KR101447078B1 - Method for making high electro conductive and high strengthened pan-based carbon fiber and pan precursor for the same - Google Patents

Method for making high electro conductive and high strengthened pan-based carbon fiber and pan precursor for the same Download PDF

Info

Publication number
KR101447078B1
KR101447078B1 KR1020130125802A KR20130125802A KR101447078B1 KR 101447078 B1 KR101447078 B1 KR 101447078B1 KR 1020130125802 A KR1020130125802 A KR 1020130125802A KR 20130125802 A KR20130125802 A KR 20130125802A KR 101447078 B1 KR101447078 B1 KR 101447078B1
Authority
KR
South Korea
Prior art keywords
carbon nanotubes
polymerization solvent
pan
monomer composition
graphenes
Prior art date
Application number
KR1020130125802A
Other languages
Korean (ko)
Inventor
정민혜
신현규
Original Assignee
재단법인 한국탄소융합기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 한국탄소융합기술원 filed Critical 재단법인 한국탄소융합기술원
Priority to KR1020130125802A priority Critical patent/KR101447078B1/en
Application granted granted Critical
Publication of KR101447078B1 publication Critical patent/KR101447078B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/06Washing or drying
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/08Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyacrylonitrile as constituent
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/16Yarns or threads made from mineral substances
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/441Yarns or threads with antistatic, conductive or radiation-shielding properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial

Abstract

A method for manufacturing a highly electroconductive and high strength PAN-based carbon fiber according to the present invention is characterized by comprising: a first step of inserting surface untreated carbon nanotube or graphene in a polymerization solvent and dispersing by ultrasonic; a second step of inserting the polymerization solvent in which the surface untreated carbon nanotube or the graphene is dispersed into a reactor and stirring; a third step of forming a monomer composition by mixing acrylonitrile, methylacrylate, itaconic acid, and azobisisobutyronitrile as an initiator; a fourth step of forming a precursor solution by adding the monomer composition in the reactor in which the polymerization solvent is stirring and polymerizing simultaneously; a fifth step of forming a coagulated fiber by spinning, washing, desolventizing and elongating the precursor solution; and a sixth step of forming a graphite structure around the surface untreated carbon nanotube or the graphene by oxidizing the coagulated fiber and carbonizing at a low temperature (1,000-2,000°C).

Description

고 전기전도성 및 고강도 PAN계 탄소섬유 및 그 PAN 전구체를 제조하는 방법{METHOD FOR MAKING HIGH ELECTRO CONDUCTIVE AND HIGH STRENGTHENED PAN-BASED CARBON FIBER AND PAN PRECURSOR FOR THE SAME}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a high-conductivity and high-strength PAN-based carbon fiber and a PAN precursor thereof,

본 발명은 탄소섬유에 관한 것이다.The present invention relates to carbon fibers.

탄소섬유는 강철보다 1/5 가볍고 강도가 10배 강한 섬유이다. 이러한 탄소섬유는 항공우주분야와 자동차분야에 보강재로 사용되거나, 일차전지, 이차전지, 초고용량 캐패시터, 연료전지에 전극재로 사용된다.Carbon fiber is one-fifth the weight of steel and ten times stronger than steel. These carbon fibers are used as reinforcements in the aerospace and automotive fields, or as electrode materials in primary cells, secondary batteries, ultra-high capacity capacitors, and fuel cells.

탄소섬유는 전구체의 종류에 따라 PAN계, Pitch계, Rayon계 탄소섬유로 구분된다. The carbon fiber is classified into a PAN system, a pitch system, and a Rayon system carbon fiber depending on the kind of the precursor.

현재 상용되고 있는 탄소섬유의 대부분은 PAN계 탄소섬유이다.Most of the currently used carbon fibers are PAN-based carbon fibers.

이러한 PAN계 탄소섬유는 전기전도성이 낮아, 전극재 보다는 보강재로 많이 사용된다.These PAN-based carbon fibers have low electrical conductivity and are used more frequently as reinforcing materials than electrode materials.

그러나, 최근에는 PAN계 탄소섬유를 전극재로 사용하려는 연구가 활발히 진행되고 있다. 일 예로, 국내공개특허(10-2010-0011551)는, 극성용매에 산으로 표면처리된 탄소나노튜브를 혼합시켜, 높은 전기전도성을 가진 PAN계 탄소섬유를 제조하는 방법을 개시하고 있다.However, in recent years, studies have been actively conducted to use PAN-based carbon fibers as an electrode material. For example, Korean Patent Laid-Open Publication No. 10-2010-0011551 discloses a method for producing PAN-based carbon fibers having high electrical conductivity by mixing carbon nanotubes surface-treated with an acid in a polar solvent.

국내공개특허(10-2010-0011551) 처럼, 탄소나노튜브의 표면을 산으로 처리하면, 탄소나노튜브 표면에 극성기가 도입되어 극성용매에서의 분산성을 향상시킬 수있다. 이로 인해, 탄소나노튜브와 극성용매간의 상용성(相容性)이 향상되어, 탄소나노튜브가 극성용매내에서 균일하게 분산되고, 결과적으로 탄소나노튜브의 임계농도 이상에서 탄소나노튜브가 가지는 전기전도성에 의해 PAN계 탄소섬유의 전기전도성이 향상 된다.When the surface of the carbon nanotubes is treated with an acid as in the case of the domestic patent (10-2010-0011551), the polar group is introduced into the surface of the carbon nanotubes and the dispersibility in the polar solvent can be improved. As a result, the compatibility between the carbon nanotubes and the polar solvent is improved, so that the carbon nanotubes are uniformly dispersed in the polar solvent. As a result, the electrical properties of the carbon nanotubes Conductivity improves the electrical conductivity of the PAN-based carbon fibers.

그러나, 탄소나노튜브의 표면을 산으로 처리하게 되면, 탄소나노튜브에 구조적 결함이 생기게 되어, 탄소나노튜브의 고유한 물성(열전도성, 강도)이 떨어지게 된다. 이로 인해, 산으로 표면처리된 탄소나노튜브가 혼합된 PAN계 탄소섬유는 전극재외에 보강재로의 성능이 떨어지게 된다. 즉, 산으로 표면처리된 탄소나노튜브가 혼합된 PAN계 탄소섬유를 보강재로 사용하려면, 산으로 표면처리되지 않은 탄소나노튜브가 혼합된 PAN계 탄소섬유 보다 더 많은 양이 필요하게 된다.However, when the surface of the carbon nanotubes is treated with an acid, a structural defect occurs in the carbon nanotubes, and the inherent physical properties (thermal conductivity, strength) of the carbon nanotubes are deteriorated. As a result, the performance of the PAN-based carbon fiber mixed with the surface treated carbon nanotubes with the acid is deteriorated as a reinforcing material outside the electrode. That is, in order to use PAN-based carbon fiber mixed with acid-treated carbon nanotubes as a reinforcing material, a larger amount of PAN-based carbon fiber mixed with an acid-untreated carbon nanotube is required.

또한, PAN계 탄소섬유의 전기적, 열적 특성을 향상시키기 위해 PAN계 탄소섬유를 열처리 할 때, PAN계 탄소섬유에 표면처리로 인해 열전도성이 떨어진 탄소나노튜브가 혼합되어 있으면, 열처리시 고온(2000℃~3000℃)이 필요하게 된다. 따라서, 고온 열처리에 따른 제조비용이 상승하게 된다.Further, when the PAN-based carbon fiber is heat-treated to improve the electrical and thermal properties of the PAN-based carbon fiber, when the PAN-based carbon fiber is mixed with the carbon nanotube having poor thermal conductivity due to the surface treatment, Lt; 0 > C to 3000 < 0 > C). Therefore, the manufacturing cost due to the high-temperature heat treatment is increased.

본 발명은 상술한 문제점을 해결하기 위하여 창안된 것으로, 고 전기전도성이면서 동시에 고강도인 PAN계 탄소섬유 및 그 전구체를 제조할 수 있는 방법을 제공하는 데 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to overcome the above-mentioned problems, and an object of the present invention is to provide a PAN-based carbon fiber and a precursor thereof which are high in electrical conductivity and high strength.

또한, 본 발명은 고 전기전도성이면서 동시에 고강도인 PAN계 탄소섬유를 낮은 비용으로 제조할 수 있는 방법을 제공하는 데 다른 목적이 있다.It is another object of the present invention to provide a method for producing a PAN-based carbon fiber having high electrical conductivity and high strength at low cost.

상기 목적을 달성하기 위한 고 전기전도성 및 고강도 PAN계 탄소섬유용 전구체를 제조하는 방법은,In order to accomplish the above object, there is provided a method for producing a precursor for high-conductivity and high strength PAN-

표면처리되지 않은 탄소나노튜브 또는 그래핀을 중합용매에 넣고 초음파로 분산시키는 제1단계;A first step of dispersing the surface-untreated carbon nanotubes or graphenes into a polymerization solvent and dispersing them by ultrasonic waves;

상기 표면처리되지 않은 탄소나노튜브 또는 그래핀이 분산되어 있는 중합용매를 반응기에 투입하고 교반시키는 제2단계;A second step of adding a polymerization solvent in which the non-surface-treated carbon nanotubes or graphenes are dispersed to a reactor and stirring the mixture;

아크릴로니트릴, 메틸아크릴레이트, 이타콘산, 개시제인 아조비스이소부티로니트릴을 혼합하여 단량체조성물을 형성하는 제3단계;A third step of mixing the acrylonitrile, methyl acrylate, itaconic acid and azobisisobutyronitrile as an initiator to form a monomer composition;

상기 단량체조성물을 상기 중합용매가 교반되고 있는 상기 반응기에 첨가하고 동시중합하여 전구체용액을 형성하는 제4단계; 및A fourth step of adding the monomer composition to the reactor in which the polymerization solvent is stirred and simultaneously adding the solution to form a precursor solution; And

상기 전구체용액을 방사, 세척, 탈용매, 연신하여 응고사를 형성하는 제5단계;를 포함하는 것을 특징으로 한다.And a fifth step of spinning, washing, desolvating and stretching the precursor solution to form coagulation.

또한, 상기 목적은, 표면처리되지 않은 탄소나노튜브 또는 그래핀을 중합용매에 넣고 초음파로 분산시키는 제1단계;The above object can also be accomplished by a method for manufacturing a carbon nanotube or a graphene, comprising the steps of:

상기 표면처리되지 않은 탄소나노튜브 또는 그래핀이 분산되어 있는 중합용매를 반응기에 투입하고 교반시키는 제2단계;A second step of adding a polymerization solvent in which the non-surface-treated carbon nanotubes or graphenes are dispersed to a reactor and stirring the mixture;

아크릴로니트릴, 메틸아크릴레이트, 이타콘산, 개시제인 아조비스이소부티로니트릴을 혼합하여 단량체조성물을 형성하는 제3단계;A third step of mixing the acrylonitrile, methyl acrylate, itaconic acid and azobisisobutyronitrile as an initiator to form a monomer composition;

상기 단량체조성물을 상기 중합용매가 교반되고 있는 상기 반응기에 첨가하고 동시중합하여 전구체용액을 형성하는 제4단계;A fourth step of adding the monomer composition to the reactor in which the polymerization solvent is stirred and simultaneously adding the solution to form a precursor solution;

상기 전구체용액을 방사, 세척, 탈용매, 연신하여 응고사를 형성하는 제5단계; 및A fifth step of spinning, washing, desolvating and stretching the precursor solution to form coagulation; And

상기 응고사를 산화처리하고, 저온(1000℃~2000℃)에서 탄화시켜 상기 표면처리되지 않은 탄소나노튜브 또는 그래핀 주위에 흑연구조를 형성시키는 제6단계;를 포함하는 것을 특징으로 하는 고 전기전도성 및 고강도 PAN계 탄소섬유를 제조하는 방법에 의해 달성된다.And a sixth step of oxidizing the coagulum and carbonizing it at a low temperature (1000 ° C to 2000 ° C) to form a graphite structure around the carbon nanotube or graphene not subjected to the surface treatment. Conductive and high strength PAN-based carbon fibers.

본 발명은, 탄소나노튜브 또는 그래핀을 표면처리하지 않음으로써, 탄소나노튜브 또는 그래핀의 고유한 물성(열전도성, 강도)을 그대로 유지시킨다. 표면처리되지 않음으로 인한 탄소나노튜브 또는 그래핀의 뭉침현상은 초음파 분산과 동시중합을 통해 해결한다. 이로 인해, 고 전기전도성이면서 동시에 고강도인 PAN계 탄소섬유 및 그 전구체를 제조할 수 있다.The present invention maintains intrinsic physical properties (thermal conductivity, strength) of carbon nanotubes or graphenes by not treating carbon nanotubes or graphenes. The aggregation of carbon nanotubes or graphene due to non-surface treatment is solved by ultrasonic dispersion and simultaneous polymerization. As a result, it is possible to produce PAN-based carbon fibers and their precursors which are high in electric conductivity and high in strength.

또한, 교차되어 연결된 탄소나노튜브(CNT)에 의해 만들어진 전기통로와, 탄소나노튜브 또는 그래핀의 주위의 흑연구조에 의해 만들어진 전기통로로 인해, PAN계 탄소섬유의 전기전도성이 향상된다.In addition, electrical conduction of the PAN-based carbon fibers is improved due to the electrical path created by the crossed-linked carbon nanotube (CNT) and the electrical path created by the graphite structure around the carbon nanotube or graphene.

또한, 탄소나노튜브 또는 그래핀을 표면처리되지 않음으로써, 탄소나노튜브 또는 그래핀의 열전도성이 그대로 유지된다. 이로 인해, 고온(2000℃~3000℃)이 아닌 저온(1000℃~2000℃)에서 응고사를 탄화시키더라도, 탄소나노튜브 또는 그래핀의 주위에는 전기전도성이 우수한 흑연구조가 형성된다. 이러한 흑연구조가 PAN계 탄소섬유의 전기 통로를 형성하므로, 고 전기전도성을 가진 PAN계 탄소섬유를 낮은 비용으로 제조할 수 있다.Further, by not treating the surface of the carbon nanotube or graphene, the thermal conductivity of the carbon nanotube or graphen remains unchanged. Therefore, even if carbon black is carbonized at a low temperature (1000 ° C to 2000 ° C) instead of a high temperature (2000 ° C to 3000 ° C), a graphite structure having excellent electrical conductivity is formed around carbon nanotubes or graphenes. Such graphite structure forms an electric pathway of PAN-based carbon fibers, so that PAN-based carbon fibers having high electrical conductivity can be produced at low cost.

도 1은, 본 발명의 일 실시예에 따른 고 전기전도성 및 고강도 PAN계 탄소섬유용 전구체를 제조하는 방법을 나타낸 순서도이다.
도 2는, 표면처리되지 않은 탄소나노튜브가 중합용매내에서 뭉쳐진 상태를 나타낸 도면이다.
도 3은, 표면처리되지 않은 탄소나노튜브가 중합용매내에서 초음파로 분산된 상태를 나타낸 도면이다.
도 4는, 표면처리되지 않은 탄소나노튜브가 중합용매내에서 균일하게 분산된 상태에서, 단량체조성물을 첨가하고 동시중합하여 전구체용액을 형성하는 과정을 나타낸 도면이다.
도 5는, 탄소나노튜브가 균일하게 분포된 응고사를 나타낸 도면이다.
도 6은, 탄소나노튜브가 균일하게 분포된 응고사를 나타낸 사진이다.
도 7은, 본 발명의 일 실시예에 따른 고 전기전도성 및 고강도 PAN계 탄소섬유를 제조하는 방법을 나타낸 순서도이다.
도 8은, 고 전기전도성 및 고강도 PAN계 탄소섬유의 탄소나노튜브 주위에 흑연구조가 형성된 상태를 나타낸 도면이다.
도 9는, 도 8에 도시된 고 전기전도성 및 고강도 PAN계 탄소섬유의 단면을 나타낸 도면이다.
FIG. 1 is a flowchart showing a method of manufacturing a precursor for high-conductivity and high-strength PAN-based carbon fibers according to an embodiment of the present invention.
2 is a view showing a state in which untreated carbon nanotubes are aggregated in a polymerization solvent.
3 is a view showing a state in which carbon nanotubes not surface-treated are dispersed by ultrasonic waves in a polymerization solvent.
FIG. 4 is a view showing a process of adding a monomer composition and forming a precursor solution by simultaneous polymerization in a state where untreated carbon nanotubes are uniformly dispersed in a polymerization solvent.
5 is a view showing coagulation in which carbon nanotubes are uniformly distributed.
6 is a photograph showing coagulation with carbon nanotubes uniformly distributed.
7 is a flowchart illustrating a method of manufacturing a high-conductivity and high-strength PAN-based carbon fiber according to an embodiment of the present invention.
8 is a view showing a state in which a graphite structure is formed around carbon nanotubes of high-conductivity and high-strength PAN-based carbon fibers.
Fig. 9 is a cross-sectional view of the high-conductivity and high-strength PAN-based carbon fibers shown in Fig. 8. Fig.

이하, 본 발명의 일 실시예에 따른 고 전기전도성 및 고강도 PAN계 탄소섬유용 전구체를 제조하는 방법을 상세히 설명한다.Hereinafter, a method for producing a precursor for a high-conductivity and high-strength PAN-based carbon fiber according to an embodiment of the present invention will be described in detail.

도 1은, 본 발명의 일 실시예에 따른 고 전기전도성 및 고강도 PAN계 탄소섬유용 전구체를 제조하는 방법을 나타낸 순서도이다.FIG. 1 is a flowchart showing a method of manufacturing a precursor for high-conductivity and high-strength PAN-based carbon fibers according to an embodiment of the present invention.

도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 고 전기전도성 및 고강도 PAN계 탄소섬유용 전구체를 제조하는 방법은,As shown in FIG. 1, a method for producing a precursor for high-conductivity and high strength PAN-based carbon fibers according to an embodiment of the present invention includes:

표면처리되지 않은 탄소나노튜브 또는 그래핀을 중합용매에 넣고 초음파로 분산시키는 제1단계(S11);A first step (S11) in which a surface-untreated carbon nanotube or graphene is dispersed in a polymerization solvent and dispersed by ultrasonic waves;

상기 표면처리되지 않은 탄소나노튜브 또는 그래핀이 분산되어 있는 중합용매를 반응기에 투입하고 교반시키는 제2단계(S12);A second step (S12) of adding a polymerization solvent in which the surface-untreated carbon nanotubes or graphenes are dispersed to a reactor and stirring the mixture;

아크릴로니트릴, 메틸아크릴레이트, 이타콘산, 개시제인 아조비스이소부티로니트릴을 혼합하여 단량체조성물을 형성하는 제3단계(S13);A third step (S13) of forming a monomer composition by mixing acrylonitrile, methyl acrylate, itaconic acid, and azobisisobutyronitrile as an initiator;

상기 단량체조성물을 상기 중합용매가 교반되고 있는 상기 반응기에 첨가하고 동시중합하여 전구체용액을 형성하는 제4단계(S14);A fourth step (S14) of adding the monomer composition to the reactor in which the polymerization solvent is stirred and concurrently adding thereto to form a precursor solution;

상기 전구체용액을 방사, 세척, 탈용매, 연신하여 응고사를 형성하는 제5단계(S15);로 구성된다.And a fifth step (S15) of spinning, washing, desolvating and stretching the precursor solution to form coagulation.

이하, 제1단계(S11)를 설명한다.The first step S11 will be described below.

탄소나노튜브는, 탄소 6개로 이루어진 육각형들이 서로 연결되어 관 모양을 이루고 있는 물질로써, 전기전도성은 구리와 비슷하고, 열전도성은 자연계에서 가장 뛰어난 다이아몬드와 같으며, 강도는 철강보다 100배나 뛰어나다. 탄소섬유는 1%만 변형시켜도 끊어지는 반면 탄소나노튜브는 15%가 변형되어도 견딜 수 있다.Carbon nanotubes consist of six carbon hexagons connected to each other to form a tubular shape. Electrical conductivity is similar to that of copper. The thermal conductivity is the same as that of natural diamond, and its strength is 100 times better than steel. Carbon fibers can be broken even if they are deformed by only 1%, while carbon nanotubes can withstand 15% deformation.

그래핀은, 흑연에서 가장 얇게 한 겹을 떼어낸 물질로써, 구리보다 100배 이상 전기가 잘 통하고, 반도체로 주로 쓰이는 단결정 실리콘보다 100배 이상 전자를 빠르게 이동시킬 수 있다. 또한, 강도는 강철보다 200배 이상 강하며, 자연계에서 최고의 열전도성을 자랑하는 다이아몬드보다 2배 이상 열전도성이 높다. 또 탄성이 뛰어나 늘리거나 구부려도 전기적 성질을 잃지 않는다.Graphene is the thinnest layer of graphite, which is 100 times more electricity than copper and can move electrons 100 times faster than monocrystalline silicon. The strength is more than 200 times stronger than steel and more than twice the thermal conductivity of diamonds with the highest thermal conductivity in nature. It is also excellent in elasticity and does not lose its electrical properties even when stretched or bent.

본 발명은, 탄소나노튜브 또는 그래핀을 표면처리 시키지 않음으로써, 상술한 탄소나노튜브 또는 그래핀의 고유한 물성(열전도성, 강도)을 그대로 유지시킨다.The present invention maintains intrinsic physical properties (thermal conductivity, strength) of the carbon nanotubes or graphenes by not subjecting the carbon nanotubes or graphenes to surface treatment.

본 발명에서 탄소나노튜브는 평균직경 1~수십nm, 평균길이가 100nm~수십㎛, 순도 90% 이상인 것이 사용된다. In the present invention, carbon nanotubes having an average diameter of 1 to several tens nm, an average length of 100 nm to several tens of μm, and a purity of 90% or more are used.

본 발명에서 그래핀은 0.34nm~2nm의 두께를 가지며, 흑연으로부터 한층 또는 두세층으로 박리된 것이 사용된다.In the present invention, graphene has a thickness of 0.34 nm to 2 nm, and one or two layers of graphite peeled off are used.

이하, 탄소나노튜브를 예로 들어 설명한다. 그래핀를 예로 들 경우, 아래 설명에서 탄소나노튜브를 그래핀으로 바꾸어 읽으면 된다.Hereinafter, carbon nanotubes will be described as an example. If graphene is taken as an example, read carbon nanotubes in graphene below.

도 2는, 표면처리되지 않은 탄소나노튜브가 중합용매내에서 뭉쳐진 상태를 나타낸 도면이다. 도 3은, 표면처리되지 않은 탄소나노튜브가 중합용매내에서 초음파로 분산된 상태를 나타낸 도면이다.2 is a view showing a state in which untreated carbon nanotubes are aggregated in a polymerization solvent. 3 is a view showing a state in which carbon nanotubes not surface-treated are dispersed by ultrasonic waves in a polymerization solvent.

중합용매로 디메일 설폭사이드, 디메틸 포름아마이드, 디메틸 아세트아미드 중 어느 하나가 사용된다. 중합용매의 중량은 단량체조성물 중량의 4~6배이다.As the polymerization solvent, any one of dimephyl sulfoxide, dimethyl formamide and dimethylacetamide is used. The weight of the polymerization solvent is 4 to 6 times the weight of the monomer composition.

도 2에 도시된 바와 같이, 표면처리되지 않은 탄소나노튜브(CNT)를 중합용매(PS)에 넣으면, 중합용매(PS)와 상용성이 없는 탄소나노튜브(CNT)는 서로 뭉치게 된다. 이렇게 뭉쳐진 탄소나노튜브(CNT)를 초음파로 기계적 진동을 주어 분산시킨다. 그러면, 도 3에 도시된 바와 같이, 중합용매(PS)내에서 탄소나노튜브(CNT)가 일시적으로 분산된다.As shown in FIG. 2, when the surface-untreated carbon nanotube (CNT) is put into the polymerization solvent (PS), the polymerization solvent (PS) and the carbon nanotubes (CNT) which are not compatible with each other are aggregated together. The carbon nanotubes (CNTs) thus aggregated are dispersed by ultrasonic mechanical vibration. Then, as shown in FIG. 3, the carbon nanotubes (CNTs) are temporarily dispersed in the polymerization solvent (PS).

이하, 제2단계(S12)를 설명한다.The second step S12 will be described below.

탄소나노튜브(CNT)가 일시적으로 분산된 중합용매(PS)를, 반응기(미도시)에 투입하고 60℃에서 250rpm으로 교반시킨다. 교반으로 인해서, 중합용매(PS)내에서 탄소나노튜브(CNT)의 분산상태가 유지된다.A polymerization solvent (PS) in which carbon nanotubes (CNTs) are temporarily dispersed is charged into a reactor (not shown), and stirred at 60 DEG C at 250 rpm. Due to stirring, the dispersion state of the carbon nanotubes (CNTs) in the polymerization solvent (PS) is maintained.

이하, 제3단계(S13)를 설명한다.The third step S13 will be described below.

아크릴로니트릴 95~99중량부, 메틸아크릴레이트 1~4중량부, 이타콘산 0.5~4중량부, 개시제인 아조비스이소부티로니트릴 0.2에서 1중량부를 혼합하여 단량체조성물(M)을 형성한다.1 to 4 parts by weight of acrylonitrile, 1 to 4 parts by weight of methyl acrylate, 0.5 to 4 parts by weight of itaconic acid and 1 part by weight of azobisisobutyronitrile as an initiator are mixed to form a monomer composition (M).

이하, 제4단계(S14)를 설명한다.The fourth step S14 will be described below.

도 4는, 표면처리되지 않은 탄소나노튜브가 중합용매내에서 균일하게 분산된 상태에서, 단량체조성물을 첨가하고 동시중합하여 전구체용액을 형성하는 과정을 나타낸 도면이다. 도 4의 우측에 도시된 단량체와 단량체를 연결하는 곡선은, 단량체와 단량체가 중합된 상태를 나타낸다.FIG. 4 is a view showing a process of adding a monomer composition and forming a precursor solution by simultaneous polymerization in a state where untreated carbon nanotubes are uniformly dispersed in a polymerization solvent. The curve connecting the monomers to the monomers shown on the right side of Fig. 4 shows a state in which the monomers and the monomers are polymerized.

탄소나노튜브가 균일하게 분산된 중합용매(PS)에 단량체조성물(M)을 천천히 첨가시킨다. 그러면, 도 4의 좌측에 도시된 바와 같이, 중합용매(PS)에 의해 팽윤된 상태의 탄소나노튜브(CNT) 사이사이로 단량체(M)가 고르게 침투된다.The monomer composition (M) is slowly added to a polymerization solvent (PS) in which carbon nanotubes are uniformly dispersed. Then, as shown in the left side of Fig. 4, the monomer (M) penetrates evenly between the carbon nanotubes (CNT) swelled by the polymerization solvent (PS).

이 상태로 20시간 정도 지나게 되면, 도 4의 우측에 도시된 바와 같이, 단량체(M) 사이사이에 탄소나노튜브(CNT)가 끼인 상태로 단량체(M)가 고분자화되어, 탄소나노튜브(CNT)가 고르게 분산된 20wt% 전구체 용액이 형성된다.As shown in the right side of FIG. 4, when the monomer M is polymerized in a state in which carbon nanotubes (CNTs) are sandwiched between the monomers M, the carbon nanotubes (CNTs) ) Is uniformly dispersed in the precursor solution to form a 20 wt% precursor solution.

이하, 제5단계(S15)를 설명한다.The fifth step S15 will be described below.

전구체용액을 방사노즐(미도시)을 통해 방사하고, 방사된 전구체용액을 응고용매가 담긴 응고욕조(미도시) 안으로 통과시켜 세척 및 탈용매시킨 후, 연신하여 응고사를 형성한다. 이렇게 형성된 응고사를 PAN계 탄소섬유의 전구체 또는 PAN 섬유라 부른다.The precursor solution is radiated through a spinning nozzle (not shown), and the radiated precursor solution is passed through a coagulation bath (not shown) containing a coagulation solvent, washed and desolvated, and then stretched to form coagulation. The thus formed coagulation is called precursor of PAN-based carbon fiber or PAN fiber.

도 5는, 탄소나노튜브가 균일하게 분포된 응고사를 나타낸 도면이다.5 is a view showing coagulation in which carbon nanotubes are uniformly distributed.

도 5에 도시된 바와 같이, 연신과정에서 탄소나노튜브(CNT)는 응고사의 길이방향으로 정렬되고, 탄소나노튜브(CNT)은 서로서로 교차된다.As shown in FIG. 5, the carbon nanotubes (CNTs) are aligned in the longitudinal direction of the coagulating yarns and the carbon nanotubes (CNTs) cross each other in the drawing process.

응고사의 길이방향으로 탄소나노튜브(CNT)가 정렬되는 과정에서, 탄소나노튜브(CNT)은 서로서로 교차된다. 이를 위해, 단량체조성물의 중량 100일 때, 탄소나노튜브(CNT)를 0.1~10중량 이상 포함시킨다.In the process of aligning the carbon nanotubes (CNTs) in the longitudinal direction of the coagulating yarn, the carbon nanotubes (CNTs) cross each other. For this, when the weight of the monomer composition is 100, the carbon nanotube (CNT) is contained in an amount of 0.1 to 10 wt.

이렇게 교차되어 연결된 탄소나노튜브(CNT)로 인해, 전기 통로가 만들어져, 탄소섬유의 전기전도성이 향상된다.The crossed-linked carbon nanotubes (CNTs) create an electrical pathway, which improves the electrical conductivity of the carbon fibers.

도 6은, 탄소나노튜브가 균일하게 분포된 응고사를 나타낸 사진이다.6 is a photograph showing coagulation with carbon nanotubes uniformly distributed.

도 6에 도시된 바와 같이, 균일하게 분산된 탄소나노튜브(CNT)에 인해, 응고사는 탄소나노튜브(CNT)의 첨가량에 따라 회색 또는 검은색을 균일하게 띈다. 참고로, 탄소나노튜브(CNT)가 첨가되지 않은 응고사는 흰색에 가까운 색깔을 띈다. 또한, 탄소나노튜브(CNT)가 균일하게 분산되지 않은 응고사는 군데군데 검은색을 띈다.As shown in FIG. 6, due to the uniformly dispersed carbon nanotubes (CNTs), the coagulated fibers are uniformly gray or black depending on the amount of carbon nanotubes (CNTs) added. For reference, coagulants that do not contain carbon nanotubes (CNTs) are close to white. Also, the coagulants which are not uniformly dispersed in carbon nanotubes (CNTs) are somewhat blackish.

이하, 본 발명의 일 실시예에 따른 고 전기전도성 및 고강도 PAN계 탄소섬유를 제조하는 방법을 상세히 설명한다.Hereinafter, a method for producing high-conductivity and high-strength PAN-based carbon fibers according to an embodiment of the present invention will be described in detail.

도 7은, 본 발명의 일 실시예에 따른 고 전기전도성 및 고강도 PAN계 탄소섬유를 제조하는 방법을 나타낸 순서도이다.7 is a flowchart illustrating a method of manufacturing a high-conductivity and high-strength PAN-based carbon fiber according to an embodiment of the present invention.

도 7에 도시된 바와 같이, 본 발명의 일 실시예에 따른 고 전기전도성 및 고강도 PAN계 탄소섬유를 제조하는 방법은,As shown in FIG. 7, a method of producing high-conductivity and high-strength PAN-based carbon fibers according to an embodiment of the present invention includes:

표면처리되지 않은 탄소나노튜브 또는 그래핀을 중합용매에 넣고 초음파로 분산시키는 제1단계(S21);A first step (S21) in which a surface-untreated carbon nanotube or graphene is dispersed in a polymerization solvent and dispersed by ultrasonic waves;

상기 표면처리되지 않은 탄소나노튜브 또는 그래핀이 분산되어 있는 중합용매를 반응기에 투입하고 교반시키는 제2단계(S22);A second step (S22) of adding a polymerization solvent in which the surface-untreated carbon nanotubes or graphenes are dispersed to a reactor and stirring the mixture;

아크릴로니트릴, 메틸아크릴레이트, 이타콘산, 개시제인 아조비스이소부티로니트릴을 혼합하여 단량체조성물을 형성하는 제3단계(S23);A third step (S23) of mixing the acrylonitrile, methyl acrylate, itaconic acid and azobisisobutyronitrile as an initiator to form a monomer composition;

상기 단량체조성물을 상기 중합용매가 교반되고 있는 상기 반응기에 첨가하고 동시중합하여 전구체용액을 형성하는 제4단계(S24);A fourth step (S24) of adding the monomer composition to the reactor in which the polymerization solvent is stirred and concurrently adding thereto to form a precursor solution;

상기 전구체용액을 방사, 세척, 탈용매, 연신하여 응고사를 형성하는 제5단계(S25);A fifth step (S25) of spinning, washing, desolvation and stretching the precursor solution to form coagulation;

상기 응고사를 산화처리하고 저온에서 탄화시켜 상기 표면처리되지 않은 탄소나노튜브 또는 그래핀 주위에 흑연구조를 형성시키는 제6단계(S26);로 구성된다.And a sixth step (S26) of oxidizing the coagulation and carbonizing at a low temperature to form a graphite structure around the carbon nanotube or graphene not subjected to the surface treatment.

제1단계(S21) 내지 제5단계(S25)는, 본 발명의 일 실시예에 따른 고 전기전도성 및 고강도 PAN계 탄소섬유용 전구체를 제조하는 방법의 제1단계(S11) 내지 제5단계(S15)와 동일하므로 그 설명을 생략한다.The first step S21 to the fifth step S25 are the first to the fifth steps S11 to S25 of the method for producing the precursor for high-conductivity and high strength PAN-based carbon fibers according to an embodiment of the present invention S15), and the description thereof will be omitted.

이하, 제6단계(S26)를 설명한다.The sixth step S26 will be described below.

도 8은, 고 전기전도성 및 고강도 PAN계 탄소섬유의 탄소나노튜브 주위에 흑연구조가 형성된 상태를 나타낸 도면이다. 도 9는, 도 8에 도시된 고 전기전도성 및 고강도 PAN계 탄소섬유의 단면을 나타낸 도면이다.8 is a view showing a state in which a graphite structure is formed around carbon nanotubes of high-conductivity and high-strength PAN-based carbon fibers. Fig. 9 is a cross-sectional view of the high-conductivity and high-strength PAN-based carbon fibers shown in Fig. 8. Fig.

제5단계(S25)를 거쳐 만들어진 응고사를 200~300℃에서 일정시간 산화처리하여 내염화시킨다. 내염화된 응고사를 저온(1000℃~2000℃)에서 탄화시켜, PAN계 탄소섬유(CF)를 제조한다.The coagulum produced through the fifth step (S25) is subjected to oxidation treatment at a temperature of 200 to 300 DEG C for a certain period of time to be chlorinated. The chlorinated collapse is carbonized at a low temperature (1000 ° C to 2000 ° C) to produce a PAN-based carbon fiber (CF).

본 발명은 PAN계 탄소섬유용 전구체를 만드는 단계에서, 탄소나노튜브의 고유한 물성(열전도성, 강도)을 떨어뜨리는 표면처리를 하지 않는다.The present invention does not perform a surface treatment that lowers the intrinsic physical properties (thermal conductivity, strength) of carbon nanotubes in the step of forming a precursor for PAN-based carbon fibers.

이로 인해, 고온(2000℃~3000℃)이 아닌 저온(1000℃~2000℃)에서 응고사를 탄화시키더라도, 탄소나노튜브의 우수한 열전도성으로 인해, 도 8 및 도 9에 도시된 바와 같이, 탄소나노튜브 주위에는 흑연구조가 형성될 수 있다.8 and 9, even when carbon nanotubes are carbonized at a low temperature (1000 ° C to 2000 ° C) instead of a high temperature (2000 ° C to 3000 ° C), due to the excellent thermal conductivity of carbon nanotubes, A graphite structure may be formed around the carbon nanotubes.

다만, 탄소나노튜브로부터 떨어진 부분에는 흑연구조를 형성하지 못한 탄소가 무질서하게 존재한다. 이렇게 탄소나노튜브 주위에 형성된 흑연구조는, PAN계 탄소섬유(CF)의 전기 통로를 형성한다.However, carbon atoms that do not form a graphite structure are randomly present at a portion remote from the carbon nanotubes. The graphite structure formed around the carbon nanotubes thus forms the electric path of the PAN-based carbon fiber (CF).

Claims (7)

표면처리되지 않은 탄소나노튜브 또는 그래핀을 중합용매에 넣고 초음파로 분산시키는 제1단계;
상기 표면처리되지 않은 탄소나노튜브 또는 그래핀이 분산되어 있는 중합용매를 반응기에 투입하고 교반시키는 제2단계;
아크릴로니트릴, 메틸아크릴레이트, 이타콘산, 개시제인 아조비스이소부티로니트릴을 혼합하여 단량체조성물을 형성하는 제3단계;
상기 단량체조성물을 상기 중합용매가 교반되고 있는 상기 반응기에 첨가하고 동시중합하여 전구체용액을 형성하는 제4단계; 및
상기 전구체용액을 방사, 세척, 탈용매, 연신하여 응고사를 형성하는 제5단계;를 포함하는 것을 특징으로 하는 고 전기전도성 및 고강도 PAN계 탄소섬유용 전구체를 제조하는 방법.
A first step of dispersing the surface-untreated carbon nanotubes or graphenes into a polymerization solvent and dispersing them by ultrasonic waves;
A second step of adding a polymerization solvent in which the non-surface-treated carbon nanotubes or graphenes are dispersed to a reactor and stirring the mixture;
A third step of mixing the acrylonitrile, methyl acrylate, itaconic acid and azobisisobutyronitrile as an initiator to form a monomer composition;
A fourth step of adding the monomer composition to the reactor in which the polymerization solvent is stirred and simultaneously adding the solution to form a precursor solution; And
And a fifth step of spinning, washing, desolvating, and stretching the precursor solution to form a coagulum. The method for producing a precursor for high-conductivity and high strength PAN-based carbon fibers according to claim 1,
제1항에 있어서, 상기 제1단계에서 중합용매는, 디메일 설폭사이드, 디메틸 포름아마이드, 디메틸 아세트아미드 중 어느 하나이며,
상기 제2단계에서, 단량체조성물은, 아크릴로니트릴 95~99중량부, 메틸아크릴레이트 1~4중량부, 이타콘산 0.5~4중량부, 개시제인 아조비스이소부티로니트릴 0.2에서 1중량부의 혼합물이고,
상기 중합용매의 중량은 상기 단량체조성물 중량의 4~6배인 것을 특징으로 하는 고 전기전도성 및 고강도 PAN계 탄소섬유용 전구체를 제조하는 방법.
The method according to claim 1, wherein the polymerization solvent in the first step is any one of dimephyl sulfoxide, dimethyl formamide and dimethylacetamide,
In the second step, the monomer composition comprises 95 to 99 parts by weight of acrylonitrile, 1 to 4 parts by weight of methyl acrylate, 0.5 to 4 parts by weight of itaconic acid, 1 part by weight of azobisisobutyronitrile as an initiator ego,
Wherein the weight of the polymerization solvent is 4 to 6 times the weight of the monomer composition.
제2항에 있어서, 상기 단량체조성물의 중량 100일 때, 상기 표면처리되지 않은 탄소나노튜브 또는 그래핀의 중량은 0.1~10 인 것을 특징으로 하는 고 전기전도성 및 고강도 PAN계 탄소섬유용 전구체를 제조하는 방법.3. The method of claim 2, wherein the weight of the surface-treated carbon nanotube or graphene is from 0.1 to 10 when the weight of the monomer composition is 100, How to. 제1항에 있어서,
상기 제4단계를 거치면,
상기 단량체 사이사이에 상기 표면처리되지 않은 탄소나노튜브 또는 그래핀이 끼인 상태로, 상기 단량체가 고분자화되는 것을 특징으로 하는 고 전기전도성 및 고강도 PAN계 탄소섬유용 전구체를 제조하는 방법.
The method according to claim 1,
Through the fourth step,
Wherein the monomers are polymerized with the carbon nanotubes or graphenes sandwiched between the monomers. The method of claim 1, wherein the monomers are polymerized.
제2항에 있어서,
상기 제5단계를 거치면,
상기 표면처리되지 않은 탄소나노튜브 또는 그래핀이 상기 응고사의 길이방향으로 정렬되고, 상기 표면처리되지 않은 탄소나노튜브 또는 그래핀은 서로서로 교차되어 전기 통로를 형성하는 것을 특징으로 하는 고 전기전도성 및 고강도 PAN계 탄소섬유용 전구체를 제조하는 방법.
3. The method of claim 2,
Through the fifth step,
Characterized in that the non-surface-treated carbon nanotubes or graphenes are aligned in the longitudinal direction of the coagulating yarns, and the non-surface-treated carbon nanotubes or graphenes cross each other to form electric paths. A method for producing a high strength PAN-based precursor for carbon fiber.
표면처리되지 않은 탄소나노튜브 또는 그래핀을 중합용매에 넣고 초음파로 분산시키는 제1단계;
상기 표면처리되지 않은 탄소나노튜브 또는 그래핀이 분산되어 있는 중합용매를 반응기에 투입하고 교반시키는 제2단계;
아크릴로니트릴, 메틸아크릴레이트, 이타콘산, 개시제인 아조비스이소부티로니트릴을 혼합하여 단량체조성물을 형성하는 제3단계;
상기 단량체조성물을 상기 중합용매가 교반되고 있는 상기 반응기에 첨가하고 동시중합하여 전구체용액을 형성하는 제4단계;
상기 전구체용액을 방사, 세척, 탈용매, 연신하여 응고사를 형성하는 제5단계; 및
상기 응고사를 산화처리하고, 저온(1000℃~2000℃)에서 탄화시켜 상기 표면처리되지 않은 탄소나노튜브 또는 그래핀 주위에 흑연구조를 형성시키는 제6단계;를 포함하는 것을 특징으로 하는 고 전기전도성 및 고강도 PAN계 탄소섬유를 제조하는 방법.
A first step of dispersing the surface-untreated carbon nanotubes or graphenes into a polymerization solvent and dispersing them by ultrasonic waves;
A second step of adding a polymerization solvent in which the non-surface-treated carbon nanotubes or graphenes are dispersed to a reactor and stirring the mixture;
A third step of mixing the acrylonitrile, methyl acrylate, itaconic acid and azobisisobutyronitrile as an initiator to form a monomer composition;
A fourth step of adding the monomer composition to the reactor in which the polymerization solvent is stirred and simultaneously adding the solution to form a precursor solution;
A fifth step of spinning, washing, desolvating and stretching the precursor solution to form coagulation; And
And a sixth step of oxidizing the coagulum and carbonizing it at a low temperature (1000 ° C to 2000 ° C) to form a graphite structure around the carbon nanotube or graphene not subjected to the surface treatment. Method for manufacturing conductive and high strength PAN based carbon fibers.
제6항에 있어서, 상기 제6단계를 거치면,
상기 탄소나노튜브 주위에 형성된 흑연구조로 인해 전기 통로가 형성되는 것을 특징으로 하는 고 전기전도성 및 고강도 PAN계 탄소섬유를 제조하는 방법.
[7] The method of claim 6,
Wherein the graphite structure formed around the carbon nanotubes forms an electrical pathway. ≪ Desc / Clms Page number 20 >
KR1020130125802A 2013-10-22 2013-10-22 Method for making high electro conductive and high strengthened pan-based carbon fiber and pan precursor for the same KR101447078B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130125802A KR101447078B1 (en) 2013-10-22 2013-10-22 Method for making high electro conductive and high strengthened pan-based carbon fiber and pan precursor for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130125802A KR101447078B1 (en) 2013-10-22 2013-10-22 Method for making high electro conductive and high strengthened pan-based carbon fiber and pan precursor for the same

Publications (1)

Publication Number Publication Date
KR101447078B1 true KR101447078B1 (en) 2014-10-06

Family

ID=51996482

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130125802A KR101447078B1 (en) 2013-10-22 2013-10-22 Method for making high electro conductive and high strengthened pan-based carbon fiber and pan precursor for the same

Country Status (1)

Country Link
KR (1) KR101447078B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105544020A (en) * 2016-01-28 2016-05-04 东华大学 Graphene-doped polyacrylonitrile mesopore activated carbon fiber and preparation method thereof
CN106012110A (en) * 2016-06-30 2016-10-12 东华大学 Flexible carbon fiber and preparation method thereof
KR20170111970A (en) * 2016-03-30 2017-10-12 코오롱인더스트리 주식회사 Polyacrylronitrile type carbon fiber and method of manufacturing the same
KR101932602B1 (en) * 2017-05-17 2018-12-26 재단법인 한국탄소융합기술원 Pan-based carbon fiber whose electro conductive is controlled and method for manufacturing the same
US10781277B2 (en) 2017-03-08 2020-09-22 Istanbul Technical University Method of forming a composite nanoparticle for nanofibers from a poly-(acrylonitrile-co-itaconic acid) poly 3-methoxythipohene (P(AN-co-IA)-PMOT) nano composite solution
CN113224305A (en) * 2021-05-10 2021-08-06 衢州德联环保科技有限公司 Preparation method of modified polyvinylidene fluoride for lithium ion battery
KR102466308B1 (en) * 2022-05-23 2022-11-18 (주)아모스아인스가구 Textile finishing material for furniture and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1618850A (en) 2004-10-11 2005-05-25 东华大学 Composite material fiber based on carbon nano-tube and its preparation method
US20070004857A1 (en) 2002-06-19 2007-01-04 Barraza Harry J Carbon nanotube-filled composites prepared by in-situ polymerization
KR100852386B1 (en) 2007-03-16 2008-08-14 한국과학기술원 Dispersion composite of nanotube for a process for preparing the same
KR20100087321A (en) * 2007-10-11 2010-08-04 조지아 테크 리서치 코포레이션 Carbon fibers and films and methods of making same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070004857A1 (en) 2002-06-19 2007-01-04 Barraza Harry J Carbon nanotube-filled composites prepared by in-situ polymerization
CN1618850A (en) 2004-10-11 2005-05-25 东华大学 Composite material fiber based on carbon nano-tube and its preparation method
KR100852386B1 (en) 2007-03-16 2008-08-14 한국과학기술원 Dispersion composite of nanotube for a process for preparing the same
KR20100087321A (en) * 2007-10-11 2010-08-04 조지아 테크 리서치 코포레이션 Carbon fibers and films and methods of making same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105544020A (en) * 2016-01-28 2016-05-04 东华大学 Graphene-doped polyacrylonitrile mesopore activated carbon fiber and preparation method thereof
KR20170111970A (en) * 2016-03-30 2017-10-12 코오롱인더스트리 주식회사 Polyacrylronitrile type carbon fiber and method of manufacturing the same
KR102309004B1 (en) * 2016-03-30 2021-10-05 코오롱인더스트리 주식회사 Polyacrylronitrile type carbon fiber and method of manufacturing the same
CN106012110A (en) * 2016-06-30 2016-10-12 东华大学 Flexible carbon fiber and preparation method thereof
US10781277B2 (en) 2017-03-08 2020-09-22 Istanbul Technical University Method of forming a composite nanoparticle for nanofibers from a poly-(acrylonitrile-co-itaconic acid) poly 3-methoxythipohene (P(AN-co-IA)-PMOT) nano composite solution
KR101932602B1 (en) * 2017-05-17 2018-12-26 재단법인 한국탄소융합기술원 Pan-based carbon fiber whose electro conductive is controlled and method for manufacturing the same
CN113224305A (en) * 2021-05-10 2021-08-06 衢州德联环保科技有限公司 Preparation method of modified polyvinylidene fluoride for lithium ion battery
CN113224305B (en) * 2021-05-10 2022-04-01 山东天瀚新能源科技有限公司 Preparation method of modified polyvinylidene fluoride for lithium ion battery
KR102466308B1 (en) * 2022-05-23 2022-11-18 (주)아모스아인스가구 Textile finishing material for furniture and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR101447078B1 (en) Method for making high electro conductive and high strengthened pan-based carbon fiber and pan precursor for the same
US10344404B2 (en) Nanocarbon composite carbon fiber with low cost and high performance and their preparation method
Chen et al. Fabrication and structural characterization of polyacrylonitrile and carbon nanofibers containing plasma-modified carbon nanotubes by electrospinning
US20160145772A1 (en) Polyacrylonitrile-based precursor fiber for carbon fiber, and production method therefor
Aykut et al. Effects of surfactants on the microstructures of electrospun polyacrylonitrile nanofibers and their carbonized analogs
Frank et al. High-performance PAN-based carbon fibers and their performance requirements
CN110067044B (en) Polyacrylonitrile-based graphite fiber and preparation method thereof
JP2012082541A (en) Method for producing carbon fiber
KR20150037794A (en) High Density carbon Nano-fiber Felt with Unidirectional Orientation and Application to Supercapacitor Electrode
Wang Carbon fibers and their thermal transporting properties
JP2017536486A (en) Use, stabilization, and carbonization of polyacrylonitrile / carbon composite fibers
Zhao et al. Wet‐spinning assembly of continuous and macroscopic graphene oxide/polyacrylonitrile reinforced composite fibers with enhanced mechanical properties and thermal stability
JP2016113726A (en) Polyacrylonitrile-based carbon fiber precursor fiber and carbon fiber production method
Jiang et al. Influence of different nanocellulose additives on processing and performance of PAN-based carbon fibers
Lee et al. A review of high-performance carbon nanotube-based carbon fibers
JP4662450B2 (en) Carbon fiber manufacturing method
KR20160047004A (en) High electro conductive and high strengthened pan-based carbon fiber and method for making the same
CN113174657A (en) Preparation method and application of graphene-doped carbon fiber
KR101850383B1 (en) A B ST/PAN omitted
Zhang et al. Uniform doping of onion-like carbon nanofillers in carbon nanofibers via functionalization and in-situ polymerization for improved fiber graphitic structure and mechanical properties
CN110846926A (en) Preparation method of para-nano aramid fiber and carbon nanotube composite paper
Zhang et al. Manufacture of carbon fibers from polyacrylonitrile precursors treated with CoSO4
Uçar et al. Structural properties of graphene oxide fibers: From graphene oxide dispersion until continuous graphene oxide fiber
KR20190001045A (en) Method of manufacturing carbon paper using cabon nano tube containing polyacrylonitrile short fiber
CN104530615A (en) Preparation method of polyvinylidene-fluoride-based heat-conducting composite material

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee