material having a light transmittance that varies in response to application of an electric field
WO2021108486A1 (en) * 2019-11-27 2021-06-03 Corning Incorporated Systems and methods for uniform transmission in liquid crystal panels
CN112987417A (zh) * 2019-12-12 2021-06-18 京东方科技集团股份有限公司 调光玻璃及智能车窗
CN111708216B (zh) * 2020-07-14 2023-12-29 京东方科技集团股份有限公司 一种显示装置和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386328U (ja) * 1989-12-22 1991-08-30
JP2001343672A (ja) * 2000-05-30 2001-12-14 Seiko Epson Corp 電気泳動表示装置およびその製造方法
JP2003502696A (ja) * 1999-06-16 2003-01-21 クレアヴィス ゲゼルシャフト フュア テヒノロギー ウント イノヴェイション ミット ベシュレンクテル ハフツング 光散乱担体材料からなる、電気的に切換可能な光学特性を有する複合シート
JP2009098480A (ja) * 2007-10-18 2009-05-07 Seiko Epson Corp 表示素子
JP2013033074A (ja) * 2011-08-01 2013-02-14 Hitachi Chem Co Ltd 懸濁粒子装置,懸濁粒子装置を用いた調光装置及びそれらの駆動方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191017A (ja) 1983-04-14 1984-10-30 Tokyo Tatsuno Co Ltd 窓ガラス
FR2666804B1 (fr) 1990-09-14 1993-05-28 Saint Gobain Vitrage Int Vitrage electrochrome.
JP3667242B2 (ja) * 2000-04-13 2005-07-06 キヤノン株式会社 電気泳動表示方法及び電気泳動表示装置
JP2004070273A (ja) * 2002-06-11 2004-03-04 Canon Inc 光変調装置、及び光変調装置の製造方法
US7751667B2 (en) * 2005-12-21 2010-07-06 Xerox Corporation Microfabricated light collimating screen
KR20120029706A (ko) * 2010-09-17 2012-03-27 삼성전기주식회사 전자 종이 표시장치 및 그 제조방법
CN103827736B (zh) * 2011-09-30 2017-09-12 3M创新有限公司 电子可切换式保密膜和具有电子可切换式保密膜的显示器件
WO2014034569A1 (ja) * 2012-08-28 2014-03-06 シャープ株式会社 表示装置
US9594286B2 (en) * 2012-12-31 2017-03-14 Lg Display Co., Ltd. Transparent display apparatus with adjustable transmissive area and a method for controlling the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386328U (ja) * 1989-12-22 1991-08-30
JP2003502696A (ja) * 1999-06-16 2003-01-21 クレアヴィス ゲゼルシャフト フュア テヒノロギー ウント イノヴェイション ミット ベシュレンクテル ハフツング 光散乱担体材料からなる、電気的に切換可能な光学特性を有する複合シート
JP2001343672A (ja) * 2000-05-30 2001-12-14 Seiko Epson Corp 電気泳動表示装置およびその製造方法
JP2009098480A (ja) * 2007-10-18 2009-05-07 Seiko Epson Corp 表示素子
JP2013033074A (ja) * 2011-08-01 2013-02-14 Hitachi Chem Co Ltd 懸濁粒子装置,懸濁粒子装置を用いた調光装置及びそれらの駆動方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11187957B2 (en) 2017-09-29 2021-11-30 Tianma Microelectronics Co., Ltd. Light distribution control element, and display device and illumination device including the same
JP2019066621A (ja) * 2017-09-29 2019-04-25 Tianma Japan株式会社 光線方向制御素子及びこれを用いた表示装置、照明装置
JP7083100B2 (ja) 2017-09-29 2022-06-10 天馬微電子有限公司 光線方向制御素子及びこれを用いた表示装置、照明装置
JP7099882B2 (ja) 2017-10-04 2022-07-12 Tianma Japan株式会社 光線方向制御素子、表示デバイス、及び光線方向制御素子の製造方法
US11086185B2 (en) * 2017-10-04 2021-08-10 Tianma Japan, Ltd. Light beam direction control element, display device, and manufacturing method for light beam direction control element
JP2019066821A (ja) * 2017-10-04 2019-04-25 Tianma Japan株式会社 光線方向制御素子、表示デバイス、及び光線方向制御素子の製造方法
JP2019101101A (ja) * 2017-11-29 2019-06-24 Tianma Japan株式会社 光線方向制御デバイス及び表示装置
JP7083102B2 (ja) 2017-11-29 2022-06-10 Tianma Japan株式会社 光線方向制御デバイス及び表示装置
JP2022177222A (ja) * 2017-12-11 2022-11-30 Tianma Japan株式会社 光線方向制御装置及び光線方向制御素子の駆動方法
JP7108779B2 (ja) 2018-08-10 2022-07-28 イー インク カリフォルニア, エルエルシー 反射体を伴う切り替え可能な光コリメート層
JP2021533410A (ja) * 2018-08-10 2021-12-02 イー インク カリフォルニア, エルエルシー 双安定電気泳動流体を含む切り替え可能な光コリメート層のための駆動波形
JP2022097689A (ja) * 2018-08-10 2022-06-30 イー インク カリフォルニア, エルエルシー 反射体を伴う切り替え可能な光コリメート層
JP2021532414A (ja) * 2018-08-10 2021-11-25 イー インク カリフォルニア, エルエルシー 双安定電気泳動流体を含む、切替可能な光コリメート層
JP7128952B2 (ja) 2018-08-10 2022-08-31 イー インク カリフォルニア, エルエルシー 双安定電気泳動流体を含む、切替可能な光コリメート層
JP7175379B2 (ja) 2018-08-10 2022-11-18 イー インク カリフォルニア, エルエルシー 双安定電気泳動流体を含む切り替え可能な光コリメート層のための駆動波形
JP2021532419A (ja) * 2018-08-10 2021-11-25 イー インク カリフォルニア, エルエルシー 反射体を伴う切り替え可能な光コリメート層
JP7429335B2 (ja) 2018-08-10 2024-02-08 イー インク コーポレイション 反射体を伴う切り替え可能な光コリメート層
JP2020067655A (ja) * 2018-10-23 2020-04-30 Tianma Japan株式会社 光線方向制御装置及び電子機器
JP7261097B2 (ja) 2018-10-23 2023-04-19 Tianma Japan株式会社 光線方向制御装置及び電子機器

Also Published As

Publication number Publication date
US20170097554A1 (en) 2017-04-06
JPWO2015141740A1 (ja) 2017-04-13
CN106104374B (zh) 2019-04-30
CN106104374A (zh) 2016-11-09
JP6508656B2 (ja) 2019-05-08
US9904142B2 (en) 2018-02-27

Similar Documents

Publication Publication Date Title
WO2015141740A1 (ja) 調光素子及びスマートガラス
JP6443691B2 (ja) 光学素子及びその製造方法,該光学素子を有する表示装置,電子機器,及び照明装置
KR20120117409A (ko) 창문 통합형 태양 전지 모듈
CN105425502A (zh) 光学元件、及使用该光学元件的显示装置、电子设备、照明装置
KR102356886B1 (ko) 광 제어 장치, 광 제어 장치의 제조 방법 및 광 제어 장치를 포함하는 표시 장치
CN105388658A (zh) 光控制装置以及制造该光控制装置的方法
EP3004980B1 (en) An electrophoretic solar control device
JP2016132934A (ja) 熱線遮蔽ユニット及び熱線遮蔽方法
KR101520402B1 (ko) 솔라 블라인드의 제조 방법
CN104978058B (zh) 电路元件及其制造方法
US20190250482A1 (en) Light beam direction control element
KR102470079B1 (ko) 변색 나노 입자, 이를 포함하는 변색 장치 및 이를 포함하는 표시 장치
JP7219591B2 (ja) 光線方向制御素子
US20170101819A1 (en) Optical switching device, method of manufacturing the same, and building material
TWI557473B (zh) Polymeric Dispersion Liquid Crystal Dimming Structure
KR100984932B1 (ko) 염료 감응형 태양전지 및 그 제조방법
WO2016185684A1 (ja) 光学デバイス
JP2004304373A (ja) ディスプレイ用フィルタ及びその製造方法
CN109707294B (zh) 一种光驱动玻璃
WO2016136163A1 (ja) エレクトロクロミック素子
JPWO2019172133A1 (ja) エレクトロクロミック素子およびスマートウィンドウ
JP7099882B2 (ja) 光線方向制御素子、表示デバイス、及び光線方向制御素子の製造方法
JP2016201323A (ja) 発光装置および表示装置
JP7518658B2 (ja) 光電変換素子
TW201024838A (en) Color filter film substrate and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765454

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508770

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15126785

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765454

Country of ref document: EP

Kind code of ref document: A1