KR20180126202A - Pan-based carbon fiber whose electro conductive is controlled and method for manufacturing the same - Google Patents

Pan-based carbon fiber whose electro conductive is controlled and method for manufacturing the same Download PDF

Info

Publication number
KR20180126202A
KR20180126202A KR1020170060903A KR20170060903A KR20180126202A KR 20180126202 A KR20180126202 A KR 20180126202A KR 1020170060903 A KR1020170060903 A KR 1020170060903A KR 20170060903 A KR20170060903 A KR 20170060903A KR 20180126202 A KR20180126202 A KR 20180126202A
Authority
KR
South Korea
Prior art keywords
carbon nanotube
pan
metal
carbon fiber
carbon
Prior art date
Application number
KR1020170060903A
Other languages
Korean (ko)
Other versions
KR101932602B1 (en
Inventor
김원석
김지연
Original Assignee
재단법인 한국탄소융합기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 한국탄소융합기술원 filed Critical 재단법인 한국탄소융합기술원
Priority to KR1020170060903A priority Critical patent/KR101932602B1/en
Publication of KR20180126202A publication Critical patent/KR20180126202A/en
Application granted granted Critical
Publication of KR101932602B1 publication Critical patent/KR101932602B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • D01F9/225Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles from stabilised polyacrylonitriles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/009Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive

Abstract

According to the present invention, a method for manufacturing a PAN-based carbon fiber with adjusted electrical conductivity comprises: a first step of manufacturing a carbon nanotube-metal composite by changing kinds and amounts of metals so that a PAN-based carbon fiber has set electrical conductivity; a second step of putting the carbon nanotube-metal composite as much as the set amount into a polymer solvent to enable the PAN-based carbon fiber to have set strength, and dispersing the same by ultrasonic waves; a third step of putting the polymer solvent in which the carbon nanotube-metal composite is dispersed into a reactor, and stirring the same; a fourth step of forming a monomer composition by mixing acrylonitrile, methyl acrylate, itaconic acid, and azobisisobutyronitrile which is an initiator; a fifth step of forming a precursor solution by adding the monomer composition to a reactor in which the polymer solvent in which the carbon nanotube-metal composite is dispersed is being stirred, and co-polymerizing the same; a sixth step of forming a coagulated yarn by spinning, washing, desolventing, and stretching the precursor solution; and a seventh step of carbonizing the coagulated yarn by oxidation stabilization.

Description

전기전도도가 조절된 PAN계 탄소섬유 및 이를 제조하는 방법{PAN-BASED CARBON FIBER WHOSE ELECTRO CONDUCTIVE IS CONTROLLED AND METHOD FOR MANUFACTURING THE SAME}TECHNICAL FIELD [0001] The present invention relates to a PAN-based carbon fiber having a controlled electric conductivity and a method for manufacturing the PAN-

본 발명은 전기전도도가 조절된 PAN계 탄소섬유 및 이를 제조하는 방법에 관한 것이다.The present invention relates to PAN-based carbon fibers having controlled electric conductivity and a method for producing the same.

최근 전도성 PAN계 탄소섬유로 전자파 차폐재를 만들려는 시도가 활발하게 이루어지고 있다.Recently, attempts have been made to make electromagnetic shielding materials with conductive PAN-based carbon fibers.

본 출원인의 등록특허(10-1447078)에서는 고 전기전도성을 가진 PAN계 탄소섬유를, 탄소나노튜브를 첨가하여 제조하는 방법을 개시하고 있다.The present applicant's patent (10-1447078) discloses a method for producing PAN-based carbon fibers having high electrical conductivity by adding carbon nanotubes.

본 출원인의 등록특허에 개시된 방법으로 탄소섬유를 제조하면, 전기전도도를 조절하기 위해, 탄소섬유에 포함된 탄소나노튜브의 양 자체를 조절해야 한다. 예를 들어, 전기 전도도를 높이기 위해서는 탄소나노튜브를 기준치보다 더 많이 포함시켜야 하고, 전기 전도도를 낮추기 위해서는 기준치보다 탄소나노튜브를 더 적게 포함시켜야 한다.When the carbon fiber is produced by the method disclosed in the patent of the present applicant, the amount of the carbon nanotubes contained in the carbon fiber must be controlled in order to control the electric conductivity. For example, to increase the electrical conductivity, carbon nanotubes should be included in a larger amount than the reference value, and in order to lower the electrical conductivity, the carbon nanotubes should be included less than the reference value.

이러한 방법으로, 전기전도도를 조절할 수는 있지만, 탄소나노튜브의 양에 따라 PAN계 탄소섬유의 강도가 변하는 문제가 생긴다.In this way, although the electric conductivity can be controlled, the strength of the PAN-based carbon fiber varies depending on the amount of the carbon nanotube.

즉, 전기전도도를 높이기 위해 탄소나노튜브의 양을 증가시키면 PAN계 탄소섬유의 강도가 낮아지고, PAN계 탄소섬유의 강도를 증가시키기 위해 탄소나노튜브의 양을 줄이면 PAN계 탄소섬유의 전기전도도가 낮아지게 된다.That is, if the amount of carbon nanotubes is increased to increase the electrical conductivity, the strength of the PAN-based carbon fibers is lowered. If the amount of the carbon nanotubes is decreased to increase the strength of the PAN-based carbon fibers, .

따라서, 등록특허에 개시된 방법으로 제조된 PAN계 탄소섬유로는, 강도는 일정하면서 다양한 전기전도도를 가진 전자파 차폐재를 만들어 내기 어려웠다.Accordingly, PAN-based carbon fibers produced by the method disclosed in the registered patents have difficulty in producing an electromagnetic wave shielding material having a constant strength and various electrical conductivity.

한국등록특허(10-1447078)Korea registered patent (10-1447078) 한국공개특허(10-2016-0054985)Korean Patent Publication (10-2016-0054985)

본 발명은 상술한 문제점을 해결하기 위하여 창안된 것으로, 강도는 일정하면서 다양한 전기전도도를 가진 전자파 차폐재를 만들기 위한, 전기전도도가 조절된 PAN계 탄소섬유 및 이를 제조하는 방법을 제공하는 데 목적이 있다.Disclosure of the Invention The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide PAN-based carbon fibers with controlled electric conductivity and a method of manufacturing the same, for producing an electromagnetic wave shielding material having a constant electric strength and a wide electric conductivity .

또한, 본 발명은 전기전도도가 정밀하게 조절된 PAN계 탄소섬유 및 이를 제조하는 방법을 제공하는 데 다른 목적이 있다.It is another object of the present invention to provide a PAN-based carbon fiber having a precisely controlled electric conductivity and a method of manufacturing the same.

상기 목적을 달성하기 위한 전기전도도가 조절된 PAN계 탄소섬유 제조방법은,In order to accomplish the above object, there is provided a method of manufacturing a PAN-based carbon fiber whose electric conductivity is controlled,

PAN계 탄소섬유가 설정된 전기전도도를 갖도록, 금속의 종류와 양을 달리하여, 탄소나노튜브-금속복합체를 제조하는 제1단계;A first step of producing a carbon nanotube-metal composite by varying the kind and amount of the metal so that the PAN-based carbon fiber has a predetermined electrical conductivity;

상기 PAN계 탄소섬유가 설정된 강도를 가지도록, 설정된 양 만큼의 상기 탄소나노튜브-금속복합체를 중합용매에 넣고 초음파로 분산시키는 제2단계;A second step of dispersing the carbon nanotube-metal composite in a polymerization solvent in a polymerization solvent so that the PAN-based carbon fiber has a predetermined strength;

상기 탄소나노튜브-금속복합체가 분산되어 있는 중합용매를 반응기에 투입하고 교반시키는 제3단계;A third step of adding a polymerization solvent in which the carbon nanotube-metal composite is dispersed to a reactor and stirring the mixture;

아크릴로니트릴, 메틸아크릴레이트, 이타콘산, 개시제인 아조비스이소부티로니트릴을 혼합하여 단량체조성물을 형성하는 제4단계;A fourth step of mixing the acrylonitrile, methyl acrylate, itaconic acid and azobisisobutyronitrile as an initiator to form a monomer composition;

상기 단량체조성물을 상기 탄소나노튜브-금속복합체가 분산되어 있는 중합용매가 교반되고 있는 반응기에 첨가하고, 동시중합하여 전구체 용액을 형성하는 제5단계;A fifth step of adding the monomer composition to a reactor in which a polymerization solvent in which the carbon nanotube-metal composite is dispersed is stirred, and simultaneously forming a precursor solution;

상기 전구체 용액을 방사, 세척, 탈용매, 연신하여 응고사를 형성하는 제6단계; 및A sixth step of spinning, washing, desolvating and stretching the precursor solution to form coagulation; And

상기 응고사를 산화안정화를 거쳐 탄화시키는 제7단계;를 포함하는 것을 특징으로 한다.And carbonizing the coagulum through oxidative stabilization.

본 발명은, PAN계 탄소섬유가 설정된 전기전도도를 가지도록, 탄소나노튜브에 부착될 금속의 종류를 달리하여 탄소나노튜브-금속복합체를 제조한다.In the present invention, carbon nanotube-metal complexes are prepared by varying the kinds of metals to be attached to carbon nanotubes so that the PAN-based carbon fibers have a predetermined electrical conductivity.

본 발명은, 탄소나노튜브에 부착된 금속의 종류는 그대로 둔 채, 그 양만 조절하여, 전기전도도를 다시 한 번 정밀하게 조절한다.In the present invention, only the amount of the metal attached to the carbon nanotube remains unchanged, and the electric conductivity is precisely controlled once more.

본 발명은, PAN계 탄소섬유가 설정된 강도를 가지도록, 탄소나노튜브-금속복합체의 양을 미세하게 조절하여, PAN계 탄소섬유를 제조한다.In the present invention, the PAN-based carbon fiber is prepared by finely adjusting the amount of the carbon nanotube-metal composite so that the PAN-based carbon fiber has a predetermined strength.

따라서, 본 발명을 사용하면, PAN계 탄소섬유에 포함된 탄소나노튜브의 양은 일정하게 유지된 한 채, PAN계 탄소섬유의 전기전도도를 탄소나노튜브에 부착된 금속의 종류를 바꾸거나 그 양을 달리하여 조절할 수 있다.Thus, the present invention can be used to change the electrical conductivity of a PAN-based carbon fiber to change the type of metal attached to the carbon nanotube, or to change the amount of the metal attached to the carbon nanotube, while maintaining the amount of the carbon nanotube contained in the PAN- Can be adjusted by differently.

또한, PAN계 탄소섬유의 전기전도도를 조절하기 위하여, 탄소나노튜브의 양을 조절할 필요가 없어, 설정된 양의 탄소나노튜브를 넣어, PAN계 탄소섬유를 일정한 강도로 유지시킬 수 있다.Further, in order to adjust the electrical conductivity of the PAN-based carbon fiber, it is not necessary to adjust the amount of the carbon nanotube, and the set amount of the carbon nanotube can be put in, thereby maintaining the PAN-based carbon fiber at a constant intensity.

상술한 PAN계 탄소섬유를 사용하여, 강도는 일정하면서 다양한 전기전도도를 가진 전자파 차폐재를 만들어낼 수 있다.By using the PAN-based carbon fiber described above, it is possible to produce an electromagnetic wave shielding material having a constant electrical strength and a wide electric conductivity.

도 1은 본 발명의 일 실시예에 따른 전기전도도가 조절된 PAN계 탄소섬유를 제조하는 방법을 나타낸 순서도이다.
도 2는 탄소나노튜브-금속복합재의 TEM 사진이다.
도 3은 탄소나노튜브-Ni 복합체를 나타낸 도면이다.
도 4는 탄소나노튜브-Ni 복합체가 첨가된 PAN계 탄소섬유를 나타낸 도면이다.
도 5는 탄소나노튜브-Ni 복합체가 첨가된 PAN계 탄소섬유의 EDS 사진, SEM 사진, Ni mapping 사진이다.
도 6은 탄소나노튜브-Fe2Ni8 복합체를 나타낸 도면이다.
도 7은 탄소나노튜브-Fe2Ni8 복합체가 첨가된 PAN계 탄소섬유를 나타낸 도면이다.
도 8은 탄소나노튜브-Fe2Ni8 복합체가 첨가된 PAN계 탄소섬유의 EDS 사진, SEM 사진, Fe mapping 사진, Ni mapping 사진이다.
도 9는 탄소나노튜브-Fe 복합체를 나타낸 도면이다.
도 10은 탄소나노튜브-Fe 복합체가 첨가된 PAN계 탄소섬유를 나타낸 도면이다.
도 11은 탄소나노튜브-Fe 복합체가 첨가된 PAN계 탄소섬유의 EDS 사진, SEM 사진, Fe mapping 사진이다.
도 12는 탄소나노튜브-금속복합체가 고르게 분산된 전구체 용액의 TEM 사진이다.
1 is a flowchart illustrating a method of manufacturing a PAN-based carbon fiber having electric conductivity adjusted according to an embodiment of the present invention.
2 is a TEM photograph of a carbon nanotube-metal composite material.
3 is a view showing a carbon nanotube-Ni complex.
4 is a view showing a PAN-based carbon fiber to which a carbon nanotube-Ni complex is added.
5 is an EDS photograph, an SEM photograph and a Ni mapping photograph of PAN-based carbon fiber to which a carbon nanotube-Ni complex is added.
6 is a view showing a carbon nanotube -Fe 2 Ni 8 complex.
7 is a view showing a PAN-based carbon fiber to which a carbon nanotube-Fe 2 Ni 8 composite is added.
8 is a -Fe 2 Ni 8 carbon nanotubes EDS photograph, SEM photograph, Fe mapping photograph and Ni mapping photograph of the PAN-based carbon fiber to which the composite is added.
9 is a view showing a carbon nanotube-Fe complex.
10 is a view showing a PAN-based carbon fiber to which a carbon nanotube-Fe complex is added.
11 is an EDS photograph, an SEM photograph and a Fe mapping image of a PAN-based carbon fiber to which a carbon nanotube-Fe complex is added.
12 is a TEM photograph of a precursor solution in which a carbon nanotube-metal composite is evenly dispersed.

이하, 본 발명의 일 실시예에 따른 전기전도도가 조절된 PAN계 탄소섬유를 제조하는 방법을 상세히 설명한다.Hereinafter, a method for producing PAN-based carbon fibers having controlled electric conductivity according to an embodiment of the present invention will be described in detail.

도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 전기전도도가 조절된 PAN계 탄소섬유를 제조하는 방법은,As shown in FIG. 1, a method of manufacturing a PAN-based carbon fiber having electric conductivity adjusted according to an embodiment of the present invention includes:

PAN계 탄소섬유가 설정된 전기전도도를 갖도록, 금속의 종류와 양을 달리하여, 탄소나노튜브-금속복합체를 제조하는 제1단계(S11);A first step (S11) of producing a carbon nanotube-metal composite by varying the kind and amount of the metal so that the PAN-based carbon fiber has a predetermined electrical conductivity;

상기 PAN계 탄소섬유가 설정된 강도를 가지도록, 설정된 양 만큼의 상기 탄소나노튜브-금속복합체를 중합용매에 넣고 초음파로 분산시키는 제2단계(S12);A second step (S12) of placing the carbon nanotube-metal composite in a polymerization solvent and dispersing the carbon nanotube-metal composite in an ultrasonic wave so that the PAN-based carbon fiber has a predetermined strength;

상기 탄소나노튜브-금속복합체가 분산되어 있는 중합용매를 반응기에 투입하고 교반시키는 제3단계(S13);A third step (S13) of adding a polymerization solvent in which the carbon nanotube-metal composite is dispersed to a reactor and stirring the mixture;

아크릴로니트릴, 메틸아크릴레이트, 이타콘산, 개시제인 아조비스이소부티로니트릴을 혼합하여 단량체조성물을 형성하는 제4단계(S14);A fourth step (S14) of forming a monomer composition by mixing acrylonitrile, methyl acrylate, itaconic acid, and azobisisobutyronitrile as an initiator;

상기 단량체조성물을 상기 탄소나노튜브-금속복합체가 분산되어 있는 중합용매가 교반되고 있는 반응기에 첨가하고, 동시중합하여 전구체 용액을 형성하는 제5단계(S15);A fifth step (S15) of adding the monomer composition to a reactor in which a polymerization solvent in which the carbon nanotube-metal composite is dispersed is stirred and simultaneously forming a precursor solution;

상기 전구체 용액을 방사, 세척, 탈용매, 연신하여 응고사를 형성하는 제6단계(S16); 및A sixth step (S16) of spinning, washing, desolvating and stretching the precursor solution to form coagulation; And

상기 응고사를 산화안정화를 거쳐 탄화시키는 제7단계(S17)로 구성된다.And a seventh step (S17) of carbonizing the coagulum through oxidative stabilization.

이하, 제1단계(S11)를 설명한다.The first step S11 will be described below.

PAN계 탄소섬유가 설정된 전기전도도를 가지도록, 금속의 종류와 양을 달리하여, 탄소나노튜브-금속복합체를 제조한다.The carbon nanotube-metal composite is produced by varying the kind and amount of the metal so that the PAN-based carbon fiber has a predetermined electrical conductivity.

도 2에 도시된 바와 같이, 탄소나노튜브-금속복합재는, 탄소나노튜브의 표면에 금속이 부착되거나 탄소나노튜브 사이에 금속이 삽입(intercalation)되어 형성된다.As shown in FIG. 2, the carbon nanotube-metal composite material is formed by attaching a metal to a surface of a carbon nanotube or by intercalating a metal between carbon nanotubes.

탄소나노튜브의 표면 또는 사이의 금속은 니켈, 철, 퍼멀로이(FexNi1-x), 은, 구리, 알루미늄, 니크롬, 백금, 이들의 복합체(alloy) 중 어느 하나이다.The metal on the surface or between the surfaces of the carbon nanotubes is any one of nickel, iron, permalloy (FexNi1-x), silver, copper, aluminum, nichrome, platinum and alloys thereof.

금속의 종류와 양을 조절하여, 탄소나노튜브-금속복합체 및 이를 포함한 PAN계 탄소섬유의 전기전도도와 자성특성을 조절할 수 있다.The electrical conductivity and magnetic properties of the carbon nanotube-metal complex and the PAN-based carbon fiber including the carbon nanotube-metal complex can be controlled by controlling the kind and amount of the metal.

여기서, 탄소나노튜브에 부착될 금속의 종류와 양은 동일하게 하되, 탄소나노튜브-복합체 양만 달리하여 PAN계 탄소섬유의 전기전도도와 자성특성을 한 번 더 조절할 수도 있다. 다만, 탄소나노튜브의 양이 너무 많으면, PAN계 탄소섬유의 강도가 변하는 문제가 발생하므로, 탄소나노튜브-금속복합재의 양은 전구체 용액에서 0.5wt% 미만으로 한다.Here, the electrical conductivity and the magnetic property of the PAN-based carbon fiber may be further controlled by changing the kind and amount of the metal to be attached to the carbon nanotube but differing only by the amount of the carbon nanotube-complex. However, if the amount of the carbon nanotubes is too large, the strength of the PAN-based carbon fibers may change. Therefore, the amount of the carbon nanotube-metal composite material is less than 0.5 wt% in the precursor solution.

이러한 탄소나노튜브-금속복합체는 본 출원인의 공개특허(10-2016-0054985)에 개시된 탄소나노튜브-금속복합체의 제조방법으로 만들어 낼 수 있다. 이는 공개특허에 자세히 기재되어 있으므로, 그 설명을 생략한다.Such a carbon nanotube-metal composite can be produced by the method for producing a carbon nanotube-metal composite disclosed in the applicant's patent (10-2016-0054985). This is described in detail in the open patent, and a description thereof will be omitted.

예를 들어, 도 3에 도시된 바와 같은 탄소나노튜브-Ni 복합체(12) 0.1wt%를 중합용매에 첨가하면, 도 4에 도시된 바와 같은 탄소나노튜브-Ni 복합체(12)가 포함된 85.46 S/cm 전도도를 가지는 PAN계 탄소섬유(10)를 제조할 수 있다.For example, when 0.1 wt% of the carbon nanotube-Ni complex 12 as shown in Fig. 3 is added to the polymerization solvent, 85.46 g of the carbon nanotube-Ni complex 12 as shown in Fig. PAN-based carbon fiber 10 having S / cm conductivity can be produced.

탄소나노튜브-Ni 복합체(12)는 탄소나노튜브(12a)와 탄소나노튜브(12a)의 표면에 부착된 Ni(12b)로 구성된다.The carbon nanotube-Ni complex 12 is composed of a carbon nanotube 12a and Ni (12b) attached to the surface of the carbon nanotube 12a.

탄소나노튜브(12a)의 표면에 부착될 Ni(12b)의 양을 조절하면, PAN계 탄소섬유(10)의 전기전도도 85.46 S/cm를 기준으로, 위아래로 한번 더 정밀하게 조절할 수 있다.When the amount of the Ni 12b to be adhered to the surface of the carbon nanotube 12a is adjusted, the electric conductivity of the PAN-based carbon fiber 10 can be precisely adjusted upwards and downwards based on 85.46 S / cm.

PAN계 탄소섬유(10)는 PAN(Polyacrylonitrile, 11)과 탄소나노튜브-Ni 복합체(12)로 구성된다.The PAN-based carbon fiber 10 is composed of PAN (polyacrylonitrile) 11 and carbon nanotube-Ni composite 12.

도 5에 도시된 바와 같이, PAN계 탄소섬유(10)는 C, O, Ni로 구성되며, PAN계 탄소섬유(10)의 단면을 보면 Ni이 골고루 분포된 것을 알 수 있다.As shown in FIG. 5, the PAN-based carbon fibers 10 are composed of C, O, and Ni, and the cross-section of the PAN-based carbon fibers 10 indicates that Ni is uniformly distributed.

다른 예로, 도 6에 도시된 바와 같은 탄소나노튜브-Fe2Ni8 복합체(22) 0.1wt%를 중합용매에 첨가하면, 도 7에 도시된 바와 같은 탄소나노튜브-Fe2Ni8 복합체(22)가 포함된 86.2 S/cm 전도도를 가지는 PAN계 탄소섬유(20)를 제조할 수 있다.As another example, carbon nanotubes as shown in Fig carbon nanotubes as shown in Fig. 6 -Fe 2 Ni 8 composite 22 when the 0.1wt% is added to the polymerization solvent, and Fig. 7 -Fe 2 Ni 8 complex (22 Based carbon fiber 20 having a conductivity of 86.2 S / cm can be produced.

탄소나노튜브-Fe2Ni8 복합체(22)는 탄소나노튜브(22a)와 탄소나노튜브(22a)의 표면에 부착된 Fe2Ni8(22b)로 구성된다.The carbon nanotube-Fe 2 Ni 8 composite 22 is composed of a carbon nanotube 22a and Fe 2 Ni 8 (22b) attached to the surface of the carbon nanotube 22a.

탄소나노튜브(22a)의 표면에 부착될 Fe2Ni8(22b)의 양을 조절하면, PAN계 탄소섬유(20)의 전기전도도 86.2 S/cm를 기준으로, 위아래로 한번 더 정밀하게 조절할 수 있다.When the amount of Fe 2 Ni 8 (22b) to be attached to the surface of the carbon nanotubes 22a is adjusted, the electric conductivity of the PAN-based carbon fibers 20 can be precisely adjusted upwards and downwards based on 86.2 S / cm have.

PAN계 탄소섬유(20)는 PAN(Polyacrylonitrile, 21)과 탄소나노튜브-Fe2Ni8 복합체(22)로 구성된다.The PAN-based carbon fiber 20 is composed of PAN (Polyacrylonitrile 21) and carbon nanotube-Fe 2 Ni 8 composite 22.

도 8에 도시된 바와 같이, PAN계 탄소섬유(20)는 C, O, Ca, Fe, Ni로 구성되며, PAN계 탄소섬유(20)의 단면을 보면 Fe과 Ni이 골고루 분포된 것을 알 수 있다.As shown in FIG. 8, the PAN-based carbon fibers 20 are composed of C, O, Ca, Fe, and Ni, and the cross-sections of the PAN-based carbon fibers 20 show that Fe and Ni are evenly distributed have.

또 다른 예로, 도 9에 도시된 바와 같은 탄소나노튜브-Fe 복합체(32) 0.1wt%를 중합용매에 첨가하면, 도 10에 도시된 바와 같은 탄소나노튜브-Fe 복합체(32)가 포함된 68.95 S/cm 전도도를 가지는 PAN계 탄소섬유(30)를 제조할 수 있다.As another example, when 0.1 wt% of the carbon nanotube-Fe composite 32 as shown in FIG. 9 is added to the polymerization solvent, the amount of the carbon nanotube-Fe complex 32 (68 wt.%) PAN-based carbon fibers 30 having S / cm conductivity can be produced.

탄소나노튜브-Fe 복합체(32)는 탄소나노튜브(32a)와 탄소나노튜브(32a)의 표면에 부착된 Fe(32b)로 구성된다.The carbon nanotube-Fe complex 32 is composed of a carbon nanotube 32a and Fe (32b) attached to the surface of the carbon nanotube 32a.

탄소나노튜브(32a)의 표면에 부착될 Fe(32b)의 양을 조절하면, PAN계 탄소섬유(30)의 전기전도도 68.95 S/cm를 기준으로, 위아래로 한번 더 정밀하게 조절할 수 있다.When the amount of Fe 32b to be attached to the surface of the carbon nanotubes 32a is adjusted, the electric conductivity of the PAN-based carbon fibers 30 can be precisely adjusted upwards and downwards based on the electric conductivity of 68.95 S / cm.

PAN계 탄소섬유(30)는 PAN(Polyacrylonitrile, 31)과 탄소나노튜브-Fe2Ni8 복합체(32)로 구성된다.The PAN-based carbon fiber 30 is composed of PAN (Polyacrylonitrile 31) and a carbon nanotube-Fe 2 Ni 8 composite 32.

도 11에 도시된 바와 같이, PAN계 탄소섬유(30)는 C, N, O, Fe로 구성되며, PAN계 탄소섬유(30)의 단면을 보면 Fe이 골고루 분포된 것을 알 수 있다.11, the PAN-based carbon fibers 30 are composed of C, N, O, and Fe, and the cross-section of the PAN-based carbon fibers 30 indicates that Fe is uniformly distributed.

이하, 제2단계(S12)를 설명한다.The second step S12 will be described below.

설정된 강도를 가진 PAN계 탄소섬유(10)를 만들기 위해, 설정된 양의 탄소나노튜브-금속복합체(11)를 중합용매에 넣는다.In order to make the PAN-based carbon fiber 10 having the predetermined strength, a predetermined amount of the carbon nanotube-metal composite 11 is put into a polymerization solvent.

또는, 설정된 강도를 가진 PAN계 탄소섬유(20)를 만들기 위해, 설정된 양의 탄소나노튜브-금속복합체(12)를 중합용매에 넣는다.Alternatively, a predetermined amount of the carbon nanotube-metal composite 12 is put into a polymerization solvent to produce a PAN-based carbon fiber 20 having a predetermined strength.

또는, 설정된 강도를 가진 PAN계 탄소섬유(30)를 만들기 위해, 설정된 양의 탄소나노튜브-금속복합체(13)를 중합용매에 넣는다.Alternatively, a predetermined amount of the carbon nanotube-metal composite 13 is put into a polymerization solvent to prepare a PAN-based carbon fiber 30 having a predetermined strength.

이하, 반복 설명을 피하기 위하여, 탄소나노튜브-금속복합체(11,12,13)로 PAN계 탄소섬유(10,20,30)를 제조하는 방법을 한꺼번에 설명한다.Hereinafter, in order to avoid repetition, a method of manufacturing PAN-based carbon fibers 10, 20, 30 with the carbon nanotube-metal composites 11, 12, 13 will be explained at once.

한꺼번에 설명하더라도, 탄소나노튜브-금속복합체(11)로만 PAN계 탄소섬유(10)를 만들고, 탄소나노튜브-금속복합체(12)로만 PAN계 탄소섬유(20)를 만들고, 탄소나노튜브-금속복합체(13)로만 PAN계 탄소섬유(30)를 만드는 것으로 이해해야 한다.The PAN-based carbon fiber 10 is made only of the carbon nanotube-metal composite 11, the PAN-based carbon fiber 20 is made of the carbon nanotube-metal composite 12 only, and the carbon nanotube- It is to be understood that the PAN-based carbon fibers 30 are formed only by the carbon fibers 13.

PAN계 탄소섬유(10,20,30)의 설정된 강도가 모두 동일하도록, 중합용매에 넣는 탄소나노튜브-금속복합체(11,12,13)의 양을 동일하게 한다.The amounts of the carbon nanotube-metal composites 11, 12, and 13 to be put in the polymerization solvent are made the same so that the set strengths of the PAN-based carbon fibers 10, 20, and 30 are all the same.

이를 위해, PAN계 탄소섬유(10,20,30)가 설정된 강도를 가질 수 있는 탄소나노튜브의 양을 미리 정해 놓고, 탄소나노튜브에 부착될 금속의 종류와 양을 조절하여 PAN계 탄소섬유(10,20,30)의 전기전도도를 조절한다.For this purpose, the amount of the carbon nanotubes capable of having the predetermined strength is determined in advance by the PAN-based carbon fibers (10, 20, 30), and the type and amount of the metal to be attached to the carbon nanotube are controlled, 10, 20, 30).

PAN계 탄소섬유(10,20,30)의 강도는 탄소나노튜브(12a,12b,12c)의 양에 의해 대부분 결정되므로, 탄소나노튜브(12a,12b,12c)의 양이 동일하다면, PAN계 탄소섬유(10,20,30)는 전기전도도만 다르고 강도는 같게 된다.Since the strengths of the PAN-based carbon fibers 10, 20 and 30 are mostly determined by the amounts of the carbon nanotubes 12a, 12b and 12c, if the amounts of the carbon nanotubes 12a, 12b and 12c are the same, The carbon fibers 10, 20 and 30 have different electrical conductivities and the same strength.

중합용매로 디메일 설폭사이드, 디메틸 포름아마이드, 디메틸 아세트아미드 중 어느 하나가 사용된다.As the polymerization solvent, any one of dimephyl sulfoxide, dimethyl formamide and dimethylacetamide is used.

중합용매에 탄소나노튜브-금속복합체(11,12,13)를 넣으면, 중합용매와 상용성(相容性)이 없는 탄소나노튜브-금속복합체(11,12,13)가 서로 뭉치게 된다. 이렇게 뭉쳐진 탄소나노튜브-금속복합체(11,12,13)를 초음파로 기계적 진동을 주어 분산시킨다. 그러면, 중합용매내에서 탄소나노튜브-금속복합체(11,12,13)가 일시적으로 분산된다.When carbon nanotube-metal complexes (11, 12, 13) are placed in a polymerization solvent, carbon nanotube-metal complexes (11, 12, 13) having no compatibility with a polymerization solvent are aggregated together. The carbon nanotube-metal composite bodies 11, 12, and 13 thus aggregated are dispersed by ultrasonic mechanical vibration. Then, the carbon nanotube-metal complexes 11, 12, and 13 are temporarily dispersed in the polymerization solvent.

이하, 제3단계(S13)를 설명한다.The third step S13 will be described below.

탄소나노튜브-금속복합체(11,12,13)가 일시적으로 분산된 중합용매를, 반응기(미도시)에 투입하고 60℃에서 250rpm으로 교반시킨다. 교반으로 인해서, 중합용매내에 탄소나노튜브-금속복합체(11,12,13)가 분산 상태로 유지된다.A polymerization solvent in which carbon nanotube-metal complexes (11, 12, 13) are temporarily dispersed is put into a reactor (not shown) and stirred at 60 DEG C at 250 rpm. Due to the stirring, the carbon nanotube-metal composites 11, 12, and 13 are maintained in a dispersed state in the polymerization solvent.

이하, 제4단계(S14)를 설명한다.The fourth step S14 will be described below.

아크릴로니트릴 95~99중량부, 메틸아크릴레이트 1~4중량부, 이타콘산 0.5~4중량부, 개시제인 아조비스이소부티로니트릴 0.2에서 1중량부를 혼합하여 단량체조성물을 형성한다. 단량체조성물의 중량은 중합용매의 중량의 1/6~1/4배이다.95 to 99 parts by weight of acrylonitrile, 1 to 4 parts by weight of methyl acrylate, 0.5 to 4 parts by weight of itaconic acid and 1 part by weight of azobisisobutyronitrile as an initiator are mixed to form a monomer composition. The weight of the monomer composition is 1/6 to 1/4 times the weight of the polymerization solvent.

이하, 제5단계(S15)를 설명한다.The fifth step S15 will be described below.

탄소나노튜브-금속복합체(11,12,13)가 균일하게 분산된 중합용매에 단량체조성물을 천천히 첨가시킨다. 그러면, 중합용매에 의해 팽윤된 상태의 탄소나노튜브-금속복합체(11,12,13) 사이사이로 단량체가 고르게 침투된다.The monomer composition is slowly added to a polymerization solvent in which the carbon nanotube-metal complexes (11, 12, 13) are uniformly dispersed. Then, the monomer uniformly permeates between the carbon nanotube-metal composites 11, 12, and 13 in a swollen state by the polymerization solvent.

이 상태로 20시간 정도 지나게 되면, 단량체 사이사이에 탄소나노튜브-금속복합체(11,12,13)가 끼인 상태로 단량체가 고분자화되어, 도 12에 도시된 탄소나노튜브-금속복합체(11,12,13)가 고르게 분산된 전구체 용액이 형성된다.In this state, the monomers are polymerized in a state where the carbon nanotube-metal complexes 11, 12, and 13 are sandwiched between the monomers, and the carbon nanotube-metal complexes 11, 12, 13) are uniformly dispersed in the precursor solution.

여기서, 금속이 부착된 탄소나노튜브가 포함된 전구체 용액이 일정한 강도를 유지하기 위해서, 전구체 용액의 최소 점도는 75000CP 이상이다.Here, the minimum viscosity of the precursor solution is 75000 CP or more so that the precursor solution containing the metal-adhered carbon nanotube maintains a constant strength.

이하, 제6단계(S16)를 설명한다.The sixth step S16 will be described below.

전구체 용액을 방사노즐(미도시)을 통해 방사하고, 방사된 전구체 용액을 응고용매가 담긴 응고욕조(미도시) 안으로 통과시켜 세척 및 탈용매시킨 후, 연신하여 응고사를 형성한다.The precursor solution is radiated through a spinning nozzle (not shown), and the radiated precursor solution is passed through a coagulation bath (not shown) containing a coagulation solvent, washed and desolvated, and then stretched to form coagulation.

이하, 제7단계(S17)를 설명한다.The seventh step S17 will be described below.

응고사를 200~300℃에서 일정시간 산화 안정화 처리한다.The coagulum is oxidatively stabilized at a temperature of 200 to 300 ° C. for a certain period of time.

산화 안정화 처리된 응고사를 1000℃~2000℃에서 탄화시킨다.The oxidation stabilized cords are carbonized at 1000 ° C to 2000 ° C.

제1단계(S11) 내지 제7단계(S17)를 거쳐, 전기전도도가 향상된 PAN계 탄소섬유(10,20,30)가 제조된다.The PAN-based carbon fibers 10, 20 and 30 having improved electrical conductivity are manufactured through the first-stage S11 to the seventh step S17.

PAN계 탄소섬유(10,20,30)에서 탄소나노튜브(11,21,31)의 표면 또는 사이에 1종 이상의 금속합금이 포함된다. (금속합금무게/(CNT무게+금속합금무게))는 0.1~0.9이다. 금속합금에서 금속간의 원소비율은 전기전도도를 조절하기 위해 조절된다.In the PAN-based carbon fibers (10, 20, 30), at least one metal alloy is included on the surface or between the carbon nanotubes (11, 21, 31). (Metal alloy weight / (CNT weight + metal alloy weight)) is 0.1 to 0.9. The metal-to-metal elemental ratio is adjusted to control electrical conductivity.

10,20,30: 전기전도도가 조절된 PAN계 탄소섬유
11,21,31: 탄소나노튜브
12,22,32: 탄소나노튜브-금속복합체
10, 20, 30: PAN-based carbon fiber with controlled electric conductivity
11, 21, 31: Carbon nanotubes
12, 22, 32: Carbon nanotube-metal complex

Claims (9)

PAN계 탄소섬유가 설정된 전기전도도를 갖도록, 금속의 종류와 양을 달리하여, 탄소나노튜브-금속복합체를 제조하는 제1단계;
상기 PAN계 탄소섬유가 설정된 강도를 가지도록, 설정된 양 만큼의 상기 탄소나노튜브-금속복합체를 중합용매에 넣고 초음파로 분산시키는 제2단계;
상기 탄소나노튜브-금속복합체가 분산되어 있는 중합용매를 반응기에 투입하고 교반시키는 제3단계;
아크릴로니트릴, 메틸아크릴레이트, 이타콘산, 개시제인 아조비스이소부티로니트릴을 혼합하여 단량체조성물을 형성하는 제4단계;
상기 단량체조성물을 상기 탄소나노튜브-금속복합체가 분산되어 있는 중합용매가 교반되고 있는 반응기에 첨가하고, 동시중합하여 전구체 용액을 형성하는 제5단계;
상기 전구체 용액을 방사, 세척, 탈용매, 연신하여 응고사를 형성하는 제6단계; 및
상기 응고사를 산화안정화를 거쳐 탄화시키는 제7단계;를 포함하는 것을 특징으로 하는 전기전도도가 조절된 PAN계 탄소섬유 제조방법.
A first step of producing a carbon nanotube-metal composite by varying the kind and amount of the metal so that the PAN-based carbon fiber has a predetermined electrical conductivity;
A second step of dispersing the carbon nanotube-metal composite in a polymerization solvent in a polymerization solvent so that the PAN-based carbon fiber has a predetermined strength;
A third step of adding a polymerization solvent in which the carbon nanotube-metal composite is dispersed to a reactor and stirring the mixture;
A fourth step of mixing the acrylonitrile, methyl acrylate, itaconic acid and azobisisobutyronitrile as an initiator to form a monomer composition;
A fifth step of adding the monomer composition to a reactor in which a polymerization solvent in which the carbon nanotube-metal composite is dispersed is stirred, and simultaneously forming a precursor solution;
A sixth step of spinning, washing, desolvating and stretching the precursor solution to form coagulation; And
And carbonizing the coagulation coke through oxidative stabilization. The method for producing carbon fiber according to claim 1,
제1항에 있어서, 상기 제1단계에서,
상기 탄소나노튜브-금속복합재는, 탄소나노튜브의 표면에 금속이 부착되거나 탄소나노튜브 사이에 금속이 삽입(intercalation)되어 형성된 것을 특징으로 하는 전기전도도가 조절된 PAN계 탄소섬유 제조방법.
2. The method according to claim 1, wherein, in the first step,
Wherein the carbon nanotube-metal composite material is formed by attaching a metal to a surface of a carbon nanotube or intercalating a metal between carbon nanotubes.
제1항에 있어서, 상기 제1단계에서,
탄소나노튜브의 표면 또는 사이의 금속은 니켈, 철, 퍼멀로이(FexNi1 -x), 은, 구리, 알루미늄, 니크롬, 백금, 이들의 복합체(alloy) 중 어느 하나인 것을 특징으로 하는 전기전도도가 조절된 PAN계 탄소섬유 제조방법.
2. The method according to claim 1, wherein, in the first step,
Wherein the surface of the carbon nanotube or a metal between the carbon nanotubes is any one of nickel, iron, permalloy (Fe x Ni 1 -x ), silver, copper, aluminum, nichrome, platinum and alloys thereof. Based carbon fibers.
제3항에 있어서, 상기 제2단계에서,
상기 탄소나노튜브에 부착될 금속의 종류와 양은 동일하게 하되, 탄소나노튜브-복합체 양만 달리하여 PAN계 탄소섬유의 전기전도도와 자성특성을 한 번 더 조절하는 것을 특징으로 하는 전기전도도가 조절된 PAN계 탄소섬유 제조방법.
4. The method of claim 3, wherein in the second step,
Wherein the electrical conductivity and the magnetic property of the PAN-based carbon fiber are controlled once more by varying the kind and amount of the metal to be attached to the carbon nanotube, Based carbon fiber.
제4항에 있어서, 상기 제5단계에서,
탄소나노튜브-금속복합체의 양은 전구체 용액에서 0.5wt% 미만인 것을 특징으로 하는 전기전도도가 조절된 PAN계 탄소섬유 제조방법.
5. The method of claim 4, wherein in the fifth step,
Wherein the amount of the carbon nanotube-metal complex is less than 0.5 wt% in the precursor solution.
제4항에 있어서, 상기 제5단계에서,
탄소나노튜브-금속복합체가 포함된 전구체 용액이 방사 후 일정한 강도를 유지하기 위하여, 상기 전구체 용액의 최소 점도는 75000CP 이상인 것을 특징으로 하는 전기전도도가 조절된 PAN계 탄소섬유 제조방법.
5. The method of claim 4, wherein in the fifth step,
Wherein the minimum viscosity of the precursor solution is 75000 CP or more so that the precursor solution containing the carbon nanotube-metal complex can maintain a constant strength after spinning.
제1항의 방법으로 제조된 전기전도도가 조절된 PAN계 탄소섬유.An electrically conductive PAN-based carbon fiber produced by the method of claim 1. 제7항에 있어서,
상기 탄소나노튜브 표면 또는 사이에 1종 이상의 금속합금이 포함되고, (금속합금무게/(CNT무게+금속합금무게))는 0.1~0.9이며, 상기 금속합금에서 금속간의 원소비율은 전기전도도를 조절하기 위해 조절되는 것을 특징으로 하는 전기전도도가 조절된 PAN계 탄소섬유.
8. The method of claim 7,
(Weight of metal alloy / (weight of CNT + weight of metal alloy)) is 0.1 to 0.9, and the ratio of elements among the metals in the metal alloy is adjusted by controlling electric conductivity Wherein the electrically conductive carbon fibers are adjusted to form a carbon-based carbon-based carbon fiber.
제8항에 있어서,
상기 탄소나노튜브의 표면 또는 사이의 금속은 니켈, 철, 퍼멀로이(FexNi1-x), 은, 구리, 알루미늄, 니크롬, 백금, 이들의 복합체(alloy) 중 어느 하나인 것을 특징으로 하는 전기전도도가 조절된 PAN계 탄소섬유.
9. The method of claim 8,
Wherein the surface of the carbon nanotube or a metal between the carbon nanotubes is any one of nickel, iron, permalloy (FexNi1-x), silver, copper, aluminum, nichrome, platinum and alloys thereof. Based PAN-based carbon fiber.
KR1020170060903A 2017-05-17 2017-05-17 Pan-based carbon fiber whose electro conductive is controlled and method for manufacturing the same KR101932602B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170060903A KR101932602B1 (en) 2017-05-17 2017-05-17 Pan-based carbon fiber whose electro conductive is controlled and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170060903A KR101932602B1 (en) 2017-05-17 2017-05-17 Pan-based carbon fiber whose electro conductive is controlled and method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20180126202A true KR20180126202A (en) 2018-11-27
KR101932602B1 KR101932602B1 (en) 2018-12-26

Family

ID=64603478

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170060903A KR101932602B1 (en) 2017-05-17 2017-05-17 Pan-based carbon fiber whose electro conductive is controlled and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR101932602B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020018438A1 (en) * 2018-07-20 2020-01-23 The Board Of Trustees Of The Leland Stanford Junior University A novel polyarylonitrile system for preparing multifunctional carbon flowers and other superstructures

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101447078B1 (en) * 2013-10-22 2014-10-06 재단법인 한국탄소융합기술원 Method for making high electro conductive and high strengthened pan-based carbon fiber and pan precursor for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020018438A1 (en) * 2018-07-20 2020-01-23 The Board Of Trustees Of The Leland Stanford Junior University A novel polyarylonitrile system for preparing multifunctional carbon flowers and other superstructures
US11702339B2 (en) 2018-07-20 2023-07-18 The Board Of Trustees Of The Leland Stanford Junior University Polyarylonitrile system for preparing multifunctional carbon flowers and other superstructures

Also Published As

Publication number Publication date
KR101932602B1 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
Sobha et al. Electrical, thermal, mechanical and electromagnetic interference shielding properties of PANI/FMWCNT/TPU composites
Norris et al. Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends
Das et al. Effect of processing parameters, applied pressure and temperature on the electrical resistivity of rubber-based conductive composites
Frank et al. High-performance PAN-based carbon fibers and their performance requirements
KR101447078B1 (en) Method for making high electro conductive and high strengthened pan-based carbon fiber and pan precursor for the same
EP3012359A1 (en) Polyacrylonitrile-based precursor fiber for carbon fibre, and production method therefor
CN107988645A (en) The preparation method of super-elasticity conductive fiber and super-elasticity threadiness ultracapacitor
KR101932602B1 (en) Pan-based carbon fiber whose electro conductive is controlled and method for manufacturing the same
KR20120065734A (en) Composition for graphene/polyimide electroconductive composites, method for preparing the composites using the same and the composites prepared thereby
CN106637453A (en) A preparing process of a chitosan/polyvinyl alcohol composite nanometer electrically-conductive fiber
Ram et al. Mechanical, electrical, and dielectric properties of polyvinylidene fluoride/short carbon fiber composites with low‐electrical percolation threshold
Habeeb et al. Production of polyacrylonitrile/boehmite nanofibrous composite tubular structures by opposite‐charge electrospinning with enhanced properties from a low‐concentration polymer solution
CN111285949B (en) Polyacrylonitrile-coated graphene composite material and preparation method and application thereof
KR20180027934A (en) Fiber complexes and methods of manufacturing the same
KR20040078002A (en) Carbon Nano-Composite Materials for Shielding of Electromagnetic Wave and Preparation Method Thereof
Nagaraja et al. Effect of multiwall carbon nanotubes on electrical and structural properties of polyaniline
CN108774562A (en) A kind of MOF-Ti/ polyaniline nano-composite materials ER fluid and preparation method thereof
CN108003612A (en) A kind of preparation method of the multifunctional composite with thermal conductivity electromagnetic shielding
CN114835932A (en) Copper nanowire/aramid nanofiber composite conductive film and preparation method thereof
KR101437001B1 (en) Polyacrylonitrile based carbon fiber reinforced carbon nanotube and preparing method the same
KR100851431B1 (en) A method to align carbon nanotubes by electrospining process with a immiscible polymer blend
KR20160047004A (en) High electro conductive and high strengthened pan-based carbon fiber and method for making the same
KR101788634B1 (en) Method for Producing Carbon NanoTube Fiber
WO2017128834A1 (en) Preparation method for high-temperature-resisting and high-conductivity conductive plastic
KR102121130B1 (en) PAN-Fe2O3 magnetic composites amd manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant