JP4620378B2 - Lithium phosphate aggregate, method for producing the same, and method for producing lithium iron phosphorus composite oxide - Google Patents

Lithium phosphate aggregate, method for producing the same, and method for producing lithium iron phosphorus composite oxide Download PDF

Info

Publication number
JP4620378B2
JP4620378B2 JP2004118757A JP2004118757A JP4620378B2 JP 4620378 B2 JP4620378 B2 JP 4620378B2 JP 2004118757 A JP2004118757 A JP 2004118757A JP 2004118757 A JP2004118757 A JP 2004118757A JP 4620378 B2 JP4620378 B2 JP 4620378B2
Authority
JP
Japan
Prior art keywords
lithium
aggregate
phosphate
lithium phosphate
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004118757A
Other languages
Japanese (ja)
Other versions
JP2004359538A (en
Inventor
泰裕 仲岡
真之 木下
信幸 山崎
克幸 根岸
祐貴 安部
宏介 竹内
俊介 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2004118757A priority Critical patent/JP4620378B2/en
Priority to KR1020040032129A priority patent/KR101037825B1/en
Priority to CNB2004100347371A priority patent/CN100348478C/en
Publication of JP2004359538A publication Critical patent/JP2004359538A/en
Application granted granted Critical
Publication of JP4620378B2 publication Critical patent/JP4620378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D2211/00Paper-money handling devices

Description

本発明は、アリルアルコール製造用触媒、機能性無機材料の製造原料の用途、無機固体電解質の原料、特に、リチウム二次電池の正極活物質で用いるLiMPO4(MはFe、Mn、Ni、Co及びAlから選ばれる少なくとも1種以上の金属元素を示す。)の製造原料として有用なリン酸リチウム凝集体、その製造方法及び該リン酸リチウム凝集体を用いたリチウム鉄リン系複合酸化物の製造方法に関するものである。 The present invention relates to a catalyst for producing allyl alcohol, a use of a raw material for producing a functional inorganic material, a raw material for an inorganic solid electrolyte, particularly LiMPO 4 (M is Fe, Mn, Ni, Co) used in a positive electrode active material of a lithium secondary battery. And at least one metal element selected from Al.) Lithium phosphate aggregate useful as a production raw material, a production method thereof, and production of lithium iron-phosphorus composite oxide using the lithium phosphate aggregate It is about the method.

近年、家庭電器においてポータブル化、コードレス化が急速に進むに従い、ラップトップ型パソコン、携帯電話、ビデオカメラ等の小型電子機器の電源としてリチウムイオン二次電池が実用化されている。このリチウムイオン二次電池については、1980年に水島等によりコバルト酸リチウムがリチウムイオン二次電池の正極活物質として有用であるとの報告{「マテリアル リサーチブレティン」Vol15、P783−789(1980)}がなされて以来、コバルト酸リチウムに関する研究開発が活発に進められており、これまで多くの提案がなされている。   In recent years, as home appliances have become portable and cordless, lithium ion secondary batteries have been put to practical use as power sources for small electronic devices such as laptop computers, mobile phones, and video cameras. Regarding this lithium ion secondary battery, in 1980, Mizushima et al. Reported that lithium cobalt oxide was useful as a positive electrode active material of the lithium ion secondary battery {"Material Research Bulletin" Vol 15, P783-789 (1980)} Since then, research and development on lithium cobaltate has been actively promoted, and many proposals have been made so far.

しかしながら、Coは地球上に偏在し、希少な資源であるため、コバルト酸リチウムに代わる新たな正極活物質として、例えば、LiNiO2、LiMn24、LiFeO2、LiFePO4等の開発が進められている。 However, Co is unevenly distributed on the earth and is a scarce resource. Therefore, for example, LiNiO 2 , LiMn 2 O 4 , LiFeO 2 , LiFePO 4, etc. are being developed as new positive electrode active materials to replace lithium cobaltate. ing.

中でもLiFePO4は、体積密度が3.6g/cm3と大きく、3.4Vの高電位を発生し、理論容量も170mAh/gと大きいという特徴を持つ。そして、Feは資源が豊富で安価であることに加え、LiFePO4は初期状態で電気化学的に脱ドープ可能なLiをFe原子1個当たりに1個含んでいるので、コバルト酸リチウムに代わる新たなリチウム二次電池の正極活物質としての期待は大きい。 Among them, LiFePO 4 is characterized by a large volume density of 3.6 g / cm 3 , a high potential of 3.4 V, and a large theoretical capacity of 170 mAh / g. In addition to the fact that Fe is rich in resources and inexpensive, LiFePO 4 contains one Li atom that can be electrochemically dedope in the initial state per Fe atom, so a new alternative to lithium cobaltate Expectation as a positive electrode active material of a lithium secondary battery is high.

LiFePO4又はこのFeの一部を他の金属で置換したLiFePO4を正極活物質とするリチウム二次電池が提案されている(例えば、特許文献1〜6参照)。 LiFePO 4 or a lithium secondary battery using LiFePO 4 obtained by substituting a part of the Fe in the other metal as a positive electrode active material has been proposed (e.g., see Patent Documents 1 to 6).

一般的な、LiFePO4の製造方法としては、例えば、リン酸第一鉄含水塩を用いて下記反応式(1)

Figure 0004620378
に従って製造する方法、シュウ酸鉄を用いて、下記反応式(2)
Figure 0004620378
に従って製造する方法、又は酢酸鉄を用いて、下記反応式(3)
Figure 0004620378
に従って製造する方法等が提案されている。 As a general method for producing LiFePO 4 , for example, using the ferrous phosphate hydrate, the following reaction formula (1)
Figure 0004620378
The following reaction formula (2) using the iron oxalate method
Figure 0004620378
Or the following reaction formula (3) using iron acetate
Figure 0004620378
A method of manufacturing according to the above has been proposed.

この中、リン酸リチウムとリン酸第一鉄含水塩を用いる方法(反応式(1))は、副生物が水のみであるため工業的に特に有利である。   Among them, the method using lithium phosphate and ferrous phosphate hydrate (reaction formula (1)) is industrially particularly advantageous because the by-product is only water.

このリン酸リチウムの製造方法は、例えば水酸化リチウム水溶液にリン酸ナトリウムを加える方法(例えば、非特許文献1及び特許文献7参照。)、或いは水酸化リチウム水溶液にリン酸を加える方法(非特許文献1参照。)等が提案されている。   This lithium phosphate production method is, for example, a method of adding sodium phosphate to a lithium hydroxide aqueous solution (see, for example, Non-Patent Document 1 and Patent Document 7), or a method of adding phosphoric acid to a lithium hydroxide aqueous solution (non-patent). Reference 1) is proposed.

この中、前者の水酸化リチウム水溶液にリン酸ナトリウムを加える方法は、必然的に不純物としてナトリウム含有量が高くなる傾向がある。また、後者の水酸化リチウム水溶液にリン酸を加える方法では、不純物含有量が低いものが得られる。   Among these, the former method of adding sodium phosphate to the lithium hydroxide aqueous solution inevitably tends to increase the sodium content as an impurity. In addition, in the latter method of adding phosphoric acid to the lithium hydroxide aqueous solution, one having a low impurity content can be obtained.

しかしながら、工業的に入手可能なリン酸リチウムには、電子材料の原料として必要な条件、すなわち純度が高く、反応性、流動性、更には加工性に優れた微細な粒子である、という条件を同時に満足するものは存在していなかった。例えば、不純物含有量の少ないものは市販されているが、その一次粒子の平均粒径は20μm以上の粗粒であり、他の物質との反応性に問題がある.また、平均粒径が10μm以下の微粒で凝集状のものも市販されているが、不純物含有量が多く流動性が悪いため、取り扱いやすさや他の反応原料との混合分散性が悪いという問題があった.   However, industrially available lithium phosphate has the conditions necessary as a raw material for electronic materials, that is, high purity, fine particles with excellent reactivity, fluidity, and workability. At the same time, there were no satisfactions. For example, those having a small impurity content are commercially available, but the average particle size of the primary particles is coarse particles of 20 μm or more, and there is a problem in reactivity with other substances. In addition, although fine particles having an average particle size of 10 μm or less and agglomerated particles are also commercially available, the problem is that they are easy to handle and poorly mixed and dispersible with other reaction materials because of their large impurity content and poor fluidity. there were.

特開平9−134724号公報JP-A-9-134724 特開平9−134725号公報JP-A-9-134725 特開平11−261394号公報JP-A-11-261394 特開2001−110414号公報JP 2001-110414 A 特開2001−250555号公報JP 2001-250555 A 特開2000−294238号公報JP 2000-294238 A 特開昭64−4251号公報JP-A 64-4251 「化学大辞典 9」、共立出版、1993年、p.818、リン酸リチウムの欄参照。“Chemical Dictionary 9”, Kyoritsu Shuppan, 1993, p. 818, see Lithium phosphate column.

本発明者らは、かかる実情において特に電子材料の原料として有用なリン酸リチウムを得る方法について鋭意研究を重ねた結果、水酸化リチウム水溶液とリン酸水溶液との反応によりリン酸リチウムを製造する方法において、反応に用いる水酸リチウム水溶液の濃度及び反応温度を特定範囲に設定し、かかる条件下で反応を行って得られるリン酸リチウムは、高純度でありながら従来にない微細な凝集体で、尚且つ反応性及び流動性に優れたものとなることを見出し本発明を完成するに至った。   In the present situation, the present inventors have conducted intensive research on a method for obtaining lithium phosphate that is particularly useful as a raw material for electronic materials. As a result, a method for producing lithium phosphate by a reaction between a lithium hydroxide aqueous solution and a phosphoric acid aqueous solution. In the above, the concentration of the lithium hydroxide aqueous solution used for the reaction and the reaction temperature are set within a specific range, and the lithium phosphate obtained by performing the reaction under such conditions is a high-purity fine aggregate that has never existed, In addition, the inventors have found that the reactivity and fluidity are excellent, and have completed the present invention.

即ち、本発明の目的は、アリルアルコール製造用触媒、機能性無機材料の製造原料の用途、無機固体電解質の原料、特にリチウム二次電池の正極活物質として用いるLiMPO4(MはFe、Mn、Ni、Co及びAlから選ばれる少なくとも1種以上の金属元素を示す。)の製造原料として有用な微細で反応性及び流動性、更には粉砕等の加工性に優れた高純度なリン酸リチウム凝集体、その製造方法および該リン酸リチウム凝集体を用いるリチウム二次電池の正極活物質として有用なリチウム鉄リン系複合酸化物の製造方法を提供することにある。 That is, the object of the present invention is to use LiMPO 4 (M is Fe, Mn, used as a positive electrode active material of a lithium secondary battery, particularly as a raw material for inorganic solid electrolytes, as a catalyst for producing allyl alcohol, as a raw material for producing functional inorganic materials. It represents at least one metal element selected from Ni, Co, and Al.) It is useful as a raw material for production of fine, reactive, fluid, and highly pure lithium phosphate coagulants excellent in workability such as grinding. It is an object of the present invention to provide a method for producing a lithium iron-phosphorus composite oxide useful as a positive electrode active material for an aggregate, a method for producing the same, and a lithium secondary battery using the lithium phosphate aggregate.

本発明が提供しようとする第1の発明は、微細な一次粒子が集合体を形成してなり、該集合体の平均粒径が1〜10μmで、安息角が50度以下であることを特徴とするリン酸リチウム凝集体である。
前記リン酸リチウム凝集体は、X線回折分析から求められる格子面(010)面の回折ピークの半値幅が0.2°以上であることが好ましく、また、BET比表面積が1〜50m2/gであることが好ましい。また、Na含有量が100ppm以下で、Al、Ca及びSiの含有量が総量で100ppm以下であることが更に好ましい。
A first invention to be provided by the present invention is characterized in that fine primary particles form an aggregate, the average particle diameter of the aggregate is 1 to 10 μm, and the angle of repose is 50 degrees or less. Lithium phosphate aggregate.
The lithium phosphate aggregate preferably has a half-value width of the diffraction peak of the lattice plane (010) obtained by X-ray diffraction analysis of 0.2 ° or more, and has a BET specific surface area of 1 to 50 m 2 / It is preferable that it is g. Further, it is more preferable that the Na content is 100 ppm or less and the total contents of Al, Ca and Si are 100 ppm or less.

また、本発明が提供しようとする第2の発明は、水酸化リチウムをLiOHとして4〜6重量%含む水溶液にリン酸を含む水溶液を添加し70℃以下で反応を行うことを特徴とするリン酸リチウム凝集体の製造方法である。
かかるリン酸リチウム凝集体の製造方法は、前記水酸化リチウムは水酸化リチウムを含む水溶液を精密濾過した後、晶析を行って得られる精製水酸化リチウムを用いることが好ましい。
In addition, the second invention to be provided by the present invention is a phosphoric acid characterized in that an aqueous solution containing phosphoric acid is added to an aqueous solution containing 4 to 6% by weight of lithium hydroxide as LiOH and the reaction is performed at 70 ° C. or lower. It is a manufacturing method of lithium acid aggregate.
Method of manufacturing a lithium phosphate agglomerates, prior Symbol lithium hydroxide after microfiltration an aqueous solution containing lithium hydroxide, it is preferable to use purified lithium hydroxide obtained by performing crystallization.

また、本発明が提供しようとする第3の発明は、(A)前記第1の発明のリン酸リチウム凝集体、リン酸第一鉄含水塩及び導電性炭素質材料又は(B)前記第1の発明のリン酸リチウム凝集体、リン酸第一鉄含水塩、Mn、Co、Ni及びAlから選ばれる金属元素を含有する少なくとも1種以上の金属化合物及び導電性炭素質材料とを混合し焼成を行うことを特徴とするリチウム鉄リン系複合酸化物の製造方法である。
かかるリチウム鉄リン系複合酸化物の製造方法は、(A)前記第1の発明のリン酸リチウム凝集体、リン酸第一鉄含水塩及び導電性炭素質材料又は(B)前記第1の発明のリン酸リチウム凝集体、リン酸第一鉄含水塩、Mn、Co、Ni及びAlから選ばれる金属元素を含有する少なくとも1種以上の金属化合物及び導電性炭素質材料とを混合する第一工程、次いで、得られる混合物を乾式で粉砕処理して反応前駆体を得る第二工程、次いで、該反応前駆体を焼成してリチウム鉄リン系複合酸化物を得る第三工程を含むことが好ましい。
また、前記第二工程後、得られる反応前駆体を加圧成形する工程を設けることが好ましい。
また、生成させるリチウム鉄リン系複合酸化物は平均粒径が0.5μm以下であることが好ましい。
Further, the third invention to be provided by the present invention is (A) the lithium phosphate aggregate, the ferrous phosphate hydrate and the conductive carbonaceous material of the first invention or (B) the first invention. Mixing and firing at least one metal compound containing a metal element selected from lithium phosphate aggregates, ferrous phosphate hydrate, Mn, Co, Ni, and Al and a conductive carbonaceous material of the invention Is a method for producing a lithium iron phosphorus composite oxide.
The method for producing the lithium iron-phosphorus composite oxide includes (A) the lithium phosphate aggregate, ferrous phosphate hydrate and conductive carbonaceous material of the first invention, or (B) the first invention. A first step of mixing at least one metal compound containing a metal element selected from lithium phosphate aggregates, ferrous phosphate hydrate, Mn, Co, Ni, and Al and a conductive carbonaceous material Then, it is preferable to include a second step of obtaining a reaction precursor by pulverizing the resulting mixture by a dry method, and then a third step of obtaining the lithium iron phosphorus composite oxide by firing the reaction precursor.
Moreover, it is preferable to provide the process of pressure-molding the reaction precursor obtained after said 2nd process.
Moreover, it is preferable that the average particle diameter of the lithium iron phosphorus complex oxide to be generated is 0.5 μm or less.

本発明のリン酸リチウム凝集体は、アリルアルコール製造用触媒、機能性無機材料の用途、無機固体電解質の原料、特にリチウム二次電池の正極活物質で用いるLiMPO4(MはFe、 Mn、Ni、Co及びAlから選ばれる少なくとも1種以上の金属元素を示す。)の製造原料の用途に適した微細で、反応性及び流動性がよく更には粉砕等の加工性に優れる。また、本発明の製造方法によれば、該リン酸リチウム凝集体を工業的に有利に製造することができる。また、本発明のリン酸リチウム凝集体を製造原料として用いて得られるリチウム鉄リン系複合酸化物を正極活物質とするリチウム二次電池はLiFePO4の理論放電容量に近い値を示す。 The lithium phosphate aggregate of the present invention is a LiMPO 4 (M is Fe, Mn, Ni) used as a catalyst for producing allyl alcohol, a use of a functional inorganic material, a raw material of an inorganic solid electrolyte, particularly a positive electrode active material of a lithium secondary battery. And at least one metal element selected from Co and Al.) Suitable for use as a raw material for production, good reactivity and fluidity, and excellent workability such as grinding. Moreover, according to the manufacturing method of this invention, this lithium phosphate aggregate can be manufactured industrially advantageously. Further, a lithium secondary battery using a lithium iron-phosphorus composite oxide obtained by using the lithium phosphate aggregate of the present invention as a production raw material exhibits a value close to the theoretical discharge capacity of LiFePO 4 .

以下、本発明をその好ましい実施形態に基づき詳細に説明する。
(リン酸リチウム凝集体)
本発明のリン酸リチウムは、微細な一次粒子が集合体を形成してなる凝集体である。
本発明に係るリン酸リチウム凝集体の一次粒子は、走査型電子顕微鏡写真から求められる粒径が1μm以下、好ましくは0.01〜1μmであり、また、この一次粒子が集合した集合体は走査型電子顕微鏡写真から求められる平均粒径が1〜10μm、好ましくは1〜5μmである。本発明のリン酸リチウム凝集体は、当該範囲の平均粒径の微細な粒子群であることから反応性に優れる。
Hereinafter, the present invention will be described in detail based on preferred embodiments thereof.
(Lithium phosphate aggregate)
The lithium phosphate of the present invention is an aggregate formed by forming aggregates of fine primary particles.
The primary particles of the lithium phosphate aggregate according to the present invention have a particle size determined from a scanning electron micrograph of 1 μm or less, preferably 0.01 to 1 μm, and the aggregate in which the primary particles are aggregated is scanned. The average particle size determined from a scanning electron micrograph is 1 to 10 μm, preferably 1 to 5 μm. The lithium phosphate aggregate of the present invention is excellent in reactivity because it is a fine particle group having an average particle diameter in the above range.

更に、本発明のリン酸リチウム凝集体は、上記した当該範囲の平均粒径を有することに加えて、安息角が50度以下、好ましくは30〜50度である。本発明のリン酸リチウム凝集体は、安息角が当該範囲であることから、微粒な凝集体ではあるが流動性に優れ、取り扱いや他の反応原料との混合分散性に優れる。   Furthermore, the lithium phosphate aggregate of the present invention has an angle of repose of 50 degrees or less, preferably 30 to 50 degrees, in addition to having the average particle diameter in the above-mentioned range. Since the repose angle of the lithium phosphate aggregate of the present invention is within this range, it is a fine aggregate but excellent in fluidity and excellent in handling and mixing and dispersibility with other reaction raw materials.

また、本発明に係るリン酸リチウム凝集体は、線源としてCuKα線を用いてX線回折分析したときに2θ=16.8°付近の回折ピーク(010)面の半値幅が0.2°以上、好ましくは0.2〜0.3°であることも特徴の一つである。本発明のリン酸リチウム凝集体は、格子面(010)面の回折ピークの半値幅が当該範囲であることにより、結晶性が低く、柔らかい粒子群であり、更なる粉砕による微細化が可能で加工性にも優れる。   The lithium phosphate aggregate according to the present invention has a half-value width of 0.2 ° around the diffraction peak (010) plane near 2θ = 16.8 ° when X-ray diffraction analysis is performed using CuKα rays as a radiation source. One of the characteristics is that the angle is preferably 0.2 to 0.3 °. The lithium phosphate aggregate of the present invention is a soft particle group having a low crystallinity because the half-value width of the diffraction peak on the lattice plane (010) plane is in this range, and can be refined by further pulverization. Excellent workability.

また、本発明に係るリン酸リチウム凝集体の他の好ましい物性としてはBET比表面積が1〜50m2/g、好ましくは15〜50m2/gであることが好ましく、不純物としてNa含有量が100ppm以下、好ましくは80ppmで、Al、Ca及びSiの含有量が総量で100ppm以下、好ましくは80ppm以下であると電子材料用の製造原料として好適に用いることができることから特に好ましい。 Moreover, as another preferable physical property of the lithium phosphate aggregate according to the present invention, the BET specific surface area is preferably 1 to 50 m 2 / g, preferably 15 to 50 m 2 / g, and the Na content as an impurity is 100 ppm. In the following, it is particularly preferable that the content of Al, Ca, and Si is preferably 80 ppm, and the total amount is 100 ppm or less, and preferably 80 ppm or less because it can be suitably used as a manufacturing raw material for electronic materials.

次いで、本発明のリン酸リチウム凝集体の製造方法について説明する。
本発明のリン酸リチウム凝集体の製造方法は、水酸化リチウムを含む水溶液とリン酸を含む水溶液との反応によりリン酸リチウムを製造する方法において、用いる水酸化リチウム水溶液の濃度を特定範囲に設定し、更に反応条件において反応温度を特定範囲領域で行うことに大きな特徴がある。
Subsequently, the manufacturing method of the lithium phosphate aggregate of this invention is demonstrated.
The method for producing a lithium phosphate aggregate of the present invention is a method for producing lithium phosphate by a reaction between an aqueous solution containing lithium hydroxide and an aqueous solution containing phosphoric acid, and the concentration of the aqueous lithium hydroxide solution used is set within a specific range. In addition, there is a great feature in that the reaction temperature is carried out in a specific range region under the reaction conditions.

本発明の製造方法で用いる水酸化リチウムを含む水溶液は、水酸化リチウムを水に溶解した水溶液であり、本発明においてこの水酸化リチウムを含む水溶液は水酸化リチウムを4〜6重量%含有する水溶液を用いることが一つの重要な要件である。本発明のリン酸リチウム凝集体の製造方法において水酸化リチウム水溶液の濃度を当該範囲とする理由は、水酸化リチウム水溶液の濃度が4重量%未満では溶液濃度が低すぎ、廃液が大量に発生するため工業的に有利でなく、一方、6重量%を越えると固液分離、乾燥後のリン酸リチウムが固結し、凝集粒子が粗粒となることから好ましくない。   The aqueous solution containing lithium hydroxide used in the production method of the present invention is an aqueous solution in which lithium hydroxide is dissolved in water. In the present invention, the aqueous solution containing lithium hydroxide contains 4 to 6% by weight of lithium hydroxide. Is an important requirement. The reason for setting the concentration of the lithium hydroxide aqueous solution in this range in the method for producing a lithium phosphate aggregate of the present invention is that if the concentration of the lithium hydroxide aqueous solution is less than 4% by weight, the solution concentration is too low and a large amount of waste liquid is generated. Therefore, it is not industrially advantageous. On the other hand, if it exceeds 6% by weight, the lithium phosphate after solid-liquid separation and drying is solidified, and the aggregated particles become coarse, which is not preferable.

用いることができる水酸リチウムは、工業的に入手可能なものであれば特に制限はなく含水物であっても無水物であってもよいが、高純度のリン酸リチウム凝集体を得る上で不純物含有量が少ないものを用いることが好ましく、特に工業的に入手可能な水酸化リチウムにはNaが20ppm以上、Caが60ppm以上、Alが100ppm以上、Siが100ppm以上含有されているので、これらの不純物を除去した精製水酸化リチウムを用いることが電子材料の用途に適用する場合に好ましい。この精製水酸化リチウムは、水酸化リチウム(以下、「粗製水酸化リチウム」と呼ぶ。)を含む水溶液を精密濾過した後、晶析を行うことによりNa、Ca、Al、Si等の不純物を低減した精製水酸化リチウムであることが好ましい。   The lithium hydroxide that can be used is not particularly limited as long as it is industrially available, and may be a hydrate or an anhydride. However, in order to obtain a high-purity lithium phosphate aggregate, It is preferable to use a material having a low impurity content. Particularly, lithium hydroxide that is industrially available contains Na of 20 ppm or more, Ca of 60 ppm or more, Al of 100 ppm or more, and Si of 100 ppm or more. It is preferable to use purified lithium hydroxide from which impurities are removed for application to electronic materials. This refined lithium hydroxide reduces impurities such as Na, Ca, Al, Si, etc. by microfiltration after an aqueous solution containing lithium hydroxide (hereinafter referred to as “crude lithium hydroxide”). The purified lithium hydroxide is preferred.

この精製水酸化リチウムを得る具体的な操作は、まず、前記粗製水酸化リチウムを溶解した水酸化リチウム溶液を調製する。水溶液中の粗製水酸化リチウムの濃度は、飽和溶解度以下であれば特に制限はないが、水酸化リチウムの溶解度は溶解させる温度に強く依存することから、例えば、80℃の温度で溶解させるにはLiOHとして1〜12重量%、好ましくは9〜12重量%とすることが好ましい。   As a specific operation for obtaining the purified lithium hydroxide, first, a lithium hydroxide solution in which the crude lithium hydroxide is dissolved is prepared. The concentration of the crude lithium hydroxide in the aqueous solution is not particularly limited as long as it is equal to or lower than the saturation solubility. However, since the solubility of lithium hydroxide strongly depends on the temperature at which it is dissolved, for example, to dissolve at a temperature of 80 ° C. LiOH is preferably 1 to 12% by weight, more preferably 9 to 12% by weight.

なお、粗製水酸化リチウムを溶解する水は、少なくとも逆浸透膜、限外ろ過膜、イオン交換膜等を通過させて、Na、K、Ca、Cl、SO4等のイオン性不純物を除去した純水を用いることが、溶解する水に由来する不純物の混入を防止できる点で特に好ましい。なお、逆浸透膜、限外ろ過膜又はイオン交換樹脂に通水される被処理水としては、例えば、工業用水、市水、河川水などの原水を凝集ろ過装置及び活性炭等からなる前処理装置で処理し、原水中の懸濁物及び有機物の大半を除去したもの、あるいは、更に、イオン交換樹脂を用いる純水装置で処理されたものなどが用いられる。 The water in which the crude lithium hydroxide is dissolved is passed through at least a reverse osmosis membrane, an ultrafiltration membrane, an ion exchange membrane, etc. to remove pure ions from which ionic impurities such as Na, K, Ca, Cl, and SO 4 are removed. The use of water is particularly preferable because it can prevent contamination of impurities derived from dissolved water. In addition, as the to-be-treated water passed through the reverse osmosis membrane, the ultrafiltration membrane or the ion exchange resin, for example, raw water such as industrial water, city water, and river water is a pretreatment device made of a coagulation filtration device, activated carbon, and the like. In this method, a material obtained by removing most of the suspended matter and organic matter in the raw water, or a material treated with a pure water apparatus using an ion exchange resin is used.

逆浸透膜は、市販の膜モジュールを用いることができ、操作条件等は特に制限はなく常法に従えばよい。具体的には、逆浸透膜の分画分子量は400〜100000、好ましくは1000〜10000であり、材質としては、例えば、酢酸セルロース系、ポリアミド系、架橋ポリアミン系、架橋ポリエーテル系、ポリスルホン、スルホン化ポリスルホン、ポリビニールアルコール等が適宜使用される。膜の形状は平板型、スパイラル型、中空糸型、チューブラー、ブリーフ型など何れであってもよい。
限外濾過膜は、市販の膜モジュールを用いることができ、操作条件等は特に制限はなく常法に従えばよい。具体的には、限外濾過膜の分画分子量は400〜100000、好ましくは1000〜10000であり、材質としては、再生セルロース、ポリエーテルスルホン、ポリスルホン、ポリアクリルニトリル、ポリビニールアルコール、燒結金属、セラミック、カーボン等が適宜使用される。膜の形状は平板型、スパイラル型、チューブラー型、中空糸型、ブリーツ型などの何れであってもよい。
As the reverse osmosis membrane, a commercially available membrane module can be used, and the operating conditions and the like are not particularly limited and may be in accordance with conventional methods. Specifically, the reverse molecular weight of the reverse osmosis membrane is 400 to 100,000, preferably 1000 to 10000. Examples of the material include cellulose acetate, polyamide, crosslinked polyamine, crosslinked polyether, polysulfone, and sulfone. Polysulfone, polyvinyl alcohol and the like are appropriately used. The shape of the membrane may be any of flat plate type, spiral type, hollow fiber type, tubular, brief type and the like.
As the ultrafiltration membrane, a commercially available membrane module can be used, and operating conditions and the like are not particularly limited and may be in accordance with ordinary methods. Specifically, the molecular weight cut off of the ultrafiltration membrane is 400 to 100,000, preferably 1000 to 10,000, and the materials are regenerated cellulose, polyethersulfone, polysulfone, polyacrylonitrile, polyvinyl alcohol, sintered metal, Ceramic, carbon or the like is used as appropriate. The shape of the membrane may be any of a flat plate type, a spiral type, a tubular type, a hollow fiber type, a breez type and the like.

次いで、前記で調製した所定の濃度の粗製水酸化リチウムを含む水溶液を精密濾過し、Al、Siの不純物成分を含有する不溶分を除去する。   Next, the aqueous solution containing crude lithium hydroxide having a predetermined concentration prepared above is microfiltered to remove insolubles containing Al and Si impurity components.

前記精密濾過は精密濾過膜等の濾過材を用いて実施することができる。用いることができる精密濾過膜は、表面濾過作用を有するスクリーンフィルター、内部濾過作用を有するデプスフィルター等が挙げられるが、本発明において、表面濾過作用を有するスクリーンフィルターが効率よく不溶分を除去することができる点で特に好ましい。精密濾過膜の公称孔径は0.1〜1μm、好ましくは0.2〜0.5μmであり、精密濾過膜の材質は、特に制限されるものではないが、例えばコロジオン、セロファン、アセチルセルロース、ポリアクリロニトリル、ポリスルホン、ポリオレフィン、ポリアミド、ポリイミド、ポリビニリデンフロライド等の有機系の膜、あるいは黒鉛、セラミックス、多孔質ガラス等の無機系の膜が挙げられる。また、実験室規模であればPTFEメンブランフィルター等の濾過材が使用できる。スクリーンフィルターの形式は特に制限されるものではないが、カートリッジ式が操作性が容易である点で特に好ましい。これらの精密濾過は、市販の精密濾過装置を用いて、この精密濾過装置に前記で調製した所定の濃度の粗製水酸化リチウム水溶液を導入することにより実施することができる。この精密濾過操作は、減圧または加圧下でおこなうこともできるが、特に制限されるものではなく、通常は、前記で調製した所定の濃度の粗製水酸化リチウム水溶液を送液ポンプにて、温度0〜100℃、好ましくは20〜80℃で、1〜30mL/min、好ましくは5〜15mL/minの流速で精密濾過装置に導入し0.1〜0.5MPa、好ましくは0.2〜0.3MPaの圧力で処理することが好ましい。なお、精密濾過による濾過操作は、水溶液から水酸化リチウムが析出しない温度で濾過操作を行うことが好ましい。   The microfiltration can be performed using a filtering material such as a microfiltration membrane. Examples of the microfiltration membrane that can be used include a screen filter having a surface filtration action, a depth filter having an internal filtration action, etc. In the present invention, the screen filter having a surface filtration action efficiently removes insoluble matter. It is particularly preferable in that The nominal pore size of the microfiltration membrane is 0.1 to 1 μm, preferably 0.2 to 0.5 μm, and the material of the microfiltration membrane is not particularly limited. For example, collodion, cellophane, acetylcellulose, poly Examples thereof include organic films such as acrylonitrile, polysulfone, polyolefin, polyamide, polyimide, and polyvinylidene fluoride, and inorganic films such as graphite, ceramics, and porous glass. Moreover, if it is a laboratory scale, filter media, such as a PTFE membrane filter, can be used. The type of the screen filter is not particularly limited, but the cartridge type is particularly preferable in terms of easy operability. These microfiltrations can be carried out using a commercially available microfiltration apparatus by introducing the above-prepared crude lithium hydroxide aqueous solution having a predetermined concentration into the microfiltration apparatus. This microfiltration operation can be carried out under reduced pressure or under pressure, but is not particularly limited. Usually, the crude lithium hydroxide aqueous solution having the predetermined concentration prepared above is fed at a temperature of 0 with a feed pump. It is introduced into a microfiltration apparatus at a flow rate of 1 to 30 mL / min, preferably 5 to 15 mL / min at -100 ° C, preferably 20 to 80 ° C, and 0.1 to 0.5 MPa, preferably 0.2 to 0.00. It is preferable to process at a pressure of 3 MPa. The filtration operation by microfiltration is preferably performed at a temperature at which lithium hydroxide does not precipitate from the aqueous solution.

上記した精密濾過処理により、多くの場合、Al、Siの各不純物の含有量を50ppm以下、好ましくは30ppm以下まで低減された水酸化リチウムが得られるが、本発明では、Na、Ca、Si、Alの含有量を更に低減させるため、前記精密濾過処理に引き続き晶析操作を行うことが好ましい。   In many cases, the above-described microfiltration treatment provides lithium hydroxide in which the content of each impurity of Al and Si is reduced to 50 ppm or less, preferably 30 ppm or less. In the present invention, Na, Ca, Si, In order to further reduce the Al content, it is preferable to perform a crystallization operation subsequent to the microfiltration treatment.

具体的な晶析操作は、前記の精密濾過を行った水酸化リチウムを含有する水溶液から冷却により水酸化リチウムを析出させる方法又は前記の精密濾過を行った水酸化リチウムを含有する水溶液を加熱して一定量の水分を蒸発させて水酸化リチウムを析出させる方法により行うことができるが、本発明において、後者の加熱して水酸化リチウムを析出させる方法が精製水酸化リチウムの回収効率が良い点で特に好ましい。   A specific crystallization operation is a method of precipitating lithium hydroxide by cooling from an aqueous solution containing lithium hydroxide subjected to the above-described microfiltration or an aqueous solution containing lithium hydroxide subjected to the above-described microfiltration. In the present invention, the latter method of precipitating lithium hydroxide by heating is advantageous in that the recovery efficiency of purified lithium hydroxide is good. Is particularly preferable.

加熱して水酸化リチウムを析出させる晶析操作は、前記の精密濾過を行った水酸化リチウムを含有する所定濃度の水溶液を温度80℃以上、好ましくは90〜100℃に加温し、水を10〜70重量%、好ましくは30〜60重量%蒸発除去することにより実施する。この晶析操作において、当該範囲内で水を除去することにより不純物を効率的に除去した精製水酸化リチウムを得ることができる。なお、この加熱による晶析操作は、減圧下に行ってもよい。   In the crystallization operation for heating to precipitate lithium hydroxide, the aqueous solution containing lithium hydroxide subjected to the above microfiltration is heated to a temperature of 80 ° C. or higher, preferably 90 to 100 ° C. It is carried out by evaporating off 10 to 70% by weight, preferably 30 to 60% by weight. In this crystallization operation, purified lithium hydroxide from which impurities are efficiently removed can be obtained by removing water within the range. The crystallization operation by heating may be performed under reduced pressure.

かくして得られる精製水酸化リチウムは、少なくともNa、Si、Al、Caの各不純物の含有量が50ppm以下、好ましくは20ppm以下まで低減された水酸化リチウムである。   The purified lithium hydroxide thus obtained is lithium hydroxide in which the content of at least Na, Si, Al, and Ca impurities is reduced to 50 ppm or less, preferably 20 ppm or less.

もう一方の反応原料のリン酸を含む水溶液は、リン酸を水に溶解した水溶液であり、このリン酸を含む水溶液の濃度は特に制限されるものではないがリン酸を5〜50重量%、好ましくは5〜40重量%含有する水溶液として用いると固液分離、乾燥後のリン酸リチウムが固結することなく安定した品質のリン酸リチウム凝集体が得られることから特に好ましい。
用いることができるリン酸は、工業的に入手可能なものであれば特に制限はないが高純度のリン酸リチウム凝集体を得る上で不純物含有量が少ないものを用いることが特に好ましい。
The other aqueous solution containing phosphoric acid as a reaction raw material is an aqueous solution in which phosphoric acid is dissolved in water, and the concentration of the aqueous solution containing phosphoric acid is not particularly limited, but 5 to 50% by weight of phosphoric acid, It is particularly preferable to use it as an aqueous solution containing 5 to 40% by weight because a lithium phosphate aggregate having a stable quality can be obtained without solidifying the lithium phosphate after solid-liquid separation and drying.
The phosphoric acid that can be used is not particularly limited as long as it is industrially available, but it is particularly preferable to use one having a low impurity content in order to obtain a high purity lithium phosphate aggregate.

なお、前記水酸化リチウムとリン酸を溶解する水は、少なくとも逆浸透膜、限外ろ過膜、イオン交換膜等を通過させて、Na、K、Ca、Cl、SO4等のイオン性不純物を除去した純水を用いることが、溶解する水に由来する不純物の混入を防止できる点で特に好ましい。 The water that dissolves the lithium hydroxide and phosphoric acid is allowed to pass through at least a reverse osmosis membrane, an ultrafiltration membrane, an ion exchange membrane and the like to remove ionic impurities such as Na, K, Ca, Cl, and SO 4. It is particularly preferable to use the removed pure water from the viewpoint that contamination of impurities derived from dissolved water can be prevented.

本発明のリン酸リチウム凝集体の製造方法は、前記所定濃度の水酸化リチウム水溶液に前記所定濃度のリン酸水溶液を添加し反応を行う。通常この反応は中和反応で発熱を伴うが、本発明のリン酸リチウムの製造方法において、かかる反応を70℃以下に維持して行うことも一つの重要な要件である。
本発明において反応温度を当該範囲で行う理由は、70℃を越えるとリン酸リチウムの溶解度が上昇し、固液分離・乾燥後のリン酸リチウムが固結し、凝集粒子が粗粒となることから好ましくないからである。また、本発明において、この反応温度が40℃以下、特に好ましくは5〜40℃であると固液分離、乾燥後のリン酸リチウムが固結することなく安定した品質のリン酸リチウム凝集体が得られることから特に好ましい。
In the method for producing a lithium phosphate aggregate according to the present invention, a reaction is performed by adding the phosphoric acid aqueous solution having the predetermined concentration to the lithium hydroxide aqueous solution having the predetermined concentration. Usually, this reaction is a neutralization reaction and generates heat. However, in the method for producing lithium phosphate of the present invention, it is also an important requirement to carry out the reaction at 70 ° C. or lower.
The reason for carrying out the reaction temperature in this range in the present invention is that when the temperature exceeds 70 ° C., the solubility of lithium phosphate increases, the lithium phosphate after solid-liquid separation and drying solidifies, and the aggregated particles become coarse particles. This is because it is not preferable. In the present invention, when the reaction temperature is 40 ° C. or lower, particularly preferably 5 to 40 ° C., lithium phosphate aggregates of stable quality can be obtained without solidification of lithium phosphate after solid-liquid separation and drying. Since it is obtained, it is particularly preferable.

リン酸を含む水溶液の添加量は、反応系にリン酸水溶液を導入するに従ってpHが低下しこのpHが10.5となるまで可能である。
The addition amount of the aqueous solution containing phosphoric acid, the pH pH is lowered in accordance introducing phosphoric acid aqueous solution Ru can der until 10.5 in the reaction system.

添加するリン酸を含む水溶液の添加速度は、特に制限されるものではなく安定した品質のものを得るため一定速度で添加することが好ましい。   The addition rate of the aqueous solution containing phosphoric acid to be added is not particularly limited, and is preferably added at a constant rate in order to obtain a stable quality.

反応終了後、常法により固液分離して、析出物を回収し、洗浄、乾燥、必要により粉砕して製品とする。
なお、必要に応じて行われる粉砕は、得られるリン酸リチウム凝集体が乾燥により凝集体粒子同士がもろく結合したものである場合等に適宜行うが、リン酸リチウム凝集体の粒子自体は下記特性を有するものである。即ち、微細な一次粒子からなる集合体で、走査型電子顕微鏡写真から求められる一次粒径が1μm以下、好ましくは0.01〜1μmであり、またその一次粒子の集合体は走査型電子顕微鏡写真から求められる平均粒径が1〜10μm、好ましくは1〜5μmである。
After completion of the reaction, solid-liquid separation is performed by a conventional method, and the precipitate is collected, washed, dried, and pulverized as necessary to obtain a product.
In addition, the pulverization performed as necessary is appropriately performed when the obtained lithium phosphate aggregate is brittlely bonded to each other by drying, and the lithium phosphate aggregate particles themselves have the following characteristics. It is what has. That is, it is an aggregate composed of fine primary particles, the primary particle size obtained from a scanning electron micrograph is 1 μm or less, preferably 0.01 to 1 μm, and the aggregate of the primary particles is a scanning electron micrograph. The average particle size determined from 1 to 10 μm, preferably 1 to 5 μm.

かくして得られるリン酸リチウム凝集体は、上記粒度特性を有することに加え、安息角が50度以下、好ましくは30〜50度であり、好ましくは線源としてCukα線を用いてX線回折分析したときに、(010)面の2θ=16.8°付近の回折ピークの半値幅が0.2°以上、好ましくは0.2〜0.3°で、BET比表面積が1〜50m2/g、好ましくは15〜50m2/gであることが好ましい。また、不純物的には、Na含有量が100ppm以下、好ましくは80ppmで、Al、Ca及びSiの含有量が総量で100ppm以下、好ましくは80ppm以下であることが好ましい。 In addition to having the above particle size characteristics, the lithium phosphate aggregate thus obtained has an angle of repose of 50 degrees or less, preferably 30 to 50 degrees, and is preferably subjected to X-ray diffraction analysis using Cukα rays as a radiation source. Sometimes, the half width of the diffraction peak near 2θ = 16.8 ° of the (010) plane is 0.2 ° or more, preferably 0.2 to 0.3 °, and the BET specific surface area is 1 to 50 m 2 / g. , Preferably 15 to 50 m 2 / g. In terms of impurities, the Na content is 100 ppm or less, preferably 80 ppm, and the total content of Al, Ca, and Si is 100 ppm or less, preferably 80 ppm or less.

本発明にかかるリン酸リチウム凝集体は、凝集体でありながら凝集体自身の粒径は上記したとおり微細で反応性及び流動性に優れ、更には、結晶性が低く、更なる粉砕による微細化が可能で加工性にも優れ、高純度である。このようなリン酸リチウム凝集体は、例えば、アリルアルコール製造用触媒、機能性無機材料の製造原料の用途、無機固体電解質の原料、特にリチウム二次電池の正極活物質として用いるLiMPO4(MはFe、Mn、Co、Ni及びAlから選ばれる金属元素を示す。)の製造原料として好適に用いることができる。 Although the lithium phosphate aggregate according to the present invention is an aggregate, the particle size of the aggregate itself is fine as described above and excellent in reactivity and fluidity. Further, the crystallinity is low, and further refinement by pulverization. It is possible to have excellent processability and high purity. Such lithium phosphate aggregates include, for example, LiMPO 4 (M is used as a positive electrode active material of a lithium secondary battery, a catalyst for allyl alcohol production, a use of a production raw material of a functional inorganic material, a raw material of an inorganic solid electrolyte, and particularly a lithium secondary battery. A metal element selected from Fe, Mn, Co, Ni, and Al.).

(リチウム鉄リン系複合酸化物)
次いで、本発明のリチウム鉄リン系複合酸化物の製造方法について説明する。
本発明のリチウム鉄リン系複合酸化物の製造方法は、前記のリン酸リチウム凝集体、リン酸第一鉄含水塩及び導電性炭素材料を混合し焼成を行うか(以下、「Aの製造方法」と呼ぶ。)又は前記のリン酸リチウム凝集体、リン酸第一鉄含水塩、Mn、Co、Ni及びAlから選ばれる金属元素を含有する少なくとも1種以上の金属化合物及び導電性炭素材料とを混合し焼成を行う(以下、「Bの製造方法」と呼ぶ。)ことを特徴とするものである。
(Lithium iron phosphorus complex oxide)
Subsequently, the manufacturing method of the lithium iron phosphorus type complex oxide of this invention is demonstrated.
The method for producing a lithium iron phosphorus composite oxide according to the present invention comprises mixing the lithium phosphate aggregate, the ferrous phosphate hydrate, and the conductive carbon material, followed by firing (hereinafter referred to as “Production method A”). Or at least one metal compound and a conductive carbon material containing a metal element selected from the group consisting of lithium phosphate aggregates, ferrous phosphate hydrates, Mn, Co, Ni and Al. And the mixture is fired (hereinafter referred to as “method for producing B”).

本発明の前記A及びBのリチウム鉄リン系複合酸化物の製造方法において、特に(A)前記のリン酸リチウム凝集体、リン酸第一鉄含水塩及び導電性炭素質材料又は(B)前記のリン酸リチウム凝集体、リン酸第一鉄含水塩、Mn、Co、Ni及びAlから選ばれる金属元素を含有する少なくとも1種以上の金属化合物及び導電性炭素質材料とを混合する第一工程、次いで、得られる混合物を粉砕処理して反応前駆体を得る第二工程、次いで、該反応前駆体を焼成してリチウム鉄リン系複合酸化物を得る第三工程を含むことが得られるリチウム鉄リン系複合酸化物をリチウム二次電池の正極活物質として用いる場合において放電容量を向上させることができることから好ましい。   In the method for producing lithium iron phosphorus-based composite oxides A and B of the present invention, in particular, (A) the lithium phosphate aggregate, ferrous phosphate hydrate and conductive carbonaceous material or (B) the above A first step of mixing at least one metal compound containing a metal element selected from lithium phosphate aggregates, ferrous phosphate hydrate, Mn, Co, Ni, and Al and a conductive carbonaceous material Next, the second step of obtaining a reaction precursor by pulverizing the resulting mixture, and then the third step of obtaining a lithium iron-phosphorus composite oxide by firing the reaction precursor are obtained. In the case of using a phosphorus-based composite oxide as a positive electrode active material of a lithium secondary battery, it is preferable because the discharge capacity can be improved.

前記Aの製造方法によれば、リチウム二次電池の正極活物質として好適なLiFePO4の粒子表面を導電性炭素材料で被覆したリチウム鉄リン系複合酸化物を得ることができ、また、前記Bの製造方法によればLiFe1-yMeyPO4(MeはMn、Co、Ni及びAlから選ばれる少なくとも1種以上の金属元素を示す。yは0<y<1を示す。)の粒子表面を導電性炭素材料で被覆したリチウム鉄リン系複合酸化物を得ることができる。 According to the production method of A, it is possible to obtain a lithium iron-phosphorus composite oxide in which the surface of LiFePO 4 particles suitable as a positive electrode active material for a lithium secondary battery is coated with a conductive carbon material. According to this production method, particles of LiFe 1-y Me y PO 4 (Me represents at least one metal element selected from Mn, Co, Ni and Al. Y represents 0 <y <1). A lithium iron phosphorus-based composite oxide whose surface is coated with a conductive carbon material can be obtained.

前記第一工程において、前記A及びBの製造方法で用いることができるリン酸第一鉄は工業的に入手可能なものであれば特に制限されるものではないが、一般式Fe3(PO42・8H2Oで表されるリン酸第一鉄含水塩で、レーザー回折法により求められる平均粒径が5μm以下、好ましくは1〜5μmで、更に線源としてCuKα線を用いて該リン酸第一鉄含水塩(Fe3(PO42・8H2O)をX線回折分析したときに2θ=13.1近傍のピーク(020)面の半値幅が0.20°以上、好ましくは0.20〜0.40°である結晶性が低く粉砕等の加工性及び反応性に優れたリン酸第一鉄含水塩(Fe3(PO42・8H2O)を用いると後述する反応前駆体の比容積を容易に1.5mL/g以下とすることができることから特に好ましい。 In the first step, ferrous phosphate that can be used in the production methods of A and B is not particularly limited as long as it is industrially available, but the general formula Fe 3 (PO 4 ) at 2 · 8H 2 ferrous phosphate hydrous salt represented by O, the following 5μm average particle diameter determined by a laser diffraction method, preferably 1 to 5 [mu] m, the phosphorus using CuKα rays as further radiation source When the ferrous acid hydrate (Fe 3 (PO 4 ) 2 · 8H 2 O) is subjected to X-ray diffraction analysis, the half width of the peak (020) plane in the vicinity of 2θ = 13.1 is preferably 0.20 ° or more. Is a ferrous phosphate hydrate (Fe 3 (PO 4 ) 2 · 8H 2 O) having a low crystallinity of 0.20 to 0.40 ° and excellent workability and reactivity such as pulverization. The specific volume of the reaction precursor to be reduced can be easily reduced to 1.5 mL / g or less. Preferred.

このような物性を有するリン酸第一鉄含水塩(Fe3(PO42・8H2O)は、2価の鉄塩とリン酸を含む水溶液に、アルカリを添加して反応を行うことにより容易に製造することができる。 Ferrous phosphate hydrate (Fe 3 (PO 4 ) 2 · 8H 2 O) having such physical properties is reacted by adding an alkali to an aqueous solution containing a divalent iron salt and phosphoric acid. Can be manufactured more easily.

かかるリン酸第一鉄含水塩の製造方法において用いることができる2価の鉄塩としては、例えば、硫酸第一鉄、酢酸鉄、蓚酸鉄等が挙げられ、これらは、含水物であっても無水物であってもよい。この中、硫酸第一鉄7水和物(FeSO4・7H2O)が安価で高純度のものが工業的に入手しやすいことから特に好ましい。
また、用いることができるリン酸としては、工業的に入手できるものであれば特に制限はない。
また、用いることができるアルカリとしては、特に制限はなく、例えば、アンモニアガス、アンモニア水、水酸化ナトリウム、水酸化カリウム、NaHCO3、Na2CO3、LiOH、K2CO3、KHCO3、Ca(OH)2等の無機アルカリ、またはエタノールアミン等の有機アルカリ等が挙げられる。これらのアルカリは1種又は2種以上で用いることができ、この中、水酸化ナトリウムが安価で工業的に入手しやすいことから特に好ましい。
これらの原料の2価の鉄塩、リン酸及びアルカリは不純物含有量の少ないものを用いることが、高純度のリン酸第一鉄含水塩(Fe3(PO42・8H2O)を得る上で特に好ましい。
具体的な反応操作としては、まず、リン酸を2価の鉄塩中の鉄原子に対するモル比で0.60〜0.75、好ましくは0.65〜0.70となるように2価の鉄塩とリン酸を溶解した水溶液を調製する。この場合水溶液の濃度は、2価の鉄塩とリン酸を溶解できる濃度であれば特に制限はないが、通常2価の鉄塩として0.1モル/L以上、好ましくは0.5〜1.0モル/Lとすることが好ましい。
次いで、この水溶液にアルカリを添加し、リン酸第一鉄を析出させる。リン酸第一鉄の析出反応は、このアルカリの添加により速やかに進行する。アルカリの添加量は、2価の鉄塩に対するモル比で1.8〜2.0、好ましくは1.95〜2.0とすることが好ましい。
このアルカリの添加温度は、特に制限はなく、通常5〜80℃、好ましくは15〜35℃である。また、アルカリの滴下速度等は特に制限されるものではないが、安定した品質のものを得るため一定の滴下速度で除々に反応系内に導入することが好ましい。
反応終了後、常法により固液分離して、析出物を回収し、洗浄、乾燥して製品とする。
なお、洗浄は、特に、アルカリとして水酸化ナトリウムを用いた場合には、析出したリン酸第一鉄含水塩(Fe3(PO42・8H2O)のNa含有量が1重量%以下、好ましくは0.8重量%以下となるまで水で十分に洗浄することが好ましい。
また、乾燥は、35℃未満では乾燥に時間がかかり、50℃を超えると2価の鉄の酸化や結晶水の脱離が起こるため35〜50℃で行うことが好ましい。
かくして得られるリン酸第一鉄含水塩(Fe3(PO42・8H2O)は、レーザー回折法により求められる平均粒径が5μm以下、好ましくは1〜5μmで、X線回折分析から求められる格子面(020)面の回折ピークの半値幅が0.20°以上、好ましくは0.20〜0.40°であり、更に好ましい物性としては、不純物としてのNa含有量が1重量%以下、好ましくは0.8重量%以下であることが特に好ましい。
Examples of the divalent iron salt that can be used in such a method for producing ferrous phosphate hydrate include ferrous sulfate, iron acetate, iron oxalate, and the like. It may be an anhydride. Among these, ferrous sulfate heptahydrate (FeSO 4 .7H 2 O) is particularly preferable because it is inexpensive and highly pure because it is easily available industrially.
The phosphoric acid that can be used is not particularly limited as long as it is industrially available.
As the alkali which can be used is not particularly limited, for example, ammonia gas, aqueous ammonia, sodium hydroxide, potassium hydroxide, NaHCO 3, Na 2 CO 3 , LiOH, K 2 CO 3, KHCO 3, Ca An inorganic alkali such as (OH) 2 or an organic alkali such as ethanolamine can be used. These alkalis can be used alone or in combination of two or more. Among them, sodium hydroxide is particularly preferable because it is inexpensive and easily available industrially.
The divalent iron salt, phosphoric acid and alkali of these raw materials should be low in impurity content, so that high purity ferrous phosphate hydrated salt (Fe 3 (PO 4 ) 2 · 8H 2 O) It is particularly preferable for obtaining.
As a specific reaction operation, first, phosphoric acid is divalent so that the molar ratio to the iron atom in the divalent iron salt is 0.60 to 0.75, preferably 0.65 to 0.70. An aqueous solution in which an iron salt and phosphoric acid are dissolved is prepared. In this case, the concentration of the aqueous solution is not particularly limited as long as it can dissolve the divalent iron salt and phosphoric acid, but usually 0.1 mol / L or more, preferably 0.5 to 1 as the divalent iron salt. It is preferable to set it to 0.0 mol / L.
Next, an alkali is added to the aqueous solution to precipitate ferrous phosphate. The precipitation reaction of ferrous phosphate proceeds rapidly by the addition of this alkali. The addition amount of the alkali is 1.8 to 2.0, preferably 1.95 to 2.0, as a molar ratio to the divalent iron salt.
There is no restriction | limiting in particular in the addition temperature of this alkali, Usually, 5-80 degreeC, Preferably it is 15-35 degreeC. The alkali dropping rate is not particularly limited, but it is preferable to gradually introduce it into the reaction system at a constant dropping rate in order to obtain a stable quality.
After completion of the reaction, solid-liquid separation is performed by a conventional method, and the precipitate is collected, washed and dried to obtain a product.
In the cleaning, particularly when sodium hydroxide is used as the alkali, the Na content of the precipitated ferrous phosphate hydrate (Fe 3 (PO 4 ) 2 · 8H 2 O) is 1% by weight or less. It is preferable to thoroughly wash with water until it becomes 0.8% by weight or less.
In addition, drying is preferably performed at 35 to 50 ° C. since drying takes time when the temperature is lower than 35 ° C., and oxidation of divalent iron and elimination of crystal water occur when the temperature exceeds 50 ° C.
The ferrous phosphate hydrate (Fe 3 (PO 4 ) 2 · 8H 2 O) thus obtained has an average particle size determined by a laser diffraction method of 5 μm or less, preferably 1 to 5 μm. The half-value width of the required diffraction peak of the lattice plane (020) plane is 0.20 ° or more, preferably 0.20 to 0.40 °, and more preferable physical properties include an Na content as an impurity of 1% by weight. Hereinafter, it is particularly preferably 0.8% by weight or less.

前記A及びBの製造方法で用いることができる導電性炭素材料としては、例えば、鱗状黒鉛、鱗片状黒鉛及び土状黒鉛等の天然黒鉛及び人工黒鉛等の黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、炭素繊維等が挙げられ、これらは1種又は2種以上で用いることができる。この中、ケッチェンブラックが微粒なものを工業的に容易に入手できるため特に好ましい。
これらの導電性炭素材料の電子顕微鏡写真から求められる平均粒径が1μm以下、好ましくは0.1μm以下、特に好ましくは0.01〜0.1μmであるとLiFePO4又はLiFe1-yMeyPO4(MeはMn、Co、Ni及びAlから選ばれる少なくとも1種以上の金属元素を示す。yは0<y<1)の粒子表面に高分散状態で付着させることができることから好ましい。
Examples of the conductive carbon material that can be used in the production methods of A and B include natural graphite such as scaly graphite, scaly graphite, and earth graphite, and graphite such as artificial graphite, carbon black, acetylene black, and ketjen. Examples thereof include carbon blacks such as black, channel black, furnace black, lamp black and thermal black, carbon fibers, and the like, and these can be used alone or in combination of two or more. Among these, those having fine ketjen black are particularly preferable because they can be easily obtained industrially.
LiFePO 4 or LiFe 1-y Me y PO when the average particle size determined from an electron micrograph of these conductive carbon materials is 1 μm or less, preferably 0.1 μm or less, particularly preferably 0.01 to 0.1 μm. 4 (Me represents at least one metal element selected from Mn, Co, Ni, and Al, and y is preferably because it can be attached in a highly dispersed state to the particle surface of 0 <y <1).

前記Bの製造方法で用いることができるMn、Co、Ni及びAlから選ばれる金属元素を含有する少なくとも1種以上の金属化合物としては、これらの金属元素を含む酸化物、水酸化物、硝酸塩、酢酸塩、炭酸塩、リン酸塩、有機酸塩等が挙げられ、これらの金属化合物の物性としてはレーザー回折法により求められる平均粒径が10μm以下、好ましくは5μm以下であると、混合が十分に行われ反応性が良くなることから特に好ましい。   The at least one metal compound containing a metal element selected from Mn, Co, Ni and Al that can be used in the production method of B includes oxides, hydroxides, nitrates containing these metal elements, Examples of the physical properties of these metal compounds include acetates, carbonates, phosphates, organic acid salts, and the like. As the physical properties of these metal compounds, the average particle size determined by the laser diffraction method is 10 μm or less, preferably 5 μm or less. It is particularly preferable because the reactivity is improved.

なお、本発明のリチウム鉄リン系複合酸化物の製造方法において前記の原料のリン酸リチウム凝集体、リン酸第一鉄含水塩(Fe3(PO42・8H2O)、導電性炭素材料及び金属化合物は高純度のものを用いることが特にリチウム二次電池の正極活物質として用いる場合に好ましい。 In the method for producing a lithium iron-phosphorus composite oxide of the present invention, the raw material lithium phosphate aggregate, ferrous phosphate hydrate (Fe 3 (PO 4 ) 2 · 8H 2 O), conductive carbon It is particularly preferable to use high-purity materials and metal compounds as the positive electrode active material of a lithium secondary battery.

第一工程の操作は、まず、(A)リン酸リチウム凝集体、リン酸第一鉄含水塩および導電性炭素材料又は(B)リン酸リチウム凝集体、リン酸第一鉄含水塩、導電性炭素材料及びMn、Co、Ni及びAlから選ばれる金属元素を含有する少なくとも1種以上の金属化合物を所定量混合する。   In the first step, first, (A) lithium phosphate aggregate, ferrous phosphate hydrate and conductive carbon material or (B) lithium phosphate aggregate, ferrous phosphate hydrate, conductive A predetermined amount of a carbon material and at least one metal compound containing a metal element selected from Mn, Co, Ni and Al are mixed.

前記Aの製造方法においてリン酸リチウム凝集体とリン酸第一鉄含水塩の配合割合は、リン酸第一鉄含水塩中のFe原子とリン酸リチウム凝集体中のLi原子とのモル比(Li/Fe)で0.9〜1.1、好ましくは1.00〜1.05であるとLiFePO4の単相が得られる点で好ましく、このモル比が0.9未満及び1.1を越えると未反応原料が残存することから好ましくない。 In the production method of A, the blending ratio of the lithium phosphate aggregate and the ferrous phosphate hydrate is the molar ratio of the Fe atom in the ferrous phosphate hydrate and the Li atom in the lithium phosphate aggregate ( Li / Fe) is preferably 0.9 to 1.1, preferably 1.00 to 1.05 in that a single phase of LiFePO 4 is obtained, and this molar ratio is less than 0.9 and 1.1. If it exceeds, unreacted raw materials remain, which is not preferable.

また、前記Bの製造方法においてリン酸リチウム凝集体、リン酸第一鉄含水塩およびMn、Co、Ni及びAlから選ばれる金属元素を含有する少なくとも1種以上の金属化合物の配合割合は、リン酸第一鉄含水塩中のFe原子、リン酸リチウム凝集体中のLi原子および金属化合物中の金属元素(Me)のモル比として、Li/(Fe+Me)で0.9〜1.1、好ましくは1.00〜1.05であると、LiFe1-yMeyPO4の単相が得られる点で特に好ましい。 Further, in the production method of B, the blending ratio of the lithium phosphate aggregate, the ferrous phosphate hydrate, and at least one metal compound containing a metal element selected from Mn, Co, Ni and Al is phosphorous. As molar ratio of Fe atom in ferrous acid hydrate, Li atom in lithium phosphate aggregate and metal element (Me) in metal compound, Li / (Fe + Me) is 0.9 to 1.1, preferably Is preferably 1.00 to 1.05 in that a single phase of LiFe 1-y Me y PO 4 can be obtained.

また、導電性炭素材料は、焼成前に比べて焼成後では導電性炭素材料に含まれるC原子の量が若干ながら減少する傾向があることから、導電性炭素材料の配合量がリン酸リチウム凝集体とリン酸第一鉄含水塩又はリン酸リチウム凝集体とリン酸第一鉄含水塩及び金属化合物との総量に対して0.08〜15.5重量%、好ましくは3.8〜9.5重量%であると、導電性炭素材料の被覆量は、LiFePO4又はLiFe1-yMeyPO4(MeはMn、Co、Ni及びAlから選ばれる少なくとも1種以上の金属元素を示す。yは0<y<0を示す。)に対するC原子の含有量で0.1〜20重量%、好ましくは5〜12重量%となる。この導電性炭素材料の配合量が0.08重量%未満ではリチウム鉄リン系複合酸化物に十分な導電性を付与させることができなくなるため得られるリチウム鉄リン系複合酸化物を正極活物質とするリチウム二次電池において内部抵抗が上昇し、一方、15.5重量%を超えると逆に重量或いは体積当たりの放電容量が減少するため好ましくない。 In addition, the conductive carbon material has a tendency that the amount of C atoms contained in the conductive carbon material slightly decreases after firing compared to before firing. 0.08 to 15.5% by weight, preferably 3.8 to 9.9, based on the total amount of the aggregate and the ferrous phosphate hydrate or lithium phosphate aggregate, the ferrous phosphate hydrate and the metal compound. When the amount is 5% by weight, the coating amount of the conductive carbon material is LiFePO 4 or LiFe 1-y Me y PO 4 (Me represents at least one metal element selected from Mn, Co, Ni and Al). y represents 0 <y <0), and the content of C atoms is 0.1 to 20% by weight, preferably 5 to 12% by weight. When the blending amount of the conductive carbon material is less than 0.08% by weight, it becomes impossible to impart sufficient conductivity to the lithium iron phosphorus composite oxide, so that the obtained lithium iron phosphorus composite oxide is used as the positive electrode active material. In the lithium secondary battery, the internal resistance increases. On the other hand, if it exceeds 15.5% by weight, the discharge capacity per unit weight or volume decreases.

なお、第一工程において、後述する第二工程を実施するに当り予め各原料が均一に混合するようにブレンダー等を用いて乾式で十分に混合しておくことが好ましい。   In the first step, it is preferable that the raw material is sufficiently mixed in a dry manner using a blender or the like so that the raw materials are uniformly mixed in advance in performing the second step described later.

第二工程は、前記A及びBの製造方法において、これらの原料の混合物を、更に反応性をよくするため粉砕機を用いて乾式で十分に混合及び粉砕処理して反応前駆体を得る工程である。   The second step is a step of obtaining a reaction precursor by sufficiently mixing and pulverizing a mixture of these raw materials in a dry method using a pulverizer in order to further improve the reactivity in the production methods of A and B. is there.

ここで前記反応前駆体とは(A)リン酸リチウム凝集体、リン酸第一鉄含水塩及び導電性炭素材料又は(B)リン酸リチウム凝集体、リン酸第一鉄含水塩、導電性炭素材料及びMn、Co、Ni及びAlから選ばれる金属元素を含有する少なくとも1種以上の金属化合物を含有する混合物を後の焼成に先だって反応性をよくするために、各原料を高分散させると共に各原料間の粒子間距離を可能なかぎり近づけ、各原料の接触面積を高めたものである。   Here, the reaction precursor is (A) lithium phosphate aggregate, ferrous phosphate hydrate and conductive carbon material, or (B) lithium phosphate aggregate, ferrous phosphate hydrate, conductive carbon. In order to improve the reactivity of the mixture containing the material and at least one metal compound containing a metal element selected from Mn, Co, Ni and Al prior to the subsequent firing, each raw material is highly dispersed and The inter-particle distance between the raw materials is made as close as possible to increase the contact area of each raw material.

本発明においてこの粉砕処理後の混合物は比容積が1.5mL/g以下、好ましくは1.0〜1.4mL/gであると500〜700℃の焼成温度で焼結による粒成長もなく、X線回折分析においてLiFePO4又はLiFe1-yMeyPO4(MeはMn、Co、Ni及びAlから選ばれる少なくとも1種以上の金属元素を示す。yは0<y<1を示す。)の単相の粒子表面に導電性炭素材料を均一に被覆したリチウム鉄リン系複合酸化物が得られることから、当該範囲の比容積の混合物を反応前駆体とすることが好ましい。 In the present invention, the mixture after the pulverization treatment has a specific volume of 1.5 mL / g or less, preferably 1.0 to 1.4 mL / g, and there is no grain growth due to sintering at a firing temperature of 500 to 700 ° C. In X-ray diffraction analysis, LiFePO 4 or LiFe 1-y Me y PO 4 (Me represents at least one metal element selected from Mn, Co, Ni and Al. Y represents 0 <y <1). Therefore, it is preferable to use a mixture having a specific volume within the above range as a reaction precursor because a lithium iron phosphorus-based composite oxide in which the surface of the single-phase particles is uniformly coated with the conductive carbon material is obtained.

なお、本発明における比容積とはJIS−K−5101に記載された見掛け密度又は見掛け比容の方法に基づいて、タップ法により50mLのメスシリンダーにサンプル10gをいれ、500回タップし静置後、容積を読みとり、下記式により求めたものである。

Figure 0004620378
(式中、F;受器内の処理した試料の質量(g)、V;タップ後の試料の容量(mL)を示す。) The specific volume in the present invention is based on the method of apparent density or apparent specific volume described in JIS-K-5101, 10 g of sample is put into a 50 mL measuring cylinder by the tap method, and after tapping 500 times, left standing. The volume is read and obtained by the following formula.
Figure 0004620378
(Wherein, F represents the mass (g) of the processed sample in the receiver, and V represents the volume (mL) of the sample after tapping.)

更に、本発明のリチウム鉄リン系複合酸化物の製造方法において、前記反応前駆体は、比容積が当該範囲であることに加えて、該反応前駆体中に含まれる原料のリン酸第一鉄含水塩がほぼ非晶質状態であると、粒子径の成長を抑制する目的で500〜700℃の低温で焼成した場合においても反応が完全に進行し、LiFePO4、もしくはLiFe1-yMeyPO4(Meは、Mn、Co、Ni、Alから選ばれる少なくとも1種以上の金属元素を示す。yは0<y<1を示す。)の単相が得られることから特に好ましい。 Furthermore, in the method for producing a lithium iron-phosphorus composite oxide of the present invention, the reaction precursor has a specific volume within the above range, and the raw material ferrous phosphate contained in the reaction precursor. When the hydrate salt is in an almost amorphous state, the reaction proceeds completely even when baked at a low temperature of 500 to 700 ° C. for the purpose of suppressing the growth of the particle diameter, and LiFePO 4 or LiFe 1-y Me y. PO 4 (Me represents at least one metal element selected from Mn, Co, Ni, and Al. Y represents 0 <y <1) is particularly preferable because a single phase is obtained.

用いることができる粉砕機としては、強力なせん断力を有する粉砕機が好ましく、このような強力なせん断力を有する粉砕機としては、転動ボールミル、振動ミル、遊星ミル、媒体攪拌ミル等を用いることが好ましい。この種の粉砕機は、容器中にボール、ビーズ等の粉砕媒体が入っており、主として媒体の剪断・摩擦作用によって粉砕を行う粉砕機である。このような装置としては市販されているものを利用することができる。   As the pulverizer that can be used, a pulverizer having a strong shearing force is preferable. As the pulverizer having such a strong shearing force, a rolling ball mill, a vibration mill, a planetary mill, a medium stirring mill, or the like is used. It is preferable. This type of pulverizer is a pulverizer in which a pulverization medium such as balls and beads is contained in a container and pulverization is performed mainly by the shearing and frictional action of the medium. A commercially available apparatus can be used as such an apparatus.

粒状媒体の粒径は1〜25mmであると粉砕が十分に行えるため好ましい。この粒状媒体の材質は、ジルコニア、アルミナのセラミックビーズが、硬度が高く磨耗に強いこと及び材料の金属汚染を防止することができることから特に好ましい。   The particle size of the granular medium is preferably 1 to 25 mm because pulverization can be sufficiently performed. As the material of the granular medium, zirconia and alumina ceramic beads are particularly preferable since they have high hardness and resistance to wear and can prevent metal contamination of the material.

また、前記粒状媒体は、空間容積50〜90%で容器内に粒状媒体を収納し、流動媒体による剪断力と摩擦力を適切に管理するため、粉砕機の運転条件を適宜調整して粉砕処理することが好ましい。   In addition, the granular medium is stored in a container with a space volume of 50 to 90%, and the shearing force and frictional force of the fluid medium are appropriately managed. It is preferable to do.

また、本発明のリチウム鉄リン系複合酸化物の製造方法において、必要に応じて、上記粉砕処理に加えて該反応前駆体を加圧成形処理して、更に各原料の接触面積を高めると、リチウム二次電池の放電容量とサイクル特性を更に向上させることができる。成形圧は、プレス機、仕込み量等により異なり、特に制限されるものではないが、通常5〜200MPaである。プレス成形機は、打錠機、ブリケットマシン、ローラコンパクター等好適に使用できるがプレスできるものであればよく、特に制限はない。   Further, in the method for producing a lithium iron phosphorus-based composite oxide of the present invention, if necessary, the reaction precursor is subjected to pressure molding treatment in addition to the pulverization treatment, and the contact area of each raw material is further increased. The discharge capacity and cycle characteristics of the lithium secondary battery can be further improved. The molding pressure varies depending on the press, the amount charged, etc., and is not particularly limited, but is usually 5 to 200 MPa. The press molding machine can be suitably used, such as a tableting machine, a briquette machine, a roller compactor, etc. However, any press molding machine may be used, and there is no particular limitation.

次いで、第三工程において、第二工程で得られた反応前駆体を焼成する。
焼成温度は500〜700℃、好ましくは550〜650℃である。本発明において、この焼成温度を当該範囲とすることにより得られるリチウム鉄リン系複合酸化物を正極活物質とするリチウム二次電池は、放電容量及び充電サイクル特性を向上させることができる。焼成温度が500℃未満では、反応が十分に進行しないため未反応原料が残存し、一方、700℃を越えると焼結が進行して粒子成長が起こるため好ましくない。
Next, in the third step, the reaction precursor obtained in the second step is baked.
The firing temperature is 500 to 700 ° C, preferably 550 to 650 ° C. In this invention, the lithium secondary battery which uses the lithium iron phosphorus type complex oxide obtained by making this calcination temperature into the said range as a positive electrode active material can improve discharge capacity and charge cycle characteristics. If the firing temperature is less than 500 ° C., the reaction does not proceed sufficiently, so that unreacted raw materials remain. On the other hand, if the firing temperature exceeds 700 ° C., sintering proceeds and particle growth occurs, which is not preferable.

焼成時間は、2〜20時間、好ましくは5〜10時間とすることが好ましい。
焼成は、窒素、アルゴン等の不活性ガス雰囲気中又は水素や一酸化炭素等の還元雰囲気中のいずれで行ってもよく、特に制限されるものではないが、窒素、アルゴンガス中で行うことが操作時の安全性の面で好ましい。また、これらの焼成は必要により何度でも行うことができる。
The firing time is 2 to 20 hours, preferably 5 to 10 hours.
Firing may be performed in an inert gas atmosphere such as nitrogen or argon or in a reducing atmosphere such as hydrogen or carbon monoxide, and is not particularly limited, but may be performed in nitrogen or argon gas. It is preferable in terms of safety during operation. Moreover, these baking can be performed as many times as necessary.

焼成後は、適宜冷却し、必要に応じ粉砕又は分級してLiFePO4又はLiFe1-yMeyPO4(MeはMn、Co、Ni及びAlから選ばれる少なくとも1種以上の金属元素を示す。yは0<y<1を示す。)の粒子表面を導電性炭素材料で均一に被覆したリチウム鉄リン系複合酸化物を得る。なお、FeおよびMe元素の酸化を防止するため、冷却中は反応系内を窒素、アルゴン等の不活性ガス雰囲気又は水素や一酸化炭素等の還元雰囲気として行うことが好ましい。また、必要に応じて行われる粉砕は、焼成して得られるリチウム鉄リン系複合酸化物がもろく結合したブロック状のものである場合等に適宜行うが、本発明のリチウム鉄リン系複合酸化物の好ましい実施形態の製造方法によれば、リチウム鉄リン系複合酸化物の粒子自体は下記の特定の平均粒径、BET比表面積を有するものである。即ち、得られるリチウム鉄リン系複合酸化物は、走査型電子顕微鏡写真から求められる平均粒径が0.5μm以下、好ましくは0.05〜0.5μmであり、BET比表面積が10〜100m2/g、好ましくは30〜70m2/gである。 After firing, the mixture is appropriately cooled, and pulverized or classified as necessary. LiFePO 4 or LiFe 1-y Me y PO 4 (Me represents at least one metal element selected from Mn, Co, Ni, and Al). y represents 0 <y <1). A lithium iron-phosphorus composite oxide in which the particle surface is uniformly coated with a conductive carbon material is obtained. In order to prevent oxidation of Fe and Me elements, it is preferable to carry out the reaction system in an inert gas atmosphere such as nitrogen or argon or a reducing atmosphere such as hydrogen or carbon monoxide during cooling. In addition, the pulverization performed as necessary is appropriately performed when the lithium iron phosphorus-based composite oxide obtained by firing is in a brittlely bonded block shape or the like, but the lithium iron phosphorus-based composite oxide of the present invention According to the production method of the preferred embodiment, the lithium iron-phosphorus composite oxide particles themselves have the following specific average particle diameter and BET specific surface area. That is, the obtained lithium iron phosphorus composite oxide has an average particle size determined from a scanning electron micrograph of 0.5 μm or less, preferably 0.05 to 0.5 μm, and a BET specific surface area of 10 to 100 m 2. / G, preferably 30 to 70 m 2 / g.

このようにして得られる本発明のリチウム鉄リン系複合酸化物は、正極、負極、セパレータ及びリチウム塩を含有する非水電解質からなるリチウム二次電池の正極活物質として好適に用いることができる。   The lithium iron phosphorus composite oxide of the present invention thus obtained can be suitably used as a positive electrode active material for a lithium secondary battery comprising a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt.

なお、該リチウム鉄リン系複合酸化物を正極活物質とする場合は、その形態は、平均粒径0.05μm以上0.5μm以下の一次粒子が集合してなる平均粒径1μm以上75μm以下の一次粒子集合体であってもよい。更に、上記一次集合体において全体積の70%以上、好ましくは80%以上が粒径1μm以上20μm以下であることが好ましい。また、該リチウム鉄リン系複合酸化物は大気中で粉砕等を行うと、得られるリチウム鉄リン系複合酸化物には3000ppm以上の水分が含有されるため、正極活物質として用いる前に真空乾燥等の操作を施して該リチウム鉄リン系複合酸化物の水分含有量を2000ppm以下、好ましくは1500ppm以下とすることが好ましい。   When the lithium iron phosphorus-based composite oxide is used as a positive electrode active material, the form thereof is an average particle size of 1 μm or more and 75 μm or less formed by agglomeration of primary particles having an average particle size of 0.05 μm or more and 0.5 μm or less. It may be a primary particle aggregate. Furthermore, it is preferable that 70% or more, preferably 80% or more of the total volume of the primary aggregate has a particle diameter of 1 μm or more and 20 μm or less. Further, when the lithium iron phosphorus-based composite oxide is pulverized in the air, the resulting lithium iron phosphorus-based composite oxide contains 3000 ppm or more of water, so that it is vacuum-dried before being used as the positive electrode active material. It is preferable that the water content of the lithium iron phosphorus composite oxide be 2000 ppm or less, preferably 1500 ppm or less.

また、本発明の製造方法で得られるリチウム鉄リン系複合酸化物は、公知の他のリチウムコバルト系複合酸化物、リチウムニッケル複合酸化物又はリチウムマンガン系複合酸化物と併用して用いることで、従来のリチウムコバルト系複合酸化物、リチウムニッケル複合酸化物又はリチウムマンガン系複合酸化物を用いたリチウム二次電池の安全性を更に向上させることができる。この場合、併用するリチウムコバルト系複合酸化物、リチウムニッケル複合酸化物又はリチウムマンガン系複合酸化物の物性等は特に制限されるものではないが、平均粒径が1〜20μm、好ましくは1〜15μm、さらに好ましくは2〜10μmで、BET比表面積が0.1〜2.0m2/g、好ましくは0.2〜1.5m2/g、さらに好ましくは0.3〜1.0m2/gであるものが好ましい。 Further, the lithium iron phosphorus composite oxide obtained by the production method of the present invention is used in combination with other known lithium cobalt composite oxide, lithium nickel composite oxide or lithium manganese composite oxide, The safety of a lithium secondary battery using a conventional lithium cobalt composite oxide, lithium nickel composite oxide, or lithium manganese composite oxide can be further improved. In this case, the physical properties of the lithium cobalt composite oxide, lithium nickel composite oxide or lithium manganese composite oxide used in combination are not particularly limited, but the average particle size is 1 to 20 μm, preferably 1 to 15 μm. , more preferably at 2 to 10 [mu] m, BET specific surface area of 0.1~2.0m 2 / g, preferably 0.2~1.5m 2 / g, more preferably 0.3~1.0m 2 / g Are preferred.

以下、本発明を実施例により詳細に説明するが本発明はこれらに限定されるものではない   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.

<水酸化リチウム>
なお、本発明の実施例において、市販の水酸化リチウム1水塩に下記の精製操作を施したものを使用した。
この市販の水酸化リチウム試料中の不純物含有量を表1に示す。
なお、この不純物量は、ICP質量分析法及び比濁法によって求めた値である。
<Lithium hydroxide>
In the examples of the present invention, commercially available lithium hydroxide monohydrate subjected to the following purification operation was used.
The impurity content in this commercially available lithium hydroxide sample is shown in Table 1.
The amount of impurities is a value determined by ICP mass spectrometry and turbidimetry.

Figure 0004620378
上記した粗製水酸化リチウム1水塩1062gを純水5000gに50℃で溶解し水溶液を調製した。なお、純水はイオン交換樹脂を備えた純水製造装置で処理した水を限外濾過モジュール(旭化学工業社製、分画分子量6000)で処理したものであり、以下の水酸化リチウムの精製及び実施例で使用した純水も当該純水と同じ処理をしたものである。
次いで、上記で調製した粗製水酸化リチウムを溶解した水溶液を40℃で孔径0.5μmのPTFE製メンブランフィルターを使用して濾過を行った。
濾過後の濾過液を一部採取し、減圧下に乾燥を行って得られた水酸化リチウム試料中の不純物含有量を表2に示す。
Figure 0004620378
The above-mentioned crude lithium hydroxide monohydrate 1062 g was dissolved in pure water 5000 g at 50 ° C. to prepare an aqueous solution. Pure water is obtained by treating water treated with a pure water production apparatus equipped with an ion exchange resin with an ultrafiltration module (manufactured by Asahi Chemical Industry Co., Ltd., molecular weight cut off: 6000). And the pure water used in the examples is the same treatment as the pure water.
Next, the aqueous solution in which the crude lithium hydroxide prepared above was dissolved was filtered at 40 ° C. using a PTFE membrane filter having a pore size of 0.5 μm.
Table 2 shows impurity contents in a lithium hydroxide sample obtained by partially collecting the filtrate after filtration and drying under reduced pressure.

Figure 0004620378
次いで、95℃に加温し、減圧下に水分を抑留しながら4時間晶析を行った。なお、回収した水分は3300gであった。冷却後、常法により固液分離して析出した水酸化リチウムを回収し、次いで、減圧下に乾燥を行って得られた水酸化リチウム(LiOH・H2O)試料中の不純物含有量を表3に示す。
Figure 0004620378
Next, the mixture was heated to 95 ° C. and crystallized for 4 hours while retaining moisture under reduced pressure. The recovered water was 3300 g. After cooling, the precipitated lithium hydroxide was recovered by solid-liquid separation by a conventional method, and then dried under reduced pressure, and the impurity content in the lithium hydroxide (LiOH.H 2 O) sample obtained was displayed. 3 shows.

Figure 0004620378
Figure 0004620378

実施例1
反応容器に上記の精製水酸化リチウム1水塩126gを純水に溶解し1500gとし、4.8重量%水酸化リチウム水溶液を調製した(pH 11.6)。
次いでこの反応容器にリン酸(日本化学工業社製;高純度品)を9.8重量%含むリン酸水溶液1000gを83mL/分の速度で反応系の温度を40℃以下に維持しながら全量を約12分間かけて滴下しリン酸リチウムを析出させた(pH 10.5)。
次に、ろ過してリン酸リチウムを回収した。
次いで、回収したリン酸リチウムを温度110℃で20時間乾燥し、乾燥品を得た。得られた乾燥品をX線回折で分析したところJCPDSカード番号(25−1030)と回折パターンが一致していることから、この乾燥品はLi3PO4であることを確認した。
得られたLi3PO4の諸物性値を表5に示す。また、反応条件を表4に示す。
また、得られたLi3PO4を線源としてCuKα線を用いてX線回折分析を行い2θ=16.8近傍の回折ピーク(010)面の半値幅を測定し、その結果を表5に示す。また、得られたLi3PO4のX線回折図を図1に示す。
なお、Na、Ca、Al、Siの含有量は、ICP分光法により求めた。また、一次粒子と一次粒子集合体の粒径は走査型電子顕微鏡により求めた。また、その走査型電子顕微鏡写真を図2に示す。
Example 1
In a reaction vessel, 126 g of the above-described purified lithium hydroxide monohydrate was dissolved in pure water to 1500 g to prepare a 4.8 wt% lithium hydroxide aqueous solution (pH 11.6).
Subsequently, 1000 g of an aqueous phosphoric acid solution containing 9.8% by weight of phosphoric acid (manufactured by Nippon Kagaku Kogyo Co., Ltd .; high-purity product) in this reaction vessel was maintained at a reaction system temperature of 40 ° C. or less at a rate of 83 mL / min. The solution was added dropwise over about 12 minutes to precipitate lithium phosphate (pH 10.5).
Next, it filtered and lithium phosphate was collect | recovered.
Next, the recovered lithium phosphate was dried at a temperature of 110 ° C. for 20 hours to obtain a dried product. When the obtained dried product was analyzed by X-ray diffraction, the diffraction pattern was in agreement with the JCPDS card number (25-1030), and it was confirmed that this dried product was Li 3 PO 4 .
Various physical properties of the obtained Li 3 PO 4 are shown in Table 5. The reaction conditions are shown in Table 4.
In addition, X-ray diffraction analysis was performed using the obtained Li 3 PO 4 as a radiation source using CuKα rays, and the half width of the diffraction peak (010) plane near 2θ = 16.8 was measured. Show. Further, FIG. 1 shows an X-ray diffraction pattern of the obtained Li 3 PO 4 .
The contents of Na, Ca, Al, and Si were obtained by ICP spectroscopy. The particle diameters of the primary particles and the primary particle aggregate were obtained with a scanning electron microscope. The scanning electron micrograph is shown in FIG.

実施例2
反応容器に上記の精製水酸化リチウム1水塩126gを純水に溶解し1500gとし、4.8重量%水酸化リチウム水溶液を調製した(pH 11.6)。
次いでこの反応容器にリン酸(日本化学工業社製;高純度品)を38重量%含むリン酸水溶液262gを83mL/分の速度で反応系の温度を40℃以下に維持しながら全量を約3分半かけて滴下しリン酸リチウムを析出させた(pH 10.5)。
次に、ろ過してリン酸リチウムを回収した。
次いで、回収したリン酸リチウムを温度48℃で23時間乾燥し、乾燥品を得た。得られた乾燥品をX線回折で分析したところJCPDSカード番号25−1030と回折パターンが一致していることから、この乾燥品はLi3PO4であることを確認した。
得られたLi3PO4の諸物性値を表5に示す。また、反応条件を表4に示す。
また、得られたLi3PO4を線源としてCuKα線を用いてX線回折分析を行い2θ=16.8近傍の回折ピーク(010)面の半値幅を測定し、その結果を表5に示す。
なお、Na、Ca、Al、Siの含有量と一次粒子と一次粒子集合体の粒径は実施例1と同様に求めた。
Example 2
In a reaction vessel, 126 g of the above-described purified lithium hydroxide monohydrate was dissolved in pure water to 1500 g to prepare a 4.8 wt% lithium hydroxide aqueous solution (pH 11.6).
Next, 262 g of an aqueous phosphoric acid solution containing 38% by weight of phosphoric acid (manufactured by Nippon Kagaku Kogyo Co., Ltd .; high-purity product) in this reaction vessel was maintained at a reaction system temperature of 40 ° C. or less at a rate of 83 mL / min. The solution was added dropwise over half an hour to precipitate lithium phosphate (pH 10.5).
Next, it filtered and lithium phosphate was collect | recovered.
Next, the recovered lithium phosphate was dried at a temperature of 48 ° C. for 23 hours to obtain a dried product. When the obtained dried product was analyzed by X-ray diffraction, it was confirmed that the dried product was Li 3 PO 4 because the diffraction pattern was in agreement with JCPDS card number 25-1030.
Various physical properties of the obtained Li 3 PO 4 are shown in Table 5. The reaction conditions are shown in Table 4.
In addition, X-ray diffraction analysis was performed using the obtained Li 3 PO 4 as a radiation source using CuKα rays, and the half width of the diffraction peak (010) plane near 2θ = 16.8 was measured. Show.
The contents of Na, Ca, Al, and Si, and the particle sizes of the primary particles and the primary particle aggregate were obtained in the same manner as in Example 1.

実施例3
反応容器に上記の精製水酸化リチウム水溶液1水塩126gを純水に溶解し1500gとし、4.8重量%水酸化リチウム水溶液を調製した(pH 11.6)。次いでこの反応容器にリン酸(日本化学工業社製;高純度品)を9.8重量%含むリン酸水溶液980gを83mL/分の速度で反応系の温度を70℃以下に維持しながら全量を約12分間かけて滴下しリン酸リチウムを析出させた(pH 10.5)。
次に、ろ過してリン酸リチウムを回収した。
次いで、回収したリン酸リチウムを温度110℃で20時間乾燥し、乾燥品を得た。得られた乾燥品をX線回折で分析したところJCPDSカード番号25−1030と回折パターンが一致していることから、この乾燥品はLi3PO4であることを確認した。
得られたLi3PO4の諸物性値を表5に示す。また、反応条件を表4に示す。
また、得られたLi3PO4を線源としてCuKα線を用いてX線回折分析を行い2θ=16.8近傍の回折ピーク(010)面の半値幅を測定し、その結果を表4に示す。
なお、Na、Ca、Al、Siの含有量と一次粒子と一次粒子集合体の粒径は実施例1と同様に求めた。
Example 3
In a reaction vessel, 126 g of the above purified lithium hydroxide aqueous solution monohydrate was dissolved in pure water to 1500 g to prepare a 4.8 wt% lithium hydroxide aqueous solution (pH 11.6). Next, 980 g of phosphoric acid aqueous solution containing 9.8% by weight of phosphoric acid (manufactured by Nippon Kagaku Kogyo Co., Ltd .; high-purity product) was added to the reaction vessel at a rate of 83 mL / min. The solution was added dropwise over about 12 minutes to precipitate lithium phosphate (pH 10.5).
Next, it filtered and lithium phosphate was collect | recovered.
Next, the recovered lithium phosphate was dried at a temperature of 110 ° C. for 20 hours to obtain a dried product. When the obtained dried product was analyzed by X-ray diffraction, it was confirmed that the dried product was Li 3 PO 4 because the diffraction pattern was in agreement with JCPDS card number 25-1030.
Various physical properties of the obtained Li 3 PO 4 are shown in Table 5. The reaction conditions are shown in Table 4.
Further, the obtained Li 3 PO 4 was used as a radiation source and an X-ray diffraction analysis was performed using CuKα rays to measure the half width of the diffraction peak (010) plane in the vicinity of 2θ = 16.8. Show.
The contents of Na, Ca, Al, and Si, and the particle sizes of the primary particles and the primary particle aggregate were obtained in the same manner as in Example 1.

比較例1
反応容器に上記の精製水酸化リチウム水溶液1水塩126gを純水に溶解し800gとし、9重量%水酸化リチウム水溶液を調製した(pH 12.1)。
次いでこの反応容器にリン酸(日本化学工業社製;高純度品)を9.8重量%含むリン酸水溶液1000gを83mL/分の速度で反応系の温度を40℃以下に維持しながら全量を約12分間かけて滴下しリン酸リチウムを析出させた(pH 10.5)。
次に、ろ過してリン酸リチウムを回収した。
次いで、回収したリン酸リチウムを温度110℃で20時間乾燥し、乾燥品を得た。得られた乾燥品をX線回折で分析したところJCPDSカード番号25−1030と回折パターンが一致していることから、この乾燥品はLi3PO4であることを確認した。
得られたLi3PO4の諸物性値を表5に示す。また、反応条件を表4に示す。
また、得られたLi3PO4を線源としてCuKα線を用いてX線回折分析を行い2θ=16.8近傍の回折ピーク(010)面の半値幅を測定し、その結果を表5に示す。
なお、Na、Ca、Al、Siの含有量と一次粒子と一次粒子集合体の粒径は実施例1と同様に求めた。
Comparative Example 1
In a reaction vessel, 126 g of the above purified lithium hydroxide aqueous solution monohydrate was dissolved in pure water to 800 g to prepare a 9 wt% lithium hydroxide aqueous solution (pH 12.1).
Subsequently, 1000 g of an aqueous phosphoric acid solution containing 9.8% by weight of phosphoric acid (manufactured by Nippon Kagaku Kogyo Co., Ltd .; high-purity product) in this reaction vessel was maintained at a reaction system temperature of 40 ° C. or less at a rate of 83 mL / min. The solution was added dropwise over about 12 minutes to precipitate lithium phosphate (pH 10.5).
Next, it filtered and lithium phosphate was collect | recovered.
Next, the recovered lithium phosphate was dried at a temperature of 110 ° C. for 20 hours to obtain a dried product. When the obtained dried product was analyzed by X-ray diffraction, it was confirmed that the dried product was Li 3 PO 4 because the diffraction pattern was in agreement with JCPDS card number 25-1030.
Various physical properties of the obtained Li 3 PO 4 are shown in Table 5. The reaction conditions are shown in Table 4.
In addition, X-ray diffraction analysis was performed using the obtained Li 3 PO 4 as a radiation source using CuKα rays, and the half width of the diffraction peak (010) plane near 2θ = 16.8 was measured. Show.
The contents of Na, Ca, Al, and Si, and the particle sizes of the primary particles and the primary particle aggregate were obtained in the same manner as in Example 1.

比較例2〜3
比較のため市販の2種類のリン酸リチウムの諸物性値を表5に併記した。
Comparative Examples 2-3
For comparison, various physical properties of two types of commercially available lithium phosphate are shown in Table 5.

Figure 0004620378
Figure 0004620378

Figure 0004620378
注)表5中の「N.D.」は検出限界1ppm以下を示す。
Figure 0004620378
Note) “ND” in Table 5 indicates a detection limit of 1 ppm or less.

<リチウム鉄リン系複合酸化物の合成>
合成例1;リン酸第一鉄含水塩の合成
Na;13ppm、Ti;1200ppm、Mn;3900ppm、Zn;96ppm、Co;29ppm、Cr;4ppm、Ni;18ppm、Cu;1ppm以下を含有する硫酸第一鉄7水和物(FeSO4・7H2O)907g(3モル)と75%リン酸(H3PO4)261g(2モル)を水3Lに溶解させ、混合溶液を作成した(温度17℃、pH1.6)。この混合溶液に、16 %水酸化ナトリウム(NaOH)水溶液1500mL(6 モル)を83 mL/minの滴下速度で18分で滴下し、リン酸第一鉄を析出させた(温度31℃、pH6.7)。
次に、ろ過してリン酸第一鉄を回収し、この回収したリン酸第一鉄を水4.5Lで入念に洗浄した。
次いで、洗浄後のリン酸第一鉄を温度50℃で23時間乾燥し、乾燥品490gを得た。得られた乾燥品をX線回折で分析したところJCPDSカード番号30−662と回折パターンが一致していることから、この乾燥品はFe3(PO42・8H2Oであることを確認した(収率98%)。
得られたFe3(PO42・8H2Oの諸物性値を表6に示す。
また、得られたFe3(PO42・8H2Oを線源としてCuKα線を用いてX線回折分析を行い2θ=13.1°近傍のピーク(020)面の半値幅を測定した。
なお、Na、Si、Al、Ca、Ti、Mn、Zn、Cr、Ni、Cu、Coの含有量は、ICP分光法により求めた。また、SO4含有量はICP分光法によるS原子濃度測定結果を換算して求め、該乾燥品のP含有量を吸光光度法により求めた。また、平均粒径はレーザー回折法により求めた。
<Synthesis of lithium iron phosphorus complex oxide>
Synthesis Example 1: Synthesis of ferrous phosphate hydrated salt Na: 13 ppm, Ti: 1200 ppm, Mn: 3900 ppm, Zn: 96 ppm, Co: 29 ppm, Cr: 4 ppm, Ni: 18 ppm, Cu: 1 ppm or less 907 g (3 mol) of ferrous heptahydrate (FeSO 4 .7H 2 O) and 261 g ( 2 mol) of 75% phosphoric acid (H 3 PO 4 ) were dissolved in 3 L of water to prepare a mixed solution (temperature 17 ° C, pH 1.6). To this mixed solution, 1500 mL (6 mol) of a 16% sodium hydroxide (NaOH) aqueous solution was added dropwise at a dropping rate of 83 mL / min over 18 minutes to precipitate ferrous phosphate (temperature 31 ° C., pH 6. 7).
Next, the ferrous phosphate was recovered by filtration, and the recovered ferrous phosphate was carefully washed with 4.5 L of water.
Next, the washed ferrous phosphate was dried at a temperature of 50 ° C. for 23 hours to obtain 490 g of a dried product. When the obtained dried product was analyzed by X-ray diffraction, it was confirmed that this dried product was Fe 3 (PO 4 ) 2 · 8H 2 O because the diffraction pattern was in agreement with JCPDS card number 30-662. (Yield 98%).
Table 6 shows various physical properties of the obtained Fe 3 (PO 4 ) 2 · 8H 2 O.
In addition, X-ray diffraction analysis was performed using the obtained Fe 3 (PO 4 ) 2 · 8H 2 O as a radiation source using CuKα rays, and the half width of the peak (020) plane near 2θ = 13.1 ° was measured. .
The contents of Na, Si, Al, Ca, Ti, Mn, Zn, Cr, Ni, Cu, and Co were obtained by ICP spectroscopy. The SO 4 content was obtained by converting the S atom concentration measurement result by ICP spectroscopy, and the P content of the dried product was obtained by absorptiometry. The average particle size was determined by a laser diffraction method.

Figure 0004620378
注)表6中の「N.D.」は検出限界1ppm以下を示す。
Figure 0004620378
Note) “ND” in Table 6 indicates a detection limit of 1 ppm or less.

合成例2;リン酸マンガンの合成
硫酸マンガン1水和物(MnSO4・H2O)1352 g(8モル)と75%リン酸(H3PO4)697 g(5.3モル)を水25 Lに溶解させ、混合溶液を作成した.(pH 1.3)この混合溶液に、4%水酸化ナトリウム(NaOH)水溶液16 L(16モル)を161mL/minの滴下速度で約100分で滴下し、リン酸マンガンを析出させた(pH6.5).
次に、濾過してリン酸マンガンを回収し、この回収したリン酸マンガンを水40Lで入念に洗浄した.
次いで、洗浄後のリン酸マンガンを温度50℃で23時間乾燥し、乾燥品1241gを得た.得られた乾燥品をX線回折で分析したところ、文献(RUSS.J.Inorg.Chem.23、341、1978)記載のデータと面間隔および回折強度が一致していること、およびMn含有量が34.8重量%、PO4含有量が40.2重量%であることからこの乾燥品はMn3(PO42・6H2Oであることを確認した(収率98%)。
得られたMn3(PO42・6H2Oの諸物性値を表7に示す。
なお、Na、Si、Al、Ca、Ti、Mn、Zn、Cr、Ni、Cu、Coの含有量は、ICP分光法により求めた。また、SO4含有量はICP分光法によるS原子濃度測定結果を換算して求め、該乾燥品のP含有量を吸光光度法により求めた。また、平均粒径はレーザー回折法により求めた。
Synthesis Example 2 Synthesis of Manganese Phosphate Manganese sulfate monohydrate (MnSO 4 · H 2 O) 1352 g (8 mol) and 75% phosphoric acid (H 3 PO 4 ) 697 g (5.3 mol) in water A mixed solution was prepared by dissolving in 25 L. (PH 1.3) To this mixed solution, 16 L (16 mol) of 4% sodium hydroxide (NaOH) aqueous solution was dropped at a dropping speed of 161 mL / min in about 100 minutes to precipitate manganese phosphate (pH 6). .5).
Next, the manganese phosphate was recovered by filtration, and the recovered manganese phosphate was carefully washed with 40 L of water.
Next, the washed manganese phosphate was dried at a temperature of 50 ° C. for 23 hours to obtain 1241 g of a dried product. When the obtained dried product was analyzed by X-ray diffraction, the data described in the literature (RUSS. J. Inorg. Chem. 23, 341, 1978) was in agreement with the surface spacing and diffraction intensity, and the Mn content Was 34.8% by weight and the PO 4 content was 40.2% by weight, it was confirmed that this dried product was Mn 3 (PO 4 ) 2 · 6H 2 O (yield 98%).
Table 7 shows properties of the obtained Mn 3 (PO 4 ) 2 · 6H 2 O.
The contents of Na, Si, Al, Ca, Ti, Mn, Zn, Cr, Ni, Cu, and Co were obtained by ICP spectroscopy. The SO 4 content was obtained by converting the S atom concentration measurement result by ICP spectroscopy, and the P content of the dried product was obtained by absorptiometry. The average particle size was determined by a laser diffraction method.

Figure 0004620378
注)表7中の「N.D.」は検出限界1ppm以下を示す。
Figure 0004620378
Note) “ND” in Table 7 indicates a detection limit of 1 ppm or less.

実施例4
実施例1で得られたリン酸リチウム凝集体11.9gと合成例1で調製したリン酸第一鉄含水塩結晶(Fe3(PO42・8H2O)50.2g及び粒径が0.05μmのケッチェンブラック(ケッチェンブラックインターナショナル社製、商品名ECP)5.0gをミキサーにより十分混合した。次いで、この混合物を振動ミルを用いて粉砕処理し、反応前駆体を得た。
また、振動ミル粉砕品の比容積は、50mLのメスシリンダーにサンプル10gを入れ、ユアサアイオニクス(株)製、DUAL AUTOTAP装置にセットし、500回タップした後、容積を読みとり下記式により求めた。

Figure 0004620378
(式中、F;受器内の処理した試料の質量(g)、V;タップ後の試料の容量(mL)を示す。)
なお、振動ミルの運転条件は以下の通りである.
・振動数;1000Hz
・処理時間;3分
・原料の仕込量;12g
得られた反応前駆体の主物性を表8に示した。
次に、反応前駆体10gをハンドプレスにより44MPaでプレス成形した。次いで、得られた粉砕品を窒素雰囲気下に600℃で5時間焼成し、冷却後、粉砕してケッチェンブラックを被覆したLiFePO4を得た。得られたケッチェンブラックを被覆したLiFePO4の主物性を表9に示す。
なお、Na、Si、Al、Ca、Ti、Mn、Zn、Cr、Ni、Cu、Coの含有量は、ICP分光法により求めた。また、SO4含有量はICP分光法によるS原子濃度測定結果を換算して求めた。平均粒径は、電子顕微鏡写真により求めた。また、ケッチェンブラックを被覆したLiFePO4中のC原子の含有量を全有機体炭素計(島津製作所社製、TOC−5000A)により測定した。 Example 4
11.9 g of the lithium phosphate aggregate obtained in Example 1, 50.2 g of the ferrous phosphate hydrate crystals (Fe 3 (PO 4 ) 2 .8H 2 O) prepared in Synthesis Example 1, and the particle size 0.05 g of Ketjen Black (trade name ECP, manufactured by Ketjen Black International Co., Ltd.) of 0.05 μm was sufficiently mixed with a mixer. Next, this mixture was pulverized using a vibration mill to obtain a reaction precursor.
Moreover, the specific volume of the vibration mill pulverized product was obtained by putting 10 g of a sample into a 50 mL measuring cylinder, setting it on Yuasa Ionics Co., Ltd.'s DUAL AUTOTAP device, tapping 500 times, reading the volume, and obtaining the following formula. .
Figure 0004620378
(Wherein, F represents the mass (g) of the processed sample in the receiver, and V represents the volume (mL) of the sample after tapping.)
The operating conditions of the vibration mill are as follows.
・ Frequency: 1000Hz
・ Processing time: 3 minutes ・ Material charge: 12 g
Table 8 shows the main physical properties of the obtained reaction precursor.
Next, 10 g of the reaction precursor was press-molded at 44 MPa by hand press. Next, the obtained pulverized product was calcined at 600 ° C. for 5 hours in a nitrogen atmosphere, cooled, and pulverized to obtain LiFePO 4 coated with ketjen black. Table 9 shows the main physical properties of LiFePO 4 coated with the obtained ketjen black.
The contents of Na, Si, Al, Ca, Ti, Mn, Zn, Cr, Ni, Cu, and Co were obtained by ICP spectroscopy. The SO 4 content was determined by converting the S atom concentration measurement result by ICP spectroscopy. The average particle size was determined from an electron micrograph. Further, the content of C atoms in LiFePO 4 coated with ketjen black was measured with a total organic carbon meter (TOC-5000A, manufactured by Shimadzu Corporation).

実施例5
実施例1で得られたリチウム凝集体5.6gと合成例1で調製したリン酸第一鉄含水塩(Fe3(PO42・8H2O)11.4 gと合成例2で調製したリン酸マンガン含水塩(Mn3(PO42・6H2O)10.8g及び粒径が0.1μmのケッチェンブラック(ケッチェンブラックインターナショナル社製、商品名ECP)2.3gをミキサーにより充分混合した.次いで、この混合物を振動ミルを用いて粉砕処理し、反応前駆体を得た。得られた反応前駆体の諸物性を実施例4と同様に測定し、その結果を表8に示した.
なお、振動ミルの運転条件は以下の通りである.
・振動数;1000Hz
・処理時間;3分
・原料の仕込量;12g
次に、反応前駆体10gをハンドプレスにより44MPaでプレス成形した。次いで、このプレス成形品を窒素雰囲気下に600℃で5時間焼成し、冷却後、粉砕しケッチェンブラックを被覆したリン酸(鉄−マンガン)リン系複合酸化物を得た。得られたリン酸(鉄−マンガン)リン系複合酸化物の平均粒径、BET比表面積、Na、Si、Al、Ca、Ti、Mn、Zn、Cr、Ni、Cu、Co、SO4の含有量を実施例4と同様な手法で求めその結果を表9に示す。
Example 5
5.6 g of lithium aggregate obtained in Example 1 and 11.4 g of ferrous phosphate hydrate (Fe 3 (PO 4 ) 2 .8H 2 O) prepared in Synthesis Example 1 and prepared in Synthesis Example 2 phosphorous acid manganese salt hydrate (Mn 3 (PO 4) 2 · 6H 2 O) 10.8g and particle size is 0.1μm of Ketjen black (Ketjen black International Co., Ltd., trade name ECP) mixer 2.3g Was thoroughly mixed. Next, this mixture was pulverized using a vibration mill to obtain a reaction precursor. The physical properties of the obtained reaction precursor were measured in the same manner as in Example 4. The results are shown in Table 8.
The operating conditions of the vibration mill are as follows.
・ Frequency: 1000Hz
・ Processing time: 3 minutes ・ Material charge: 12 g
Next, 10 g of the reaction precursor was press-molded at 44 MPa by hand press. Next, this press-molded product was fired at 600 ° C. for 5 hours in a nitrogen atmosphere, cooled, pulverized, and a phosphoric acid (iron-manganese) phosphorus-based composite oxide coated with ketjen black was obtained. Average particle diameter, BET specific surface area, Na, Si, Al, Ca, Ti, Mn, Zn, Cr, Ni, Cu, Co, SO 4 content of the obtained phosphoric acid (iron-manganese) phosphorus composite oxide The amount was determined in the same manner as in Example 4 and the results are shown in Table 9.

Figure 0004620378
Figure 0004620378

Figure 0004620378
注)表9中のC原子の含有量は、LiFePO4又はLiFe0.5Mn0.5PO4に対するC原子の量を示す。
Figure 0004620378
Note) The C atom content in Table 9 represents the amount of C atoms relative to LiFePO 4 or LiFe 0.5 Mn 0.5 PO 4 .

<参考例>
<電池性能試験>
(I)リチウム二次電池の作製;
上記のように製造した実施例4のケッチェンブラックを被覆したLiFePO4を真空乾燥し、カールフィッシャー法から求められる該ケッチェンブラックを被覆したLiFePO4の水分含有量を1500ppm以下とし、このリチウム鉄リン系複合酸化物91重量%、黒鉛粉末6重量%、ポリフッ化ビニリデン3重量%を混合して正極剤とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。該混練ペーストをアルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板を得た。
この正極板を用いて、セパレーター、負極、正極、集電板、取り付け金具、外部端子、電解液等の各部材を使用してリチウム二次電池を製作した。このうち、負極は金属リチウム箔を用い、電解液にはエチレンカーボネートとメチルエチルカーボネートの1:1混練液1リットルにLiPF6 1モルを溶解したものを使用した。
<Reference example>
<Battery performance test>
(I) Production of lithium secondary battery;
The LiFePO 4 coated with the ketjen black of Example 4 produced as described above was vacuum dried, and the water content of the LiFePO 4 coated with the ketjen black determined by the Karl Fischer method was 1500 ppm or less. 91% by weight of a phosphorus composite oxide, 6% by weight of graphite powder, and 3% by weight of polyvinylidene fluoride were mixed to obtain a positive electrode agent, which was dispersed in N-methyl-2-pyrrolidinone to prepare a kneaded paste. The kneaded paste was applied to an aluminum foil, dried, pressed and punched into a disk with a diameter of 15 mm to obtain a positive electrode plate.
Using this positive electrode plate, a lithium secondary battery was manufactured using each member such as a separator, a negative electrode, a positive electrode, a current collector plate, a mounting bracket, an external terminal, and an electrolytic solution. Among these, a metal lithium foil was used for the negative electrode, and 1 mol of LiPF 6 dissolved in 1 liter of a 1: 1 kneaded solution of ethylene carbonate and methyl ethyl carbonate was used for the electrolyte.

(II)電池の性能評価
作製したリチウム二次電池を室温で作動させ、初期放電容量および10サイクル後の放電容量を測定した。また、LiFePO4の理論放電容量(170mAh/g)に対する比を下記の式により算出した。その結果を表10に示す。

Figure 0004620378
(II) Battery performance evaluation The produced lithium secondary battery was operated at room temperature, and the initial discharge capacity and the discharge capacity after 10 cycles were measured. The ratio of LiFePO 4 to the theoretical discharge capacity (170 mAh / g) was calculated by the following formula. The results are shown in Table 10.
Figure 0004620378

Figure 0004620378
Figure 0004620378

表10の結果より、本発明のリン酸リチウム凝集体を用いて、製造したLiFePO4を正極活物質として用いたリチウム二次電池は、LiFePO4の理論放電容量に近い値を示し、極めて高放電容量のリチウム二次電池が得られた。 From the results of Table 10, the lithium secondary battery using the LiFePO 4 produced using the lithium phosphate aggregate of the present invention as the positive electrode active material shows a value close to the theoretical discharge capacity of LiFePO 4 and is extremely high in discharge. A lithium secondary battery having a capacity was obtained.

実施例1で得られたLi3PO4のX線回折図。 2 is an X-ray diffraction pattern of Li 3 PO 4 obtained in Example 1. FIG. 実施例1で得られたLi3PO4の電子顕微鏡写真(倍率一万倍)Electron micrograph of Li 3 PO 4 obtained in Example 1 (magnification 10,000 times)

Claims (10)

微細な一次粒子が集合体を形成してなり、該集合体の平均粒径が1〜10μmで、安息角が50度以下であることを特徴とするリン酸リチウム凝集体。   A lithium phosphate aggregate comprising fine primary particles forming an aggregate, wherein the aggregate has an average particle diameter of 1 to 10 μm and an angle of repose of 50 degrees or less. X線回折分析から求められる格子面(010)面の回折ピークの半値幅が0.2°以上である請求項1記載のリン酸リチウム凝集体。   The lithium phosphate aggregate according to claim 1, wherein the half-value width of the diffraction peak of the lattice plane (010) plane obtained from X-ray diffraction analysis is 0.2 ° or more. BET比表面積が1〜50m2/gである請求項1又は2記載のリン酸リチウム凝集体。 The lithium phosphate aggregate according to claim 1 or 2, wherein the BET specific surface area is 1 to 50 m 2 / g. Na含有量が100ppm以下で、Al、Ca及びSiの含有量が総量で100ppm以下である請求項1乃至3記載のリン酸リチウム凝集体。   The lithium phosphate aggregate according to any one of claims 1 to 3, wherein the Na content is 100 ppm or less and the total content of Al, Ca, and Si is 100 ppm or less. 水酸化リチウムをLiOHとして4〜6重量%含む水溶液にリン酸を含む水溶液を添加し70℃以下で反応を行うことを特徴とするリン酸リチウム凝集体の製造方法。   A method for producing a lithium phosphate aggregate, comprising adding an aqueous solution containing phosphoric acid to an aqueous solution containing 4 to 6% by weight of lithium hydroxide as LiOH and performing a reaction at 70 ° C or lower. 前記水酸化リチウムは水酸化リチウムを含む水溶液を精密濾過した後、晶析を行って得られる精製水酸化リチウムを用いる請求項記載のリン酸リチウム凝集体の製造方法。 The said lithium hydroxide is a manufacturing method of the lithium phosphate aggregate of Claim 5 using the refined lithium hydroxide obtained by performing crystallization after carrying out the microfiltration of the aqueous solution containing lithium hydroxide. (A)請求項1乃至4の何れか1項に記載のリン酸リチウム凝集体、リン酸第一鉄含水塩及び導電性炭素質材料又は(B)請求項1乃至4の何れか1項に記載のリン酸リチウム凝集体、リン酸第一鉄含水塩、Mn、Co、Ni及びAlから選ばれる金属元素を含有する少なくとも1種以上の金属化合物及び導電性炭素質材料とを混合し焼成を行うことを特徴とするリチウム鉄リン系複合酸化物の製造方法。   (A) Lithium phosphate aggregate according to any one of claims 1 to 4, ferrous phosphate hydrate and conductive carbonaceous material, or (B) any one of claims 1 to 4. The lithium phosphate aggregate described above, ferrous phosphate hydrate, Mn, Co, Ni, and at least one metal compound containing a metal element selected from Al and Al and a conductive carbonaceous material are mixed and fired. A method for producing a lithium iron-phosphorus composite oxide, which is performed. (A)請求項1乃至4の何れか1項に記載のリン酸リチウム凝集体、リン酸第一鉄含水塩及び導電性炭素質材料又は(B)請求項1乃至4の何れか1項に記載のリン酸リチウム凝集体、リン酸第一鉄含水塩、Mn、Co、Ni及びAlから選ばれる金属元素を含有する少なくとも1種以上の金属化合物及び導電性炭素質材料とを混合する第一工程、次いで、得られる混合物を乾式で粉砕処理して反応前駆体を得る第二工程、次いで、該反応前駆体を焼成してリチウム鉄リン系複合酸化物を得る第三工程を含むことを特徴とする請求項記載のリチウム鉄リン系複合酸化物の製造方法。 (A) Lithium phosphate aggregate according to any one of claims 1 to 4, ferrous phosphate hydrate and conductive carbonaceous material, or (B) any one of claims 1 to 4. 1st which mixes at least 1 sort (s) or more of metal compound and conductive carbonaceous material containing the metal element chosen from the lithium phosphate aggregate of description, ferrous phosphate hydrate, Mn, Co, Ni, and Al And a second step of obtaining a reaction precursor by dry-grinding the resulting mixture, and then a third step of firing the reaction precursor to obtain a lithium iron-phosphorus composite oxide. The method for producing a lithium iron-phosphorus composite oxide according to claim 7 . 前記第二工程後、得られる反応前駆体を加圧成形する工程を設ける請求項記載のリチウム鉄リン系複合酸化物の製造方法。 The method for producing a lithium iron-phosphorus composite oxide according to claim 8, wherein a step of pressure-molding the obtained reaction precursor is provided after the second step. 生成させるリチウム鉄リン系複合酸化物は平均粒径が0.5μm以下である請求項乃至記載のリチウム鉄リン系複合酸化物の製造方法。 Method of manufacturing a lithium-iron-phosphorus compound oxide has an average particle size of 0.5μm or less claims 7-9 lithium-iron-phosphorus compound oxide according to generate.
JP2004118757A 2003-05-09 2004-04-14 Lithium phosphate aggregate, method for producing the same, and method for producing lithium iron phosphorus composite oxide Expired - Fee Related JP4620378B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004118757A JP4620378B2 (en) 2003-05-09 2004-04-14 Lithium phosphate aggregate, method for producing the same, and method for producing lithium iron phosphorus composite oxide
KR1020040032129A KR101037825B1 (en) 2003-05-09 2004-05-07 Lithium phosphate aggregates, a process for preparing thereof and a process for preparing lithium iron phosphor system complex oxides
CNB2004100347371A CN100348478C (en) 2003-05-09 2004-05-09 Lithium phosphate aggregate, its manufacture method, and manufacture method of lithium/iron/phosphorus-based complex oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003131032 2003-05-09
JP2004118757A JP4620378B2 (en) 2003-05-09 2004-04-14 Lithium phosphate aggregate, method for producing the same, and method for producing lithium iron phosphorus composite oxide

Publications (2)

Publication Number Publication Date
JP2004359538A JP2004359538A (en) 2004-12-24
JP4620378B2 true JP4620378B2 (en) 2011-01-26

Family

ID=34067054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004118757A Expired - Fee Related JP4620378B2 (en) 2003-05-09 2004-04-14 Lithium phosphate aggregate, method for producing the same, and method for producing lithium iron phosphorus composite oxide

Country Status (3)

Country Link
JP (1) JP4620378B2 (en)
KR (1) KR101037825B1 (en)
CN (1) CN100348478C (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842420B2 (en) 2005-02-03 2010-11-30 A123 Systems, Inc. Electrode material with enhanced ionic transport properties
CN100390052C (en) * 2006-02-28 2008-05-28 北大先行科技产业有限公司 Method for synthesizing spheroidal lithium phosphate
EP2455355A1 (en) * 2006-02-28 2012-05-23 Primet Precision Materials, Inc. Methods for producing nanoparticle compositions
CN101241987B (en) * 2008-01-04 2011-08-24 深圳大学 An electric chemical synthesis method for positive material ferric lithium phosphate of lithium ion battery
TWI466370B (en) 2008-01-17 2014-12-21 A123 Systems Inc Mixed metal olivine electrode materials for lithium ion batteries
JP5381115B2 (en) * 2009-01-20 2014-01-08 住友大阪セメント株式会社 Lithium phosphate powder and lithium phosphate-containing slurry, method for producing electrode active material, and lithium ion battery
DE102009010264B4 (en) 2009-02-24 2015-04-23 Süd-Chemie Ip Gmbh & Co. Kg Process for purifying lithium-containing effluents in the continuous production of lithium transition metal phosphates
EP2471132B1 (en) 2009-08-25 2016-10-12 A123 Systems LLC Mixed metal olivine electrode materials for lithium ion batteries having improved specific capacity and energy density
US9660267B2 (en) 2009-09-18 2017-05-23 A123 Systems, LLC High power electrode materials
TWI496737B (en) 2009-09-18 2015-08-21 A123 Systems Llc Ferric phosphate and methods of preparation thereof
CN102630215B (en) * 2009-11-10 2015-11-25 意大利乐科伍德公司 For the production of LiFePO 4the hydrothermal method of powder
CN107012339A (en) * 2010-07-09 2017-08-04 浦项产业科学研究院 The method that lithium is economically extracted from lithium-containing solution
DE102010026828A1 (en) * 2010-07-12 2012-01-12 Bk Giulini Gmbh Process for the preparation of lithium dihydrogen phosphate
JP6249388B2 (en) * 2011-07-28 2017-12-20 株式会社村田製作所 Positive electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, electric power storage system, electric tool and electronic device
JP5725456B2 (en) * 2011-12-19 2015-05-27 太平洋セメント株式会社 Method for producing positive electrode active material for lithium ion secondary battery
KR101405486B1 (en) * 2012-04-05 2014-06-13 주식회사 포스코 Method for manufacturing lithium hydroxide and method for manufacturing lithium carbonate using the same
US9932235B2 (en) 2012-08-28 2018-04-03 Advanced Lithium Electrochemistry Co., Ltd. Preparation method of battery composite material and precursor thereof
US20160197347A1 (en) * 2013-09-30 2016-07-07 Dow Global Technologies Llc LMFP Cathode Materials with Improved Electrochemical Performance
CN103956490B (en) * 2014-04-23 2016-05-04 厦门钨业股份有限公司 A kind of synthetic method of the high-specific surface area lithium phosphate for the preparation of phosphate lithium ion anode material
JP5999240B1 (en) * 2015-09-30 2016-09-28 住友大阪セメント株式会社 ELECTRODE MATERIAL FOR LITHIUM ION SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME
CN105355868A (en) * 2015-10-21 2016-02-24 湖州百成电池有限公司 Preparation method of novel iron-lithium and multi-element battery
JP2019040685A (en) * 2017-08-23 2019-03-14 トヨタ自動車株式会社 Method for manufacturing trilithium phosphate for nonaqueous secondary battery
JP6836721B2 (en) * 2017-11-13 2021-03-03 トヨタ自動車株式会社 Manufacturing method of trilithium phosphate for non-aqueous secondary batteries
KR102367354B1 (en) * 2019-03-28 2022-02-24 한국생산기술연구원 Method for purifying waste lithium phosphate and method for manufacturing lithium iron phosphate comprising the same
CN112838289B (en) * 2021-02-24 2022-02-01 武汉工程大学 Method for recovering lithium and ferrous phosphate from lithium iron phosphate positive electrode material
CN114394610A (en) * 2021-12-20 2022-04-26 格林美股份有限公司 Recovery method of waste lithium iron phosphate battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243965A (en) * 1987-03-31 1988-10-11 Dainippon Ink & Chem Inc Manufacture of resin for toner
JPH01272539A (en) * 1987-06-25 1989-10-31 Daicel Chem Ind Ltd Production of allyl alcohol
JPH0375216A (en) * 1989-08-11 1991-03-29 Kanto Chem Co Inc Purification of alkali hydroxide
JP2002117837A (en) * 2000-10-04 2002-04-19 Sony Corp Manufacturing method of positive electrode active material and manufacturing method of nonaqueous electrolyte battery
JP2002117848A (en) * 2000-10-06 2002-04-19 Sony Corp Manufacture of positive electrode active material and manufacture of nonaqueous electrolyte battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0775670B2 (en) * 1987-06-24 1995-08-16 ダイセル化学工業株式会社 Method for producing lithium phosphate catalyst
US6153333A (en) * 1999-03-23 2000-11-28 Valence Technology, Inc. Lithium-containing phosphate active materials
KR100672879B1 (en) * 1999-04-06 2007-01-23 소니 가부시끼 가이샤 Active Material of Positive Plate, Nonaqueous Electrolyte Secondary Cell, Method for Producing Active Material of Positive Material
DE10117904B4 (en) * 2001-04-10 2012-11-15 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Gemeinnützige Stiftung Binary, ternary and quaternary lithium iron phosphates, process for their preparation and their use
EP1261050A1 (en) * 2001-05-23 2002-11-27 n.v. Umicore s.a. Lithium transition-metal phosphate powder for rechargeable batteries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243965A (en) * 1987-03-31 1988-10-11 Dainippon Ink & Chem Inc Manufacture of resin for toner
JPH01272539A (en) * 1987-06-25 1989-10-31 Daicel Chem Ind Ltd Production of allyl alcohol
JPH0375216A (en) * 1989-08-11 1991-03-29 Kanto Chem Co Inc Purification of alkali hydroxide
JP2002117837A (en) * 2000-10-04 2002-04-19 Sony Corp Manufacturing method of positive electrode active material and manufacturing method of nonaqueous electrolyte battery
JP2002117848A (en) * 2000-10-06 2002-04-19 Sony Corp Manufacture of positive electrode active material and manufacture of nonaqueous electrolyte battery

Also Published As

Publication number Publication date
KR101037825B1 (en) 2011-05-31
KR20040095707A (en) 2004-11-15
CN100348478C (en) 2007-11-14
JP2004359538A (en) 2004-12-24
CN1608977A (en) 2005-04-27

Similar Documents

Publication Publication Date Title
JP4620378B2 (en) Lithium phosphate aggregate, method for producing the same, and method for producing lithium iron phosphorus composite oxide
JP4180363B2 (en) Ferrous phosphate hydrate salt crystal, method for producing the same, and method for producing lithium iron phosphorus composite oxide
KR101382386B1 (en) Preparation method of lithium-metal composite oxides
JP4916094B2 (en) Precursor for positive electrode material of lithium ion secondary battery, method for producing the same, and method for producing positive electrode material using the same
JP3983745B2 (en) Lithium transition metal oxides for lithium batteries
JP5877817B2 (en) Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
JP5590337B2 (en) Manganese composite hydroxide particles, positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and production methods thereof
AU2011290195B2 (en) Production method for a composite compound comprising nickel and cobalt
CN105390670B (en) method for producing lithium-containing composite oxide, and lithium-containing composite oxide
JP4260572B2 (en) Method for producing lithium iron phosphorus composite oxide carbon composite containing Mn atom
KR101562686B1 (en) Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
JP4225859B2 (en) Method for producing lithium iron phosphorus composite oxide carbon composite containing Mn atom
JP6097306B2 (en) Manganese-containing metal phosphate and method for producing the same
CA2894672A1 (en) Method for making lithium transition metal olivines using water/cosolvent mixtures
JP5678685B2 (en) Precursor of positive electrode active material for lithium secondary battery, method for producing the same, and method for producing positive electrode active material for lithium secondary battery
CN107922212B (en) Manganese-nickel composite hydroxide and method for producing same, lithium-manganese-nickel composite oxide and method for producing same, and nonaqueous electrolyte secondary battery
TWI485919B (en) Process for producing cathode active material for use in lithium secondary battery
JP2006004724A (en) Precursor for positive electrode material for lithium ion secondary battery, its manufacturing method, and manufacturing method of positive electrode material using it
JP2006219323A (en) Lithium-manganese-nickel-aluminum complex oxide and its production method
JP5173555B2 (en) Method for producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP6362033B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP6307127B2 (en) Method for producing lithium phosphate positive electrode active material
CN113348150B (en) Titanium oxide, method for producing titanium oxide, and lithium secondary battery using electrode active material containing titanium oxide
WO2017033894A1 (en) Nonaqueous electrolyte secondary battery positive electrode active material and method for manufacturing same, and nonaqueous electrolyte secondary battery
JP5831234B2 (en) Method for producing active material for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4620378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees