KR20200040811A - 절삭 가공 장치 - Google Patents

절삭 가공 장치 Download PDF

Info

Publication number
KR20200040811A
KR20200040811A KR1020207006981A KR20207006981A KR20200040811A KR 20200040811 A KR20200040811 A KR 20200040811A KR 1020207006981 A KR1020207006981 A KR 1020207006981A KR 20207006981 A KR20207006981 A KR 20207006981A KR 20200040811 A KR20200040811 A KR 20200040811A
Authority
KR
South Korea
Prior art keywords
cutting
workpiece
cutting tool
frequency
sensor
Prior art date
Application number
KR1020207006981A
Other languages
English (en)
Inventor
유지 야마자키
가츠지 다케시타
Original Assignee
오므론 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오므론 가부시키가이샤 filed Critical 오므론 가부시키가이샤
Publication of KR20200040811A publication Critical patent/KR20200040811A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0971Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring mechanical vibrations of parts of the machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/12Adaptive control, i.e. adjusting itself to have a performance which is optimum according to a preassigned criterion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/12Arrangements for observing, indicating or measuring on machine tools for indicating or measuring vibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q2717/00Arrangements for indicating or measuring
    • B23Q2717/006Arrangements for indicating or measuring in milling machines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Milling Processes (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Sawing (AREA)

Abstract

피절삭물의 절삭 시의 충격량의 추출에 있어서 피절삭물의 소재에 의한 영향을 저감하는 것이 가능한 절삭 가공 장치를 제공한다. 절삭 가공 장치는, 절삭 공구와, 척부와, 이송 기구와, 피절삭물을 고정하는 고정부와, 고정부를 척부의 회전축과 대략 직교하는 방향으로, 가공 속도로 이동시키는 스테이지와, 고정부에 있어서의 피절삭물의 고정 위치의 근방에 설치되고, 피절삭물의 절삭 가공 중에 있어서의 절삭 공구의 진동을 검출하여 감시 신호를 출력하는 센서와, 감시 신호의 시간 파형 데이터를 주파수 파형 데이터로 변환하여, 주파수 파형 데이터로부터, 피절삭물의 절삭 가공 중에 있어서의 충격량을 추출하는 제어 회로를 구비한다.

Description

절삭 가공 장치
본 발명은, 절삭 가공 장치에 관한 것이다.
예를 들어, 일본 특허공개 제2014-14914호 공보(특허문헌 1)는, 절삭 가공 장치를 개시한다. 절삭 가공 장치는, 절삭 가공 중의 복수 날 절삭 공구의 충격량을 얻기 위한 감시 신호를 검출하는 센서와, 감시 신호의 시간축 파형 데이터로부터 주파수축 파형 데이터를 얻는 데이터 변환 수단과, 얻어진 주파수축 파형 데이터로부터 복수 날 절삭 공구의 회전수의 절삭날 곱에 따른 주파수에서의 감시 신호를, 절삭 저항과 상관이 있는 충격량으로서 추출하는 충격량 추출 수단을 구비한다.
일본 특허공개 제2014-14914호 공보
일본 특허공개 제2014-14914호 공보에서는, 피절삭물로서 강관(예를 들어 그 재질이 SS재(일반 구조용 압연 강재)임)이 개시되어 있지만, 피절삭물의 다른 소재는 개시되어 있지 않다. 피절삭물의 소재가 알루미늄 혹은 구리와 같은, 철에 비해 경도가 낮은 금속의 경우, 절삭 시에 주축 지지부에 전달되는 진동이 작아지기 때문에, 충격량을 추출하는 것이 어려울 것으로 생각된다.
본 발명의 목적은, 피절삭물의 절삭 시의 충격량의 추출에 있어서 피절삭물의 소재에 의한 영향을 저감하는 것이 가능한 절삭 가공 장치를 제공하는 것이다.
본 개시의 일례에서는, 절삭 가공 장치는, SS재의 경도보다도 낮은 경도를 갖는 재질로 이루어지는 피절삭물을 절삭하기 위한 절삭 공구와, 절삭 공구를 파지하고, 또한 회전 구동하는 척부와, 피절삭물을 고정하는 고정부와, 고정부를 척부의 회전축과 대략 직교하는 방향으로, 가공 속도로 이동시키는 스테이지와, 고정부에 있어서의 피절삭물의 고정 위치의 근방에 설치되고, 피절삭물의 절삭 가공 중에 있어서의 절삭 공구의 진동을 검출하여 감시 신호를 출력하는 센서와, 감시 신호의 시간 파형 데이터를 주파수 파형 데이터로 변환하여, 주파수 파형 데이터로부터, 피절삭물의 절삭 가공 중에 있어서의 충격량을 추출하는 제어 회로를 구비한다.
상기 구성에 의하면, 피절삭물의 절삭 시의 충격량의 추출에 있어서 피절삭물의 소재에 의한 영향을 저감하는 것이 가능한 절삭 가공 장치를 제공할 수 있다. 센서가 고정부에 있어서의 피절삭물의 고정 위치의 근방에 설치되어 있으므로, 예를 들어 SS재의 경도보다도 낮은 경도를 갖는 재질로 이루어지는 피절삭물을 절삭하는 경우에 있어서, 절삭에 수반하여 발생하는 진동을 센서에 의해 검출하는 것이 용이해진다. 따라서, 피절삭물의 절삭 시의 충격량의 추출에 있어서, 피절삭물의 소재에 의한 영향을 저감하는 것이 가능해진다.
「SS재의 경도보다도 낮은 경도를 갖는 재질로 이루어지는 피절삭물을 절삭하기 위한 절삭 공구」는, SS재, 혹은 SS재의 경도보다도 높은 경도를 갖는 재질로 이루어지는 피절삭물을 절삭 가능한 절삭 공구여도 된다. 당해 기재는, 절삭 공구를, 전용의 공구로 한정함을 의도하는 것은 아니다.
본 개시의 일례에서는, 센서는, 최대의 절삭 저항이 발생하는 방향에 검출 방향이 일치하도록 설치된다.
상기 구성에 의하면, 센서는, 피절삭물의 절삭 시에 발생하는 진동을 보다 정확하게 검출할 수 있다.
본 개시의 일례에서는, 절삭 공구는 복수의 절삭날을 갖는다. 제어 회로는, 절삭 공구의 회전수와 복수의 절삭날의 수의 곱으로부터 결정되는 가공 주파수를 포함하는 주파수 영역에 있어서의 충격량의 총합을 추출한다.
상기 구성에 의하면, 회전수가 변동할 수 있는 경우에도, 그 변동의 범위를 고려한 주파수 범위 내의 충격량을 측정할 수 있다. 이에 의해 충격량을 안정적으로 측정할 수 있다.
본 개시의 일례에서는, 절삭 공구는 복수의 절삭날을 갖는다. 제어 회로는, 절삭 공구의 회전수와 복수의 절삭날의 수의 곱으로부터 결정되는 가공 주파수를 포함하며, 또한, 회전수의 변동을 고려한 주파수 영역에 있어서의 충격량의 총합을 추출한다.
상기 구성에 의하면, 회전수가 변동할 수 있는 경우에도, 그 변동의 범위를 고려한 주파수 범위 내의 충격량을 측정할 수 있다. 이에 의해 충격량을 안정적으로 측정할 수 있다.
본 개시의 일례에서는, 절삭 공구는 복수의 절삭날을 갖는다. 제어 회로는, 절삭 공구의 회전수와 복수의 절삭날의 수의 곱으로부터 결정되는 가공 주파수, 및 가공 주파수의 배수의 주파수에 있어서의 충격량의 총합을 추출한다.
상기 구성에 의하면, 회전수가 변동할 수 있는 경우에도, 충격량을 안정적으로 측정할 수 있다.
본 개시의 일례에서는, 제어 회로는, 충격량에 기초하여, 피절삭물의 가공 속도를 제어하도록 구성된다.
상기 구성에 의하면, 가공 저항의 크기에 기초하여 가공 속도를 변화시키는 피드백 제어를 실현할 수 있다. 이에 의해 높은 정밀도에서의 가공이 가능해진다.
본 개시의 일례에 의하면, 피절삭물의 절삭 시의 충격량의 추출에 있어서 피절삭물의 소재에 의한 영향을 저감하는 것이 가능한 절삭 가공 장치를 제공할 수 있다.
도 1은 본 실시 형태에 따른 절삭 가공 장치(1)의 적용 장면의 일례를 모식적으로 예시한 도면이다.
도 2는 도 1에 도시된 고정 지그의 구조의 일례와, 고정 지그 및 센서의 배치를 설명한 도면이다.
도 3은 절삭 공구를 예시한 도면이다.
도 4는 제어 장치의 구성을 나타낸 블록도이다.
도 5는 본 실시 형태에 따른, 충격량의 추출을 설명하기 위한 모식도이다.
도 6은 센서를, 주축 지지부의 상면 및 주축용 모터의 측면에 접한 상태에서 설치한 경우의 충격량의 측정 결과를 표 형식으로 나타낸 도면이다.
도 7은 본 실시 형태에 따라서, 센서를, 고정 지그의 표면에 설치했을 때의 충격량의 측정 결과를 나타낸 도면이다.
도 8은 본 실시 형태에 따르는 가공 방법의 일례를 설명하기 위한 흐름도이다.
도 9는 본 실시 형태에 따른 절삭 가공 장치의 다른 구성예를 나타내는 블록도이다.
§1 적용예
우선, 도 1을 이용하여, 본 발명이 적용되는 장면의 일례에 대하여 설명한다. 도 1은, 본 실시 형태에 따른 절삭 가공 장치(1)의 적용 장면의 일례를 모식적으로 예시한 도면이다. 본 실시 형태에 따른 절삭 가공 장치(1)는, 피절삭물 W의 절삭 시의 충격량의 추출에 있어서 피절삭물 W의 소재에 의한 영향을 저감하는 것이 가능한 절삭 가공 장치이며, 구리 혹은 알루미늄 등, SS재(일반 구조용 압연강재)의 경도보다도 낮은 경도를 갖는 재질로 이루어지는 피절삭물 W의 절삭 시에 센서(15)의 감시 신호에 기초하여 충격량을 추출 가능한 절삭 가공 장치이다.
도 1에 도시된 바와 같이, 절삭 가공 장치(1)는, 장치 본체(2)와, 스테이지(3)와, 고정 지그(4)와, 주축 지지부(5)와, 척부(6)와, 절삭 공구(7)와, 주축용 모터(8)와, X축 이송 기구(9)와, Y축 이송 기구(10)와, Z축 이송 기구(11)와, 센서(15)와, 제어 장치(20)를 구비한다. 절삭 공구(7)는, SS재의 경도보다도 낮은 경도를 갖는 재질로 이루어지는 피절삭물 W를 절삭하기 위한 것이다. 척부(6)는, 절삭 공구(7)를 파지하고, 또한 회전 구동한다. Z축 이송 기구(11)는, 척부(6)를 척부(6)의 회전축(6A)의 방향, 즉 Z축의 방향으로 이동시킨다. 고정 지그(4)는, 피절삭물 W를 고정하기 위한 것이며, 본 발명에 있어서의 「고정부」의 일례이다. 스테이지(3)는, 고정 지그(4)를 척부(6)의 회전축(6A)과 대략 직교하는 방향(X축 방향 또는 Y축 방향)으로, 가공 속도로 이동시키는 스테이지이다. 센서(15)는, 고정부에 있어서의 피절삭물 W의 고정 위치의 근방에 설치된다. 센서(15)는, 피절삭물 W의 절삭 가공 중에 있어서의 절삭 공구(7)의 진동을 검출하여 감시 신호를 출력한다. 센서(15)는, 최대의 절삭 저항이 발생하는 방향에 검출 방향이 일치하도록 설치된다. 제어 장치(20)는, 본 발명에 있어서의 「제어 회로」의 일례이며, 센서(15)로부터의 감시 신호의 시간 파형 데이터를 주파수 파형 데이터로 변환하여, 주파수 파형 데이터로부터, 피절삭물 W의 절삭 가공 중에 있어서의 충격량을 추출한다. 또한, 절삭 공구(7)는, SS재, 혹은 SS재의 경도보다도 높은 경도를 갖는 재질로 이루어지는 피절삭물을 절삭 가능한 절삭 공구여도 된다. 센서(15)는, 진동을 검출하는 센서이며, 예를 들어 가속도 센서이다.
본 실시 형태에 따르면, 센서(15)가 고정부에 있어서의 피절삭물 W의 고정 위치의 근방에 설치되어 있다. 따라서, 피절삭물의 절삭 시에, 주축 및 주축용 모터(8)의 진동의 영향을 피하면서 절삭 공구(7)의 충격에 관한 신호만을 검출할 수 있다. 재료의 경도와 절삭 저항 사이에는, 강한 상관 관계가 있어, 재료의 경도가 높을수록 절삭 저항도 크다. SS재의 경도보다도 낮은 경도를 갖는 재질로 이루어지는 피절삭물을 절삭하는 경우에는, 절삭 저항이 작아질 수 있다. 이 때문에, 절삭에 수반하여 발생하는 진동은 SS재로 이루어지는 피절삭물의 절삭 시의 진동보다도 작아지기 쉽다. 그러나, 이러한 경우에 있어서도, 절삭 공구(7)의 충격량을 얻기 위한 감시 신호만을 센서(15)로 검출할 수 있다. 또한, 센서(15)는, 최대의 절삭 저항이 발생하는 방향에 검출 방향이 일치하도록 설치된다. 이에 의해, 센서(15)는, 피절삭물 W의 절삭 시에 발생하는 진동을 고감도로 검출할 수 있다.
§2 구성예
장치 본체(2)는, 예를 들어 머시닝 센터에 의해 실현된다. X축 이송 기구(9), Y축 이송 기구(10) 및 Z축 이송 기구(11)는, 예를 들어 모터, 및 모터에 연결된 볼 나사에 의해 구성된다. 스테이지(3)는, 장치 본체(2)에 지지되고, X축 이송 기구(9)에 의해 X 방향(좌우 방향)으로 이동 가능함과 함께, Y축 이송 기구(10)에 의해 Y 방향(깊이 방향)으로 이동 가능하게 되어 있다. 즉 스테이지(3)는 2차원 방향으로 이동 가능한 XY 스테이지여도 된다. 고정 지그(4)는 스테이지(3)에 설치되고, 피절삭물(워크라고도 불림) W는, 고정 지그(4)에 고정된다.
피절삭물 W는, SS재의 경도보다도 낮은 경도를 갖는 소재, 예를 들어 구리 혹은 알루미늄, 구리 합금, 알루미늄 합금 등으로 이루어진다. 일 실시 형태에서는, 상기 「경도」로서, 비커스 경도(HV)를 사용할 수 있다. SS재의 경도로서는, 예를 들어 SS400의 비커스 경도(HV120 내지 140 전후)를 사용할 수 있다.
절삭 공구(7)는 고정 지그(4)의 상방에 배치되어 있다. 절삭 공구(7)는, 예를 들어 엔드밀이며, 복수의 절삭날을 갖는다. 절삭 공구(7)의 축부는 척부(6)에 의해 착탈 가능하게 파지되어 있다.
척부(6)는, 절삭 공구(7)와 일체적으로 주축용 모터(8)에 의해 회전 구동된다. 주축용 모터(8)는 주축 지지부(5)에 의해 지지되어 있다. 도시하지 않았지만, 예를 들어 장치 본체(2)에 레일 기구가 설치되고, 주축 지지부(5)는, 그 레일 기구에 지지됨으로써, 장치 본체(2)에 지지되어 있다. 또한, 주축 지지부(5)는, Z축 이송 기구(11)에 의해, 장치 본체(2)에 대해서 Z 방향(상하 방향), 즉 절삭 공구(7)의 축부를 따른 방향으로 이동 가능하게 되어 있다.
센서(15)는, 고정 지그(4)에 설치되고, 피절삭물 W의 절삭 가공 중에 발생하는 진동을 검출한다. 센서(15)는, 예를 들어 가속도 센서에 의해 실현된다. 이 실시 형태에서는, 센서(15)의 감도 방향, 즉 감도축의 방향이 최대의 절삭 저항이 발생하는 방향에 일치하도록 센서(15)가 설치되어 있다. 따라서 센서(15)는, 최대의 절삭 저항이 발생하는 방향의 진동을 고감도로 검출할 수 있다. 절삭 공구의 형상에 의해, 최대의 절삭 저항이 발생하는 방향은 상이할 수 있다. 예를 들어 절삭 공구(7)가 도 3에 도시된 형상(후술)을 갖는 경우, 최대의 절삭 저항이 발생하는 방향은 회전축(6A)(즉 Z축)의 방향이 될 수 있다. 센서(15)는, 절삭 가공 중에 절삭 공구(7)의 충격량을 얻기 위한 감시 신호를 검출하여, 감시 신호를 출력한다.
제어 장치(20)는, 센서(15)로부터 출력되는 감시 신호를 수신하여, 충격량을 추출한다. 충격량은, 절삭 저항과 상관이 있는 양이며, 절삭 저항이 클수록 충격량이 크다는 관계가 성립된다. 제어 장치(20)는, 또한, 추출된 충격량에 기초하여, 피절삭물 W의 가공 속도를 제어한다. 가공 속도는, 피절삭물 W를 이동시키는 속도와 동등하다. 예를 들어 피절삭물 W는 1차원 방향(X축 방향 혹은 Y축 방향)으로 이동된다. 제어 장치(20)는, X축 방향의 피절삭물 W의 이송 속도를 제어한다. 제어 장치(20)는, Y축 방향의 피절삭물 W의 이송 속도를 제어해도 된다. 제어 장치(20)는, 예를 들어 CPU(Central Processing Unit), RAM(Random Access Memory), ROM(Read Only Memory) 등을 포함할 수 있으며, 정보 처리에 따라서 각 구성 요소의 제어를 실행한다.
도 2는, 도 1에 도시된 고정 지그(4)의 구조의 일례와, 고정 지그(4) 및 센서(15)의 배치를 설명한 도면이다. 도 2에 도시한 바와 같이, 고정 지그(4)는, 스테이지(3)에 고정된 제1 지그(4A)와, 제1 지그(4A)에 의해 고정된 제2 지그(4B)에 의해 구성된다. 제2 지그(4B)는, 예를 들어 진공 흡착에 의해 제1 지그(4A)에 고정된다. 피절삭물 W는, 클램프 고정에 의해 제2 지그(4B)에 고정된다. 또한, 도 2에 도시한 구성은, 피절삭물 W를 자동 교환하는 경우의 고정 방법을 실현하기 위한 하나의 예이다. 일반적으로는, 피절삭물을 고정하기 위해서, 마그네트 척 혹은 바이스 등이 사용된다. 피절삭물 W를 고정하기 위해서 관용의 고정 방법을 적용해도 된다.
피절삭물 W의 절삭 가공 시에, 피절삭물 W에 진동이 발생한다. 센서(15)는, 피절삭물 W에 가능한 한 가까운 위치에 배치되는 것이 바람직하다. 그러나 피절삭물 W의 표면에 센서(15)를 설치한 경우에는, 가공의 작업성이 저하된다. 이러한 관점에서, 센서(15)는, 제2 지그(4B)에 설치된다. 진동의 검출이 가능하면, 센서(15)는, 제1 지그(4A), 혹은 스테이지(3)에 설치되어도 된다.
도 3은, 절삭 공구(7)를 예시한 도면이다. 도 3에 도시한 바와 같이, 절삭 공구(7)는, 축부(41)와, 축부(41)의 하부에 나선 날개 형상으로 형성된, 예를 들어 2매(단 2매로 한정되지 않음)의 절삭날(40)로 구성되어 있다.
도 4는, 제어 장치(20)의 구성을 나타낸 블록도이다. 도 4에 도시한 구성은, 하드웨어, 소프트웨어, 또는 그들 양쪽에 의해 실현 가능하다. 도 4에 도시한 바와 같이, 제어 장치(20)는, 샘플링부(21)와, 데이터 변환부(22)와, 필터부(23)와, 충격량 추출부(24)와, 가공 제어부(25)를 포함한다.
샘플링부(21)는, 센서(15)로부터의 감시 신호를, 소정의 샘플링 주파수로 샘플링한다. 센서(15)로부터의 감시 신호는, 시간 파형 데이터이다. 데이터 변환부(22)는, 시간 파형 데이터를, 푸리에 변환(예를 들어 고속 푸리에 변환)에 의해, 주파수 파형 데이터로 변환한다.
필터부(23)는, 주파수 파형 데이터로부터, 어떤 주파수 범위 내의 파형 데이터를 추출한다. 이 실시 형태에서는, 필터부(23)의 기능을 유효로 할지 무효로 할지를 전환할 수 있다. 또한 필터부(23)의 통과 주파수의 범위(통과 대역)는 임의로 설정 가능하다.
충격량 추출부(24)는, 주파수 파형 데이터로부터, 주축 회전수 N(rpm)과, 절삭날(40)의 수 M의 곱으로부터 구해지는 가공 주파수 f에 있어서의 진동값을, 충격량으로서 추출한다. 가공 주파수 f는, f=N/60×M(단위: ㎐)으로 표시할 수 있다. 주축 회전수 N은, 절삭 공구(7)의 회전수와 동등하다. 충격량의 추출이 어느 주파수 범위에 걸치는 경우에는, 충격량 추출부(24)는, 그 주파수 범위에 걸치는 충격량의 총합(적분)을 측정한다.
충격량 추출부(24)는, 추출된 충격량을 외부로 출력해도 된다. 예를 들어 도시하지 않은 표시부가, 그 충격량의 값을 화면에 표시해도 된다. 이에 의해 유저는, 절삭 저항의 크기의 정도를 알 수 있다. 예를 들어 유저는, 절삭 공구(7)의 교환이 필요한지 여부를 판단할 수 있다.
가공 제어부(25)는, 충격량 추출부(24)에 의해 추출된 충격량에 기초하여, 장치 본체(2)(도 1을 참조)를 제어한다. 예를 들어 가공 제어부(25)는, 충격량에 기초하여, X축 이송 기구(9) 및 Y축 이송 기구(10)의 각각의 모터를 구동하기 위한 모터 드라이버를 제어해도 된다. 이에 의해, 충격량에 기초하여 피절삭물 W의 가공 속도, 바꾸어 말하면 피절삭물 W의 이송 속도를 조정할 수 있다. 즉 본 실시 형태에서는, 센서(15)의 출력에 기초하는 피드백 제어에 의해 피절삭물 W의 가공 속도가 제어된다.
도 5는, 본 실시 형태에 따른, 충격량의 추출을 설명하기 위한 모식도이다. 도 5에 도시한 바와 같이, 제어 장치(20)는, 이하의 (1) 내지 (3) 중에서 선택된 방법으로 충격량을 추출해도 된다. 도 5 중의 (1) 내지 (3)은, 하기의 (1) 내지 (3)의 방법에 의해 추출되는 충격량의 주파수 범위를 나타내고 있다.
(1) 가공 주파수 및 그 근방의 주파수의 충격량의 총합을 측정한다. 예를 들어 가공 주파수가 500㎐이면, 0 내지 700㎐의 주파수 영역에 있어서의 충격량의 총합을 측정한다.
(2) 주축 회전수의 변동을 고려한 주파수 영역의 충격량의 총합을 측정한다. 예를 들어 가공 주파수가 500㎐이면, 예를 들어 450 내지 550㎐의 주파수 영역에 있어서의 충격량의 총합을 측정한다. 또한, 가공 주파수는, 상기 주파수 범위의 중심 주파수일 필요는 없고, 주파수 범위의 하한 및 상한은, 서로 독립적으로 정할 수 있다.
(3) 주축 회전수의 변동을 고려한 주파수 영역의 충격량의 총합 및 가공 주파수의 배수의 충격량의 총합을 측정한다. 예를 들어 가공 주파수가 500㎐이면, 450 내지 550㎐, 950 내지 1050㎐, 및 1450 내지 1550㎐의 주파수 영역에 있어서의 충격량의 총합을 측정한다.
일본 특허공개 제2014-14914호 공보에 개시된 가공 장치에 있어서, 센서는, 주축 지지부의 상면 및 주축용 모터의 측면에 접한 상태에서 설치된다. 즉 도 1에 도시된 구성에 있어서, 센서(15)는 주축용 모터(8)에 근접하여, 주축 지지부(5)의 표면에 설치된다. 이러한 경우, 센서(15)는, 주축의 진동에 추가하여 주축용 모터의 진동을 검출하므로, 센서(15)로부터의 감시 신호에는, 그들 진동의 성분이 포함된다. 이 때문에, 상기 가공 주파수 f(주축 회전수 N 및 절삭 공구(7)의 절삭날 수 M으로부터 결정되는 주파수)로 감시 신호를 추출하여도, 그 추출된 값은 양쪽의 진동 성분을 포함한다. 즉, 절삭 공구(7)의 충격량만을 추출하는 것이 어렵다. 특히, 피절삭물 W의 재질이, 알루미늄 혹은 구리 등과 같은, 철에 비하여 경도가 낮은 금속의 경우에는, 주축 지지부(5)에 전달되는 주축의 진동이 작아지기 쉽다. 따라서 절삭 공구(7)의 충격량만을 추출하는 것이 한층 더 곤란해진다.
또한, 일본 특허공개 제2014-14914호 공보에 개시된 가공 장치의 경우, 주축 회전수가 변동된 경우에는, 충격량이 실제보다 작게 측정된다. 이 때문에, 주축 회전수의 변동에 대응하면서 안정된 충격량의 측정을 할 수 없다.
이에 반하여, 본 발명의 실시 형태에서는, 피절삭물에 보다 가까운 위치에 센서(15)가 배치되므로, 센서(15)에 의한 진동의 검출에 있어서, 주축용 모터(8)의 진동 영향이 저감된다. 주축 회전수 N 및 절삭 공구(7)의 절삭날의 수 M의 곱에 기초하여 결정되는 가공 주파수로 감시 신호를 추출한 경우에, 절삭 공구(7)의 충격량을 추출할 수 있다. 또한, 본 발명의 실시 형태에 의하면, 상기 (1), (2) 또는 (3)의 방법에 의해, 주축 회전수(주축용 모터(8)의 회전수)의 변동에 대응하면서 안정된 충격량의 측정을 할 수 있다. 그 결과, 안정된 가공 저항의 측정이 가능해진다.
표 1에, 본 개시에 따른 절삭 가공의 실험에 사용한 시료의 비커스 경도의 값을 나타낸다. 실험에는 황동 시료를 사용하였다. 일반적인 황동의 비커스 경도는 HV50 내지 100 전후이다. 3개의 시료(시료 번호 1 내지 3)의 각각에 대하여, 3개의 측정점에 있어서의 경도를 측정하였다. 9개의 측정점에 있어서의 경도의 평균값은 101.5였다. 상술한 바와 같이, SS400의 비커스 경도는 HV120 내지 140 전후이다. 따라서 측정 결과는, 황동이 SS재보다도 경도가 낮은 재질임을 나타내고 있다.
Figure pct00001
도 6은, 센서(15)를, 주축 지지부의 상면 및 주축용 모터의 측면에 접한 상태로 설치한 경우의 충격량의 측정 결과를 표 형식으로 나타낸 도면이다. 도 6 에 도시한 바와 같이, 센서(15)를 주축 저면에 설치하였다. 이때의 가공점으로부터 센서(15)까지의 거리는 300㎜였다. 가공 주파수는 1670㎐(N=50000rpm, M=2)였지만, 가공 주파수에 있어서 진동 파형을 측정할 수 없었다. 한편, 진동수 820㎐에 있어서, 진동이 검출되었다(진동 강도=1000). 이 진동은 주축용 모터의 회전(50000rpm=830㎐)에 의한 것이라고 추측된다.
도 7은, 본 실시 형태에 따라서, 센서(15)를, 고정 지그(4)의 표면에 설치했을 때의 충격량의 측정 결과를 나타낸 도면이다. 도 7에 도시한 바와 같이, 가공 주파수 1670㎐에 있어서, 뚜렷한 충격량을 측정할 수 있었다. 또한, 이송 속도를 올릴수록, 충격량의 값이 증가된다는 사실을 알 수 있다. 도 7에 도시한 이송 속도와 충격량의 관계는, 이송 속도를 올림으로써 가공 저항이 증가됨을 나타내고 있다.
도 8은, 본 실시 형태에 따르는 가공 방법의 일례를 설명하기 위한 흐름도이다. 이 흐름도에 나타낸 처리는, 제어 장치(20)에 의해 실행된다. 절삭 가공이 개시되고, 스텝 S1에 있어서, 가공 저항이 소정의 하한값보다 큰지 여부가 판정된다. 가공 저항은, 충격량과 가공 저항 사이의 미리 결정된 상관 관계로부터, 측정된 충격량에 기초하여 산출될 수 있다. 스텝 S1에서는, 본 실시 형태에 따른 방법에 의해 측정된 충격량을 기준값과 비교해도 된다.
가공 저항이 하한값을 상회하고 있으면, 절삭 가공이 적절하게 실행되고 있다(「예」). 이 경우, 처리는 스텝 S3으로 진행된다. 가공 저항이 하한값을 하회하는 경우(「아니오」), 스텝 S2에 있어서, 제어 장치(20)는, 절삭 공구(7)의 이송 속도를 증가시킨다. 이에 의해, 가공 저항이 상승된다.
스텝 S3에 있어서, 가공 저항이 소정의 상한값보다 작은지 여부가 판정된다. 가공 저항이 소정의 상한값을 초과하지 않는 경우, 절삭 가공이 적절하게 실행되고 있다(「예」). 따라서, 절삭 공구(7)는 현재의 이송 속도로 보내져서 절삭 가공이 종료된다. 한편, 가공 저항이 소정의 상한값을 초과한 경우, 스텝 S4에 있어서, 제어 장치(20)는, 절삭 공구(7)의 이송 속도를 감소시킨다. 이에 의해 가공 저항이 저하된다.
이상과 같이, 본 실시 형태에 의하면, 가공 저항이 적절한 값으로 되도록, 가공 속도를 제어할 수 있다. 이에 의해, 고정밀도 및 효율적인 절삭 가공이 가능해진다.
본 실시 형태에 따른 절삭 가공 장치의 구성은 도 1에 도시한 바에 한정되지 않는다. 특히 제어 장치(20)는, 단체의 장치인 것으로 한정될 필요는 없다. 또한, 제어 장치(20)는, 장치 본체(2)에 실장된 것에 한정되는 것은 아니다.
도 9는, 본 실시 형태에 따른 절삭 가공 장치의 다른 구성예를 나타내는 블록도이다. 도 9에 도시한 바와 같이, 제어 장치(20)는, 고속 컨트롤러(31) 및 PLC(Progra㎜able Logic Controller)에 의해 구성되어도 된다. 고속 컨트롤러(31)는, 센서(15)로부터의 감시 신호를 샘플링하여, 진동 파형 데이터를 생성한다. PLC(32)는, 푸리에 변환(주파수 해석)에 의해, 주파수 파형 데이터를 생성하고, 그 주파수 파형 데이터로부터 가공 저항값을 산출한다. 그리고 PLC(32)는, 그 가공 저항값으로부터, 절삭 공구(7)의 최적의 이송 속도를 연산한다. 장치 본체(2)는, PLC(32)에 의해 지시된 최적 이송 속도에 따라서, 절삭 공구(7)를 이동시킴으로써, 피절삭물을 절삭 가공한다. 절삭 가공 시에 센서(15)는, 진동을 검출한다. 따라서, 센서(15)의 출력에 기초하는 피드백 제어가 실행된다.
[작용·효과]
이상과 같이, 본 실시 형태에 따르면, 절삭 공구(7)의 충격량을 얻기 위한 감시 신호만을 센서(15)로 검출할 수 있다. 센서(15)에 의한 검출은, 피절삭물의 소재에 의한 영향을 받기 어렵다. 따라서, SS재의 경도보다도 낮은 경도를 갖는 재질로 이루어지는 피절삭물을 절삭할 때에 있어서도, 센서(15)의 신호로부터 가공 저항과 상관이 있는 충격량을 추출할 수 있다. 이에 의해, 가공 저항을 보다 정확하게 알 수 있다. 또한, 제어 장치(20)는, 그 가공 저항을 사용하여 장치 본체(2)를 제어한다. 이에 의해, 측정된 가공 저항에 기초하여 피절삭물 W를 정밀도 좋게 가공할 수 있다.
[부기]
이상 설명한 바와 같이, 본 실시 형태는 이하에 열거하는 개시를 포함한다.
1. SS재의 경도보다도 낮은 경도를 갖는 재질로 이루어지는 피절삭물(W)을 절삭하기 위한 절삭 공구(7)와, 절삭 공구(7)를 파지하고, 또한 회전 구동하는 척부(6)와, 피절삭물(W)을 고정하는 고정부(4)와, 고정부(4)를 척부(6)의 회전축(6A)과 대략 직교하는 방향으로, 가공 속도로 이동시키는 스테이지(3)와, 고정부(3, 4)에 있어서의 피절삭물(W)의 고정 위치의 근방에 설치되고, 피절삭물(W)의 절삭 가공 중에 있어서의 절삭 공구(7)의 진동을 검출하여 감시 신호를 출력하는 센서(15)와, 감시 신호의 시간 파형 데이터를 주파수 파형 데이터로 변환하여, 주파수 파형 데이터로부터, 피절삭물(W)의 절삭 가공 중에 있어서의 충격량을 추출하는 제어 회로(20)를 구비하는, 절삭 가공 장치(1).
2. 센서(15)는, 최대의 절삭 저항이 발생하는 방향에 검출 방향이 일치하도록 설치되는, 상기 1.에 기재된 절삭 가공 장치(1).
3. 절삭 공구(7)는 복수의 절삭날(40)을 갖고, 제어 회로(20)는, 절삭 공구(7)의 회전수와 복수의 절삭날(40)의 수의 곱으로부터 결정되는 가공 주파수를 포함하는 주파수 영역에 있어서의 충격량의 총합을 추출하는, 상기 1. 또는 2.에 기재된 절삭 가공 장치(1).
4. 절삭 공구(7)는 복수의 절삭날(40)을 갖고, 제어 회로(20)는, 절삭 공구의 회전수와 복수의 절삭날(40)의 수의 곱으로부터 결정되는 가공 주파수를 포함하며, 또한, 회전수의 변동을 고려한 주파수 영역에 있어서의 충격량의 총합을 추출하는, 상기 1. 또는 2.에 기재된 절삭 가공 장치(1).
5. 절삭 공구(7)는 복수의 절삭날(40)을 갖고, 제어 회로(20)는, 절삭 공구의 회전수와 복수의 절삭날(40)의 수의 곱으로부터 결정되는 가공 주파수, 및 가공 주파수의 배수의 주파수에 있어서의 충격량의 총합을 추출하는, 상기 1. 또는 2.에 기재된 절삭 가공 장치(1).
6. 제어 회로(20)는, 충격량에 기초하여, 피절삭물(W)의 가공 속도를 제어하도록 구성되는, 상기 1. 내지 5. 중 어느 것에 기재된 절삭 가공 장치(1).
금회 개시된 실시 형태는 모든 점에서 예시이지 제한적인 것은 아니라고 생각되어야 한다. 본 발명의 범위는 상기한 설명이 아니라 청구범위에 의해 개시되고, 청구범위와 균등의 의미 및 범위 내에서의 모든 변경이 포함되는 것을 의도하고 있다.
1: 절삭 가공 장치
2: 장치 본체
3: 스테이지
4: 고정 지그
4A: 제1 지그
4B: 제2 지그
5: 주축 지지부
6: 척부
6A: 회전축
7: 절삭 공구
8: 주축용 모터
9: X축 이송 기구
10: Y축 이송 기구
11: Z축 이송 기구
15: 센서
20: 제어 장치
21: 샘플링부
22: 데이터 변환부
23: 필터부
24: 충격량 추출부
25: 가공 제어부
31: 고속 컨트롤러
32: PLC
40: 절삭날
41: 축부
S1 내지 S4: 스텝
W: 피절삭물

Claims (6)

  1. SS재의 경도보다도 낮은 경도를 갖는 재질로 이루어지는 피절삭물을 절삭하기 위한 절삭 공구와,
    상기 절삭 공구를 파지하고, 또한 회전 구동하는 척부와,
    상기 피절삭물을 고정하는 고정부와,
    상기 고정부를 상기 척부의 회전축과 대략 직교하는 방향으로, 가공 속도로 이동시키는 스테이지와,
    상기 고정부에 있어서의 상기 피절삭물의 고정 위치의 근방에 설치되고, 상기 피절삭물의 절삭 가공 중에 있어서의 상기 절삭 공구의 진동을 검출하여 감시 신호를 출력하는 센서와,
    상기 감시 신호의 시간 파형 데이터를 주파수 파형 데이터로 변환하여, 상기 주파수 파형 데이터로부터, 상기 피절삭물의 절삭 가공 중에 있어서의 충격량을 추출하는 제어 회로를 구비하는, 절삭 가공 장치.
  2. 제1항에 있어서,
    상기 센서는, 최대의 절삭 저항이 발생하는 방향에 검출 방향이 일치하도록 설치되는, 절삭 가공 장치.
  3. 제1항 또는 제2항에 있어서,
    상기 절삭 공구는 복수의 절삭날을 갖고,
    상기 제어 회로는, 상기 절삭 공구의 회전수와 상기 복수의 절삭날의 수의 곱으로부터 결정되는 가공 주파수를 포함하는 주파수 영역에 있어서의 충격량의 총합을 추출하는, 절삭 가공 장치.
  4. 제1항 또는 제2항에 있어서,
    상기 절삭 공구는 복수의 절삭날을 갖고,
    상기 제어 회로는, 상기 절삭 공구의 회전수와 상기 복수의 절삭날의 수의 곱으로부터 결정되는 가공 주파수를 포함하며, 또한, 상기 회전수의 변동을 고려한 주파수 영역에 있어서의 충격량의 총합을 추출하는, 절삭 가공 장치.
  5. 제1항 또는 제2항에 있어서,
    상기 절삭 공구는 복수의 절삭날을 갖고,
    상기 제어 회로는, 상기 절삭 공구의 회전수와 상기 복수의 절삭날의 수의 곱으로부터 결정되는 가공 주파수, 및 상기 가공 주파수의 배수의 주파수에 있어서의 충격량의 총합을 추출하는, 절삭 가공 장치.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    상기 제어 회로는, 상기 충격량에 기초하여, 상기 피절삭물의 상기 가공 속도를 제어하도록 구성되는, 절삭 가공 장치.
KR1020207006981A 2017-10-17 2018-09-26 절삭 가공 장치 KR20200040811A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2017-200899 2017-10-17
JP2017200899A JP2019072806A (ja) 2017-10-17 2017-10-17 切削加工装置
PCT/JP2018/035595 WO2019077948A1 (ja) 2017-10-17 2018-09-26 切削加工装置

Publications (1)

Publication Number Publication Date
KR20200040811A true KR20200040811A (ko) 2020-04-20

Family

ID=66174337

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207006981A KR20200040811A (ko) 2017-10-17 2018-09-26 절삭 가공 장치

Country Status (6)

Country Link
US (1) US12017316B2 (ko)
EP (1) EP3698917B1 (ko)
JP (1) JP2019072806A (ko)
KR (1) KR20200040811A (ko)
CN (1) CN111132799B (ko)
WO (1) WO2019077948A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7410377B2 (ja) * 2019-11-19 2024-01-10 イビデンエンジニアリング株式会社 ドリル破損の予兆検出方法
DE102020133335A1 (de) * 2019-12-17 2021-06-17 Fanuc Corporation Werkzeugmaschine und verfahren zum abschätzen von schwingungen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014914A (ja) 2012-07-11 2014-01-30 Kashiwagi Tekko Kk 切削加工装置および切削加工方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06320398A (ja) * 1993-05-12 1994-11-22 Fuji Sangyo Kk 物品切削・研磨方法
JPH06344246A (ja) * 1993-06-08 1994-12-20 Nissan Motor Co Ltd 切削工具の摩耗検出方法
JPH1133882A (ja) * 1997-07-14 1999-02-09 Toshiba Mach Co Ltd 工具折損判別方法
TW490357B (en) * 1999-05-27 2002-06-11 Sanyo Electric Co Method and device for detecting abnormities of the cutting tool of a cutting machine
JP2001030141A (ja) * 1999-07-23 2001-02-06 Toshiba Corp 薄肉管の加工方法とその装置
JP2004017176A (ja) * 2002-06-12 2004-01-22 Ebara Corp オイルミスト噴射装置及びその制御方法
TWI400591B (zh) * 2010-03-12 2013-07-01 Ind Tech Res Inst 具有線上振動偵測調控之工具機
JP2011211768A (ja) * 2010-03-29 2011-10-20 Fanuc Ltd エンコーダを有する主軸の制御装置
JP5622626B2 (ja) * 2011-03-22 2014-11-12 オークマ株式会社 回転速度表示装置
US20140288882A1 (en) 2011-09-02 2014-09-25 Hitachi, Ltd. Processing Abnormality Detection Method and Processing Device
WO2013073436A1 (ja) * 2011-11-15 2013-05-23 株式会社日立製作所 工作機械の切削力検出装置、切削力検出方法、加工異常検出方法、および加工条件制御システム
EP2735400B1 (en) * 2012-11-22 2023-03-01 Sandvik Intellectual Property AB An arrangement for controlling the process of rotary chip removing machining of a workpiece, and a cutting tool for rotary chip removing machining
JP6021632B2 (ja) * 2012-12-20 2016-11-09 三菱重工業株式会社 加工装置の制御装置、加工装置、加工装置の制御プログラム、加工装置の制御方法、及び加工方法
JP6354349B2 (ja) * 2014-06-05 2018-07-11 ブラザー工業株式会社 振動検出装置と工作機械
EP3078452A1 (en) * 2015-04-09 2016-10-12 Ideko, S. Coop System for suppressing chatter in a machine tool
TWI593502B (zh) * 2015-11-13 2017-08-01 財團法人工業技術研究院 刀具檢測裝置及其刀具檢測方法
JP6578195B2 (ja) * 2015-11-26 2019-09-18 Dmg森精機株式会社 切削工具の固有振動数導出方法及び安定限界曲線作成方法、並びに切削工具の固有振動数導出装置
JP2017156151A (ja) * 2016-02-29 2017-09-07 三菱重工コンプレッサ株式会社 トルク計測装置、歯車箱及びトルク計測方法
CN105834835B (zh) * 2016-04-26 2018-06-19 天津大学 一种基于多尺度主元分析的刀具磨损在线监测方法
JP6501815B2 (ja) * 2017-04-04 2019-04-17 Dmg森精機株式会社 主軸回転速度制御装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014914A (ja) 2012-07-11 2014-01-30 Kashiwagi Tekko Kk 切削加工装置および切削加工方法

Also Published As

Publication number Publication date
CN111132799A (zh) 2020-05-08
US12017316B2 (en) 2024-06-25
EP3698917B1 (en) 2023-08-23
EP3698917A4 (en) 2021-02-17
EP3698917A1 (en) 2020-08-26
CN111132799B (zh) 2021-07-20
US20200238402A1 (en) 2020-07-30
JP2019072806A (ja) 2019-05-16
WO2019077948A1 (ja) 2019-04-25

Similar Documents

Publication Publication Date Title
KR101619917B1 (ko) 복합 가공 방법 및 복합 가공 장치
KR101472890B1 (ko) 채터진동 검출방법 및 채터진동 회피방법, 그리고 공작기계
JP4582660B2 (ja) 工作機械の振動抑制装置
JP4433422B2 (ja) 振動抑制装置
US8950507B2 (en) Device for preventing vibrations in a tool spindle
KR20200040811A (ko) 절삭 가공 장치
KR20200062187A (ko) 이상 검출장치 및 이상 검출장치를 구비한 공작기계
JP4891150B2 (ja) 工作機械の振動抑制装置
JP5385330B2 (ja) 高精度加工装置
JP5983112B2 (ja) 工作機械の動特性算出装置および動特性算出方法
JP5748412B2 (ja) 工作機械の切削工具刃先診断装置
WO2020213387A1 (ja) 切削工具の摩耗検出方法および切削加工装置
KR20130140735A (ko) 가공 장치
JP5711015B2 (ja) 定寸装置
JP2008093787A (ja) 研削盤
JP2014091187A (ja) 工具異常検出装置と工具異常検出方法
KR20190133888A (ko) 가속도 센서를 이용한 채터 감지 방법 및 시스템
JP7058210B2 (ja) 工作機械、欠損検知方法、および欠損検知プログラム
JPWO2018092221A1 (ja) 工作機械の送り軸制御方法および送り軸制御装置
JP2019072807A (ja) 研削加工装置
JP2005193318A (ja) 加工装置
KR20140112625A (ko) 공작 기계용 클램핑 장치
JP2013193154A (ja) 研削盤
JP5964261B2 (ja) 薄板状被加工物のフライス工具による加工方法
JP6141157B2 (ja) 高周波振動援用加工装置及びその加工方法

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E601 Decision to refuse application