KR20190054648A - Process for preparing 2,2,4,4-tetramethyl-1,3-cyclobutanediol - Google Patents

Process for preparing 2,2,4,4-tetramethyl-1,3-cyclobutanediol Download PDF

Info

Publication number
KR20190054648A
KR20190054648A KR1020170151462A KR20170151462A KR20190054648A KR 20190054648 A KR20190054648 A KR 20190054648A KR 1020170151462 A KR1020170151462 A KR 1020170151462A KR 20170151462 A KR20170151462 A KR 20170151462A KR 20190054648 A KR20190054648 A KR 20190054648A
Authority
KR
South Korea
Prior art keywords
tetramethyl
cyclobutanediol
catalyst
cyclobutanedione
silica
Prior art date
Application number
KR1020170151462A
Other languages
Korean (ko)
Inventor
김진형
김하영
박성준
김성민
김원영
Original Assignee
롯데케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 롯데케미칼 주식회사 filed Critical 롯데케미칼 주식회사
Priority to KR1020170151462A priority Critical patent/KR20190054648A/en
Publication of KR20190054648A publication Critical patent/KR20190054648A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C35/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C35/02Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring monocyclic
    • C07C35/04Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring monocyclic containing a three or four-membered rings
    • C07C35/045Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring monocyclic containing a three or four-membered rings containing a four-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/45Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/385Saturated compounds containing a keto group being part of a ring
    • C07C49/39Saturated compounds containing a keto group being part of a ring of a three- or four-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/88Ketenes; Dimeric ketenes
    • C07C49/90Ketene, i.e. C2H2O
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/36Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by hydrogenation of carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/124Acids containing four carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow

Abstract

According to the present invention, disclosed is a method for manufacturing 2,2,4,4-tetramethyl-1,3-cyclobutanediol. The method uses (A) isobutyric acid (IBA) as raw materials and uses (B) 2,2,4,4-tetramethyl-1,3-cyclobutanedione (CBDK) as middle materials to manufacture (C) 2,2,4,4-tetramethyl-1,3-cyclobutanediol (CBDO), a final material. According to the present invention, through the optimization of manufacturing steps and efficiency maximization, provided is a method for manufacturing 2,2,4,4-tetramethyl-1,3-cyclobutanediol which is economical and eco-friendly.

Description

2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법{PROCESS FOR PREPARING 2,2,4,4-TETRAMETHYL-1,3-CYCLOBUTANEDIOL}PROCESS FOR PREPARATION 2,2,4,4-TETRAMETHYL-1,3-CYCLOBUTANEDIOL [0002] The present invention relates to a process for preparing 2,2,4,4-tetramethyl-1,3-cyclobutanediol,

본 발명은 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법에 관한 것이다. 보다 상세하게는, 본 발명은 제조 단계 최적화 및 효율 극대화를 통해 경제적이고 친환경적인 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법에 관한 것이다.The present invention relates to a process for the preparation of 2,2,4,4-tetramethyl-1,3-cyclobutanediol. More particularly, the present invention relates to a process for the preparation of economical and eco-friendly 2,2,4,4-tetramethyl-1,3-cyclobutanediol through optimization of the manufacturing steps and maximization of efficiency.

2,2,4,4-테트라메틸-1,3-사이클로부탄디올(2,2,4,4-tetramethyl-1,3-cyclobutanediol, CBDO)은 BPA(bisphenol A) 대체 물질로서 폴리카보네이트, 폴리에스터, 폴리술폰 및 폴리에스터케톤을 비롯한 다양한 중합체 생산에 사용되는 전구체이다. 종래에 알려진 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법에서는 이소부틸알데히드(isobutyraldehyde)를 원료 물질로 하여 제조하며, 그의 각각의 공정 단계를 하기 스킴 1에 나타낸다.2,2,4,4-tetramethyl-1,3-cyclobutanediol (CBDO) is an alternative to bisphenol A (BPA) , Polysulfones, and polyester ketones. In the conventional process for producing 2,2,4,4-tetramethyl-1,3-cyclobutanediol, isobutyraldehyde is used as a raw material, and each process step thereof is shown in Scheme 1 below.

Figure pat00001
Figure pat00001

<스킴 1><Scheme 1>

상기 각 단계에 따른 선행 기술이 공지되어 있다. 예를 들어, 이소부틸알데히드로부터 이소부티릭산을 형성하는 제조 단계와 관련하여, 한국특허출원번호 제10-2002-0074825호에는 이소부틸알데히드를 원료로 하여 액상에서 분자상 산소 함유 가스와 연속적으로 산화시켜 이소부티릭산을 제조하는 방법에 관한 것이 개시되어 있다. 일반적으로 유기물을 액상으로 산화시키는 공정은 반응물이 차지하고 있는 액상부분을 제외한 기상에서의 유기물의 농도와 산소의 농도 범위에 따라 폭발 범위를 가지기 때문에 반응시 각별한 주의를 요한다. 특히 촉매를 사용하지 않을 경우 반응 효율의 증가를 위해 산소 분압과 온도를 높여야 하므로 폭발의 위험이 있다. 또한 반응 생성물에서 나오는 부산물로는 아세톤, 이소프로필 알코올, 과산화물 등으로 이소부티릭산을 99.5% 이상의 고순도로 정제하는 연속식 증류 방법이 필요해 에너지 비용이 높다.The prior art according to each of the above steps is known. For example, in connection with the production step of forming isobutyric acid from isobutylaldehyde, Korean Patent Application No. 10-2002-0074825 discloses a process for producing isobutyric acid from isobutylaldehyde by using isobutylaldehyde as a raw material and continuously oxidizing To a process for producing isobutyric acid. Generally, the process of oxidizing an organic material into a liquid phase requires special attention because it has an explosion range according to the concentration of organic substances in the gas phase and the concentration range of oxygen, except for the liquid portion occupied by the reactants. Particularly, when the catalyst is not used, there is a risk of explosion because the oxygen partial pressure and the temperature must be increased in order to increase the reaction efficiency. As a by-product from the reaction product, a continuous distillation method in which isobutyric acid is purified by acetone, isopropyl alcohol, peroxide or the like to a purity of 99.5% or more is required, resulting in a high energy cost.

상기 이소부티릭산으로부터 이소부티릭산 무수물을 형성하는 제조 단계와 관련하여, 미국특허 제7,049,467 B2호에는 아세트산 무수물과 이소부티릭산을 반응시켜 이소부티릭산 무수물을 합성하는 방법이 개시되어 있다. 상기 문헌에 개시된 방법에서는 99% 이상의 고순도 이소부티릭산 무수물을 획득할 수 있으나, 반응시 생성되는 아세트산을 제거하기 위해 8단 이상의 증류 공정을 추가해야 되는 단점을 지닌다.With respect to the preparation step of forming isobutyric acid anhydride from the above isobutyric acid, U.S. Patent No. 7,049,467 B2 discloses a method of synthesizing isobutyric acid anhydride by reacting acetic anhydride with isobutyric acid. In the method disclosed in the above document, 99% or more of high purity isobutyric acid anhydride can be obtained. However, it is disadvantageous to add an 8 or more stage distillation process to remove acetic acid generated in the reaction.

또한, 상기 이소부티릭산 무수물로부터 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 단계와 관련하여, PCT/US92/06950에는 디메틸케텐을 생산하기 위한 이소부티릭산 무수물의 열분해를 수행하는 2,2,4,4-테트라메틸사이클로부탄디올의 제조 방법이 개시되어 있다. 그러나, 상기 방법에서는 디메틸케텐 증기로부터 불순물을 제거하는 추가 공정이 요구되고, 또한 불순물이 제거된 디메틸케텐을 70 내지 140 ℃에서 다이머라이제니션을 시켜 2,2,4,4-테트라메틸-1,3-사이클로부탄디온을 합성하는 추가 공정이 요구된다. Also, with respect to the preparation of 2,2,4,4-tetramethyl-1,3-cyclobutanediol from the isobutyric acid anhydride, PCT / US92 / 06950 discloses that pyrolysis of isobutyric acid anhydride to produce dimethylketene To produce 2,2,4,4-tetramethylcyclobutanediol. However, this method requires an additional step of removing impurities from the dimethylketene vapor, and furthermore, the dimethylketene from which the impurities have been removed is subjected to dimerization at 70 to 140 ° C to give 2,2,4,4-tetramethyl- , An additional process for synthesizing 3-cyclobutanedione is required.

본 발명은 제조 단계 최적화 및 효율 극대화를 통해 경제적이고 친환경적인 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법을 제공하기 위한 것이다. The present invention is to provide a process for preparing economical and environmentally friendly 2,2,4,4-tetramethyl-1,3-cyclobutanediol through optimization of production steps and maximization of efficiency.

본 발명은, 상기 과제를 해결하기 위해, The present invention, in order to solve the above problems,

(A) 이소부티릭산(isobutyric acid, IBA)을 원료 물질로 하여 실리카-알루미나 촉매의 존재 하에 300 내지 600℃에서 열분해시켜 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)을 생성하는 제1 단계, 및(A) pyrolysis at 300 to 600 ° C. in the presence of isobutyric acid (IBA) as a raw material in the presence of a silica-alumina catalyst to obtain 2,2,4,4-tetramethyl-1,3-cyclobutanedione 2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK), and

(B) 상기 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)을 루테늄계 촉매의 존재 하에 수소화 반응을 통해 2,2,4,4-테트라메틸-1,3-사이클로부탄디올(2,2,4,4-tetramethyl-1,3-cyclobutanediol, CBDO)을 생성하는 제2 단계(B) hydrogenating the 2,2,4,4-tetramethyl-1,3-cyclobutanedione (CBDK) in the presence of a ruthenium-based catalyst To produce 2,2,4,4-tetramethyl-1,3-cyclobutanediol (CBDO) through a second step

를 포함하는 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법을 제공한다.Tetramethyl-1, &lt; / RTI &gt; 3-cyclobutanediol.

본 발명에 따르면, 경제적이고 친환경적인 방식으로 2,2,4,4-테트라메틸-1,3-사이클로부탄디올을 제조할 수 있다.According to the present invention, 2,2,4,4-tetramethyl-1,3-cyclobutanediol can be prepared in an economical and environmentally friendly manner.

본 발명은 (A) 이소부티릭산(isobutyric acid, IBA)을 원료 물질로 하여 중간 물질로서 (B) 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)을 거쳐 최종 물질인 (C) 2,2,4,4-테트라메틸-1,3-사이클로부탄디올(2,2,4,4-tetramethyl-1,3-cyclobutanediol, CBDO)을 제조하는 방법을 제공하는 것으로서, 본 발명에 따른 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법의 각 공정 단계는 스킴 2에 나타낸 바와 같다. (A) isobutyric acid (IBA) as a starting material and (B) 2,2,4,4-tetramethyl-1,3-cyclobutanedione (2,2,4 , 4-tetramethyl-1,3-cyclobutanedione, CBDK) to obtain the final product, (C) 2,2,4,4-tetramethyl-1 , 3-cyclobutanediol, CBDO), wherein each step of the process for preparing 2,2,4,4-tetramethyl-1,3-cyclobutanediol according to the present invention comprises the steps of same.

Figure pat00002
Figure pat00002

<스킴 2><Scheme 2>

본 발명에 따른 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법은 하기 단계를 포함한다: The process for the preparation of 2,2,4,4-tetramethyl-1,3-cyclobutanediol according to the invention comprises the following steps:

(A) 이소부티릭산(isobutyric acid, IBA)을 원료 물질로 하여 실리카-알루미나 촉매의 존재 하에 300 내지 600℃에서 열분해시켜 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)을 생성하는 제1 단계, 및(A) pyrolysis at 300 to 600 ° C. in the presence of isobutyric acid (IBA) as a raw material in the presence of a silica-alumina catalyst to obtain 2,2,4,4-tetramethyl-1,3-cyclobutanedione 2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK), and

(B) 상기 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)을 루테늄계 촉매의 존재 하에 수소화 반응을 통해 2,2,4,4-테트라메틸-1,3-사이클로부탄디올(2,2,4,4-tetramethyl-1,3-cyclobutanediol, CBDO)을 생성하는 제2 단계.(B) hydrogenating the 2,2,4,4-tetramethyl-1,3-cyclobutanedione (CBDK) in the presence of a ruthenium-based catalyst To produce 2,2,4,4-tetramethyl-1,3-cyclobutanediol (CBDO).

이하, 본 발명에 따른 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법의 각 단계를 상세히 설명한다.Hereinafter, each step of the process for producing 2,2,4,4-tetramethyl-1,3-cyclobutanediol according to the present invention will be described in detail.

1) 제1 단계: 이소부티릭산(isobutyric acid, IBA)으로부터 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)을 제조하는 단계 1) Step 1: Synthesis of isobutyric acid (IBA) from 2,2,4,4-tetramethyl-1,3-cyclobutanedione , &Lt; / RTI &gt; CBDK)

본 제조 공정은, 이소부티릭산(isobutyric acid, IBA)에서 이소부티릭 언하이드라이드(isobutyric anhydride, IBAN) 및 디메틸케텐(dimethyl ketene, DMK)을 거쳐 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)을 제조하는 종래 기술과 달리, 이소부티릭산에서 이소부티릭 언하이드라이드에 이어 디메틸케텐 제조 공정을 거치지 않고, 이소부티릭산을 원료로 하여 탈수 반응을 통해 2,2,4,4-테트라메틸-1,3-사이클로부탄디온을 바로 제조함으로써 공정을 효율적으로 최적화할 수 있다. The present process is carried out in the presence of isobutyric anhydride (IBAN) and dimethyl ketene (DMK) in isobutyric acid (IBA) to give 2,2,4,4-tetramethyl- Unlike the prior art in which 3-cyclobutanedione (CBDK) is produced, 3-cyclobutanedione (CBDK) is produced from isobutyric acid and isobutyryl anhydride, But 2,2,4,4-tetramethyl-1,3-cyclobutanedione is directly produced through dehydration reaction using isobutyric acid as a raw material, thereby efficiently optimizing the process.

본 제조 공정은 실리카-알루미나 촉매의 존재 하에 열분해 반응을 통해 진행되며 상세 과정은 다음과 같다. The production process proceeds through pyrolysis reaction in the presence of a silica-alumina catalyst. The detailed procedure is as follows.

0.01bar 내지 0.2bar의 진공 상태에서 150cc/min 내지 200cc/min의 질소 유입과 함께 이소부티릭산(isobutyric acid, IBA)을 3h-1 내지 10h-1의 공간속도(LHSV)로 투입하여 250℃ 내지 400℃에서 기화시키고, 촉매의 존재 하에 300℃ 내지 600℃에서 이소부티릭산(isobutyric acid, IBA)을 흘려주어 상기 촉매와 접촉시킨다.By putting in a vacuum of 0.01bar to 0.2bar to 150cc / min to a space velocity (LHSV) of the iso-butyric acid (isobutyric acid, IBA) with a nitrogen flow of 200cc / min 3h -1 to 10h -1 to 250 ℃ And isobutyric acid (IBA) is flowed at 300 to 600 ° C in the presence of a catalyst to bring the catalyst into contact with the catalyst.

상기 진공 압력이 0.2bar를 초과할 경우 이소부티릭산, 2,2,4,4-테트라메틸-1,3-사이클로부탄디온, 기타 부반응물의 분리가 잘 안되는 문제점이 발생할 수 있다.If the vacuum pressure exceeds 0.2 bar, it may be difficult to separate isobutyric acid, 2,2,4,4-tetramethyl-1,3-cyclobutanedione and other reactants.

상기 액체 시간당 공간속도가 10h-1 초과 시에는 이소부티릭산의 전환율이 저하되는 문제점과 촉매의 비활성화가 유발되는 문제점이 발생할 수 있다.If the space velocity per liquid time exceeds 10 h -1, the conversion of isobutyric acid may be lowered and the catalyst may be inactivated.

상기 열분해 온도가 300℃ 미만일 경우 이소부티릭산의 전환율이 저하되는 문제점이 발생하며, 600℃를 초과할 경우 부산물이 증가하는 문제점이 발생할 수 있다.If the pyrolysis temperature is less than 300 ° C., the conversion of isobutyric acid may be lowered. If the pyrolysis temperature is higher than 600 ° C., the byproduct may increase.

열분해를 거친 혼합물 중 미반응된 이소부티릭산은 응결되어 재사용될 수 있으며, 2,2,4,4-테트라메틸-1,3-사이클로부탄디온 증기는 진공 1차 트랩에서 응결(CBDK 순도 99.9%)되고 기타 부산물은 진공 2차 트랩에 모이게 된다.The unreacted isobutyric acid in the pyrolyzed mixture can be condensed and reused and the 2,2,4,4-tetramethyl-1,3-cyclobutanedione vapor condenses in a vacuum primary trap (CBDK purity 99.9% ) And other by-products are collected in the vacuum secondary trap.

특히, 이소부티릭산의 탈수 반응에 이용되는 실리카-알루미나 촉매는 5cc 내지 30cc, 예컨대 20cc 사용될 수 있으며, 70 내지 90 중량%의 실리카와 10 내지 30 중량%의 알루미나로 이루어진 실리카-알루미나 다공성 입자 및 상기 다공성 입자 상에 0.01 내지 5 중량%로 담지된 란타넘족 금속을 포함하는 불균일계 고체 산 촉매이다.Particularly, the silica-alumina catalyst used for the dehydration reaction of isobutyric acid may be used in an amount of 5 cc to 30 cc, for example 20 cc, and silica-alumina porous particles composed of 70 to 90% by weight of silica and 10 to 30% A heterogeneous solid acid catalyst comprising a lanthanum metal supported on porous particles in an amount of 0.01 to 5% by weight.

상기 촉매를 형성하는 실리카-알루미나 다공성 입자에서, 상기 실리카는 70 중량% 이상, 혹은 75 중량% 이상; 그리고 90 중량% 이하, 혹은 85 중량% 이하, 혹은 80 중량% 이하로 포함될 수 있으며, 상기 촉매의 구조적 안정성과 다공성의 확보를 위하여, 상기 다공성 입자에 포함된 알루미나의 함량은 10 중량% 이상인 것이 바람직하다. In the silica-alumina porous particles forming the catalyst, the silica comprises at least 70 wt%, or at least 75 wt%; And 90 wt% or less, or 85 wt% or less, or 80 wt% or less. In order to ensure the structural stability and porosity of the catalyst, the content of alumina contained in the porous particles is preferably 10 wt% Do.

특히, 상기 촉매는 상기 실리카-알루미나 다공성 입자에 담지 (또는 함침)된 란타넘족 금속을 포함한다. 란타넘족(Lanthanide)은 원자번호 57의 란타넘(La)에서 원자번호 71의 류테튬(Lu)까지의 금속성 원소를 포함하는 화학 원소의 시리즈로서 희토류 원소(rare earth elements)로 알려져 있다. 일 구현예에서, 상기 란타넘족 금속은 란타넘(La), 세륨(Ce) 및 네오디뮴(Nd)으로 이루어진 군에서 선택된 1종 이상의 금속일 수 있다. 일 구현예에서, 상기 란타넘족 금속은, 전체적인 반응 효율의 향상을 가능케 하는 란타넘(La)일 수 있다. In particular, the catalyst comprises a lanthanum metal supported (or impregnated) with the silica-alumina porous particles. Lanthanide is a series of chemical elements containing metallic elements ranging from lanthanum (La) of atomic number 57 to lutetium (Lu) of atomic number 71 and is known as rare earth elements. In one embodiment, the lanthanum metal may be at least one metal selected from the group consisting of lanthanum (La), cerium (Ce), and neodymium (Nd). In one embodiment, the lanthanum metal may be lanthanum (La), which allows for an overall improvement in reaction efficiency.

구체적으로, 상기 란타넘족 금속은 상기 다공성 입자에 대하여 0.01 중량% 이상, 혹은 0.05 중량% 이상, 혹은 0.1 중량% 이상; 그리고 5 중량% 이하, 혹은 2.5 중량% 이하, 혹은 1.0 중량% 이하로 포함될 수 있다. 상기 란타넘족 금속의 도입에 따른 반응 효율의 향상 효과가 발현될 수 있도록 하기 위하여, 상기 란타넘족 금속은 상기 다공성 입자에 대하여 0.01 중량% 이상으로 포함되는 것이 바람직하다. 그러나, 상기 다공성 입자에 상기 란타넘족 금속이 과량으로 포함될 경우에는, 상기 다공성 입자의 비표면적과 기공의 부피가 감소하여 반응 효율이 저하될 수 있다. Specifically, the lanthanum metal may be used in an amount of 0.01 wt% or more, or 0.05 wt% or more, or 0.1 wt% or more, based on the porous particles. And 5 wt% or less, or 2.5 wt% or less, or 1.0 wt% or less. The lanthanum metal is preferably contained in an amount of 0.01 wt% or more with respect to the porous particles in order to improve the reaction efficiency of the lanthanum metal. However, when the lanthanum group metal is contained in an excess amount in the porous particles, the specific surface area of the porous particles and the volume of the pores decrease, and the reaction efficiency may be lowered.

상기 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)의 제조 방법은 상술한 단계 및 제반 조건 하에서 수행됨에 따라 98% 이상의 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)에 대한 선택도를 나타낸다. 또한 본 제조 공정에 활용된 실리카-알루미나 촉매는 공기 중에서 600℃, 6시간 소성해 재사용할 수 있어 효율적이다.The process for producing 2,2,4,4-tetramethyl-1,3-cyclobutanedione (CBDK) is carried out under the above-mentioned steps and all conditions (2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK) of 98% or more in accordance with the invention. In addition, the silica-alumina catalyst used in the present manufacturing process can be reused at 600 ° C. for 6 hours in air, thus being efficient.

2) 제2 단계: 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)으로부터 2,2,4,4-테트라메틸-1,3-사이클로부탄디올(2,2,4,4-tetramethyl-1,3-cyclobutanediol, CBDO)을 제조하는 단계 2) Second step: 2,2,4,4-tetramethyl-1,3-cyclobutanedione (CBDK) from 2,2,4,4- Step of preparing 4-tetramethyl-1,3-cyclobutanediol (CBDO)

본 제조 공정은 2,2,4,4-테트라메틸-1,3-사이클로부탄디온을 원료 물질로 하여 회분식 반응기에서 반응 용매로서 이소프로필알코올을 사용하며 루테늄계 촉매의 존재 하에 1시간 내지 4시간의 반응 시간 동안 100℃ 내지 130℃의 반응 온도에서 수소화 반응을 실시한다. 그 결과, 부산물의 생성 없이 고순도(99.2% 이상)의 2,2,4,4-테트라메틸-1,3-사이클로부탄디올이 수득될 수 있다(CBDK 전환율 100%, CBDO 선택도 99.2%).The present manufacturing process uses isopropyl alcohol as a reaction solvent in a batch reactor using 2,2,4,4-tetramethyl-1,3-cyclobutanedione as a raw material and reacts in the presence of a ruthenium-based catalyst for 1 to 4 hours Lt; RTI ID = 0.0 &gt; 100 C &lt; / RTI &gt; to &lt; RTI ID = 0.0 &gt; 130 C. &lt; / RTI &gt; As a result, 2,2,4,4-tetramethyl-1,3-cyclobutanediol with high purity (99.2% or more) can be obtained (CBDK conversion rate 100%, CBDO selectivity 99.2%) without generation of by-products.

일 구현예에서, 상기 루테늄계 촉매는 1: 0.8 ~ 1.2: 1.2 ~ 2.4의 비율로 혼합된 루테늄(Ru)-주석(Sn)-백금(Pt) 금속 혼합물이 실리카 담지체 100 중량부에 대하여 0.1 내지 10 중량부로 포함되는 촉매이다.In one embodiment, the ruthenium-based catalyst is a mixture of ruthenium (Ru) -stin (Sn) -platinum (Pt) metal mixed at a ratio of 1: 0.8-1.2: 1.2-2.4 To 10 parts by weight.

일 구현예에서, 상기 회분식 반응기는 오토클레이브일 수 있다.In one embodiment, the batch reactor may be an autoclave.

상기 반응 시간이 1시간 미만이거나 온도가 100℃ 미만인 경우 2,2,4,4-테트라메틸-1,3-사이클로부탄디온의 전환율이 저하되는 문제가 발생할 수 있다.If the reaction time is less than 1 hour or the temperature is less than 100 ° C, the conversion of 2,2,4,4-tetramethyl-1,3-cyclobutanedione may be lowered.

상기 반응 용매로 사용된 이소프로필알코올(2-프로판올)은 pKa가 16.5로 수소 공급원 역할에 도움을 준다. Isopropyl alcohol (2-propanol) used as the reaction solvent has a pKa of 16.5, which serves as a hydrogen source.

일 구현예에서, 상기 제2 단계는 수소 압력이 30분 내지 1시간 동안 20bar 내지 30bar로 유지되며 수행된다.In one embodiment, the second step is carried out with the hydrogen pressure maintained at 20 to 30 bar for 30 minutes to 1 hour.

본 제조 공정에 활용된 루테늄계 촉매는 공기 중에서, 예를 들어, 600℃, 6시간 소성함으로써 재사용할 수 있다. The ruthenium-based catalyst used in the present manufacturing process can be reused by firing in the air, for example, at 600 DEG C for 6 hours.

이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다.BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which: FIG. However, this is provided as an example of the invention, and the scope of the invention is not limited thereto in any sense.

실시예Example

1) 제1 단계: 이소부티릭산으로부터 2,2,4,4-테트라메틸-1,3-사이클로부탄디온의 제조 1) Step 1: Preparation of 2,2,4,4-tetramethyl-1,3-cyclobutanedione from isobutyric acid

[실시예 1] [Example 1]

0.05bar의 진공 상태에서 200cc/min의 질소 유입과 함께 3.15h-1 의 공간속도(LHSV)로 이소부티릭산(isobutyric acid, IBA)을 투입하여 300℃에서 기화시킨 후, 열분해 온도 400℃에서 이소부티릭산을 촉매와 접촉시킴으로써 2,2,4,4-테트라메틸-1,3-사이클로부탄디온을 제조하였다.Isobutyric acid (IBA) was introduced at a space velocity (LHSV) of 3.15 h -1 with a flow rate of 200 cc / min under a vacuum of 0.05 bar and vaporized at 300 ° C., 2,2,4,4-tetramethyl-1,3-cyclobutanedione was prepared by contacting butyric acid with a catalyst.

상기 촉매는 75 중량%의 실리카와 25 중량%의 알루미나로 이루어진 실리카-알루미나 다공성 입자 및 상기 다공성 입자 상에 0.25 중량%로 담지된 란타넘 금속을 포함하는 불균일계 고체 산 촉매이며, 사용된 촉매의 양은 20cc이다. The catalyst is a heterogeneous solid acid catalyst comprising silica-alumina porous particles consisting of 75% by weight of silica and 25% by weight of alumina and lanthanum metal supported on the porous particles in an amount of 0.25% by weight, The amount is 20cc.

[실시예 2][Example 2]

촉매로서 75 중량%의 실리카와 25 중량%의 알루미나로 이루어진 실리카-알루미나 다공성 입자 및 상기 다공성 입자 상에 0.1 중량%로 담지된 란타넘 금속을 포함하는 불균일계 고체 산 촉매를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 2,2,4,4-테트라메틸-1,3-사이클로부탄디온을 제조하였다.Except that a heterogeneous solid acid catalyst comprising silica-alumina porous particles consisting of 75 wt% silica and 25 wt% alumina as the catalyst and lanthanum metal supported on the porous particles at 0.1 wt% 2,2,4,4-tetramethyl-1,3-cyclobutanedione was prepared in the same manner as in Example 1.

[실시예 3] [Example 3]

촉매로서 75 중량%의 실리카와 25 중량%의 알루미나로 이루어진 실리카-알루미나 다공성 입자 및 상기 다공성 입자 상에 0.5 중량%로 담지된 란타넘 금속을 포함하는 불균일계 고체 산 촉매를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 2,2,4,4-테트라메틸-1,3-사이클로부탄디온을 제조하였다.Except that a heterogeneous solid acid catalyst comprising silica-alumina porous particles consisting of 75 wt% silica and 25 wt% alumina as the catalyst and lanthanum metal supported on the porous particles at 0.5 wt% 2,2,4,4-tetramethyl-1,3-cyclobutanedione was prepared in the same manner as in Example 1.

[실시예 4] [Example 4]

촉매로서 75 중량%의 실리카와 25 중량%의 알루미나로 이루어진 실리카-알루미나 다공성 입자 및 상기 다공성 입자 상에 1.0 중량%로 담지된 란타넘 금속을 포함하는 불균일계 고체 산 촉매를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 2,2,4,4-테트라메틸-1,3-사이클로부탄디온을 제조하였다.Except that a heterogeneous solid acid catalyst comprising silica-alumina porous particles consisting of 75 wt% silica and 25 wt% alumina as the catalyst and lanthanum metal supported on the porous particles at 1.0 wt% 2,2,4,4-tetramethyl-1,3-cyclobutanedione was prepared in the same manner as in Example 1.

[비교예 1] [Comparative Example 1]

촉매로서 17 중량%의 실리카와 83 중량%의 알루미나로 이루어진 실리카-알루미나를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 2,2,4,4-테트라메틸-1,3-사이클로부탄디온을 제조하였다.Except that silica-alumina consisting of 17% by weight of silica and 83% by weight of alumina was used as the catalyst, 2,2,4,4-tetramethyl-1,3-cyclobutanedione .

[비교예 2] [Comparative Example 2]

촉매로서 알루미늄 옥사이드(Al2O3)(Pellets, 3mm, 제품번호 414069, Sigma Aldrich사, 미국)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 2,2,4,4-테트라메틸-1,3-사이클로부탄디온을 제조하였다.The procedure of Example 1 was repeated except that aluminum oxide (Al 2 O 3 ) (Pellets, 3 mm, product number 414069, Sigma Aldrich, USA) was used as the catalyst, and 2,2,4,4-tetramethyl- 1,3-cyclobutanedione was prepared.

상기 실시예 및 비교예에서 얻어진 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)에 대하여, 이소부티릭산 전환율 및 2,2,4,4-테트라메틸-1,3-사이클로부탄디온 선택도를 하기 식에 따라 산출하여, 그 결과를 하기 표 1에 나타낸다.(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK) obtained in the above Examples and Comparative Examples was reacted with 2,2,4,4-tetramethyl- Acid conversion and 2,2,4,4-tetramethyl-1,3-cyclobutanedione selectivity were calculated according to the following formulas, and the results are shown in Table 1 below.

이소부티릭산(IBA) 전환율(%) = [(투입된 이소부티릭산의 함량(mol%))-(반응 후 남은 이소부티릭산의 함량(mol%))]/[투입된 이소부티릭산의 함량(mol%)]*100Isobutyric acid (IBA) conversion rate (%) = [(content of isobutyric acid added (mol%)) (content of isobutyric acid left after reaction (mol%)]] / [amount of charged isobutyric acid %)] * 100

2,2,4,4-테트라메틸-1,3-사이클로부탄디온(CBDK) 선택도(%) = [(2,2,4,4-테트라메틸-1,3-사이클로부탄디온의 함량(mol%)/반응 결과물의 함량(mol%)) * 100] Selectivity (%) of 2,2,4,4-tetramethyl-1,3-cyclobutanedione (CBDK) = [(content of 2,2,4,4-tetramethyl-1,3-cyclobutanedione mol%) / content of reaction product (mol%)) * 100]

No.No. 촉매catalyst IBA
전환율 (%)
IBA
Conversion Rate (%)
CBDK
선택도 (%)
CBDK
Selectivity (%)
SiO2 함량
(중량%)
SiO 2 content
(weight%)
La 함량
(중량%)
La content
(weight%)
실시예 1Example 1 7575 0.250.25 52.452.4 99.299.2 실시예 2Example 2 7575 0.10.1 53.553.5 98.598.5 실시예 3Example 3 7575 0.50.5 52.852.8 98.898.8 실시예 4Example 4 7575 1.01.0 52.252.2 98.898.8 비교예 1Comparative Example 1 1717 -- 7.57.5 62.962.9 비교예 2Comparative Example 2 -- -- 12.512.5 96.396.3

[실시예 5][Example 5]

이소부티릭산을 6.30h-1 의 공간속도(LHSV)로 투입한 것을 제외하고는, 실시예 1과 동일한 방법으로 2,2,4,4-테트라메틸-1,3-사이클로부탄디온을 제조하였다.2,2,4,4-tetramethyl-1, 3-cyclobutanedione was prepared in the same manner as in Example 1, except that isobutyric acid was added at a space velocity (LHSV) of 6.30 h -1 .

[실시예 6][Example 6]

이소부티릭산을 9.45h-1 의 공간속도(LHSV)로 투입한 것을 제외하고는, 실시예 1과 동일한 방법으로 2,2,4,4-테트라메틸-1,3-사이클로부탄디온을 제조하였다.Iso-butyric acid was prepared by the 2,2,4,4- tetramethyl-1,3-cyclobutane dione in the same manner as in Example 1, except that the input to the space velocity (LHSV) of 9.45h -1 .

[실시예 7][Example 7]

열분해 온도를 500℃로 설정하여 열분해한 것을 제외하고는, 실시예 1과 동일한 방법으로 2,2,4,4-테트라메틸-1,3-사이클로부탄디온을 제조하였다.2,2,4,4-tetramethyl-1,3-cyclobutanedione was prepared in the same manner as in Example 1, except that the thermal decomposition temperature was set to 500 deg.

[실시예 8][Example 8]

열분해 온도를 550℃로 설정하여 열분해한 것을 제외하고는, 실시예 1과 동일한 방법으로 2,2,4,4-테트라메틸-1,3-사이클로부탄디온을 제조하였다.2,2,4,4-Tetramethyl-1,3-cyclobutanedione was prepared in the same manner as in Example 1, except that the thermal decomposition temperature was set at 550 占 폚 and pyrolysis was carried out.

상기 실시예에 따른 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK) 제조 결과를 하기 표 2에 나타낸다. 또한, 공간속도(LHSV)는 반응에 가해진 촉매의 질량에 대한 원료 내 이소부티릭산의 순질량 유입속도를 나타내는 것으로, 상기 표 2에서 이소부티릭산의 공간속도는 촉매의 초기 질량과 이소부티릭산의 공급 유량 조절을 통해 측정하였다.The results of the preparation of 2,2,4,4-tetramethyl-1,3-cyclobutanedione (CBDK) according to the above examples are shown in the following Table 2 . The space velocity (LHSV) represents the net mass inflow rate of isobutyric acid in the raw material with respect to the mass of the catalyst added to the reaction. In Table 2, the space velocity of isobutyric acid corresponds to the initial mass of the catalyst and the isobutyric acid Feed flow rate control.

Figure pat00003
Figure pat00003

2) 제2 단계: 2,2,4,4-테트라메틸-1,3-사이클로부탄디온으로부터 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조2) Step 2: Preparation of 2,2,4,4-tetramethyl-1,3-cyclobutanediol from 2,2,4,4-tetramethyl-1,3-cyclobutanedione

[실시예 9] [Example 9]

2,2,4,4-테트라메틸-1,3-사이클로부탄디온 수소화를 통한 2,2,4,4-테트라메틸-1,3-사이클로부탄디올 제조에 따른 촉매 활성을 비교하기 위해, 회분식 반응기(500mL Autoclave)에 2,2,4,4-테트라메틸-1,3-사이클로부탄디온 4g, 루테늄계 촉매 4g(상기 루테늄계 촉매는 실리카 담지체 100 중량부에 대하여 루테늄(Ru), 주석(Sn), 백금(Pt)이 각각 1, 1, 1.8의 중량부로 포함되는 촉매임), 이소프로필알코올 40mL, 수소 20bar 투입 후 120℃ 에서 2시간 동안 반응시켜 2,2,4,4-테트라메틸-1,3-사이클로부탄디올을 제조하였다.In order to compare the catalytic activity according to the preparation of 2,2,4,4-tetramethyl-1,3-cyclobutanediol via 2,2,4,4-tetramethyl-1,3-cyclobutanedione hydrogenation, 4 g of ruthenium-based catalyst (4 g of 2,2,4,4-tetramethyl-1,3-cyclobutanedione, 500 g of ruthenium-based catalyst (ruthenium (Ru), tin Sn) and platinum (Pt) in the weight parts of 1, 1, and 1.8, respectively), 40 ml of isopropyl alcohol, 20 bar of hydrogen, and reacted at 120 ° C for 2 hours to obtain 2,2,4,4-tetramethyl -1,3-cyclobutanediol.

[비교예 3][Comparative Example 3]

반응 용매로서 메탄올 40 mL를 사용하고, 촉매로서 팔라듐계 촉매(상기 팔라듐계 촉매는 활성탄 담지체 100 중량부에 대하여 팔라듐 0.5 중량부를 포함하는 촉매임) 4g을 사용한 것을 제외하고는, 상기 실시예 9와 동일한 방법으로 2,2,4,4-테트라메틸-1,3-사이클로부탄디올을 제조하였다.Except that 40 mL of methanol was used as a reaction solvent and 4 g of a palladium-based catalyst (the palladium-based catalyst was a catalyst containing 0.5 part by weight of palladium relative to 100 parts by weight of the active carbon support) was used. , 2,2,4,4-tetramethyl-1,3-cyclobutanediol was prepared.

[비교예 4] [Comparative Example 4]

반응 용매로서 메탄올 40 mL를 사용한 것을 제외하고는, 상기 실시예 9와 동일한 방법으로 2,2,4,4-테트라메틸-1,3-사이클로부탄디올을 제조하였다.2,2,4,4-tetramethyl-1,3-cyclobutanediol was prepared in the same manner as in Example 9, except that 40 mL of methanol was used as a reaction solvent.

상기 실시예 및 비교예에서 얻어진 2,2,4,4-테트라메틸-1,3-사이클로부탄디올(2,2,4,4-tetramethyl-1,3-cyclobutanediol, CBDO)에 대하여, 2,2,4,4-테트라메틸-1,3-사이클로부탄디온 전환율 및 2,2,4,4-테트라메틸-1,3-사이클로부탄디올 선택도를 하기 식에 따라 산출하여, 그 결과를 하기 표 3에 나타낸다.The amount of 2,2,4,4-tetramethyl-1,3-cyclobutanediol (CBDO) obtained in the above Examples and Comparative Examples was 2,2,4,4-tetramethyl- , 4,4-tetramethyl-1,3-cyclobutanedione conversion and 2,2,4,4-tetramethyl-1,3-cyclobutanediol selectivity were calculated according to the following formulas, Respectively.

2,2,4,4-테트라메틸-1,3-사이클로부탄디온(CBDK) 전환율(%) = [(투입된 2,2,4,4-테트라메틸-1,3-사이클로부탄디온의 함량(mol%))-(반응 후 남은 2,2,4,4-테트라메틸-1,3-사이클로부탄디온의 함량(mol%))]/[투입된 2,2,4,4-테트라메틸-1,3-사이클로부탄디온의 함량(mol%)]*100Conversion of 2,2,4,4-tetramethyl-1,3-cyclobutanedione (CBDK) (%) = [(content of charged 2,2,4,4-tetramethyl-1,3-cyclobutanedione mol%)) - (amount of remaining 2,2,4,4-tetramethyl-1,3-cyclobutanedione (mol%))] / [added 2,2,4,4-tetramethyl- , Content of 3-cyclobutanedione (mol%)] * 100

2,2,4,4-테트라메틸-1,3-사이클로부탄디올(CBDO) 선택도(%) = [(2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 함량(mol%)/반응 결과물의 함량(mol%)) * 100] Selectivity (%) of 2,2,4,4-tetramethyl-1,3-cyclobutanediol (CBDO) = [(content of 2,2,4,4-tetramethyl-1,3-cyclobutanediol mol% ) / Content of reaction product (mol%)) * 100]

No.No. 촉매catalyst CBDK
전환율 (%)
CBDK
Conversion Rate (%)
CBDO
선택도 (%)
CBDO
Selectivity (%)
비고Remarks
실시예 9Example 9 루테늄계Ruthenium series 100100 99.299.2 반응용매: 이소프로필알코올(2-프로판올)Reaction solvent: isopropyl alcohol (2-propanol) 비교예 3Comparative Example 3 팔라듐계Palladium system 1414 -- 반응용매: 메탄올Reaction solvent: methanol 비교예 4Comparative Example 4 루테늄계Ruthenium series 100100 84.384.3 반응용매: 메탄올Reaction solvent: methanol

본 발명에 따르면, 제조 단계 최적화 및 각 단계 효율 극대화를 통해 경제적이고 친환경적으로 2,2,4,4-테트라메틸-1,3-사이클로부탄디올을 제조할 수 있다. 본 발명에 따른 2,2,4,4-테트라메틸-1,3-사이클로부탄디올 제조 방법의 각 단계의 효과는 다음과 같다.According to the present invention, 2,2,4,4-tetramethyl-1,3-cyclobutanediol can be produced economically and environmentally by optimizing the production steps and maximizing the efficiency of each step. The effect of each step of the process for preparing 2,2,4,4-tetramethyl-1,3-cyclobutanediol according to the present invention is as follows.

1) 제1 단계: 이소부티릭산(isobutyric acid, IBA)으로부터 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)을 제조하는 단계1) Step 1: Synthesis of isobutyric acid (IBA) from 2,2,4,4-tetramethyl-1,3-cyclobutanedione , &Lt; / RTI &gt; CBDK)

본 단계는 이소부티릭산에서 이소부티릭 언하이드라이드 및 디메틸케텐을 거쳐 2,2,4,4-테트라메틸-1,3-사이클로부탄디온을 제조하는 종래 기술과 달리, 이소부티릭산에서 이소부티릭 언하이드라이드에 이어 디메틸케텐 제조 공정을 거치지 않고, 이소부티릭산을 원료로 하여 촉매를 통한 탈수 반응을 이용한 열분해 공정을 통해 흡수 및 이량체화 공정 없이 고순도(99.9%)의 2,2,4,4-테트라메틸-1,3-사이클로부탄디온을 획득할 수 있어 효율적이다. 또한 본 제조 공정에 활용된 란타넘족 금속을 포함한 실리카-알루미나 촉매는 공기 중에서 소성하여 재사용이 가능하므로 경제적이다.This step is different from the prior art in which 2,2,4,4-tetramethyl-1,3-cyclobutanedione is produced from isobutyric acid via isobutyryl anhydride and dimethyl ketene, (99.9%) of 2,2,4-trichloroethane without the absorption and dimerization process through the pyrolysis process using dehydration reaction through catalyst with isobutyric acid as the raw material, 4-tetramethyl-1,3-cyclobutanedione can be obtained, which is efficient. In addition, the silica-alumina catalyst containing the lanthanum metal used in the present manufacturing process is economical because it can be reused by firing in the air.

2) 제2 단계: 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)으로부터 2,2,4,4-테트라메틸-1,3-사이클로부탄디올(2,2,4,4-tetramethyl-1,3-cyclobutanediol, CBDO)을 제조하는 단계2) Second step: 2,2,4,4-tetramethyl-1,3-cyclobutanedione (CBDK) from 2,2,4,4- Step of preparing 4-tetramethyl-1,3-cyclobutanediol (CBDO)

본 단계는 루테늄계 촉매 활용하며 수소화 반응을 통해 부산물 생성 없이 고순도(99.2% 이상)의 2,2,4,4-테트라메틸-1,3-사이클로부탄디올을 제조(CBDK 전환율 100%, CBDO 선택도 99.2%)할 수 있다. 본 단계는 회분식 반응기에서 이루어지며 연속식 증류 공정이 불필요하여 공정 비용이 저하될 수 있다. 또한 산소 및 비활성 가스가 사용되지 않아 폭발 위험이 없으며 부산물 생성이 없어 부산물에 따른 환경 손상 문제를 야기시키지 않는다. 또한, 본 제조 공정에 활용된 루테늄계 촉매는 공기 중에서 소성하여 재사용이 가능하므로 경제적이다.This step utilizes ruthenium-based catalysts and produces 2,2,4,4-tetramethyl-1,3-cyclobutanediol with high purity (99.2% or more) without any by-product formation through hydrogenation reaction (CBDK conversion rate 100%, CBDO selectivity 99.2%). This step is carried out in a batch reactor and a continuous distillation process is not necessary, which may reduce the process cost. In addition, there is no danger of explosion because no oxygen and inert gas are used, and there is no generation of by-products, which does not cause environmental damage problem due to by-products. In addition, the ruthenium-based catalyst used in the present manufacturing process is economical because it can be reused by firing in air.

Claims (7)

(A) 이소부티릭산(isobutyric acid, IBA)을 원료 물질로 하여 실리카-알루미나 촉매의 존재 하에 300 내지 600℃에서 열분해시켜 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)을 생성하는 제1 단계, 및
(B) 상기 2,2,4,4-테트라메틸-1,3-사이클로부탄디온(2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK)을 루테늄계 촉매의 존재 하에 수소화 반응을 통해 2,2,4,4-테트라메틸-1,3-사이클로부탄디올(2,2,4,4-tetramethyl-1,3-cyclobutanediol, CBDO)을 생성하는 제2 단계
를 포함하는 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법.
(A) pyrolysis at 300 to 600 ° C. in the presence of isobutyric acid (IBA) as a raw material in the presence of a silica-alumina catalyst to obtain 2,2,4,4-tetramethyl-1,3-cyclobutanedione 2,2,4,4-tetramethyl-1,3-cyclobutanedione, CBDK), and
(B) hydrogenating the 2,2,4,4-tetramethyl-1,3-cyclobutanedione (CBDK) in the presence of a ruthenium-based catalyst To produce 2,2,4,4-tetramethyl-1,3-cyclobutanediol (CBDO) through a second step
Tetramethyl-l, 3-cyclobutanediol. &Lt; / RTI &gt;
제1항에 있어서, 상기 제1 단계는 0.01 내지 0.2bar의 진공 상태에서 3 내지 10h-1의 공간속도(LHSV)로 이소부티릭산을 투입하여 수행되는, 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법.2. The process according to claim 1, wherein said first step is carried out by introducing isobutyric acid at a space velocity (LHSV) of 3 to 10 h &lt; -1 &gt; in a vacuum of 0.01 to 0.2 bar, -1,3-cyclobutanediol. 제1항에 있어서, 상기 실리카-알루미나 촉매는 70 내지 90 중량%의 실리카와 10 내지 30 중량%의 알루미나로 이루어진 실리카-알루미나 다공성 입자 및 상기 다공성 입자 상에 0.01 내지 5 중량%로 담지된 란타넘족 금속을 포함하는 불균일계 고체 산 촉매인, 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법.2. The catalyst according to claim 1, wherein the silica-alumina catalyst comprises silica-alumina porous particles consisting of 70 to 90 wt% silica and 10 to 30 wt% alumina, and 0.01 to 5 wt% A process for producing 2,2,4,4-tetramethyl-1,3-cyclobutanediol, which is a heterogeneous solid acid catalyst containing a metal. 제3항에 있어서, 상기 란타넘족 금속은 란타넘(La), 세륨(Ce) 및 네오디뮴(Nd)으로 이루어진 군에서 선택된 1종 이상의 금속인, 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법.4. The method of claim 3, wherein the lanthanum metal is at least one metal selected from the group consisting of lanthanum (La), cerium (Ce), and neodymium (Nd) A process for producing 3-cyclobutanediol. 제1항에 있어서, 상기 제2 단계는 100 내지 130℃의 반응 온도 및 20 내지 30bar의 수소 압력 하에서 1 내지 4시간 동안 수행되는, 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법.2. The process according to claim 1, wherein said second step is carried out at a reaction temperature of 100 to 130 &lt; 0 &gt; C and a hydrogen pressure of 20 to 30 bar for 1 to 4 hours to obtain 2,2,4,4-tetramethyl- &Lt; / RTI &gt; 제1항에 있어서, 상기 루테늄계 촉매는 1: 0.8 ~ 1.2: 1.2 ~ 2.4의 비율로 혼합된 루테늄(Ru)-주석(Sn)-백금(Pt) 금속 혼합물이 실리카 담지체 100 중량부에 대하여 0.1 내지 10 중량부로 포함되는 촉매인, 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법.The catalyst according to claim 1, wherein the ruthenium-based catalyst comprises a ruthenium (Ru) -stin (Sn) -platinum (Pt) metal mixture mixed at a ratio of 1: 0.8-1.2: 1.2-2.4 with respect to 100 parts by weight of the silica carrier 0.1 to 10 parts by weight, based on the total weight of the catalyst, of 2,2,4,4-tetramethyl-1,3-cyclobutanediol. 제1항에 있어서, 상기 제2 단계에서 사용된 반응 용매는 이소프로필알코올인, 2,2,4,4-테트라메틸-1,3-사이클로부탄디올의 제조 방법.The process for producing 2,2,4,4-tetramethyl-1,3-cyclobutanediol according to claim 1, wherein the reaction solvent used in the second step is isopropyl alcohol.
KR1020170151462A 2017-11-14 2017-11-14 Process for preparing 2,2,4,4-tetramethyl-1,3-cyclobutanediol KR20190054648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170151462A KR20190054648A (en) 2017-11-14 2017-11-14 Process for preparing 2,2,4,4-tetramethyl-1,3-cyclobutanediol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170151462A KR20190054648A (en) 2017-11-14 2017-11-14 Process for preparing 2,2,4,4-tetramethyl-1,3-cyclobutanediol

Publications (1)

Publication Number Publication Date
KR20190054648A true KR20190054648A (en) 2019-05-22

Family

ID=66680710

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170151462A KR20190054648A (en) 2017-11-14 2017-11-14 Process for preparing 2,2,4,4-tetramethyl-1,3-cyclobutanediol

Country Status (1)

Country Link
KR (1) KR20190054648A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113443976A (en) * 2020-03-27 2021-09-28 捷恩智株式会社 Tetramethylcyclobutanedione and tetramethylcyclobutanediol, and processes for producing these

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113443976A (en) * 2020-03-27 2021-09-28 捷恩智株式会社 Tetramethylcyclobutanedione and tetramethylcyclobutanediol, and processes for producing these

Similar Documents

Publication Publication Date Title
US6291725B1 (en) Catalysts and process for hydrogenolysis of sugar alcohols to polyols
KR101904163B1 (en) One­step method for butadiene production
US3689533A (en) Production of carboxylic acids and esters
US8324433B2 (en) Method for producing ethylene glycol from polyhydroxy compound
US3717670A (en) Production of carboxylic acids and esters
CA2716267A1 (en) Method for isomerizing olefinically unsaturated alcohols
CN108779054B (en) Method for producing isoamylene alcohol and isoamylene aldehyde from 3-methyl-3-butenol
KR20100110830A (en) METHOD FOR PRODUCING ε-CAPROLACTONE
KR101619399B1 (en) Preparation method of 1,4-cyclohexanedimethanol
KR20190056665A (en) Process for preparing 2,2,4,4-tetramethyl-1,3-cyclobutanediol
KR20150006349A (en) Method for producing acrylic acid from glycerol
KR101828002B1 (en) Preparation method of 1,3-cyclohexanedimethanol
KR20190054648A (en) Process for preparing 2,2,4,4-tetramethyl-1,3-cyclobutanediol
KR20190054646A (en) Process for preparing 2,2,4,4-tetramethyl-1,3-cyclobutanediol
KR101577362B1 (en) Preparation method of 1,4-cyclohexanedimethanol
KR20190054647A (en) Process for preparing 2,2,4,4-tetramethyl-1,3-cyclobutanediol
JP5115368B2 (en) Process for producing unsaturated alcohol
KR101827626B1 (en) Method for manufacturing formaldehyde from methanol and formaldehyde manufactured by the same
JP2004182643A (en) METHOD FOR MANUFACTURING alpha-HYDROXYCARBOXYLATE
KR20110101691A (en) Improved method for producing catechol and hydroquinone from phenol and hydrogen peroxide
CN114031495B (en) Product separation method for preparing glycollic acid by glycol oxidation
EP0365996A2 (en) Process for producing homoallyl alcohols
CN113956149B (en) Separation method of glyceric acid product prepared by glycerol oxidation
KR101088100B1 (en) PALLADIUM CATALYST SUPPORTED ON ALUMINA XEROGEL SUPPORT WITH CONTROLLED ACIDITY AND PRODUCTION METHOD OF &amp;gamma;-BUTYROLACTONE BY HYDROGENATION OF SUCCINIC ACID USING SAID CATALYST
KR101786910B1 (en) Preparation method of 1,4-cyclohexanedimethanol