KR102313962B1 - Manufacturing method of precursor for cathode active material from waste lithium secondary battery - Google Patents

Manufacturing method of precursor for cathode active material from waste lithium secondary battery Download PDF

Info

Publication number
KR102313962B1
KR102313962B1 KR1020180153801A KR20180153801A KR102313962B1 KR 102313962 B1 KR102313962 B1 KR 102313962B1 KR 1020180153801 A KR1020180153801 A KR 1020180153801A KR 20180153801 A KR20180153801 A KR 20180153801A KR 102313962 B1 KR102313962 B1 KR 102313962B1
Authority
KR
South Korea
Prior art keywords
active material
cathode active
material precursor
secondary battery
lithium secondary
Prior art date
Application number
KR1020180153801A
Other languages
Korean (ko)
Other versions
KR20200066990A (en
Inventor
최봉진
이지훈
Original Assignee
동우 화인켐 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동우 화인켐 주식회사 filed Critical 동우 화인켐 주식회사
Priority to KR1020180153801A priority Critical patent/KR102313962B1/en
Publication of KR20200066990A publication Critical patent/KR20200066990A/en
Application granted granted Critical
Publication of KR102313962B1 publication Critical patent/KR102313962B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

본 발명에 따른 양극활물질 제조방법은, Co, Mn 및 Ni를 함유하는 리튬이차전지 폐기물에 염기성 화합물을 첨가하여 수산화 침전물을 침전 분리시키는 단계; 상기 수산화 침전물의 Co, Mn 및 Ni의 비율을 측정하는 단계; 및 Co, Mn 및 Ni를 함유한 각각의 염을, 양극활물질 전구체를 제조하기 위한 비율을 만족하도록 상기 수산화 침전물에 첨가하여, 양극활물질 전구체를 제조하는 단계;를 포함한다.The method for producing a cathode active material according to the present invention comprises the steps of adding a basic compound to a lithium secondary battery waste containing Co, Mn and Ni to precipitate and separate a hydroxide precipitate; measuring the ratio of Co, Mn and Ni in the hydroxide precipitate; and adding each salt containing Co, Mn and Ni to the hydroxide precipitate to satisfy the ratio for preparing the cathode active material precursor to prepare a cathode active material precursor.

Description

폐리튬이차전지로부터의 양극활물질 전구체의 제조방법{MANUFACTURING METHOD OF PRECURSOR FOR CATHODE ACTIVE MATERIAL FROM WASTE LITHIUM SECONDARY BATTERY}Manufacturing method of a cathode active material precursor from a waste lithium secondary battery

본 발명은 폐리튬이차전지로부터의 양극활물질 전구체의 제조방법에 관한 것이다.The present invention relates to a method for producing a cathode active material precursor from a waste lithium secondary battery.

모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대한 수요가 급격히 증가하고 있다. 그 중에서도, 특히 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 널리 사용되고 있다.As technology development and demand for mobile devices increase, the demand for secondary batteries as an energy source is rapidly increasing. Among them, a lithium secondary battery having a particularly high energy density and operating potential, a long cycle life, and a low self-discharge rate is widely used.

리튬 이차전지는 일반적으로 양극활물질을 포함하는 양극, 음극 활물질을 포함하는 음극, 세퍼레이터 및 전해질로 구성되며 리튬 이온의 삽입-탈리(intercalation-decalation)에 의해 충전 및 방전이 이루어진다. 리튬 이차전지는 에너지 밀도(energy density)가 높고, 기전력이 크며 고용량을 발휘할 수 있는 장점을 가지므로 다양한 분야에 적용되고 있다.A lithium secondary battery is generally composed of a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, a separator, and an electrolyte, and charging and discharging are performed by intercalation-decalation of lithium ions. Lithium secondary batteries have advantages of high energy density, large electromotive force, and high capacity, and thus are being applied to various fields.

리튬 이차전지의 양극활물질은 리튬과 함께, 니켈, 망간, 코발트와 같은 희유금속을 포함하는데, 희유금속은 비교적 고가의 금속이므로, 이를 회수하여 원료로서 재활용하기 위한 시도가 계속되고 있다.The cathode active material of a lithium secondary battery includes, along with lithium, rare metals such as nickel, manganese, and cobalt. Since rare metals are relatively expensive metals, attempts are being made to recover them and recycle them as raw materials.

일반적으로, 양극활물질을 제조하기 위한 양극활물질 전구체는, 폐리튬 전지로부터 회수하고자 하는 유가 금속 각각에 대하여 별도의 추출제를 사용하여 여러 공정을 거쳐 순차적으로 추출하고, 추출된 유가 금속을 회수하여 다시 양극활물질 전구체로 제조하고 있다.In general, the positive electrode active material precursor for manufacturing the positive electrode active material is sequentially extracted through various processes using a separate extractant for each valuable metal to be recovered from the spent lithium battery, and the extracted valuable metal is recovered and again It is manufactured as a cathode active material precursor.

대한민국 공개특허 제2009-0087801호는 Co, Ni, Mn 함유 리튬 전지 찌꺼기로부터의 유가 금속 회수 방법에 관한 것으로서, Co, Ni 및 Mn을 함유하는 리튬산 금속염을 함유하는 리튬 전지 찌꺼기를 250g/l 이상의 농도의 염산 용액으로 교반 침출하고, 침출액에 대하여 Mn, Co 및 Ni의 98% 이상을 산성 추출제로 용매 추출하여 각각의 금속을 함유하는 3종의 용액을 생성하고, 이들 용액으로부터 당해 금속을 회수하는 것을 특징으로 하는 Co, Ni, Mn 함유 리튬 전지 찌꺼기로부터의 유가 금속 회수 방법에 관한 내용을 개시하고 있다.Korean Patent Application Laid-Open No. 2009-0087801 relates to a method for recovering valuable metals from lithium battery residues containing Co, Ni, and Mn, wherein the lithium battery residues containing lithium acid metal salts containing Co, Ni and Mn are used in an amount of 250 g/l or more. Stirring leaching with a hydrochloric acid solution of concentration, and solvent extraction of 98% or more of Mn, Co and Ni with an acidic extractant with respect to the leaching solution to produce three solutions containing each metal, and recovering the metal from these solutions Disclosed is a method for recovering valuable metals from residues of a lithium battery containing Co, Ni, and Mn, characterized in that.

그러나, 유가 금속을 금속 별 별도의 추출제를 사용하여 회수하는 경우, 공정 단계가 복잡하고, 추출 비용이 증가하며, 순도가 감소하는 문제가 있다.However, when the valuable metal is recovered by using a separate extractant for each metal, there are problems in that the process step is complicated, the extraction cost is increased, and the purity is decreased.

그러므로, 공정이 단순화되고, 효율이 우수한 양극활물질 전구체의 제조방법이 요구되고 있는 실정이다.Therefore, there is a need for a method for manufacturing a cathode active material precursor having a simplified process and excellent efficiency.

대한민국 공개특허 제2009-0087801호 (2009.08.18.)Republic of Korea Patent Publication No. 2009-0087801 (2009.08.18.)

본 발명은, 유가 금속을 별도로 추출하는 공정을 거치지 않음으로써, 공정이 단순화되고, 공정 비용의 저감이 가능한, 폐리튬이차전지로부터의 양극활물질 전구체의 제조방법을 제공하고자 한다.An object of the present invention is to provide a method of manufacturing a cathode active material precursor from a spent lithium secondary battery, which simplifies the process and reduces the process cost by not separately extracting valuable metals.

본 발명은 Co, Mn 및 Ni를 함유하는 리튬이차전지 폐기물에 염기성 화합물을 첨가하여 수산화 침전물을 침전 분리시키는 단계; 상기 수산화 침전물의 Co, Mn 및 Ni의 비율을 측정하는 단계; 및 Co, Mn 및 Ni를 함유한 각각의 염을, 양극활물질 전구체를 제조하기 위한 비율을 만족하도록 상기 수산화 침전물에 첨가하여, 양극활물질 전구체를 제조하는 단계;를 포함하는 양극활물질 전구체의 제조방법을 제공한다.The present invention comprises the steps of precipitating and separating a hydroxide precipitate by adding a basic compound to a lithium secondary battery waste containing Co, Mn and Ni; measuring the ratio of Co, Mn and Ni in the hydroxide precipitate; and adding each salt containing Co, Mn and Ni to the hydroxide precipitate to satisfy the ratio for preparing the cathode active material precursor to prepare a cathode active material precursor; a method of producing a cathode active material precursor comprising a to provide.

본 발명에 따른 폐리튬이차전지로부터의 양극활물질 전구체의 제조방법은, 공정이 간단하여 공정 비용을 절감할 수 있고, 제조 효율이 우수한 이점이 있다.The method for manufacturing a cathode active material precursor from a spent lithium secondary battery according to the present invention has advantages in that the process is simple, so that the process cost can be reduced, and the manufacturing efficiency is excellent.

도 1은 본 발명의 일 실시형태에 따른 폐리튬이차전지로부터의 양극활물질 전구체의 제조방법의 개략도이다.1 is a schematic diagram of a method of manufacturing a cathode active material precursor from a waste lithium secondary battery according to an embodiment of the present invention.

본 발명에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In the present invention, when a part "includes" a certain component, this means that other components may be further included rather than excluding other components unless otherwise stated.

본 발명의 한 양태는, Co, Mn 및 Ni를 함유하는 리튬이차전지 폐기물에 염기성 화합물을 첨가하여 수산화 침전물을 침전 분리시키는 단계; 상기 수산화 침전물의 Co, Mn 및 Ni의 비율을 측정하는 단계; 및 Co, Mn 및 Ni를 함유한 각각의 염을, 양극활물질 전구체를 제조하기 위한 비율을 만족하도록 상기 수산화 침전물에 첨가하여, 양극활물질 전구체를 제조하는 단계;를 포함하는 양극활물질 전구체의 제조방법에 관한 것이다.In one aspect of the present invention, a lithium secondary battery waste containing Co, Mn and Ni is added to a basic compound to precipitate and separate the hydroxide precipitate; measuring the ratio of Co, Mn and Ni in the hydroxide precipitate; and adding each salt containing Co, Mn and Ni to the hydroxide precipitate to satisfy the ratio for preparing the cathode active material precursor to prepare a cathode active material precursor; in a method for producing a cathode active material precursor comprising it's about

이하, 본 발명에 대하여 도 1을 참조하여 단계별로 구분하여 설명한다.Hereinafter, the present invention will be described in stages with reference to FIG. 1 .

침전 분리시키는 단계Separation of the sediment

본 발명에 따른 양극활물질 전구체의 제조방법은 Co, Mn 및 Ni를 함유하는 리튬이차전지 폐기물에 염기성 화합물을 첨가하여 수산화 침전물을 침전 분리시키는 단계를 포함한다.The method for preparing a cathode active material precursor according to the present invention includes the step of precipitating and separating a hydroxide precipitate by adding a basic compound to a lithium secondary battery waste containing Co, Mn and Ni.

상기 리튬이차전지 폐기물은 전해질, 분리막, 전극 복합체 및 집전체로 이루어진 군에서 선택되는 1 이상을 포함할 수 있으나, 이에 한정되지 않으며, 당업계에서 통상적으로 이해되는 용어로 해석될 수 있다.The lithium secondary battery waste may include one or more selected from the group consisting of an electrolyte, a separator, an electrode composite, and a current collector, but is not limited thereto, and may be interpreted in terms commonly understood in the art.

구체적으로, 상기 리튬이차전지 폐기물은 Co, Mn 및 Ni를 함유하는 리튬이차전지 폐액일 수 있다.Specifically, the lithium secondary battery waste may be a lithium secondary battery waste liquid containing Co, Mn and Ni.

상기 리튬이차전지 폐기물이 리튬을 포함하는 경우, 리튬을 분자체에 흡착시키는 방법 등을 통하여 우선적으로 제거할 수 있다.When the lithium secondary battery waste contains lithium, it may be preferentially removed through a method of adsorbing lithium to molecular sieves.

분자체로는 Polysulfonated resins, D4034, SP21-51, CT-175, CT-275, CT-375, Amberlyst 15 등을 사용할 수 있으나 이에 한정되지 않는다.Polysulfonated resins, D4034, SP21-51, CT-175, CT-275, CT-375, Amberlyst 15, etc. may be used as the molecular sieve, but is not limited thereto.

일반적으로는, 양극활물질을 제조하기 위하여 코발트, 망간, 니켈을 각각 pH 조절제에 따라 순차적으로 용매추출 및 황산탈거과정을 거쳐 황산용액으로 얻은 후, 이를 원하는 비율로 혼합한 후 pH 조절을 통해 수산화물을 제조하고 리튬탄산화물과 혼합 후 소결하는 복잡한 공정 과정을 거치게 된다.In general, in order to prepare a positive electrode active material, cobalt, manganese, and nickel are sequentially obtained as a sulfuric acid solution through solvent extraction and sulfuric acid stripping process according to a pH adjusting agent, and then, after mixing them in a desired ratio, hydroxide is obtained through pH adjustment. It goes through a complicated process of manufacturing, mixing with lithium carbonate, and then sintering.

그러나, 본 발명에 따른 양극활물질 전구체 제조방법은, Co, Mn, Ni를 각각 분리할 필요가 없이, 공침을 통하여 한꺼번에 침전물로 분리가 가능하여 공정이 단순화되고, 공정을 단순화시킴으로서 공정단계 사이에서 발생할 수 있는 로스를 억제할 수 있는 이점이 있다.However, in the cathode active material precursor manufacturing method according to the present invention, there is no need to separate Co, Mn, and Ni, respectively, and it is possible to separate into precipitates at once through co-precipitation, thereby simplifying the process, and by simplifying the process, it may occur between process steps. There is an advantage that can suppress the possible loss.

본 발명의 일 실시형태에 있어서, 상기 염기성 화합물은 알칼리 금속 및 알칼리 토금속의 수산화물로 이루어진 군에서 선택되는 1 이상일 수 있다.In one embodiment of the present invention, the basic compound may be at least one selected from the group consisting of hydroxides of alkali metals and alkaline earth metals.

구체적으로, 상기 염기성 화합물은 NaOH, KOH, Ca(OH)2 등과 같은 알칼리 금속 또는 알칼리 토금속의 수산화물일 수 있으며, 이들 중 1종 이상의 혼합물이 사용될 수 있다.Specifically, the basic compound may be a hydroxide of an alkali metal or alkaline earth metal such as NaOH, KOH, Ca(OH) 2 , and a mixture of one or more thereof may be used.

상기 염기성 화합물은 수용액의 형태로 사용될 수도 있으며, 이때 용매로는 물, 또는 물과 균일하게 혼합가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다. 이때, 상기 염기성 수용액의 농도는 2 M 내지 10 M, 바람직하게는 2 M 내지 8 M일 수 있다. 상기 음이온 함유 염기성 수용액의 농도가 2 M 미만인 경우, 입자 형성 시간이 길어지고 탭 밀도가 저하되며 공침 반응물의 수득율이 낮아질 우려가 있고, 10 M을 초과하는 경우, 급격한 반응에 의해서 입자가 급격히 성장하기 때문에 균일한 입자를 형성하기 어렵고 탭 밀도 역시 저하될 우려가 있다.The basic compound may be used in the form of an aqueous solution, and as the solvent, water or a mixture of water and an organic solvent that is uniformly miscible with water (specifically, alcohol, etc.) and water may be used. In this case, the concentration of the basic aqueous solution may be 2 M to 10 M, preferably 2 M to 8 M. When the concentration of the anion-containing basic aqueous solution is less than 2 M, there is a risk that the particle formation time is prolonged, the tap density is lowered, and the yield of the co-precipitation reaction product is lowered. Therefore, it is difficult to form uniform particles and there is a possibility that the tap density may also be lowered.

상기 염기성 화합물이 상기 리튬이차전지 폐기물에 추가됨으로써, Co, Mn, Ni이 각각 MnO(OH), Co(OH)2 또는 Co(OH)3, Ni(OH)2 또는 Ni(OH)3 등의 수산화물의 형태로 침전되므로, 이를 이용하여 침전 분리할 수 있다.As the basic compound is added to the lithium secondary battery waste, Co, Mn, and Ni are respectively MnO(OH), Co(OH) 2 or Co(OH) 3 , Ni(OH) 2 or Ni(OH) 3 Such as Since it is precipitated in the form of hydroxide, it can be used for precipitation separation.

비율 확인 단계Ratio check step

본 발명에 따른 양극활물질 전구체의 제조방법은, 상기 수산화 침전물의 Co, Mn 및 Ni의 몰 비율을 측정하는 단계;를 포함한다.The method for preparing a cathode active material precursor according to the present invention includes: measuring a molar ratio of Co, Mn and Ni in the hydroxide precipitate.

상기 비율을 측정하는 방법을, 본 발명에서는 특별히 제한하지 않는다. 예컨대, 원자흡광 분석법, XRD(X-ray diffraction) 분석, ICP 분석(Inductively Coupled Plasma Spectrometer 분석, 유도 결합 플라즈마 분광 분석) 등을 이용하여 Ni, Co, Mn의 비율을 측정할 수 있으나 이에 한정되지는 않는다.The method for measuring the ratio is not particularly limited in the present invention. For example, the ratio of Ni, Co, and Mn can be measured using atomic absorption spectroscopy, X-ray diffraction (XRD) analysis, ICP analysis (Inductively Coupled Plasma Spectrometer analysis, inductively coupled plasma spectrometry), etc., but is not limited thereto. does not

상기 비율 확인 단계를 통하여, 상기 Ni, Co, Mn의 비율을 측정함으로써, 상기 양극활물질 전구체 납품시 요구되는 사양(specification)을 맞출 수 있다.Through the ratio checking step, by measuring the ratio of Ni, Co, and Mn, it is possible to meet a specification required when the cathode active material precursor is supplied.

양극활물질cathode active material 전구체의 제조 Preparation of precursors

본 발명에 따른 양극활물질 전구체의 제조방법은, Co, Mn 및 Ni를 함유한 각각의 염을, 양극활물질 전구체를 제조하기 위한 비율을 만족하도록 상기 수산화 침전물에 첨가하여, 양극활물질 전구체를 제조하는 단계를 포함한다.The method for producing a cathode active material precursor according to the present invention comprises the steps of adding each salt containing Co, Mn and Ni to the hydroxide precipitate to satisfy the ratio for preparing the cathode active material precursor, to prepare a cathode active material precursor includes

상기 Co를 함유한 염은 예컨대, 황산 코발트염 또는 염화코발트(Cobalt Chloride)일 수 있다.The salt containing Co may be, for example, cobalt sulfate or cobalt chloride.

상기 Mn을 함유한 염은 예컨대, 황산 망간염 또는 염화망간(Manganese Chloride)일 수 있다.The Mn-containing salt may be, for example, manganese sulfate or manganese chloride.

상기 Ni을 함유한 염은 예컨대, 황산 니켈염 또는 염화니켈(Nickel Chloride)일 수 있다.The Ni-containing salt may be, for example, nickel sulfate or nickel chloride.

예컨대, 상기 수산화 침전물의 성분을 분석하여, Co, Mn, Ni의 비율을 측정하고, 부족한 성분의 경우 황산망간염, 황산 코발트염, 황산 니켈염 등을 이용하여 Ni, Mn, Co의 조성을 맞출 수 있다. 이때, 상기 조성은 상기 양극활물질 전구체를 제공하고자 하는 제조회사 별로 상이할 수 있으며, 상기 비율을 측정하는 단계를 통하여 상기 제조회사에서 요구하는 제조 사양(specification)을 맞출 수 있다.For example, by analyzing the components of the hydroxide precipitate, the ratio of Co, Mn, and Ni is measured, and in the case of insufficient components, the composition of Ni, Mn, and Co can be adjusted using manganese sulfate, cobalt sulfate, nickel sulfate, etc. have. In this case, the composition may be different for each manufacturer that intends to provide the cathode active material precursor, and through the step of measuring the ratio, a manufacturing specification required by the manufacturer may be met.

본 발명의 또 다른 실시형태에 있어서, 상기 수산화 침전물을 염기성 용액에 첨가하는 단계;를 더 포함할 수 있다.In another embodiment of the present invention, adding the hydroxide precipitate to a basic solution; may further include.

상기 염기성 용액은 예컨대, NaOH, NH4OH, Na2CO3일 수 있으나, 이에 한정되지 않는다. 상기 염기성 용액은 전술한 염기성 화합물의 수용액 형태를 적용할 수도 있으나 이에 한정되지 않는다.The basic solution may be, for example, NaOH, NH 4 OH, Na 2 CO 3 , but is not limited thereto. The basic solution may be in the form of an aqueous solution of the above-described basic compound, but is not limited thereto.

본 발명의 또 다른 실시형태에 있어서, 상기 염기성 용액은 NaOH, NH4OH 및 Na2CO3로 이루어진 군에서 선택되는 1종 이상일 수 있다.In another embodiment of the present invention, the basic solution may be at least one selected from the group consisting of NaOH, NH 4 OH and Na 2 CO 3 .

상기 수산화 침전물을 염기성 용액에 첨가함으로써 수산화물의 형태인 침전물이 다시 용해될 수 있는 형태로 변할 수 있다.By adding the hydroxide precipitate to the basic solution, the precipitate in the form of hydroxide can be changed to a form that can be dissolved again.

본 발명의 또 다른 실시형태에 있어서, 상기 양극활물질 전구체는 (NixCoyMnz)OH를 포함하고, 상기 (NixCoyMnz)OH는 (NiCoMn)OH(NCM111), (Ni5Co3Mn2)OH(NCM532), (Ni6Co2Mn2)OH(NCM622), (Ni7Co1Mn2)OH(NCM712) 또는 (Ni8Co1Mn1)OH(NCM811)일 수 있다.In another embodiment of the present invention, the cathode active material precursor includes (Ni x Co y Mn z )OH, and the (Ni x Co y Mn z )OH is (NiCoMn)OH(NCM111), (Ni 5 Co 3 Mn 2 )OH(NCM532), (Ni 6 Co 2 Mn 2 )OH(NCM622), (Ni 7 Co 1 Mn 2 )OH(NCM712) or (Ni 8 Co 1 Mn 1 )OH(NCM811) have.

본 발명에 따른 양극활물질 전구체의 제조방법은, Ni, Co, Mn을 각각 추출하는 추출공정을 거치지 않고, 염기성 화합물을 이용하여 공침시키는 간단한 공정을 통하여 양극전구체를 제조할 수 있다. 또한, 공정이 단순화됨에 따라 공정 비용을 절감할 수 있고, 많은 공정 단계를 거치면서 순도가 감소하는 현상의 억제가 가능하다.In the method of manufacturing a positive electrode active material precursor according to the present invention, a positive electrode precursor can be manufactured through a simple process of co-precipitating using a basic compound without going through an extraction process of extracting each of Ni, Co, and Mn. In addition, as the process is simplified, it is possible to reduce the process cost, and it is possible to suppress a phenomenon in which the purity decreases through many process steps.

Claims (5)

Co, Mn 및 Ni를 함유하는 리튬이차전지 폐기물에 염기성 화합물을 첨가하여 수산화 침전물을 침전 분리시키는 단계;
상기 수산화 침전물의 Co, Mn 및 Ni의 비율을 측정하는 단계;
Co, Mn 및 Ni를 함유한 각각의 염을, 양극활물질 전구체를 제조하기 위한 비율을 만족하도록 상기 수산화 침전물에 첨가하는 단계; 및
상기 수산화 침전물을 염기성 용액에 첨가하여, 양극활물질 전구체를 제조하는 단계;를 포함하고,
상기 수산화 침전물을 침전 분리시키는 단계에서 상기 염기성 화합물 이외의 추출제는 사용되지 않으며,
상기 염기성 화합물은 NaOH, KOH, Ca(OH)2 로 이루어진 군에서 선택되는 1 이상인 것인,
양극활물질 전구체의 제조방법.
precipitating and separating the hydroxide precipitate by adding a basic compound to the lithium secondary battery waste containing Co, Mn and Ni;
measuring the ratio of Co, Mn and Ni in the hydroxide precipitate;
adding each salt containing Co, Mn and Ni to the hydroxide precipitate to satisfy a ratio for preparing a cathode active material precursor; and
and adding the hydroxide precipitate to a basic solution to prepare a cathode active material precursor;
In the step of precipitating and separating the hydroxide precipitate, an extractant other than the basic compound is not used,
The basic compound is one or more selected from the group consisting of NaOH, KOH, Ca(OH) 2
Method for producing a cathode active material precursor.
삭제delete 제1항에 있어서,
상기 양극활물질 전구체는 (NixCoyMnz)OH를 포함하고,
상기 (NixCoyMnz)OH는 (NiCoMn)OH(NCM111), (Ni5Co3Mn2)OH(NCM532), (Ni6Co2Mn2)OH(NCM622), (Ni7Co1Mn2)OH(NCM712) 또는 (Ni8Co1Mn1)OH(NCM811)인
것인 양극활물질 전구체의 제조방법.
According to claim 1,
The cathode active material precursor includes (Ni x Co y Mn z )OH,
The (Ni x Co y Mn z )OH is (NiCoMn)OH(NCM111), (Ni 5 Co 3 Mn 2 )OH(NCM532), (Ni 6 Co 2 Mn 2 )OH(NCM622), (Ni 7 Co 1 ) Mn 2 )OH(NCM712) or (Ni 8 Co 1 Mn 1 )OH(NCM811)
A method for producing a cathode active material precursor.
삭제delete 제1항에 있어서,
상기 염기성 용액은 NaOH, NH4OH 및 Na2CO3로 이루어진 군에서 선택되는 1종 이상인 것인 양극활물질 전구체의 제조방법.
According to claim 1,
The basic solution is at least one selected from the group consisting of NaOH, NH 4 OH and Na 2 CO 3 A method for producing a cathode active material precursor.
KR1020180153801A 2018-12-03 2018-12-03 Manufacturing method of precursor for cathode active material from waste lithium secondary battery KR102313962B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180153801A KR102313962B1 (en) 2018-12-03 2018-12-03 Manufacturing method of precursor for cathode active material from waste lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180153801A KR102313962B1 (en) 2018-12-03 2018-12-03 Manufacturing method of precursor for cathode active material from waste lithium secondary battery

Publications (2)

Publication Number Publication Date
KR20200066990A KR20200066990A (en) 2020-06-11
KR102313962B1 true KR102313962B1 (en) 2021-10-18

Family

ID=71070326

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180153801A KR102313962B1 (en) 2018-12-03 2018-12-03 Manufacturing method of precursor for cathode active material from waste lithium secondary battery

Country Status (1)

Country Link
KR (1) KR102313962B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102586171B1 (en) 2021-10-14 2023-10-13 (주)에코프로머티리얼즈 Method for surface coating of unreacted metals in preparation of cathode active material precursors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101392616B1 (en) 2012-10-30 2014-05-07 (주)이엠티 Regeneration method of precursor material using disposed cathod material of lithum-ion battery, precursor, anode material and lithum-ion battery using the regenerated material by the method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4865745B2 (en) 2008-02-13 2012-02-01 Jx日鉱日石金属株式会社 Method for recovering valuable metals from lithium batteries containing Co, Ni, Mn
KR101525000B1 (en) * 2012-09-24 2015-06-03 한국화학연구원 Method for preparing nickel-manganese complex hydroxides for cathode materials in lithium batteries, nickel-manganese complex hydroxides prepared by the method and cathode materials in lithium batteries comprising the same
KR20170052012A (en) * 2015-11-03 2017-05-12 주식회사 엘지화학 Recycling method for waste electrode of lithium secondary battery
KR102086535B1 (en) * 2016-12-02 2020-03-10 주식회사 엘지화학 Method for preparing positive electrode active material precursor of secondary battery and positive electrode active material precursor of secondary battery prepared by using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101392616B1 (en) 2012-10-30 2014-05-07 (주)이엠티 Regeneration method of precursor material using disposed cathod material of lithum-ion battery, precursor, anode material and lithum-ion battery using the regenerated material by the method

Also Published As

Publication number Publication date
KR20200066990A (en) 2020-06-11

Similar Documents

Publication Publication Date Title
EP3956487B1 (en) Process for the recovery of cathode materials in the recycling of batteries
CN102959102B (en) Method for separating nickel and cobalt from active materials contained in spent nickel-hydrogen battery
KR101201947B1 (en) Method for recovering valuable metals from lithium secondary battery wastes
CN110527835B (en) Method for recycling soft package full components of waste ternary lithium battery
EP2444507B1 (en) Recovery of rare earth metals from waste material by leaching in non-oxidizing acid and by precipitating using sulphates
KR101621312B1 (en) Method Of Recycling Resource for lithium ion secondary battery
KR102064668B1 (en) A Method of Recycling Material for Precursor of Anode Active Material, Precursor of Anode Active Material, Anode Active Material, Anode, and Lithium Ion Secondary Battery Using The Same
CN101886178B (en) Comprehensive recovery method for nickel-hydrogen waste battery
JP2000015216A (en) Method for recycling positive electrode active material from lithium ion secondary battery
KR101178768B1 (en) Method of recovery of lithium from cathodic active material of lithium battery
CN109097581A (en) The recovery method of valuable metal in waste and old nickel cobalt manganese lithium ion battery
CN106299526B (en) Recycling method of strong alkali solution in waste lithium battery recycling industry
KR102072004B1 (en) Manufacturing method for Ni-Co-Mn composite precursor using recycled seed material
CN109950532A (en) A kind of efficient impurity removal method of ternary battery material
CN109004307A (en) The recyclable device of valuable metal in waste and old nickel cobalt manganese lithium ion battery
CN110735038B (en) Method for recycling electrode metal material from waste lithium titanate battery
KR101438272B1 (en) Method for recovering metal from electrode material
JP6459797B2 (en) Method and apparatus for recovering raw material for producing ferronickel from waste nickel metal hydride battery
KR102313962B1 (en) Manufacturing method of precursor for cathode active material from waste lithium secondary battery
KR102324910B1 (en) Manufacturing method of precursor raw material from disposed cathode material of lithium secondary battery
KR20150075200A (en) Method of preparing positive active material precursor
CN103221557B (en) Method for producing nickel-ontaining acidic solution
KR101553388B1 (en) Method of recovering effective metal material from positive electrode scrab
CN107910612B (en) Method for recovering cobalt and nickel from waste lithium batteries
KR101568216B1 (en) Method of manufacturing electrode active material and cathod active material manufactured by the method

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant