KR20190084616A - Manufacturing method for Ni-Co-Mn composite precursor using recycled seed material - Google Patents

Manufacturing method for Ni-Co-Mn composite precursor using recycled seed material Download PDF

Info

Publication number
KR20190084616A
KR20190084616A KR1020180002581A KR20180002581A KR20190084616A KR 20190084616 A KR20190084616 A KR 20190084616A KR 1020180002581 A KR1020180002581 A KR 1020180002581A KR 20180002581 A KR20180002581 A KR 20180002581A KR 20190084616 A KR20190084616 A KR 20190084616A
Authority
KR
South Korea
Prior art keywords
cobalt
nickel
precursor
manganese composite
composite precursor
Prior art date
Application number
KR1020180002581A
Other languages
Korean (ko)
Other versions
KR102072004B1 (en
Inventor
권순모
권오상
우대중
Original Assignee
주식회사 이엔드디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이엔드디 filed Critical 주식회사 이엔드디
Priority to KR1020180002581A priority Critical patent/KR102072004B1/en
Priority to PCT/KR2018/000459 priority patent/WO2019139181A1/en
Publication of KR20190084616A publication Critical patent/KR20190084616A/en
Application granted granted Critical
Publication of KR102072004B1 publication Critical patent/KR102072004B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

The present invention relates to a technology of recycling wastewater generated when manufacturing a nickel-cobalt-manganese composite precursor which is a positive electrode active material precursor for a lithium secondary battery and, more specifically, to a technology of using separated heavy metals as a seed for a nickel-cobalt-manganese composite precursor after heavy metals are separated from wastewater. By eliminating heavy metals from wastewater, the environment can be protected and material costs for manufacturing a nickel-cobalt-manganese composite precursor can be reduced.

Description

재활용 시드를 사용한 니켈―코발트―망간 복합전구체의 제조 방법{Manufacturing method for Ni-Co-Mn composite precursor using recycled seed material}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nickel-cobalt-manganese composite precursor using a recycled seed,

본 발명은 니켈-코발트-망간 복합전구체의 제조 방법에 관한 기술로서, 더욱 구체적으로는 리튬이차전지용 양극 활물질 전구체인 니켈-코발트-망간 복합전구체 NixCoyMn1-x-y(OH)2 (여기서, 0<x<1, 0<y<1, 0<x+y<1)의 제조 시 발생하는 폐수로부터 미반응 중금속인, Ni, Co, Mn 등을 분리한 후 상기에서 얻어진 중금속을 후속 공침 반응에서 시드로 재활용하여, 다시 공침 반응을 통해 니켈-코발트-망간 복합전구체를 제조하는 기술에 관한 것이다. 즉, 본 발명은 니켈-코발트-망간 복합전구체의 제조 시 발생하는 폐수를 재활용할 수 있는 기술에 관한 것이다.More particularly, the present invention relates to a nickel-cobalt-manganese composite precursor Ni x Co y Mn 1-xy (OH) 2 , which is a precursor of a cathode active material for a lithium secondary battery , Ni, Co, Mn, etc., which are unreacted heavy metals, are separated from the wastewater generated in the production of 0 <x <1, 0 <y <1, 0 <x + y < Cobalt-manganese composite precursor through a coprecipitation reaction by recycling it as a seed in the reaction. That is, the present invention relates to a technique for recycling wastewater generated in the production of a nickel-cobalt-manganese composite precursor.

휴대용의 소형 전기ㆍ전자기기의 보급 확산에 따라 니켈수소전지나 리튬이차전지와 같은 신형 이차전지 개발이 활발하게 진행되고 있다. 이 중 리튬이차전지는 흑연 등의 카본을 음극 활물질로 사용하고, 리튬이 포함되어 있는 금속 산화물을 양극 활물질로 사용하며, 비수 용매를 전해액으로 사용하는 전지이다. 리튬은 이온화 경향이 매우 큰 금속으로 고전압 발현이 가능하여 에너지 밀도가 높은 전지에 각광을 받고 있는 물질이다. Development of new secondary batteries such as a nickel hydride battery and a lithium secondary battery is progressing actively due to the spread of portable small electric and electronic devices. Among them, the lithium secondary battery uses carbon such as graphite as an anode active material, a metal oxide containing lithium as a cathode active material, and a non-aqueous solvent as an electrolyte. Lithium is a metal that has a very high ionization tendency, and is capable of high voltage generation, and is a material that is attracted to high energy density batteries.

리튬이차전지에 사용되는 양극 활물질로는 리튬을 함유하고 있는 리튬 전이금속산화물이 주로 사용되고 있으며, 코발트계, 니켈계, 삼성분계(코발트, 니켈 및 망간이 공존) 등의 층상계 리튬 전이금속 복합산화물이 90% 이상 사용되고 있다. 예를 들어, Li2CO3와 NixCoyMn1-x-y(OH)2계 전구체를 혼합 소성 가공하여 양극 소재로 사용하고 있다. 통상 NixCoyMn1-x-y(OH)2 전구체는 공침법을 이용하여 제조되는데, 니켈염, 망간염 및 코발트염을 증류수에 용해한 후, 암모니아 수용액(킬레이팅제), NaOH 수용액(염기성 수용액)과 함께 반응기에 투입하면 NixCoyMn1-x-y(OH)2이 고상으로 합성된 후 침전된다.Lithium transition metal oxides containing lithium are mainly used as the positive electrode active material used in the lithium secondary battery, and layered lithium transition metal complex oxides such as cobalt, nickel, ternary system (coexisting cobalt, nickel and manganese) Have been used for more than 90%. For example, Li 2 CO 3 and Ni x Co y Mn 1-xy (OH) 2 precursors are mixed and calcined to be used as a cathode material. In general, the Ni x Co y Mn 1-xy (OH) 2 precursor is prepared by coprecipitation. After the nickel salt, manganese salt and cobalt salt are dissolved in distilled water, an aqueous ammonia solution (chelating agent), aqueous NaOH solution ), The Ni x Co y Mn 1-xy (OH) 2 is synthesized as a solid phase and precipitated.

전술한 바와 같이, 위와 같은 리튬이차전지를 구성하는 양극 활물질을 제조하기 위한 일반적인 방법으로는 공침법을 사용하는데, 공침 과정에서 발생하는 폐수에는 니켈(Ni), 망간(Mn), 코발트(Co) 등의 중금속이 수십 ~ 수백 ppm까지 포함되어 있으며, 암모니아와 수산화나트륨의 사용으로 인해 pH 10 이상의 강알칼리성을 나타내며, (NH4)2SO4, NH4OH 등의 총질소는 8,000~10,000ppm, Na2SO4 등의 무기염은 전체 폐수의 중량에 대하여 10 중량% 정도 포함되게 된다. 이러한 폐수를 적절히 처리하지 않고 외부로 방출할 경우, 심각한 환경 오염을 유발할 수 있다.As described above, as a general method for producing the positive electrode active material constituting the lithium secondary battery as described above, coprecipitation is used. Nickel (Ni), manganese (Mn), cobalt (Co) (NH 4 ) 2 SO 4 , NH 4 OH, and the like are in the range of 8,000 to 10,000 ppm, and the total nitrogen such as (NH 4 ) 2 SO 4 and NH 4 OH is in the range of 8,000 to 10,000 ppm, And inorganic salts such as Na 2 SO 4 are contained in an amount of about 10% by weight based on the weight of the total wastewater. If these wastewater are discharged to the outside without proper treatment, serious environmental pollution may occur.

상기와 같은 공침 반응 후의 폐수의 처리 방법으로서, 대한민국 특허등록 제10-1137251호는 응집, 여과, 총질소 제거, 농축 단계를 포함하는 니켈-코발트-망간 양극활물질 제조 시 발생하는 폐수의 처리 방법을 제시하고 있으나, 상기 특허에서는 폐수 중 중금속, 총질소 등을 제거하기 위한 방법만을 제시하고 있을 뿐, 폐수 내의 고가의 재료인 니켈, 코발트, 망간의 재활용 방안을 제시하지 못하고 있는 단점이 있다.As a method for treating wastewater after the above coprecipitation reaction, Korean Patent Registration No. 10-1137251 discloses a method for treating wastewater generated in the production of a nickel-cobalt-manganese cathode active material including coagulation, filtration, total nitrogen removal, However, the above patent only discloses a method for removing heavy metals and total nitrogen in wastewater, and disadvantageously fails to suggest recycling methods of nickel, cobalt and manganese, which are expensive materials in wastewater.

대한민국 특허등록 제10-1137251호Korean Patent Registration No. 10-1137251

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로서, 리튬이차전지용 양극 활물질 전구체 제조 시 발생하는 중금속을 효과적으로 제거한 후, 상기 분리된 중금속을 재활용하는 방법을 제공하는 것을 목적으로 한다.Disclosure of Invention Technical Problem [8] Accordingly, the present invention has been made to solve the above problems, and it is an object of the present invention to provide a method for effectively removing heavy metals generated during the production of a precursor of a cathode active material for lithium secondary batteries, and recycling the separated heavy metals.

특히, 본 발명은 공침 반응 후의 폐수 속의 중금속을 시드로 재활용하여 니켈-코발트-망간 복합전구체를 제조하는 방법을 제공하는 것을 목적으로 한다.Particularly, the object of the present invention is to provide a method for producing a nickel-cobalt-manganese composite precursor by recycling a heavy metal in a wastewater after a coprecipitation reaction as a seed.

본 발명은, 이차 전지용 양극활물질 전구체인 니켈-코발트-망간 복합전구체의 제조시 발생하는 폐수를 상기 복합전구체로부터 분리하는 단계(1); 상기 분리된 폐수에 알칼리용액을 주입하여 중금속을 수산화착물로 제조하는 단계(2); 상기 수산화착물을 여과하는 단계(3); 및 상기 단계(3)에서 얻은 중금속 수산화착물을 시드로 하여 공침 반응을 위한 알칼리용액 및 킬레이팅제를 추가 주입하여, 공침을 통해 니켈-코발트-망간 복합전구를 제조하는 단계(4)를 포함하여 이루어지는, 재활용 시드를 사용한 니켈―코발트―망간 복합전구체의 제조 방법을 제공한다.The present invention relates to a method for producing a nickel-cobalt-manganese composite precursor, comprising the steps of: (1) separating wastewater generated from the nickel-cobalt-manganese composite precursor, which is a precursor of a cathode active material for a secondary battery, from the complex precursor; (2) injecting the alkaline solution into the separated wastewater to prepare a heavy metal as a hydroxide complex; (3) filtering the hydroxide complex; And (4) preparing a nickel-cobalt-manganese composite bulb through coprecipitation by further injecting an alkaline solution and a chelating agent for the coprecipitation reaction using the heavy metal hydroxide complex obtained in the step (3) as a seed, Cobalt-manganese composite precursor using a recycled seed.

특히, 상기 단계(2)의 알칼리용액은 NaOH일 수 있다.In particular, the alkali solution of step (2) may be NaOH.

특히, 상기 단계(3)의 수산화착물은 Ni(OH)2, Co(OH)2, Mn(OH)2, NiCoMn(OH)2 중 어느 하나 이상일 수 있다.In particular, the hydroxide complex of step (3) may be any one or more of Ni (OH) 2 , Co (OH) 2 , Mn (OH) 2 and NiCoMn (OH) 2 .

특히, 상기 단계(4)에 추가로 니켈, 코발트, 망간 원료를 더 주입하여 공침 을 진행할 수 있다. Particularly, in addition to the step (4), the coprecipitation can be further performed by further injecting nickel, cobalt and manganese raw materials.

본 발명에 따른 니켈-코발트-망간 공침 반응에 의해 발생하는 폐수의 처리 방법은 폐수 중에 포함되어 있는 중금속을 효과적으로 분리한 후, 이를 다시 재활용하여 니켈-코발트-망간 복합전구체의 제조에 사용할 수 있는바, 고가의 중금속을 폐수로부터 제거함으로써 환경 보호 효과와 더불어 니켈-코발트-망간 복합전구체의 제조 시 소요되는 재료비 절감 효과를 동시에 얻을 수 있는 이중효과가 있다.The method of treating wastewater generated by the nickel-cobalt-manganese coprecipitation reaction according to the present invention can effectively recover the heavy metals contained in the wastewater and recycle the heavy metals to prepare nickel-cobalt-manganese composite precursor , The expensive heavy metals are removed from the wastewater, and there is a double effect of simultaneously obtaining the environmental protection effect and the material cost reduction effect in manufacturing the nickel-cobalt-manganese composite precursor.

도 1 및 2는 비교예에 의해 제조된 니켈-코발트-망간 복합전구체의 배율을 달리한 SEM 측정 사진이다.
도 3 및 4는 실시예에 의해 제조된 니켈-코발트-망간 복합전구체의 배율을 달리한 SEM 측정 사진이다.
도 5 및 도 6은 각각 비교예 및 실험예의 복합전구체의 입도분포도이다.
FIGS. 1 and 2 are SEM photographs showing magnifications of the nickel-cobalt-manganese composite precursor produced by the comparative example.
FIGS. 3 and 4 are SEM photographs showing magnifications of nickel-cobalt-manganese composite precursors prepared by the examples.
5 and 6 are particle size distribution diagrams of the composite precursors of Comparative Examples and Experimental Examples, respectively.

본 발명은 리튬이차전지용 양극 활물질 전구체인 니켈-코발트-망간 양극활물질 제조 시 발생하는 폐수로부터 중금속을 제거한 후 얻어지는 Ni, Co, Mn 입자를 재활용하여, 상기 폐수로부터 분리된 중금속을 원료로 하여 공침 반응을 통해 니켈-코발트-망간 복합전구체를 제조하는 방법을 제공하는 것을 특징으로 한다.The present invention relates to a nickel-cobalt-manganese cathode active material precursor which is a precursor of a lithium secondary battery, which comprises recycled Ni, Co, and Mn particles obtained after removing heavy metals from wastewater generated from the wastewater, Cobalt-manganese composite precursor through a nickel-cobalt-manganese composite precursor.

즉, 본 발명은, 이차 전지용 양극활물질 전구체인 니켈-코발트-망간 복합전구체의 제조시 발생하는 폐수를 상기 복합전구체로부터 분리하는 단계(1); 상기 분리된 폐수에 알칼리용액을 주입하여 중금속을 수산화착물로 제조하는 단계(2); 상기 수산화착물을 여과하는 단계(3); 및 상기 단계(3)에서 얻은 중금속 수산화착물을 시드로 하여 공침 반응을 위한 알칼리용액 및 킬레이팅제를 추가 주입하여, 공침을 통해 니켈-코발트-망간 복합전구를 제조하는 단계(4)를 포함하여 이루어지는, 재활용 시드를 사용한 니켈―코발트―망간 복합전구체의 제조 방법을 제공한다.That is, the present invention provides a method for producing a nickel-cobalt-manganese composite precursor, comprising: (1) separating wastewater generated from a nickel-cobalt-manganese composite precursor, which is a precursor of a cathode active material for a secondary battery, from the complex precursor; (2) injecting the alkaline solution into the separated wastewater to prepare a heavy metal as a hydroxide complex; (3) filtering the hydroxide complex; And (4) preparing a nickel-cobalt-manganese composite bulb through coprecipitation by further injecting an alkaline solution and a chelating agent for the coprecipitation reaction using the heavy metal hydroxide complex obtained in the step (3) as a seed, Cobalt-manganese composite precursor using a recycled seed.

이하에서는 각 단계별로 설명하기로 한다.Hereinafter, each step will be described.

단계(1)Step (1)

Ni, Co, Mn과 공침을 위한 킬레이팅제 및 알칼리용액을 혼합 반응하여 니켈-코발트-망간 복합전구체를 제조하는 공침 공정에서 제조된 복합전구체와 폐수를 분리하는 단계로서, 상기 공침 과정은 종래 잘 알려진 기술이므로 본 발명에서는 구체적인 설명을 생략하기로 한다. 이러한 공침 과정에서 발생하는 폐수에는 니켈, 코발트, 망간 등의 중금속이 수십 ~ 수백 ppm까지 포함되어 있어, 폐수 내의 중금속을 재활용하지 않는다고 하더라고 폐수 내 중금속 함량은 각 5 ppm 미만이어야 방류할 수 있기 때문에 방류 자체도 불가능하다. A step of separating the composite precursor and the wastewater produced in the coprecipitation step of preparing a nickel-cobalt-manganese composite precursor by mixing and reacting a chelating agent and an alkaline solution for co-precipitation with Ni, Co and Mn, And thus a detailed description thereof will be omitted in the present invention. Since heavy metals such as nickel, cobalt and manganese are contained in the wastewater generated in the process of coprecipitation, the heavy metals in the wastewater are less than 5 ppm, even if they do not recycle the heavy metals in the wastewater. It is impossible in itself.

상기 공침 과정에서 생산된 복합전구체를 여과 분리한 후, 미반응 중금속이 다량 함유된 폐수를 다음 단계(2)에서 이용한다.After the complex precursor produced in the coprecipitation process is separated by filtration, wastewater containing a large amount of unreacted heavy metals is used in the next step (2).

단계(2)Step (2)

상기 폐수에서 Ni, Co, Mn 등의 중금속이 다량 포함되어 있으며, 본 발명에서는 알칼리 용액, 예를 들어, NaOH와 상기 폐수 내의 중금속을 반응하도록 함으로써 상기 중금속을 수산화착물, 예를 들어, Ni(OH)2, Co(OH)2, Mn(OH)2로 침전하여 파우더 형태로 존재하게 한다.The waste water contains a large amount of heavy metals such as Ni, Co, Mn. In the present invention, the heavy metal is reacted with an alkaline solution, for example, NaOH and a heavy metal in the wastewater, ) 2 , Co (OH) 2 , Mn (OH) 2 , and exist in powder form.

또한, 단계(1)에서의 폐수 내에 Ni, Co, Mn의 잔류량에 따라 수산화착물이 Ni(OH)2, Co(OH)2, Mn(OH)2 모두가 될 수도 있으며, 이중 어느 하나의 수산화착물만이 생성될 수도 있다. 만일 어느 하나의 수산화착물만이 생성되는 경우 단계(4)에서는 부족한 중금속은 별도로 보충해주어야 하는데, 예를 들어, 황산니켈, 황산코발트, 황산망간 등을 공침 반응에 더 주입할 수 있다.The hydroxide complex may be Ni (OH) 2 , Co (OH) 2 or Mn (OH) 2 depending on the residual amount of Ni, Co or Mn in the wastewater in step (1) Only complexes may be generated. If only one hydroxide complex is formed, the heavy metals that are insufficient in step (4) must be supplemented separately. For example, nickel sulfate, cobalt sulfate, and manganese sulfate may be further added to the coprecipitation reaction.

단계(3)Step (3)

상기 침전된 중금속 수산화착물을 용액으로부터 분리하기 위하여 필터링을 거친다. 회수된 중금속 수산화착물 파우더는 아래 단계(4)에서 공침을 위한 시드(seed)로 사용된다.The precipitated heavy metal hydroxide complex is filtered to separate it from the solution. The recovered heavy metal hydroxide complex powder is used as a seed for coprecipitation in step (4) below.

단계(4)Step (4)

상기 단계(3)에서 수득한 Ni(OH)2, Co(OH)2, Mn(OH)2 등의 소립자를 시드로 하여, 킬레이팅제 및 알칼리용액을 추가하여 공침 반응을 통해 NiCoMn(OH)2를 형성한다. 전술한 바와 같이, 만일 단계(2)에서 제조된 중금속 수산화착물 중 일정 중금속만이 다량 함유되어 있고 다른 중금속의 함량이 적은 경우, 함량이 적은 중금속은 단계(4)의 공침 반응을 위해 추가하여야 한다.A chelating agent and an alkali solution are added as seeds to the Ni (OH) 2 , Co (OH) 2 and Mn (OH) 2 obtained in step (3) 2 . As described above, if the heavy metal hydroxide complex produced in step (2) contains only a large amount of heavy metals and the content of other heavy metals is small, a heavy metal having a low content should be added for the coprecipitation reaction in step (4) .

이하에서는 실시예 및 비교예를 통해 본 발명에 대하여 자세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to examples and comparative examples.

실시예Example

통상의 공침 과정을 통해 니켈-코발트-망간 복합전구체를 제조한 후 발생하는 폐수를 분리하였다. 상기 폐수를 분석한 결과, Co 및 Mn은 극미량이었으며, Ni 성분이 100 ppm 내외로 검출되었다. The wastewater generated after nickel - cobalt - manganese complex precursor was prepared through ordinary coprecipitation process was separated. As a result of the analysis of the wastewater, Co and Mn were trace amounts, and Ni component was detected to be about 100 ppm.

상기 폐수에 NaOH(98%) 수용액 및 킬레이팅제를 첨가하여 중금속 수산화물, 특히, Ni(OH)2를 침전시켰다. 이 착물은 슬러리 형태의 미립자이며, 여과한 뒤 폐기하지 않고 니켈-코발트-망간 복합전구체를 제조하기 위한 공침 반응 시 소립자를 만들기 위한 시드로 재활용하여, 실시예의 니켈-코발트-망간 복합전구체를 제조하였다.NaOH (98%) aqueous solution and chelating agent were added to the wastewater to precipitate heavy metal hydroxides, especially Ni (OH) 2 . The complex was a slurry-like fine particle, and after the filtration, the nickel-cobalt-manganese composite precursor of the example was prepared by recycling it as a seed for making fine particles in a coprecipitation reaction for preparing a nickel-cobalt-manganese composite precursor .

비교예Comparative Example

비교예의 니켈-코발트-망간 복합전구체는, 황산니켈, 황산코발트, 황산망간의 원료에 NH4OH와 NaOH의 혼합 용액을 이용한 공침을 통해 제조되었다.The nickel-cobalt-manganese composite precursor of Comparative Example was prepared by coprecipitation using a mixed solution of NH 4 OH and NaOH as raw materials for nickel sulfate, cobalt sulfate and manganese sulfate.

실험예 1 : SEM 측정 Experimental Example 1: SEM measurement

도 1 및 2는 비교예에 의해 제조된 니켈-코발트-망간 복합전구체의 배율을 달리한 SEM 측정 사진이며, 도 3 및 4는 실시예에 의해 제조된 니켈-코발트-망간 복합전구체의 배율을 달리한 SEM 측정 사진이다. 실시예 및 비교예의 복합전구체 모두 비교적 균일한 형상의 전구체가 제조되었음을 확인할 수 있었다.FIGS. 1 and 2 are SEM photographs of nickel-cobalt-manganese composite precursors prepared according to the comparative examples at different magnifications, and FIGS. It is a SEM measurement photograph. It was confirmed that both of the complex precursors of Examples and Comparative Examples had a relatively uniform precursor.

실험예 2 : 입도분포도Experimental Example 2: Particle size distribution

도 5 및 도 6은 각각 비교예 및 실험예의 복합전구체의 입도분포도로서 재활용 시드를 사용하여 제조된 복합전구체와 통상의 방법으로 제조된 복합전구체의 입도분포에 큰 차이가 없음을 알 수 있으며, 이를 통해 본 발명의 방법이 현장에서 적용 가능함을 확인할 수 있었다.FIG. 5 and FIG. 6 are particle size distribution diagrams of the composite precursors of Comparative Examples and Experimental Examples, respectively. It can be seen that there is no significant difference in particle size distribution between the composite precursor prepared by using the recycled seed and the composite precursor produced by the conventional method, It can be confirmed that the method of the present invention is applicable in the field.

Claims (4)

이차 전지용 양극활물질 전구체인 니켈-코발트-망간 복합전구체의 제조시 발생하는 폐수를 상기 복합전구체로부터 분리하는 단계(1);
상기 분리된 폐수에 알칼리용액을 주입하여 중금속을 수산화착물로 제조하는 단계(2);
상기 수산화착물을 여과하는 단계(3); 및
상기 단계(3)에서 얻은 중금속 수산화착물을 시드로 하여 공침 반응을 위한 알칼리용액 및 킬레이팅제를 추가 주입하여, 공침을 통해 니켈-코발트-망간 복합전구를 제조하는 단계(4)를 포함하여 이루어지는, 재활용 시드를 사용한 니켈―코발트―망간 복합전구체의 제조 방법.
(1) separating wastewater generated in the production of a nickel-cobalt-manganese composite precursor, which is a precursor of a cathode active material for a secondary battery, from the complex precursor;
(2) injecting the alkaline solution into the separated wastewater to prepare a heavy metal as a hydroxide complex;
(3) filtering the hydroxide complex; And
(4) preparing a nickel-cobalt-manganese composite bulb through coprecipitation by further injecting an alkali solution and a chelating agent for the coprecipitation reaction using the heavy metal hydroxide complex obtained in the step (3) as a seed, , A method for producing a nickel-cobalt-manganese composite precursor using a recycled seed.
제1항에서, 상기 단계(2)의 알칼리용액은 NaOH인, 재활용 시드를 사용한 니켈―코발트―망간 복합전구체의 제조 방법.
The method for producing a nickel-cobalt-manganese composite precursor according to claim 1, wherein the alkaline solution of step (2) is NaOH.
제1항에서, 상기 단계(3)의 수산화 착물은 Ni(OH)2, Co(OH)2, Mn(OH)2 중 어느 하나 이상인, 재활용 시드를 사용한 니켈―코발트―망간 복합전구체의 제조 방법.
In claim 1, wherein the hydroxide complex of the above step (3) is Ni (OH) 2, Co (OH) 2, Mn (OH) nickel with any one of two one or more, recycling seed-cobalt-method of manufacturing a manganese complex precursor .
제1항에서, 상기 단계(4)에 추가로 니켈, 코발트, 망간 원료를 더 주입하여 공침을 진행하는, 재활용 시드를 사용한 니켈―코발트―망간 복합전구체의 제조 방법. The method for producing a nickel-cobalt-manganese composite precursor according to claim 1, further comprising the step of adding a nickel, cobalt, and manganese raw material to the step (4) to conduct coprecipitation.
KR1020180002581A 2018-01-09 2018-01-09 Manufacturing method for Ni-Co-Mn composite precursor using recycled seed material KR102072004B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020180002581A KR102072004B1 (en) 2018-01-09 2018-01-09 Manufacturing method for Ni-Co-Mn composite precursor using recycled seed material
PCT/KR2018/000459 WO2019139181A1 (en) 2018-01-09 2018-01-10 Method for preparing nickel-cobalt-manganese composite precursor by using recycled seed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180002581A KR102072004B1 (en) 2018-01-09 2018-01-09 Manufacturing method for Ni-Co-Mn composite precursor using recycled seed material

Publications (2)

Publication Number Publication Date
KR20190084616A true KR20190084616A (en) 2019-07-17
KR102072004B1 KR102072004B1 (en) 2020-03-02

Family

ID=67218595

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180002581A KR102072004B1 (en) 2018-01-09 2018-01-09 Manufacturing method for Ni-Co-Mn composite precursor using recycled seed material

Country Status (2)

Country Link
KR (1) KR102072004B1 (en)
WO (1) WO2019139181A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111206148A (en) * 2020-03-16 2020-05-29 宁波容百新能源科技股份有限公司 Method for recycling and preparing ternary cathode material by using waste ternary lithium battery
KR20230053233A (en) 2021-10-14 2023-04-21 (주)에코프로머티리얼즈 Method for surface coating of unreacted metals in preparation of cathode active material precursors
KR20230070738A (en) * 2021-11-15 2023-05-23 주식회사 에코앤드림 Manufacturing method of NCM precursor using recycled materials
WO2023158586A1 (en) * 2022-02-18 2023-08-24 Redwood Materials Method of making a cathode active material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111916656A (en) * 2020-07-21 2020-11-10 合肥通用机械研究院有限公司 Integrated production system for ternary material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110061043A (en) * 2009-12-01 2011-06-09 주식회사 에코프로 Method of waste water treatment containing heavy metals and total nitrogen of high concentration generated from production of cathode active material precursor for a lithium secondary battery
KR20110117024A (en) * 2010-04-20 2011-10-26 한국지질자원연구원 Method for reusing valuable metal of used battery
JP2017204340A (en) * 2016-05-09 2017-11-16 日立金属株式会社 Method for manufacturing positive electrode active material for lithium ion secondary battery
KR20170138101A (en) * 2016-06-07 2017-12-15 (주)이엠티 A Method For Treating Waste Water Generated In Process Of Manufacturing A Precursor Of Cathode Active Material For Lithium Batteries

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4482488B2 (en) * 2005-05-20 2010-06-16 オルガノ株式会社 Method and apparatus for treating inorganic wastewater
KR101392616B1 (en) * 2012-10-30 2014-05-07 (주)이엠티 Regeneration method of precursor material using disposed cathod material of lithum-ion battery, precursor, anode material and lithum-ion battery using the regenerated material by the method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110061043A (en) * 2009-12-01 2011-06-09 주식회사 에코프로 Method of waste water treatment containing heavy metals and total nitrogen of high concentration generated from production of cathode active material precursor for a lithium secondary battery
KR101137251B1 (en) 2009-12-01 2012-04-20 주식회사 에코프로 Method of waste water treatment containing heavy metals and total nitrogen of high concentration generated from production of cathode active material precursor for a lithium secondary battery
KR20110117024A (en) * 2010-04-20 2011-10-26 한국지질자원연구원 Method for reusing valuable metal of used battery
JP2017204340A (en) * 2016-05-09 2017-11-16 日立金属株式会社 Method for manufacturing positive electrode active material for lithium ion secondary battery
KR20170138101A (en) * 2016-06-07 2017-12-15 (주)이엠티 A Method For Treating Waste Water Generated In Process Of Manufacturing A Precursor Of Cathode Active Material For Lithium Batteries

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111206148A (en) * 2020-03-16 2020-05-29 宁波容百新能源科技股份有限公司 Method for recycling and preparing ternary cathode material by using waste ternary lithium battery
CN111206148B (en) * 2020-03-16 2021-11-26 宁波容百新能源科技股份有限公司 Method for recycling and preparing ternary cathode material by using waste ternary lithium battery
KR20230053233A (en) 2021-10-14 2023-04-21 (주)에코프로머티리얼즈 Method for surface coating of unreacted metals in preparation of cathode active material precursors
KR20230070738A (en) * 2021-11-15 2023-05-23 주식회사 에코앤드림 Manufacturing method of NCM precursor using recycled materials
WO2023158586A1 (en) * 2022-02-18 2023-08-24 Redwood Materials Method of making a cathode active material

Also Published As

Publication number Publication date
WO2019139181A1 (en) 2019-07-18
KR102072004B1 (en) 2020-03-02

Similar Documents

Publication Publication Date Title
KR102072004B1 (en) Manufacturing method for Ni-Co-Mn composite precursor using recycled seed material
JP7384805B2 (en) Reuse of batteries by leachate treatment using metallic nickel
Leal et al. Recycling of spent lithium-ion batteries as a sustainable solution to obtain raw materials for different applications
CN105591171B (en) The recovery method of valuable metal in a kind of waste and old nickel-cobalt-manganese ternary lithium ion battery
EP3767737A1 (en) Method for recovering active metal of lithium secondary battery
CN103199320B (en) Method for recycling nickel-cobalt-manganese ternary anode material
CN110527835B (en) Method for recycling soft package full components of waste ternary lithium battery
CN104105803B (en) The recovery method of lithium
Patil et al. Rapid dissolution and recovery of Li and Co from spent LiCoO2 using mild organic acids under microwave irradiation
EP4372112A2 (en) Process for the recovery of cathode materials in the recycling of batteries
KR102064668B1 (en) A Method of Recycling Material for Precursor of Anode Active Material, Precursor of Anode Active Material, Anode Active Material, Anode, and Lithium Ion Secondary Battery Using The Same
JP4620378B2 (en) Lithium phosphate aggregate, method for producing the same, and method for producing lithium iron phosphorus composite oxide
CN106299526B (en) Recycling method of strong alkali solution in waste lithium battery recycling industry
EP2444507A1 (en) Recovery of rare earth metals from waste material by leaching in non-oxidizing acid and by precipitating using sulphates
JP2021521327A (en) Method of recovering lithium and transition metals using heat
KR20170052012A (en) Recycling method for waste electrode of lithium secondary battery
KR101589738B1 (en) Method of preparing positive active material precursor
CN105375078A (en) Method for circularly preparing spherical lithium nickel cobalt manganese oxide by lithium-ion battery positive plate
CN106803588A (en) A kind of recycling method of sodium sulfate waste liquid
KR20210017064A (en) Method for recovering lithium element from lithium containing waste solution
CN103221557B (en) Method for producing nickel-ontaining acidic solution
CN112850801A (en) Preparation method of large-particle cobaltosic oxide
KR102025201B1 (en) Manufacturing method for Ni-Co-Mn composite precursor using recycled ammonia
KR102313962B1 (en) Manufacturing method of precursor for cathode active material from waste lithium secondary battery
KR20150075253A (en) Method of recovering effective metal material from positive electrode scrab

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right