KR20190054646A - Process for preparing 2,2,4,4-tetramethyl-1,3-cyclobutanediol - Google Patents

Process for preparing 2,2,4,4-tetramethyl-1,3-cyclobutanediol Download PDF

Info

Publication number
KR20190054646A
KR20190054646A KR1020170151460A KR20170151460A KR20190054646A KR 20190054646 A KR20190054646 A KR 20190054646A KR 1020170151460 A KR1020170151460 A KR 1020170151460A KR 20170151460 A KR20170151460 A KR 20170151460A KR 20190054646 A KR20190054646 A KR 20190054646A
Authority
KR
South Korea
Prior art keywords
tetramethyl
cyclobutanediol
isobutyric acid
cyclobutanedione
catalyst
Prior art date
Application number
KR1020170151460A
Other languages
Korean (ko)
Inventor
김진형
김하영
신국승
서영종
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to KR1020170151460A priority Critical patent/KR20190054646A/en
Publication of KR20190054646A publication Critical patent/KR20190054646A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/94Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C35/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C35/02Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring monocyclic
    • C07C35/04Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring monocyclic containing a three or four-membered rings
    • C07C35/045Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring monocyclic containing a three or four-membered rings containing a four-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/45Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/385Saturated compounds containing a keto group being part of a ring
    • C07C49/39Saturated compounds containing a keto group being part of a ring of a three- or four-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/88Ketenes; Dimeric ketenes
    • C07C49/90Ketene, i.e. C2H2O
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/36Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by hydrogenation of carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/124Acids containing four carbon atoms

Abstract

According to the present invention, disclosed is a method for manufacturing 2,2,4,4-tetramethyl-1,3-cyclobutanediol. The method uses (A) methacrylic acid (MAA) as raw materials and sequentially uses (B) isobutyric acid (IBA), (C) dimethyl ketene (DMK) and (D) 2,2,4,4-tetramethyl-1,3-cyclobutanedione (CBDK) as middle materials to manufacture (E) 2,2,4,4-tetramethyl-1,3-cyclobutanediol (CBDO), a final material. According to the present invention, through the optimization of manufacturing steps and efficiency maximization, provided is a method for manufacturing 2,2,4,4-tetramethyl-1,3-cyclobutanediol which is economical and eco-friendly.

Description

2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법{PROCESS FOR PREPARING 2,2,4,4-TETRAMETHYL-1,3-CYCLOBUTANEDIOL}PROCESS FOR PREPARATION 2,2,4,4-TETRAMETHYL-1,3-CYCLOBUTANEDIOL [0002] The present invention relates to a process for preparing 2,2,4,4-tetramethyl-1,3-cyclobutanediol,

본 발명은 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법에 관한 것이다. 보다 상세하게는, 본 발명은 제조 단계 최적화 및 효율 극대화를 통해 경제적이고 친환경적인 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법에 관한 것이다.The present invention relates to a process for the preparation of 2,2,4,4-tetramethyl-1,3-cyclobutanediol. More particularly, the present invention relates to a process for the preparation of economical and eco-friendly 2,2,4,4-tetramethyl-1,3-cyclobutanediol through optimization of the manufacturing steps and maximization of efficiency.

2,2,4,4-테트라메틸-1,3-사이클로부탄디올(2,2,4,4-tetramethyl-1,3-cyclobutanediol, CBDO)은 BPA(bisphenol A) 대체 물질로서 폴리카보네이트, 폴리에스터, 폴리술폰 및 폴리에스터케톤을 비롯한 다양한 중합체 생산에 사용되는 전구체이다. 종래에 알려진 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법에서는 이소부틸알데히드(isobutyraldehyde)를 원료 물질로 하여 제조하며, 그의 각각의 공정 단계를 하기 스킴 1에 나타낸다.2,2,4,4-tetramethyl-1,3-cyclobutanediol (CBDO) is an alternative to bisphenol A (BPA) , Polysulfones, and polyester ketones. In the conventional process for producing 2,2,4,4-tetramethyl-1,3-cyclobutanediol, isobutyraldehyde is used as a raw material, and each process step thereof is shown in Scheme 1 below.

Figure pat00001
Figure pat00001

<스킴 1><Scheme 1>

상기 각 단계에 따른 선행 기술이 공지되어 있다. 예를 들어, 이소부틸알데히드로부터 이소부티릭산을 형성하는 제조 단계와 관련하여, 한국특허출원번호 제10-2002-0074825호에는 이소부틸알데히드를 원료로 하여 액상에서 분자상 산소 함유 가스와 연속적으로 산화시켜 이소부티릭산을 제조하는 방법에 관한 것이 개시되어 있다. 일반적으로 유기물을 액상으로 산화시키는 공정은 반응물이 차지하고 있는 액상부분을 제외한 기상에서의 유기물의 농도와 산소의 농도 범위에 따라 폭발 범위를 가지기 때문에 반응시 각별한 주의를 요한다. 특히 촉매를 사용하지 않을 경우 반응 효율의 증가를 위해 산소 분압과 온도를 높여야 하므로 폭발의 위험이 있다. 또한 반응 생성물에서 나오는 부산물로는 아세톤, 이소프로필 알코올, 과산화물 등으로 이소부티릭산을 99.5% 이상의 고순도로 정제하는 연속식 증류 방법이 필요해 에너지 비용이 높다.The prior art according to each of the above steps is known. For example, in connection with the production step of forming isobutyric acid from isobutylaldehyde, Korean Patent Application No. 10-2002-0074825 discloses a process for producing isobutyric acid from isobutylaldehyde by using isobutylaldehyde as a raw material and continuously oxidizing To a process for producing isobutyric acid. Generally, the process of oxidizing an organic material into a liquid phase requires special attention because it has an explosion range according to the concentration of organic substances in the gas phase and the concentration range of oxygen, except for the liquid portion occupied by the reactants. Particularly, when the catalyst is not used, there is a risk of explosion because the oxygen partial pressure and the temperature must be increased in order to increase the reaction efficiency. As a by-product from the reaction product, a continuous distillation method in which isobutyric acid is purified by acetone, isopropyl alcohol, peroxide or the like to a purity of 99.5% or more is required, resulting in a high energy cost.

상기 이소부티릭산으로부터 이소부티릭산 무수물을 형성하는 제조 단계와 관련하여, 미국특허 제7,049,467 B2호에는 아세트산 무수물과 이소부티릭산을 반응시켜 이소부티릭산 무수물을 합성하는 방법이 개시되어 있다. 상기 문헌에 개시된 방법에서는 99% 이상의 고순도 이소부티릭산 무수물을 획득할 수 있으나, 반응시 생성되는 아세트산을 제거하기 위해 8단 이상의 증류 공정을 추가해야 되는 단점을 지닌다.With respect to the preparation step of forming isobutyric acid anhydride from the above isobutyric acid, U.S. Patent No. 7,049,467 B2 discloses a method of synthesizing isobutyric acid anhydride by reacting acetic anhydride with isobutyric acid. In the method disclosed in the above document, 99% or more of high purity isobutyric acid anhydride can be obtained. However, it is disadvantageous to add an 8 or more stage distillation process to remove acetic acid generated in the reaction.

또한, 상기 이소부티릭산 무수물로부터 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 단계와 관련하여, PCT/US92/06950에는 디메틸케텐을 생산하기 위한 이소부티릭산 무수물의 열분해를 수행하는 2,2,4,4-테트라메틸사이클로부탄디올의 제조 방법이 개시되어 있다. 그러나, 상기 방법에서는 디메틸케텐 증기로부터 불순물을 제거하는 추가 공정이 요구되고, 또한 불순물이 제거된 디메틸케텐을 70 내지 140 ℃에서 이량체화하여 2,2,4,4-테트라메틸-1,3-사이클로부탄디온을 합성하는 추가 공정이 요구된다. Also, with respect to the preparation of 2,2,4,4-tetramethyl-1,3-cyclobutanediol from the isobutyric acid anhydride, PCT / US92 / 06950 discloses that pyrolysis of isobutyric acid anhydride to produce dimethylketene To produce 2,2,4,4-tetramethylcyclobutanediol. However, in the above method, an additional step of removing impurities from the dimethylketene vapor is required. Further, the dimethylketene from which the impurities have been removed is dimerized at 70 to 140 캜 to obtain 2,2,4,4-tetramethyl- An additional process for the synthesis of cyclobutanedione is required.

본 발명은 제조 단계 최적화 및 효율 극대화를 통해 경제적이고 친환경적인 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법을 제공하기 위한 것이다.The present invention is to provide a process for preparing economical and environmentally friendly 2,2,4,4-tetramethyl-1,3-cyclobutanediol through optimization of production steps and maximization of efficiency.

본 발명은, 상기 과제를 해결하기 위해, The present invention, in order to solve the above problems,

(A) 메타크릴산(methacrylic acid, MAA)을 원료 물질로 하여 팔라듐계 촉매의 존재 하에 수소화 반응을 통해 이소부티릭산(isobutyric acid, IBA)을 생성하는 제1 단계,(A) a first step of producing isobutyric acid (IBA) through hydrogenation in the presence of a palladium catalyst using methacrylic acid (MAA) as a starting material,

(B) 상기 이소부티릭산(isobutyric acid, IBA)을 400 내지 600℃에서 열분해시켜 디메틸케텐(dimethyl Ketene, DMK)을 형성하고, 상기 디메틸케텐을 이량체화(dimerization)하여 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)을 생성하는 제2 단계, 및(B) pyrolyzing the isobutyric acid (IBA) at 400 to 600 ° C. to form dimethyl ketene (DMK), and dimerizing the dimethyl ketene to obtain 2,2,4,4,4 A second step of producing 2,2,4,4-tetramethyl-1,3-cyclobutanedione (CBDK), and

(C) 상기 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)을 루테늄계 촉매의 존재 하에 수소화 반응을 통해 2,2,4,4-테트라메틸-1,3-사이클로부탄디올(2,2,4,4-tetramethyl-1,3-cyclobutanediol, CBDO)을 생성하는 제3 단계(C) hydrogenating the 2,2,4,4-tetramethyl-1,3-cyclobutanedione (CBDK) in the presence of a ruthenium-based catalyst To produce 2,2,4,4-tetramethyl-1,3-cyclobutanediol (CBDO) through the third step

를 포함하는 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법을 제공한다.Tetramethyl-1, &lt; / RTI &gt; 3-cyclobutanediol.

본 발명에 따르면, 경제적이고 친환경적인 방식으로 2,2,4,4-테트라메틸-1,3-사이클로부탄디올을 제조할 수 있다.According to the present invention, 2,2,4,4-tetramethyl-1,3-cyclobutanediol can be prepared in an economical and environmentally friendly manner.

본 발명은 (A) 메타아크릴산(methacrylic acid, MAA)을 원료 물질로 하여 중간 물질로서 (B) 이소부티릭산(isobutyric acid, IBA), (C) 디메틸케텐(dimethyl Ketene, DMK), (D) 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)을 순차적으로 거쳐 최종 물질인 (E) 2,2,4,4-테트라메틸-1,3-사이클로부탄디올(2,2,4,4-tetramethyl-1,3-cyclobutanediol, CBDO)을 제조하는 방법을 제공하는 것으로서, 본 발명에 따른 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법의 각 공정 단계는 스킴 2에 나타낸 바와 같다. (B) isobutyric acid (IBA), (C) dimethyl ketene (DMK), and (D) methacrylic acid (MAA) 2,2,4,4-tetramethyl-1,3-cyclobutanedione (CBDK) were sequentially added to the mixture to obtain the final product (E) 2,2,4-tetramethyl- , 2,2,4,4-tetramethyl-1,3-cyclobutanediol (CBDO), wherein the 2,2,4-tetramethyl-1,3-cyclobutanediol Each step of the process for the preparation of 4,4-tetramethyl-1,3-cyclobutanediol is as shown in Scheme 2. [

Figure pat00002
Figure pat00002

<스킴 2><Scheme 2>

본 발명에 따른 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법은 하기 단계를 포함한다: The process for the preparation of 2,2,4,4-tetramethyl-1,3-cyclobutanediol according to the invention comprises the following steps:

(A) 메타크릴산(methacrylic acid, MAA)을 원료 물질로 하여 팔라듐계 촉매의 존재 하에 수소화 반응을 통해 이소부티릭산(isobutyric acid, IBA)을 생성하는 제1 단계,(A) a first step of producing isobutyric acid (IBA) through hydrogenation in the presence of a palladium catalyst using methacrylic acid (MAA) as a starting material,

(B) 상기 이소부티릭산(isobutyric acid, IBA)을 250 내지 400℃에서 기화시킨 후 400 내지 600℃에서 열분해시켜 디메틸케텐(dimethyl Ketene, DMK)을 형성하고, 상기 디메틸케텐을 이량체화(dimerization)하여 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)을 생성하는 제2 단계, 및(B) vaporizing the isobutyric acid (IBA) at 250 to 400 ° C. and pyrolyzing at 400 to 600 ° C. to form dimethyl ketene (DMK), dimerizing the dimethyl ketene, A second step of producing 2,2,4,4-tetramethyl-1,3-cyclobutanedione (CBDK) by 2,2,4,4-tetramethyl-1,3-cyclobutanedione

(C) 상기 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)을 루테늄계 촉매의 존재 하에 수소화 반응을 통해 2,2,4,4-테트라메틸-1,3-사이클로부탄디올(2,2,4,4-tetramethyl-1,3-cyclobutanediol, CBDO)을 생성하는 제3 단계.(C) hydrogenating the 2,2,4,4-tetramethyl-1,3-cyclobutanedione (CBDK) in the presence of a ruthenium-based catalyst To produce 2,2,4,4-tetramethyl-1,3-cyclobutanediol (CBDO).

이하, 본 발명에 따른 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법의 각 단계를 상세히 설명한다.Hereinafter, each step of the process for producing 2,2,4,4-tetramethyl-1,3-cyclobutanediol according to the present invention will be described in detail.

1) 제1 단계: 메타아크릴산(methacrylic acid, MAA)으로부터 이소부티릭산(isobutyric acid, IBA)을 제조하는 단계 1) Step 1: Preparation of isobutyric acid (IBA) from methacrylic acid (MAA)

본 제조 공정은 메타아크릴산을 원료 물질로 하여 회분식 반응기에서 팔라듐계 촉매의 존재 하에 50℃ 내지 130℃의 반응 온도에서 3시간 내지 6시간의 반응 시간 동안 수소화 반응을 실시한다. 그 결과, 부산물의 생성 없이 고순도(99.5% 이상)의 이소부티릭산이 수득될 수 있다(MAA 전환율: 99.9%, Isobutyric acid 선택도: 100%). In the present production process, hydrogenation is carried out in a batch reactor in the presence of a palladium-based catalyst at a reaction temperature of 50 ° C to 130 ° C for 3 to 6 hours using methacrylic acid as a raw material. As a result, high purity (99.5% or more) of isobutyric acid can be obtained (MAA conversion: 99.9%, Isobutyric acid selectivity: 100%) without the formation of by-products.

일 구현예에서, 상기 팔라듐계 촉매는 활성탄 담지체 100 중량부에 대하여 팔라듐이 0.1 내지 5 중량부로 포함되는 촉매이다.In one embodiment, the palladium-based catalyst is a catalyst containing 0.1 to 5 parts by weight of palladium based on 100 parts by weight of the activated carbon carrier.

일 구현예에서, 상기 회분식 반응기는 오토클레이브일 수 있다.In one embodiment, the batch reactor may be an autoclave.

일 구현예에서, 상기 반응 온도는 100℃ 내지 130℃이다.In one embodiment, the reaction temperature is 100 &lt; 0 &gt; C to 130 &lt; 0 &gt; C.

일 구현예에서, 상기 제1 단계는 수소 압력이 30분 간격으로 1시간 내지 2시간 동안 일정 압력, 예컨대 20bar 내지 30bar로 유지되며 수행된다.In one embodiment, the first step is carried out with the hydrogen pressure maintained at a constant pressure, e.g., 20 to 30 bar, for 1 to 2 hours at 30 minute intervals.

상기 반응 시간이 3시간 미만이거나 온도가 50℃ 미만인 경우, 메타아크릴산의 전환율이 저하되는 문제가 발생하며 수소 압력이 일정 시간 유지되지 않는 경우, 미반응 메타아크릴산이 반응하여 고분자를 형성하는 문제점이 발생할 수 있다.If the reaction time is less than 3 hours or the temperature is less than 50 ° C, the conversion of methacrylic acid may be lowered. If hydrogen pressure is not maintained for a predetermined time, unreacted methacrylic acid may react to form a polymer .

본 제조 공정은 연속식 증류 공정이 불필요하므로 공정 비용이 저하될 수 있다. 또한, 산소 및 비활성 가스가 사용되지 않아 폭발 위험이 없고 부산물의 생성이 없어 부산물에 따른 환경 손상 문제를 야기시키지 않는다. 또한, 본 제조 공정에 활용된 팔라듐계 촉매는 공기 중에서, 예를 들어, 600℃, 6시간 소성함으로써 재사용할 수 있다.Since the continuous distillation process is unnecessary in the present manufacturing process, the process cost may be lowered. In addition, oxygen and inert gas are not used, so there is no risk of explosion, no by-products are produced, and no environmental damage problem is caused by by-products. Further, the palladium-based catalyst used in the present manufacturing process can be reused by firing in the air, for example, at 600 DEG C for 6 hours.

2) 제2 단계: 이소부티릭산(isobutyric acid, IBA)으로부터 디메틸케텐(dimethyl ketene, DMK)을 거쳐 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)을 제조하는 단계 2) Second step: From isobutyric acid (IBA) through dimethyl ketene (DMK), 2,2,4,4-tetramethyl-1,3-cyclobutanedione (2,2,4 , 4-tetramethyl-1,3-cyclobutanedione, CBDK)

본 제조 공정은, 이소부티릭산(isobutyric acid, IBA)에서 이소부티릭 언하이드라이드(isobutyric anhydride, IBAN) 및 디메틸케텐(dimethyl ketene, DMK)을 거쳐 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)을 제조하는 종래 기술과 달리, 이소부티릭산에서 이소부티릭 언하이드라이드를 거치지 않고 고순도의 디메틸케텐을 제조함으로써, 흡수 공정 및 고온의 이량체화 공정 없이 2,2,4,4-테트라메틸-1,3-사이클로부탄디온을 제조한다. 따라서, 공정을 효율적으로 최적화하는 것이 가능하다. The present process is carried out in the presence of isobutyric anhydride (IBAN) and dimethyl ketene (DMK) in isobutyric acid (IBA) to give 2,2,4,4-tetramethyl- Unlike the prior art in which 3-cyclobutanedione (CBDK) is produced from 3-cyclobutanedione (CBDK), high-purity dimethyl ketene To prepare 2,2,4,4-tetramethyl-1,3-cyclobutanedione without an absorption process and a high-temperature dimerization process. Therefore, it is possible to optimize the process efficiently.

본 발명의 제2 단계는 이소부티릭산의 열분해를 통해 진행되며 상세 과정은 다음과 같다.The second step of the present invention proceeds through pyrolysis of isobutyric acid, and the detailed procedure is as follows.

0.01bar 내지 0.2bar의 진공 상태에서 150cc/min 내지 200cc/min의 질소 유입과 함께 1cc/min 내지 10cc/min의 유량으로 이소부티릭산을 250℃ 내지 400℃에서 기화시킨 후 400℃ 내지 600℃에서 열분해시킨다. The isobutyric acid is vaporized at 250 DEG C to 400 DEG C at a flow rate of 1 cc / min to 10 cc / min with a flow rate of 150 cc / min to 200 cc / min under a vacuum of 0.01 to 0.2 bar, Pyrolysis.

상기 진공 압력이 0.2bar를 초과할 경우 이소부티릭산, 디메틸케텐, 기타 부반응물의 분리가 잘 안되는 문제점이 발생할 수 있다.If the vacuum pressure is more than 0.2 bar, it may be difficult to separate isobutyric acid, dimethyl ketene and other reactants.

상기 이소부티릭산의 유량이 10cc/min를 초과할 경우 이소부티릭산의 전환율이 저하되는 문제점이 발생할 수 있다.If the flow rate of the isobutyric acid exceeds 10 cc / min, the conversion of isobutyric acid may be lowered.

상기 열분해 온도가 400℃ 미만일 경우 이소부티릭산의 전환율이 저하되는 문제점이 발생하며, 600℃를 초과할 경우 부산물이 증가하는 문제점이 발생할 수 있다.If the pyrolysis temperature is less than 400 ° C., the conversion of isobutyric acid may be lowered. If the pyrolysis temperature is higher than 600 ° C., the byproduct may increase.

열분해를 거친 혼합물 중 미반응된 이소부티릭산은 응결되어 재사용될 수 있으며, 디메틸케텐 증기는 진공 1차 트랩에서 응결(DMK 순도 99.9%)되고 기타 부산물은 진공 2차 트랩에 모이게 된다.Unreacted isobutyric acid in the pyrolyzed mixture can be condensed and reused, condensation of dimethylketone vapor in the vacuum primary trap (DMK purity 99.9%) and other by-products in the vacuum secondary trap.

1차 트랩에서 응결된 고순도(99.9%)의 디메틸케텐은 불안정한 기체로 반응성이 강하여, 상온, 상압 조건에서 3시간 내지 8시간 공기 중에 노출시킬 경우 이량체화(dimerization)되어 99% 이상의 2,2,4,4-테트라메틸-1,3-사이클로부탄디온을 획득할 수 있다. 이때 반응 시간이 3시간 미만일 경우 디메틸케텐의 전환율이 떨어지는 문제점이 발생하고, 8시간 초과할 경우 반응 총 시간에 따른 효율성 및 경제성이 떨어지는 문제점이 발생할 수 있다.The high purity (99.9%) dimethyl ketene condensed in the primary trap is highly unstable gas and reacts at room temperature and atmospheric pressure for 3 hours to 8 hours in the air to dimerize to 99, 4,4-tetramethyl-1,3-cyclobutanedione can be obtained. If the reaction time is less than 3 hours, the conversion rate of dimethyl ketene tends to decrease. If the reaction time exceeds 8 hours, the efficiency and economical efficiency may decrease depending on the total reaction time.

3) 제3 단계: 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)으로부터 2,2,4,4-테트라메틸-1,3-사이클로부탄디올(2,2,4,4-tetramethyl-1,3-cyclobutanediol, CBDO)을 제조하는 단계 3) Third step: 2,2,4,4-tetramethyl-1,3-cyclobutanedione (CBDK) from 2,2,4,4- Step of preparing 4-tetramethyl-1,3-cyclobutanediol (CBDO)

본 발명의 제3 단계는 2,2,4,4-테트라메틸-1,3-사이클로부탄디온을 원료 물질로 하여 회분식 반응기에서 반응 용매로서 이소프로필알코올을 사용하며 루테늄계 촉매의 존재 하에 1시간 내지 4시간의 반응 시간 동안 100℃ 내지 130℃의 반응 온도에서 수소화 반응을 실시한다. 그 결과, 부산물의 생성 없이 고순도(99.2% 이상)의 2,2,4,4-테트라메틸-1,3-사이클로부탄디올이 수득될 수 있다(CBDK 전환율 100%, CBDO 선택도 99.2%).The third step of the present invention is a process for the preparation of a compound of formula (I) wherein 2,2,4,4-tetramethyl-1,3-cyclobutanedione is used as a starting material in isopropyl alcohol as a reaction solvent in a batch reactor, Hydrogenation reaction is carried out at a reaction temperature of 100 ° C to 130 ° C for a reaction time of 4 hours to 4 hours. As a result, 2,2,4,4-tetramethyl-1,3-cyclobutanediol with high purity (99.2% or more) can be obtained (CBDK conversion rate 100%, CBDO selectivity 99.2%) without generation of by-products.

일 구현예에서, 상기 루테늄계 촉매는 1: 0.8 ~ 1.2: 1.2 ~ 2.4의 비율로 혼합된 루테늄(Ru)-주석(Sn)-백금(Pt) 금속 혼합물이 실리카 담지체 100 중량부에 대하여 0.1 내지 10 중량부로 포함되는 촉매이다.In one embodiment, the ruthenium-based catalyst is a mixture of ruthenium (Ru) -stin (Sn) -platinum (Pt) metal mixed at a ratio of 1: 0.8-1.2: 1.2-2.4 To 10 parts by weight.

일 구현예에서, 상기 회분식 반응기는 오토클레이브일 수 있다.In one embodiment, the batch reactor may be an autoclave.

상기 반응 시간이 1시간 미만이거나 온도가 100℃ 미만인 경우 2,2,4,4-테트라메틸-1,3-사이클로부탄디온의 전환율이 저하되는 문제가 발생할 수 있다.If the reaction time is less than 1 hour or the temperature is less than 100 ° C, the conversion of 2,2,4,4-tetramethyl-1,3-cyclobutanedione may be lowered.

상기 반응 용매로 사용된 이소프로필알코올(2-프로판올)은 pKa가 16.5로 수소 공급원 역할에 도움을 준다. Isopropyl alcohol (2-propanol) used as the reaction solvent has a pKa of 16.5, which serves as a hydrogen source.

일 구현예에서, 상기 제3 단계는 수소 압력이 30분 내지 1시간 동안 20bar 내지 30bar로 유지되며 수행된다.In one embodiment, the third step is carried out with the hydrogen pressure maintained at 20 to 30 bar for 30 minutes to 1 hour.

본 제조 공정에 활용된 루테늄계 촉매는 공기 중에서, 예를 들어, 600℃, 6시간 소성함으로써 재사용할 수 있다. The ruthenium-based catalyst used in the present manufacturing process can be reused by firing in the air, for example, at 600 DEG C for 6 hours.

이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다.BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which: FIG. However, this is provided as an example of the invention, and the scope of the invention is not limited thereto in any sense.

실시예Example

1) 제1 단계: 메타아크릴산으로부터의 이소부티릭산의 제조1) Step 1: Preparation of isobutyric acid from methacrylic acid

[실시예 1][Example 1]

메타아크릴산 수소화를 통한 이소부티릭산 제조에 따른 촉매 활성을 비교하기 위해, 회분식 반응기(500mL Autoclave)에 메타아크릴산 40mL, 팔라듐계 촉매(상기 팔라듐계 촉매는 활성탄 담지체 100 중량부에 대하여 팔라듐 0.5 중량부를 포함하는 촉매임) 4g, 중합방지제 2000ppm를 넣고, 수소 20bar 투입 후 70℃에서 4시간 동안 반응시켜 이소부티릭산을 제조하였다.In order to compare the catalytic activity with the production of isobutyric acid by hydrogenation of methacrylic acid, 40 mL of methacrylic acid and 50 mL of a palladium-based catalyst (0.5 mL of palladium on the basis of 100 parts by weight of the activated carbon carrier) were added to a batch reactor (500 mL autoclave) And 2,000 ppm of a polymerization inhibitor were added thereto, and hydrogen was added thereto at 20 bar, followed by reaction at 70 ° C for 4 hours to prepare isobutyric acid.

[실시예 2][Example 2]

반응 온도를 120℃에서 진행한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 이소부티릭산을 제조하였다. Isobutyric acid was prepared in the same manner as in Example 1, except that the reaction temperature was changed to 120 캜.

[실시예 3][Example 3]

반응 온도 120℃에서 반응 시간을 3시간으로 하고, 수소 압력이 30분 간격으로 1시간 30분 동안 20bar로 유지되도록 진행한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 이소부티릭산을 제조하였다.Isobutyric acid was prepared in the same manner as in Example 1 except that the reaction time was changed to 120 hours and the reaction time was changed to 3 hours and the hydrogen pressure was maintained at 20 bar for 30 minutes at 30 minutes intervals .

[실시예 4] [Example 4]

반응 온도 120℃에서 반응 시간을 4시간으로 하고, 수소 압력이 30분 간격으로 1시간 30분 동안 20bar로 유지되도록 진행한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 이소부티릭산을 제조하였다.Isobutyric acid was prepared in the same manner as in Example 1 except that the reaction time was changed to 120 hours and the reaction time was changed to 4 hours and the hydrogen pressure was maintained at 20 bar for 30 minutes at 30 minute intervals .

[비교예 1][Comparative Example 1]

반응 온도를 실온에서 진행하고, 루테늄계 촉매(상기 루테늄계 촉매는 실리카 담지체 100 중량부에 대하여 루테늄(Ru), 주석(Sn), 백금(Pt)이 각각 1, 1, 1.8의 중량부로 포함되는 촉매임) 4g을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 이소부티릭산을 제조하였다.(Ruthenium-based catalyst, ruthenium-based catalyst containing ruthenium (Ru), tin (Sn), and platinum (Pt) in a weight of 1, 1, and 1.8 parts per 100 parts by weight of the silica carrier, respectively) Isobutyric acid was prepared in the same manner as in Example 1, except that 4 g of the catalyst was used.

[비교예 2] [Comparative Example 2]

반응 온도를 실온에서 진행한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 이소부티릭산을 제조하였다.Isobutyric acid was prepared in the same manner as in Example 1 except that the reaction temperature was changed to room temperature.

상기 실시예 및 비교예에서 얻어진 이소부티릭산(isobutyric acid, IBA)에 대하여, 메타아크릴산 전환율 및 이소부티릭산 선택도를 하기 식에 따라 산출하여, 그 결과를 하기 표 1에 나타낸다.The conversion of methacrylic acid and the selectivity of isobutyric acid were calculated for the isobutyric acid (IBA) obtained in the above Examples and Comparative Examples according to the following formulas, and the results are shown in Table 1 below.

메타아크릴산(MAA) 전환율(%) = [(투입된 메타아크릴산의 함량(mol%))-(반응 후 남은 메타아크릴산의 함량(mol%))]/[투입된 메타아크릴산의 함량(mol%)]*100(%) Of methacrylic acid (MAA) = [(content of input methacrylic acid (mol%) - content of methacrylic acid remaining (mol%)]] / [amount of input methacrylic acid (mol% 100

이소부티릭산(IBA) 선택도(%) = [(이소부티릭산의 함량(mol%)/반응 결과물의 함량(mol%)) * 100] Isobutyric acid (IBA) selectivity (%) = [(content of isobutyric acid (mol%) / content of reaction product (mol%)) * 100]

No.No. 촉매catalyst 온도
(℃)
Temperature
(° C)
MAA
전환율 (%)
MAA
Conversion Rate (%)
IBA
선택도 (%)
IBA
Selectivity (%)
비고Remarks
실시예 1Example 1 팔라듐계Palladium system 7070 60.860.8 100100 - 반응시간 : 240min
- H2 추가 주입 없이 진행
- Reaction time: 240 min
- proceed without further injection of H 2
실시예 2Example 2 팔라듐계Palladium system 120120 71.271.2 100100 - 반응시간 : 240min
- H2 추가 주입 없이 진행
- Reaction time: 240 min
- proceed without further injection of H 2
실시예 3Example 3 팔라듐계Palladium system 120120 90.590.5 100100 - 반응시간 : 180min
- H2 30분 간격 1시간 반
동안 20bar 유지
- Reaction time: 180 min
- H 2 1/2 hours every half hour
While maintaining 20 bar
실시예 4Example 4 팔라듐계Palladium system 120120 99.999.9 100100 - 반응시간 : 240min
- H2 30분 간격 1시간 반
동안 20bar 유지
- Reaction time: 240 min
- H 2 1/2 hours every half hour
While maintaining 20 bar
비교예 1Comparative Example 1 루테늄계Ruthenium series 실온Room temperature 1010 100100 비교예 2Comparative Example 2 팔라듐계Palladium system 실온Room temperature 31.731.7 100100

2) 제2 단계: 이소부티릭산으로부터 디메틸케텐을 거쳐 2,2,4,4-테트라메틸-1,3-사이클로부탄디온의 제조 2) Step 2: Preparation of 2,2,4,4-tetramethyl-1,3-cyclobutanedione from isobutyric acid via dimethylketene

[실시예 5][Example 5]

0.05bar의 진공 상태에서 200cc/min의 질소 유입과 함께 2cc/min의 유량으로 이소부티릭산을 투입하여 300℃에서 기화시킨 후 470℃에서 열분해시켜 디메틸케텐을 제조하였다.Isobutyric acid was introduced at a flow rate of 2 cc / min with a flow rate of 200 cc / min under a vacuum of 0.05 bar, vaporized at 300 ° C and pyrolyzed at 470 ° C to produce dimethylketene.

[실시예 6] [Example 6]

이소부티릭산의 유량을 5cc/min로 한 것을 제외하고는, 상기 실시예 5와 동일한 방법으로 디메틸케텐을 제조하였다.Dimethylketene was prepared in the same manner as in Example 5 except that the flow rate of isobutyric acid was 5 cc / min.

[실시예 7][Example 7]

이소부티릭산의 유량을 9cc/min로 한 것을 제외하고는, 상기 실시예 5와 동일한 방법으로 디메틸케텐을 제조하였다.Dimethylketene was prepared in the same manner as in Example 5 except that the flow rate of isobutyric acid was 9 cc / min.

[실시예 8][Example 8]

열분해 온도를 500℃로 한 것을 제외하고는, 상기 실시예 5와 동일한 방법으로 디메틸케텐을 제조하였다.Dimethylketene was prepared in the same manner as in Example 5, except that the thermal decomposition temperature was 500 캜.

[실시예 9][Example 9]

열분해 온도를 550℃로 한 것을 제외하고는, 상기 실시예 5와 동일한 방법으로 디메틸케텐을 제조하였다.Dimethylketene was prepared in the same manner as in Example 5 except that the thermal decomposition temperature was 550 캜.

상기 실시예에서 얻어진 디메틸케텐(dimethyl ketene, DMK) 에 대하여, 이소부티릭산 전환율 및 디메틸케텐 선택도를 하기 식에 따라 산출하여, 그 결과를 하기 표 2에 나타낸다.The conversion of isobutyric acid and the selectivity of dimethyl ketene to dimethyl ketene (DMK) obtained in the above Example were calculated according to the following formulas, and the results are shown in Table 2 below.

이소부티릭산(IBA) 전환율(%) = [(투입된 이소부티릭산의 함량(mol%))-(반응 후 남은 이소부티릭산의 함량(mol%))]/[투입된 이소부티릭산의 함량(mol%)]*100Isobutyric acid (IBA) conversion rate (%) = [(content of isobutyric acid added (mol%)) (content of isobutyric acid left after reaction (mol%)]] / [amount of charged isobutyric acid %)] * 100

디메틸케텐(DMK) 선택도(%) = [(디메틸케텐의 함량(mol%)/반응 결과물의 함량(mol%)) * 100] Dimethylketene (DMK) selectivity (%) = [(dimethylketene content (mol%) / content of reaction product (mol%)) * 100]

Figure pat00003
Figure pat00003

[실시예 10] [Example 10]

1차 트랩에 응결된 고순도(99.9%)의 디메틸케텐을 상온에서 6시간 공기 중에 노출시켜 이량체화함으로써, 99% 이상의 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-butanedione, CBDK)을 획득하였다.Dimethylketene (99.9%) condensed in the primary trap was dimerized by exposure to air for 6 hours at room temperature to obtain 99% or more of 2,2,4,4-tetramethyl-1,3-cyclobutanedione (2 , 2,4,4-tetramethyl-1,3-butanedione, CBDK).

3) 제3 단계: 2,2,4,4-테트라메틸-1,3-사이클로부탄디온으로부터 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조3) Step 3: Preparation of 2,2,4,4-tetramethyl-1, 3-cyclobutanediol from 2,2,4,4-tetramethyl-1,3-cyclobutanedione

[실시예 11] [Example 11]

2,2,4,4-테트라메틸-1,3-사이클로부탄디온 수소화를 통한 2,2,4,4-테트라메틸-1,3-사이클로부탄디올 제조에 따른 촉매 활성을 비교하기 위해, 회분식 반응기(500mL Autoclave)에 2,2,4,4-테트라메틸-1,3-사이클로부탄디온 4g, 루테늄계 촉매 4g(상기 루테늄계 촉매는 실리카 담지체 100 중량부에 대하여 루테늄(Ru), 주석(Sn), 백금(Pt)이 각각 1, 1, 1.8의 중량부로 포함되는 촉매임), 이소프로필알코올 40mL, 수소 20bar 투입 후 120℃ 에서 2시간 동안 반응시켜 2,2,4,4-테트라메틸-1,3-사이클로부탄디올을 제조하였다.In order to compare the catalytic activity according to the preparation of 2,2,4,4-tetramethyl-1,3-cyclobutanediol via 2,2,4,4-tetramethyl-1,3-cyclobutanedione hydrogenation, 4 g of ruthenium-based catalyst (4 g of 2,2,4,4-tetramethyl-1,3-cyclobutanedione, 500 g of ruthenium-based catalyst (ruthenium (Ru), tin Sn) and platinum (Pt) in the weight parts of 1, 1, and 1.8, respectively), 40 ml of isopropyl alcohol, 20 bar of hydrogen, and reacted at 120 ° C for 2 hours to obtain 2,2,4,4-tetramethyl -1,3-cyclobutanediol.

[비교예 3][Comparative Example 3]

반응 용매로서 메탄올 40 mL를 사용하고, 촉매로서 팔라듐계 촉매(상기 팔라듐계 촉매는 활성탄 담지체 100 중량부에 대하여 팔라듐 0.5 중량부를 포함하는 촉매임) 4g을 사용한 것을 제외하고는, 상기 실시예 11과 동일한 방법으로 2,2,4,4-테트라메틸-1,3-사이클로부탄디올을 제조하였다.Except that 40 mL of methanol was used as a reaction solvent and 4 g of a palladium-based catalyst (the palladium-based catalyst being a catalyst containing 0.5 part by weight of palladium with respect to 100 parts by weight of the activated carbon carrier) was used. 2,2,4,4-tetramethyl-1,3-cyclobutanediol was prepared in the same manner as in &lt; RTI ID = 0.0 &gt;

[비교예 4] [Comparative Example 4]

반응 용매로서 메탄올 40 mL를 사용한 것을 제외하고는, 상기 실시예 11과 동일한 방법으로 2,2,4,4-테트라메틸-1,3-사이클로부탄디올을 제조하였다.2,2,4,4-tetramethyl-1,3-cyclobutanediol was prepared in the same manner as in Example 11, except that 40 mL of methanol was used as a reaction solvent.

상기 실시예 및 비교예에서 얻어진 2,2,4,4-테트라메틸-1,3-사이클로부탄디올(2,2,4,4-tetramethyl-1,3-cyclobutanediol, CBDO)에 대하여, 2,2,4,4-테트라메틸-1,3-사이클로부탄디온 전환율 및 2,2,4,4-테트라메틸-1,3-사이클로부탄디올 선택도를 하기 식에 따라 산출하여, 그 결과를 하기 표 3에 나타낸다.The amount of 2,2,4,4-tetramethyl-1,3-cyclobutanediol (CBDO) obtained in the above Examples and Comparative Examples was 2,2,4,4-tetramethyl- , 4,4-tetramethyl-1,3-cyclobutanedione conversion and 2,2,4,4-tetramethyl-1,3-cyclobutanediol selectivity were calculated according to the following formulas, Respectively.

2,2,4,4-테트라메틸-1,3-사이클로부탄디온(CBDK) 전환율(%) = [(투입된 2,2,4,4-테트라메틸-1,3-사이클로부탄디온의 함량(mol%))-(반응 후 남은 2,2,4,4-테트라메틸-1,3-사이클로부탄디온의 함량(mol%))]/[투입된 2,2,4,4-테트라메틸-1,3-사이클로부탄디온의 함량(mol%)]*100Conversion of 2,2,4,4-tetramethyl-1,3-cyclobutanedione (CBDK) (%) = [(content of charged 2,2,4,4-tetramethyl-1,3-cyclobutanedione mol%)) - (amount of remaining 2,2,4,4-tetramethyl-1,3-cyclobutanedione (mol%))] / [added 2,2,4,4-tetramethyl- , Content of 3-cyclobutanedione (mol%)] * 100

2,2,4,4-테트라메틸-1,3-사이클로부탄디올(DBDO) 선택도(%) = [(2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 함량(mol%)/반응 결과물의 함량(mol%)) * 100] Selectivity (%) of 2,2,4,4-tetramethyl-1,3-cyclobutanediol (DBDO) = [(content of 2,2,4,4-tetramethyl-1,3-cyclobutanediol mol% ) / Content of reaction product (mol%)) * 100]

No.No. 촉매catalyst CBDK
전환율 (%)
CBDK
Conversion Rate (%)
CBDO
선택도 (%)
CBDO
Selectivity (%)
비고Remarks
실시예 11Example 11 루테늄계Ruthenium series 100100 99.299.2 반응용매: 이소프로필알코올(2-프로판올)Reaction solvent: isopropyl alcohol (2-propanol) 비교예 3Comparative Example 3 팔라듐계Palladium system 1414 -- 반응용매: 메탄올Reaction solvent: methanol 비교예 4Comparative Example 4 루테늄계Ruthenium series 100100 84.384.3 반응용매: 메탄올Reaction solvent: methanol

본 발명에 따르면, 제조 단계 최적화 및 각 단계 효율 극대화를 통해 경제적이고 친환경적으로 2,2,4,4-테트라메틸-1,3-사이클로부탄디올을 제조할 수 있다. 본 발명에 따른 2,2,4,4-테트라메틸-1,3-사이클로부탄디올 제조 방법의 각 단계의 효과는 다음과 같다.According to the present invention, 2,2,4,4-tetramethyl-1,3-cyclobutanediol can be produced economically and environmentally by optimizing the production steps and maximizing the efficiency of each step. The effect of each step of the process for preparing 2,2,4,4-tetramethyl-1,3-cyclobutanediol according to the present invention is as follows.

1) 제1 단계: 메타아크릴산(methacrylic acid, MAA)으로부터 이소부티릭산(isobutyric acid, IBA)을 제조하는 단계1) Step 1: Preparation of isobutyric acid (IBA) from methacrylic acid (MAA)

본 단계는 메타아크릴산을 원료로 하고 팔라듐계 촉매를 활용하며 수소화 반응을 통해 부산물 생성 없이 고순도(99.5% 이상)의 이소부티릭산을 제조(MAA 전환율 99.9%, Isobutyric acid 선택도 100%)할 수 있다. 본 제조 공정은 회분식 반응기에서 이루어지며 연속식 증류 공정이 불필요하여 공정 비용이 저하될 수 있다. 또한 산소 및 비활성 가스가 사용되지 않아 폭발 위험이 없으며 부산물 생성이 없어 부산물에 따른 환경 손상 문제를 야기시키지 않는다. 또한, 본 제조 공정에 활용된 팔라듐계 촉매는 공기 중에서 소성하여 재사용이 가능하므로 경제적이다.In this step, high purity (99.5% or more) of isobutyric acid can be produced (99.9% of MAA conversion and 100% of isobutyric acid selectivity) without producing by-products through hydrogenation reaction using methacrylic acid as a raw material and palladium catalyst . The present manufacturing process is performed in a batch reactor, and a continuous distillation process is not required, which may reduce the process cost. In addition, there is no danger of explosion because no oxygen and inert gas are used, and there is no generation of by-products, which does not cause environmental damage problem due to by-products. In addition, the palladium-based catalyst used in the present manufacturing process is economical because it can be reused by firing in air.

2) 제2 단계: 이소부티릭산(isobutyric acid, IBA)으로부터 디메틸케텐(dimethyl ketene, DMK)을 거쳐 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)을 제조하는 단계2) Second step: From isobutyric acid (IBA) through dimethyl ketene (DMK), 2,2,4,4-tetramethyl-1,3-cyclobutanedione (2,2,4 , 4-tetramethyl-1,3-cyclobutanedione, CBDK)

본 단계는 이소부티릭산에서 이소부티릭 언하이드라이드 및 디메틸케텐을 거쳐 2,2,4,4-테트라메틸-1,3-사이클로부탄디온을 제조하는 종래 기술과 달리, 이소부티릭산에서 이소부티릭 언하이드라이드를 거치지 않고 이소부티릭산을 원료로 하여 열분해를 통하여 흡수 공정 없이 고순도(99.9%)의 디메틸케텐을 획득할 수 있다. 고순도의 디메틸케텐은 반응성이 강한 물질로 상온에서 3시간 내지 8시간 공기 중에 노출시키면 이량체화되어 99% 이상의 2,2,4,4-테트라메틸-1,3-사이클로부탄디온을 획득할 수 있다. 즉, 70 내지 120℃에서의 이량체화 공정을 거치지 않아 에너지 및 공정 비용을 절약할 수 있다.This step is different from the prior art in which 2,2,4,4-tetramethyl-1,3-cyclobutanedione is produced from isobutyric acid via isobutyryl anhydride and dimethyl ketene, High purity (99.9%) dimethyl ketene can be obtained without pyrolysis using isobutyric acid as a raw material without going through the ric anhydride. High purity dimethyl ketene is a highly reactive substance and when it is exposed to air at room temperature for 3 hours to 8 hours, it is dimerized to obtain 99% or more of 2,2,4,4-tetramethyl-1,3-cyclobutanedione . That is, energy and process cost can be saved by not carrying out the dimerization process at 70 to 120 ° C.

3) 제3 단계: 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)으로부터 2,2,4,4-테트라메틸-1,3-사이클로부탄디올(2,2,4,4-tetramethyl-1,3-cyclobutanediol, CBDO)을 제조하는 단계3) Third step: 2,2,4,4-tetramethyl-1,3-cyclobutanedione (CBDK) from 2,2,4,4- Step of preparing 4-tetramethyl-1,3-cyclobutanediol (CBDO)

본 단계는 루테늄계 촉매 활용하며 수소화 반응을 통해 부산물 생성 없이 고순도(99.2% 이상)의 2,2,4,4-테트라메틸-1,3-사이클로부탄디올을 제조(CBDK 전환율 100%, CBDO 선택도 99.2%)할 수 있다. 본 단계는 회분식 반응기에서 이루어지며 연속식 증류 공정이 불필요하여 공정 비용이 저하될 수 있다. 또한 산소 및 비활성 가스가 사용되지 않아 폭발 위험이 없으며 부산물 생성이 없어 부산물에 따른 환경 손상 문제를 야기시키지 않는다. 또한, 본 제조 공정에 활용된 루테늄계 촉매는 공기 중에서 소성하여 재사용이 가능하므로 경제적이다.This step utilizes ruthenium-based catalysts and produces 2,2,4,4-tetramethyl-1,3-cyclobutanediol with high purity (99.2% or more) without any by-product formation through hydrogenation reaction (CBDK conversion rate 100%, CBDO selectivity 99.2%). This step is carried out in a batch reactor and a continuous distillation process is not necessary, which may reduce the process cost. In addition, there is no danger of explosion because no oxygen and inert gas are used, and there is no generation of by-products, which does not cause environmental damage problem due to by-products. In addition, the ruthenium-based catalyst used in the present manufacturing process is economical because it can be reused by firing in air.

Claims (8)

(A) 메타크릴산(methacrylic acid, MAA)을 원료 물질로 하여 팔라듐계 촉매의 존재 하에 수소화 반응을 통해 이소부티릭산(isobutyric acid, IBA)을 생성하는 제1 단계,
(B) 상기 이소부티릭산(isobutyric acid, IBA)을 400 내지 600℃에서 열분해시켜 디메틸케텐(dimethyl Ketene, DMK)을 형성하고, 상기 디메틸케텐을 이량체화(dimerization)하여 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)을 생성하는 제2 단계, 및
(C) 상기 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)을 루테늄계 촉매의 존재 하에 수소화 반응을 통해 2,2,4,4-테트라메틸-1,3-사이클로부탄디올(2,2,4,4-tetramethyl-1,3-cyclobutanediol, CBDO)을 생성하는 제3 단계
를 포함하는 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법.
(A) a first step of producing isobutyric acid (IBA) through hydrogenation in the presence of a palladium catalyst using methacrylic acid (MAA) as a starting material,
(B) pyrolyzing the isobutyric acid (IBA) at 400 to 600 ° C. to form dimethyl ketene (DMK), and dimerizing the dimethyl ketene to obtain 2,2,4,4,4 A second step of producing 2,2,4,4-tetramethyl-1,3-cyclobutanedione (CBDK), and
(C) hydrogenating the 2,2,4,4-tetramethyl-1,3-cyclobutanedione (CBDK) in the presence of a ruthenium-based catalyst To produce 2,2,4,4-tetramethyl-1,3-cyclobutanediol (CBDO) through the third step
Tetramethyl-l, 3-cyclobutanediol. &Lt; / RTI &gt;
제1항에 있어서, 상기 제1 단계는 50 내지 130℃의 반응 온도 및 20 내지 30bar의 압력 하에서 3 내지 6시간 동안 수행되는, 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법.The process according to claim 1, wherein the first step is carried out for 3 to 6 hours at a reaction temperature of 50 to 130 캜 and a pressure of 20 to 30 bar. 2,2,4,4-Tetramethyl-1,3-cyclobutanediol &Lt; / RTI &gt; 제1항에 있어서, 상기 팔라듐계 촉매는 활성탄 담지체 100 중량부에 대하여 팔라듐이 0.1 내지 5 중량부로 포함되는 촉매인, 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법.The process according to claim 1, wherein the palladium-based catalyst is a catalyst comprising 0.1 to 5 parts by weight of palladium based on 100 parts by weight of the active carbon support, and 2,2,4,4-tetramethyl-1,3-cyclobutanediol Way. 제1항에 있어서, 상기 제2 단계에서의 이소부티릭산의 열분해는 0.01 내지 0.2bar의 진공 상태에서 1 내지 10cc/min의 유량으로 이소부티릭산을 투입하여 수행되는, 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법.The method according to claim 1, wherein the pyrolysis of isobutyric acid in the second step is carried out by introducing isobutyric acid at a flow rate of 1 to 10 cc / min under a vacuum of 0.01 to 0.2 bar. - tetramethyl-1,3-cyclobutanediol. 제1항에 있어서, 상기 제2 단계에서의 디메틸케텐의 이량체화는 상온 및 상압 조건에서 3 내지 8시간 동안 공기 중에 노출시켜 수행되는, 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법.2. The method of claim 1, wherein the dimerization of dimethyl ketene in the second step is carried out by exposing to air for 3 to 8 hours at room temperature and atmospheric pressure. Cyclobutanediol. 제1항에 있어서, 상기 제3 단계는 100 내지 130℃의 반응 온도 및 20 내지 30bar의 압력 하에서 1 내지 4시간 동안 수행되는, 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법.3. The process according to claim 1, wherein said third step is carried out at a reaction temperature of 100 to 130 &lt; 0 &gt; C and a pressure of 20 to 30 bar for from 1 to 4 hours to obtain 2,2,4,4-tetramethyl-1,3- &Lt; / RTI &gt; 제1항에 있어서, 상기 루테늄계 촉매는 1: 0.8 ~ 1.2: 1.2 ~ 2.4의 비율로 혼합된 루테늄(Ru)-주석(Sn)-백금(Pt) 금속 혼합물이 실리카 담지체 100 중량부에 대하여 0.1 내지 10 중량부로 포함되는 촉매인, 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법.The catalyst according to claim 1, wherein the ruthenium-based catalyst comprises a ruthenium (Ru) -stin (Sn) -platinum (Pt) metal mixture mixed at a ratio of 1: 0.8-1.2: 1.2-2.4 with respect to 100 parts by weight of the silica carrier 0.1 to 10 parts by weight, based on the total weight of the catalyst, of 2,2,4,4-tetramethyl-1,3-cyclobutanediol. 제1항에 있어서, 상기 제3 단계에서 사용된 반응 용매는 이소프로필알코올인, 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법.The process for producing 2,2,4,4-tetramethyl-1,3-cyclobutanediol according to claim 1, wherein the reaction solvent used in the third step is isopropyl alcohol.
KR1020170151460A 2017-11-14 2017-11-14 Process for preparing 2,2,4,4-tetramethyl-1,3-cyclobutanediol KR20190054646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170151460A KR20190054646A (en) 2017-11-14 2017-11-14 Process for preparing 2,2,4,4-tetramethyl-1,3-cyclobutanediol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170151460A KR20190054646A (en) 2017-11-14 2017-11-14 Process for preparing 2,2,4,4-tetramethyl-1,3-cyclobutanediol

Publications (1)

Publication Number Publication Date
KR20190054646A true KR20190054646A (en) 2019-05-22

Family

ID=66680675

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170151460A KR20190054646A (en) 2017-11-14 2017-11-14 Process for preparing 2,2,4,4-tetramethyl-1,3-cyclobutanediol

Country Status (1)

Country Link
KR (1) KR20190054646A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111875487A (en) * 2020-07-15 2020-11-03 浙江恒澜科技有限公司 Preparation method of tetramethylcyclobutane ketone
CN114685271A (en) * 2020-12-29 2022-07-01 财团法人工业技术研究院 Method for preparing compound by utilizing isobutyric acid and acetic anhydride and device for preparing compound by utilizing isobutyric acid and acetic anhydride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111875487A (en) * 2020-07-15 2020-11-03 浙江恒澜科技有限公司 Preparation method of tetramethylcyclobutane ketone
CN114685271A (en) * 2020-12-29 2022-07-01 财团法人工业技术研究院 Method for preparing compound by utilizing isobutyric acid and acetic anhydride and device for preparing compound by utilizing isobutyric acid and acetic anhydride

Similar Documents

Publication Publication Date Title
US4471136A (en) Preparation of ethyl acetate
KR101325084B1 (en) Vapour phase hydrogenation of glycerol
US11008275B2 (en) Process for preparing carboxylic acids or salts thereof from hydrocarbons
CN108779054B (en) Method for producing isoamylene alcohol and isoamylene aldehyde from 3-methyl-3-butenol
KR101619399B1 (en) Preparation method of 1,4-cyclohexanedimethanol
KR20190054646A (en) Process for preparing 2,2,4,4-tetramethyl-1,3-cyclobutanediol
KR101634221B1 (en) Method for producing acrylic acid from glycerol
KR101828002B1 (en) Preparation method of 1,3-cyclohexanedimethanol
KR20190056665A (en) Process for preparing 2,2,4,4-tetramethyl-1,3-cyclobutanediol
EP3015446B1 (en) Method for producing allyl alcohol and allyl alcohol produced thereby
US8581010B2 (en) Formation of ethanol from methanol
KR101577362B1 (en) Preparation method of 1,4-cyclohexanedimethanol
KR20190054648A (en) Process for preparing 2,2,4,4-tetramethyl-1,3-cyclobutanediol
KR20160056211A (en) Manufacturing apparatus of trans-1,4-cyclohexanedimethanol for simplifying process
KR20190054647A (en) Process for preparing 2,2,4,4-tetramethyl-1,3-cyclobutanediol
KR20110101691A (en) Improved method for producing catechol and hydroquinone from phenol and hydrogen peroxide
KR20170047802A (en) Preparation method of dimethylterephthalate
CN114478203B (en) Preparation method of vinyl low-carbon alcohol for polyether initiator
CN114516786B (en) Method for preparing citral intermediate by photocatalysis
CN113797977B (en) Ruthenium catalyst and application thereof
KR101786910B1 (en) Preparation method of 1,4-cyclohexanedimethanol
KR102394369B1 (en) Preparation method of dimethyl terephthalate
JP5056226B2 (en) Method for producing allyl compound derivative
CA2102576C (en) Process for the preparation of acetals and hemiacetal esters
KR20060033000A (en) Process for the preparation of a cosmetic active