KR20170129008A - 반도체 소자 패키지 - Google Patents

반도체 소자 패키지 Download PDF

Info

Publication number
KR20170129008A
KR20170129008A KR1020160059815A KR20160059815A KR20170129008A KR 20170129008 A KR20170129008 A KR 20170129008A KR 1020160059815 A KR1020160059815 A KR 1020160059815A KR 20160059815 A KR20160059815 A KR 20160059815A KR 20170129008 A KR20170129008 A KR 20170129008A
Authority
KR
South Korea
Prior art keywords
wavelength conversion
semiconductor
semiconductor element
semiconductor device
width
Prior art date
Application number
KR1020160059815A
Other languages
English (en)
Other versions
KR102537073B1 (ko
Inventor
김경운
조인현
고영준
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020160059815A priority Critical patent/KR102537073B1/ko
Priority to US16/098,340 priority patent/US20190165226A1/en
Priority to CN201780027155.6A priority patent/CN109075232B/zh
Priority to PCT/KR2017/004637 priority patent/WO2017191966A1/ko
Publication of KR20170129008A publication Critical patent/KR20170129008A/ko
Application granted granted Critical
Publication of KR102537073B1 publication Critical patent/KR102537073B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

실시 예는 신뢰성이 향상된 반도체 소자 패키지에 관한 것으로, 반도체 소자; 상기 반도체 소자의 상부면에 배치된 파장 변환 부재; 상기 반도체 소자의 네 측면을 감싸며, 상부면의 높이가 상기 반도체 소자의 상부면의 높이보다 높으며, 상기 파장 변환 부재의 상부면의 높이보다 낮은 반사 부재; 및 상기 반사 부재와 상기 파장 변환 부재의 상부면을 덮도록 배치된 확산 부재를 포함한다.

Description

반도체 소자 패키지{SEMICONDUCTOR DEVICE PACKAGE}
실시 예는 반도체 소자 패키지에 관한 것으로, 보다 상세하게는 신뢰성이 향상된 반도체 소자 패키지에 관한 것이다.
GaN, AlGaN 등의 화합물을 포함하는 반도체 소자는 넓고 조정이 용이한 밴드 갭 에너지를 가지는 등의 많은 장점을 가져서 발광 소자, 수광 소자 및 각종 다이오드 등으로 다양하게 사용될 수 있다.
특히, 반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용한 발광 다이오드(Light Emitting Diode)나 레이저 다이오드(Laser Diode)와 같은 발광 소자는 박막 성장 기술 및 소자 재료의 개발로 적색, 녹색, 청색 및 자외선 등 다양한 색을 구현할 수 있으며, 형광 물질을 이용하거나 색을 조합함으로써 효율이 좋은 백색 광선도 구현이 가능하며, 형광등, 백열등 등 기존의 광원에 비해 저 소비 전력, 반영구적인 수명, 빠른 응답속도, 안전성, 환경 친화성의 장점을 가진다.
뿐만 아니라, 광검출기나 태양 전지와 같은 수광 소자도 반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용하여 제작하는 경우 소자 재료의 개발로 다양한 파장 영역의 빛을 흡수하여 광 전류를 생성함으로써 감마선부터 라디오 파장 영역까지 다양한 파장 영역의 빛을 이용할 수 있다. 또한 빠른 응답속도, 안전성, 환경 친화성 및 소자 재료의 용이한 조절의 장점을 가져 전력 제어 또는 초고주파 회로나 통신용 모듈에도 용이하게 이용할 수 있다.
따라서, 반도체 소자는 광 통신 수단의 송신 모듈, LCD(Liquid Crystal Display) 표시 장치의 백라이트를 구성하는 냉음극관(CCFL: Cold Cathode Fluorescence Lamp)을 대체하는 발광 다이오드 백라이트, 형광등이나 백열 전구를 대체할 수 있는 백색 발광 다이오드 조명 장치, 자동차 헤드 라이트 및 신호등 및 Gas나 화재를 감지하는 센서 등에까지 응용이 확대되고 있다. 또한, 반도체 소자는 고주파 응용 회로나 기타 전력 제어 장치, 통신용 모듈에까지 응용이 확대될 수 있다.
최근, 발광 다이오드의 휘도 문제가 크게 개선되어, 발광 다이오드는 액정 표시 장치의 백라이트 유닛(Backlight Unit), 전광판, 표시기, 가전 제품 등과 같은 각종 기기에 적용되고 있다.
발광 다이오드는 제 1 반도체층, 활성층 및 제 2 반도체층으로 구성된 발광 구조물의 일 측에 제 1 전극과 제 2 전극이 배치된 구조일 수 있다. 상기와 같은 발광 구조물의 일측에 배치된 파장 변환 필름을 포함하는 반도체 소자 패키지는 원하는 파장대의 광을 구현할 수 있다.
그런데, 발광 구조물의 일측에서 파장 변환 필름이 박리되는 경우, 반도체 소자 패키지의 신뢰성이 저하되고 광 추출 효율 역시 저하될 수 있다.
실시 예는 신뢰성이 향상된 반도체 소자 패키지를 제공하는 데 있다.
실시 예의 반도체 소자 패키지는 반도체 소자; 상기 반도체 소자의 상부면에 배치된 파장 변환 부재; 상기 반도체 소자의 네 측면을 감싸며, 상부면의 높이가 상기 반도체 소자의 상부면의 높이보다 높으며, 상기 파장 변환 부재의 상부면의 높이보다 낮은 반사 부재; 및 상기 반사 부재와 상기 파장 변환 부재의 상부면을 덮도록 배치된 확산 부재를 포함한다.
실시 예에 따른 반도체 소자 패키지는 반도체 소자의 네 측면을 감싸는 반사 부재가 반도체 소자의 상부면에 배치된 파장 변환 부재의 측면의 일부까지 덮도록 배치될 수 있다. 그리고, 확산 부재가 파장 변환 부재와 반사 부재의 상부면을 덮도록 배치되어 파장 변환 부재의 측면은 반사 부재와 확산 부재에 의해 완전히 감싸질 수 있다. 이에 따라, 파장 변환 부재가 반도체 소자의 상부면에서 박리되는 것을 효율적으로 방지할 수 있다.
도 1a는 실시 예의 반도체 소자 패키지의 사시도이다.
도 1b는 도 1a의 Ⅰ-Ⅰ'의 단면도이다.
도 2는 도 1b의 반도체 소자의 단면도이다.
도 3은 다른 실시 예의 반도체 소자 패키지의 Ⅰ-Ⅰ'의 단면도이다.
도 4a 내지 도 4f는 실시 예의 반도체 소자 패키지의 제조 방법을 나타낸 단면도이다.
도 5a 내지 도 5h는 다른 실시 예의 반도체 소자 패키지의 제조 방법을 나타낸 단면도이다.
이하 상기의 목적을 구체적으로 실현할 수 있는 본 발명의 실시 예를 첨부한 도면을 참조하여 설명한다.
본 발명에 따른 실시예의 설명에 있어서, 각 element의 "상(위) 또는 하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두 개의 element가 서로 직접(directly)접촉되거나 하나 이상의 다른 element가 상기 두 element사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 "상(위) 또는 하(아래)(on or under)"으로 표현되는 경우 하나의 element를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
반도체 소자는 발광 소자, 수광 소자 등 각종 전자 소자를 포함할 수 있으며, 발광 소자와 수광 소자는 모두 제 1 도전형 반도체층과 활성층 및 제 2 도전형 반도체층을 포함할 수 있다.
본 실시 예에 따른 반도체 소자는 발광 소자일 수 있다.
발광 소자는 전자와 정공이 재결합함으로써 빛을 방출하게 되고, 이 빛의 파장은 물질 고유의 에너지 밴드갭에 의해서 결정된다. 따라서, 방출되는 빛은 상기 물질의 조성에 따라 다를 수 있다.
이하에서는 실시 예의 반도체 소자 패키지를 발광 소자 패키지로 설명한다.
도 1a는 실시 예의 반도체 소자 패키지의 사시도이며, 도 1b는 도 1a의 Ⅰ-Ⅰ'의 단면도이다.
도 1a 및 도 1b와 같이, 실시 예의 반도체 소자 패키지(100)는 반도체 소자(10), 반도체 소자(10)의 상부면(10a)을 커버하는 파장 변환 부재(20), 반도체 소자(10)의 측면 및 파장 변환 부재(20)의 측면의 일부를 커버하는 반사 부재(30) 및 반사 부재(30)의 상부면(30a)과 파장 변환 부재(20)의 상부면(20a)을 커버하는 확산 부재(40)를 포함한다.
반도체 소자 패키지(100)는 칩 스케일 패키지(Chip Scale Package; CSP) 구조의 발광 소자 패키지일 수 있으며, 예를 들어, 반도체 소자(10)는 하부면에 제 1, 제 2 전극 패드(15a, 15b)가 배치된 플립 칩 구조의 발광 소자일 수 있다. 반도체 소자(10)의 구조에 대해서는 후술한다.
파장 변환 부재(20)는 반도체 소자(10)의 상부면(10a)을 커버할 수 있다. 파장 변환 부재(20)의 두께는 70㎛ 내지 100㎛일 수 있으며, 이에 한정하지 않는다. 파장 변환 부재(20)는 파장 변환 입자가 분산된 고분자 수지로 형성될 수 있다. 이 때, 고분자 수지는 광 투과성 에폭시 수지, 실리콘 수지, 폴리이미드 수지, 요소 수지, 및 아크릴 수지 중 선택된 하나 이상일 수 있다. 일 예로, 고분자 수지는 실리콘 수지일 수 있다.
파장 변환 입자는 반도체 소자(10)에서 방출된 광을 흡수하여 백색광으로 변환할 수 있다. 예를 들어, 파장 변환 입자는 형광체, QD(Quantum Dot) 중 어느 하나 이상을 포함할 수 있다. 이하에서는 파장 변환 입자를 형광체로 설명한다.
형광체는 YAG계, TAG계, Silicate계, Sulfide계 또는 Nitride계 중 어느 하나의 형광 물질이 포함될 수 있으나, 실시 예는 형광체의 종류에 제한되지 않는다. YAG 및 TAG계 형광 물질은 (Y, Tb, Lu, Sc, La, Gd, Sm)3(Al, Ga, In, Si, Fe)5(O, S)12:Ce 중에서 선택될 수 있으며, Silicate계 형광 물질은 (Sr, Ba, Ca, Mg)2SiO4:(Eu, F, Cl) 중에서 선택 사용 가능하다. 또한, Sulfide계 형광 물질은 (Ca,Sr)S:Eu, (Sr,Ca,Ba)(Al,Ga)2S4:Eu 중 선택 가능하며, Nitride계 형광체는 (Sr, Ca, Si, Al, O)N:Eu (예, CaAlSiN4:Eu β-SiAlON:Eu) 또는 Ca-α SiAlON:Eu계인 (Cax,My)(Si,Al)12(O,N)16일 수 있다. 이 때, M은 Eu, Tb, Yb 또는 Er 중 적어도 하나의 물질이며 0.05<(x+y)<0.3, 0.02<x<0.27 and 0.03<y<0.3을 만족하는 형광체 성분 중에서 선택될 수 있다. 적색 형광체는 N(예, CaAlSiN3:Eu)을 포함하는 질화물(Nitride)계 형광체거나 KSF(K2SiF6) 형광체일 수 있다.
파장 변환 부재(20)의 가장자리는 반도체 소자(10)의 가장자리에서 돌출된 형상일 수 있다. 이는 반도체 소자(10)의 측면에서 방출되는 광이 파장 변환 부재(20)의 돌출된 영역을 통해 특정 파장대의 광으로 변환되어 반도체 소자 패키지(10)외부로 방출시키기 위함이다. 예를 들어, 반도체 소자(10)가 청색 파장대의 광을 방출하는 경우, 청색 파장대의 광은 파장 변환 부재(20)에 의해 백색 광으로 변환될 수 있다.
이 때, 반도체 소자(10)에서 방출되는 광은 반도체 소자(10)의 상부면(10a)과 밀착된 영역에서 파장 변환 부재(20)를 통과하는 제 1 광(L1)과 반도체 소자(10)의 가장자리에서 돌출된 영역의 파장 변환 부재(20)를 통과하는 제 2 광(L2)을 포함할 수 있다. 따라서, 실시 예와 같이 파장 변환 부재(20)의 가장자리가 반도체 소자(10)의 가장자리에서 돌출된 구조의 반도체 소자 패키지(100)는 백색 광의 색감이 향상될 수 있다. 더욱이, 반도체 소자(10) 상에 파장 변환 부재(20)를 배치할 때, 공정 마진을 확보할 수 있다.
반사 부재(30)는 반도체 소자(10)의 네 측면을 감싸도록 배치되어, 반도체 소자(10)의 측면에서 방출되는 광을 반사시킬 수 있다. 따라서, 반사 부재(30)에서 반사된 광은 다시 반도체 소자(10)로 유입되어 반도체 소자(10)의 상부면(10a)을 통해 방출될 수 있다.
반사 부재(30)의 상부면(30a)의 높이는 반도체 소자(10)의 상부면(10a)의 높이보다 높아, 반사 부재(30)는 반도체 소자(10)의 측면뿐만 아니라 파장 변환 부재(20)의 측면의 일부까지 감싸도록 배치될 수 있다. 상기와 같이 반사 부재(30)가 파장 변환 부재(20)의 측면의 일부를 감싸도록 배치되는 경우, 파장 변환 부재(20)가 반도체 소자(10) 상에서 박리되는 것을 방지할 수 있다.
일반적인 반도체 소자 패키지는 반도체 소자 상에 파장 변환 부재가 배치되고, 파장 변환 부재의 측면이 그대로 노출된다. 따라서, 파장 변환 부재가 반도체 소자의 상부면에서 박리되어 반도체 소자 패키지의 신뢰성이 저하되며, 동시에 광 추출 효율 역시 감소한다.
반면, 상술한 실시 예의 반도체 소자 패키지(100)는 반사 부재(30)의 상부면(30a)의 높이가 반도체 소자(10)의 상부면(10a)의 높이보다 높으며 파장 변환 부재(20)의 상부면(20a)의 높이보다 낮아, 파장 변환 부재(20)의 측면의 일부까지 반사 부재(30)에 의해 감싸진 구조이다.
반사 부재(30)의 상부면(30a)의 높이와 반도체 소자(10)의 상부면(10a)의 높이의 차이(W4)는 파장 변환 부재(20)의 두께(T)의 1/4 이상일 수 있다. 이는 반사 부재(30)가 파장 변환 부재(20)의 측면을 충분히 감싸 파장 변환 부재(20)의 박리를 방지하기 위한 것이다. 그리고, 반사 부재(30)의 상부면(30a)의 높이와 반도체 소자(10)의 상부면(10a)의 높이의 차이(W4)가 파장 변환 부재(20)의 두께(T)의 3/4을 초과하는 경우, 확산 부재(40)가 파장 변환 부재(20)의 측면을 충분히 감싸지 못한다.
따라서, 반사 부재(30)의 상부면(30a)의 높이와 반도체 소자(10)의 상부면(10a)의 높이의 차이(W4)는 파장 변환 부재(20)의 두께(T)의 1/4 이상이며, 3/4 이하일 수 있으며, 이에 한정하지 않는다.
상술한 바와 같이 파장 변환 부재(20)의 가장자리가 반도체 소자(10)의 가장자리에서 돌출된 경우, 반사 부재(30)는 서로 다른 제 1 폭(W2)과 제 2 폭(W3)을 가질 수 있다. 이 때, 제 1 폭(W2)은 반도체 소자(10)의 측면과 중첩되는 영역의 반사 부재(30)의 폭이며, 제 2 폭(W3)은 파장 변환 부재(20)의 측면과 중첩되는 영역의 반사 부재(30)의 폭이다. 따라서, 반사 부재(30)의 제 2 폭(W3)은 반도체 소자(10)의 가장자리보다 돌출된 파장 변환 부재(20)의 영역의 폭(W1)만큼 반사 부재(30)의 제 1 폭(W2)보다 좁을 수 있다.
예를 들어, 반도체 소자(10)의 가장자리보다 돌출된 파장 변환 부재(20)의 영역의 폭(W1)이 50㎛이며 반사 부재(30)의 제 1 폭(W2)이 100㎛인 경우 반사 부재(30)의 제 2 폭(W3)은 50㎛일 수 있다.
특히, 반사 부재(30)의 제 2 폭(W3)은 반도체 소자(10)의 가장자리에서 돌출된 파장 변환 부재(20)의 영역의 폭(W1)과 동일하거나 넓을 수 있다. 이는 반도체 소자(10)의 가장자리에서 돌출된 파장 변환 부재(20)의 영역의 폭(W1)보다 반사 부재(30)의 제 2 폭(W3)이 좁으면, 반사 부재(30)가 파장 변환 부재(20)의 측면을 충분히 고정할 수 없기 때문이다.
따라서, 반사 부재(30)가 파장 변환 부재(20)의 측면을 충분히 고정하기 위해, 반사 부재(30)의 제 1 폭(W2)은 반도체 소자(10)의 가장자리에서 돌출된 파장 변환 부재(20)의 영역의 폭(W1)의 두 배 이상일 수 있으며, 이에 한정하지는 않는다.
반사 부재(30)는 광을 반사할 수 있는 재질이 선택될 수 있다. 일 예로, 반사 부재(30)는 페닐 실리콘(Phenyl Silicone) 또는 메틸 실리콘(Methyl Silicone)을 포함할 수 있다. 또한, 반사 부재(30)는 반사입자를 포함할 수도 있다. 일 예로, 반사 부재(30)는 TiO2가 분산된 글래스일 수도 있다.
확산 부재(40)는 파장 변환 부재(20)의 상부면(20a)을 덮도록 배치되어 반도체 소자(10)에서 방출되어 파장 변환 부재(20)를 통과하는 광을 확산시킬 수 있다. 더욱이, 확산 부재(40)는 파장 변환 부재(20)의 측면까지 감싸도록 배치될 수 있다.
구체적으로 확산 부재(40)는 파장 변환 부재(20)의 상부면(20a)과 반사 부재(30)의 상부면(30a)을 완전히 덮도록 배치되어 파장 변환 부재(20)의 상부면(20a)의 높이와 반사 부재(30)의 상부면(30a)의 높이 차이를 보상할 수 있다. 따라서, 파장 변환 부재(20)의 상부면(20a)과 파장 변환 부재(20)의 하부면(20b) 사이의 높이, 즉, 파장 변환 부재(20)의 측면이 반사 부재(30)의 상부면(30a)과 확산 부재(40)의 하부면이 밀착되는 계면과 접하여, 파장 변환 부재(20)의 측면은 반사 부재(30)와 확산 부재(40)에 의해 완전히 감싸질 수 있다.
이에 따라, 파장 변환 부재(20) 역시 반사 부재(30), 확산 부재(40) 및 반도체 소자(10)에 의해 완전히 감싸질 수 있다. 따라서, 실시 예의 반도체 소자 패키지(1000)는 파장 변환 부재(20)의 박리를 효율적으로 방지할 수 있다.
확산 부재(40)는 파장 변환 부재(20)와 확산 부재(40)의 밀착성을 위해 파장 변환 부재(20)에 포함된 고분자 수지와 동일한 물질을 포함할 수 있다. 예를 들어, 확산 부재(40)는 투명한 실리콘 수지를 포함할 수 있다. 이 때, 확산 부재(40)는 반사 부재(30)의 상부면을 완전히 덮도록 배치되며 확산 부재(40)의 가장자리와 반사 부재(30)의 가장자리가 일치할 수 있다. 이 경우, 반사 부재(30)의 상부면에서 확산 부재(40)가 들뜨는 것을 효율적으로 방지할 수 있다.
도 2는 도 1b의 반도체 소자의 단면도로, 반도체 소자가 발광 소자인 것을 도시하였다.
도 2와 같이, 실시 예의 반도체 소자(10)는 기판(11)의 하부에 배치되는 발광 구조물(12), 발광 구조물(12)의 일 측에 배치되는 제 1, 제 2 전극 패드(15a, 15b)를 포함하는 발광 소자일 수 있다. 실시 예에서는 제 1, 제 2 전극 패드(15a, 15b)가 발광 구조물(12)의 하부에 배치되는 것을 도시하였다.
기판(11)은 전도성 기판 또는 절연성 기판을 포함한다. 기판(11)은 반도체 물질 성장에 적합한 물질이나 캐리어 웨이퍼일 수 있다. 기판(11)은 사파이어(Al2O3), SiC, GaAs, GaN, ZnO, Si, GaP, InP 및 Ge 중 선택된 물질로 형성될 수 있으며, 이에 대해 한정하지는 않는다. 필요에 따라 기판(11)은 제거될 수 있다.
발광 구조물(12)은 제 1 반도체층(12a), 활성층(12b), 및 제 2 반도체층(12c)을 포함한다. 일반적으로 상기와 같은 발광 구조물(12)은 기판(11)과 함께 절단하여 복수 개로 분리될 수 있다.
제 1 반도체층(12a)은 Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제 1 반도체층(12a)에 제 1 도펀트가 도핑될 수 있다. 제 1 반도체층(12a)은 Inx1Aly1Ga1-x1-y1N(0≤x1≤1, 0≤y1=1, 0≤x1+y1≤1)의 조성식을 갖는 반도체 재료, 예를 들어 GaN, AlGaN, InGaN, InAlGaN 등에서 선택될 수 있다. 그리고, 제 1 도펀트는 Si, Ge, Sn, Se, Te와 같은 n형 도펀트일 수 있다. 제 1 도펀트가 n형 도펀트인 경우, 제 1 도펀트가 도핑된 제 1 반도체층(12a)은 n형 반도체층일 수 있다.
활성층(12b)은 제 1 반도체층(12a)을 통해서 주입되는 전자(또는 정공)와 제 2 반도체층(12c)을 통해서 주입되는 정공(또는 전자)이 만나는 층이다. 활성층(12b)은 전자와 정공이 재결합함에 따라 낮은 에너지 준위로 천이하며, 그에 상응하는 파장을 가지는 빛을 생성할 수 있다.
활성층(12b)은 단일 우물 구조, 다중 우물 구조, 단일 양자 우물 구조, 다중 양자 우물(Multi Quantum Well; MQW) 구조, 양자점 구조 또는 양자선 구조 중 어느 하나의 구조를 가질 수 있으며, 활성층(12b)의 구조는 이에 한정하지 않는다.
제 2 반도체층(12c)은 활성층(12b) 상에 형성되며, Ⅲ-Ⅴ족, Ⅱ-Ⅵ족 등의 화합물 반도체로 구현될 수 있으며, 제 2 반도체층(12c)에 제2도펀트가 도핑될 수 있다. 제 2 반도체층(12c)은 Inx5Aly2Ga1 -x5- y2N (0≤x5≤1, 0≤y2≤1, 0≤x5+y2≤1)의 조성식을 갖는 반도체 물질 또는 AlInN, AlGaAs, GaP, GaAs, GaAsP, AlGaInP 중 선택된 물질로 형성될 수 있다. 제 2 도펀트가 Mg, Zn, Ca, Sr, Ba 등과 같은 p형 도펀트인 경우, 제 2 도펀트가 도핑된 제 2 반도체층(12c)은 p형 반도체층일 수 있다.
활성층(12b)과 제 2 반도체층(12c) 사이에는 전자 차단층(미도시)이 배치될 수 있다. 전자 차단층은 제 1 반도체층(12a)에서 공급된 전자가 제 2 반도체층(12c)으로 빠져나가는 흐름을 차단하여, 활성층(12b) 내에서 전자와 정공이 재결합할 확률을 높일 수 있다. 전자 차단층의 에너지 밴드갭은 활성층(12b) 및/또는 제 2 반도체층(12c)의 에너지 밴드갭보다 클 수 있다. 전자 차단층은 Inx1Aly1Ga1 -x1-y1N(0≤x1≤1, 0≤y1≤1, 0≤x1+y1≤1)의 조성식을 갖는 반도체 재료, 예를 들어 AlGaN, InGaN, InAlGaN 등에서 선택될 수 있으나 이에 한정하지 않는다.
발광 구조물(12)은 제 2 반도체층(12c)에서 제 1 반도체층(12a) 방향으로 형성된 관통홀(H)을 포함한다. 관통홀(H)은 바닥면에서 제 1 반도체층(12a)을 노출시키며, 측면에서 제 1, 제 2 반도체층(12a, 12c)과 활성층(12b)을 노출시킬 수 있다. 관통홀(H)에 의해 노출된 제 1 반도체층(12a)과 전기적으로 접속되도록 제 1 전극(13a)이 배치될 수 있다. 그리고, 제 2 반도체층(12c)과 전기적으로 접속되는 제 2 전극(13b)이 배치될 수 있다.
제 1, 제 2 전극(13a, 13b)은 ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), IrOx, RuOx, RuOx/ITO, Ni/IrOx/Au, 및 Ni/IrOx/Au/ITO 중 적어도 하나를 포함할 수 있으며, 이러한 재료로 한정하지는 않는다. 또한, 제 1, 제 2 전극(13a, 13b)은 In, Co, Si, Ge, Au, Pd, Pt, Ru, Re, Mg, Zn, Hf, Ta, Rh, Ir, W, Ti, Ag, Cr, Mo, Nb, Al, Ni, Cu, 및 WTi 중에서 선택된 금속층을 더 포함할 수 있다.
절연층(14)은 관통홀(H)의 측면에서 노출된 제 1, 제 2 반도체층(12a, 12c)과 활성층(12b)을 감싸도록 배치될 수 있다. 도시된 바와 같이 절연층(14)은 발광 구조물(12)의 측면을 더 감싸는 구조일 수 있으며, 절연층(14)의 형성 위치는 이에 한정하지 않는다.
그리고, 제 1, 제 2 전극(13a, 13b)은 각각 제 1, 제 2 전극 패드(15a, 15b)과 전기적으로 연결될 수 있다.
이하, 다른 실시 예의 반도체 소자 패키지를 구체적으로 설명하면 다음과 같다.
도 3은 다른 실시 예의 반도체 소자 패키지의 Ⅰ-Ⅰ'의 단면도이다.
도 3과 같이, 다른 실시 예의 반도체 소자 패키지는 확산 부재(40)가 파장 변환 부재(20)와 반사 부재(30)의 상부면 및 반사 부재(30)의 측면까지 감싸도록 배치될 수 있다. 이 경우, 확산 부재(40)가 파장 변환 부재(20) 및 반사 부재(30)의 측면을 완전히 감싸므로, 파장 변환 부재(20)의 고정력이 향상될 수 있다.
상기와 같은 본 발명 실시 예의 반도체 소자 패키지(100)는 반도체 소자(10)의 네 측면을 감싸는 반사 부재(30)가 반도체 소자(10)의 상부면에 배치된 파장 변환 부재(20)의 측면의 일부까지 덮도록 배치될 수 있다. 그리고, 확산 부재(40)가 파장 변환 부재(20)와 반사 부재(30)의 상부면을 덮도록 배치되어 파장 변환 부재(20)의 측면은 반사 부재(30)와 확산 부재(40)에 의해 완전히 감싸질 수 있다. 이에 따라, 파장 변환 부재(20)가 반도체 소자(10) 상부면에서 박리되는 것을 방지할 수 있다.
이하, 실시 예의 반도체 소자 패키지의 제조 방법을 구체적으로 설명하면 다음과 같다.
도 4a 내지 도 4f는 실시 예의 반도체 소자 패키지의 제조 방법을 나타낸 단면도이다.
도 4a와 같이, 제 1 고정 기판(51a) 상에 복수 개의 반도체 소자(10)를 배치할 수 있다. 제 1 고정 기판(51a)은 접착력을 갖는 테이프일 수 있으며, 이에 한정하지 않는다.
그리고, 각 반도체 소자(10) 상부면에 파장 변환 부재(20)를 배치한다. 예를 들어, 파장 변환 부재(20)가 필름 형태인 경우, 반도체 소자(10) 상부면에 파장 변환 부재(20)를 부착할 수 있다. 특히, 파장 변환 부재(20)를 반도체 소자(10) 상에 부착할 때 공정 마진 및 반도체 소자 패키지의 광 추출 효율 및 색특성을 향상시키기 위해, 파장 변환 부재(20)의 가장자리는 반도체 소자(10)의 가장자리보다 돌출될 수 있다.
도 4b와 같이, 반도체 소자(10)의 이격 영역에 반사 부재(30)를 형성한다. 반사 부재(30)는 액상의 반사 물질을 반도체 소자(10)를 덮도록 도포하고, 이를 경화시켜 형성될 수 있다.
그리고, 도 4c와 같이, 인접한 반도체 소자(10) 사이 및 파장 변환 부재(20)와 반사 부재(30)를 완전히 감싸도록 확산 부재(40)를 형성한다. 확산 부재(40)는 스프레이 방식으로 분사되거나 액상으로 도포될 수 있다. 예를 들어, 파장 변환 부재(20)와 반사 부재(30) 상에 확산 물질을 도포하고 몰드를 이용하여 이를 경화시켜 확산 부재(40)를 형성할 수 있다.
도 4d와 같이, 제 1 고정 기판(51a) 상에 부착된 복수 개의 반도체 소자(10)를 제 2 고정 기판(51b)으로 전사시킨다. 이 때, 확산 부재(20)가 제 2 고정 기판(51b)에 밀착되어 복수 개의 반도체 소자(10)의 배면이 노출될 수 있다. 이 때, 복수 개의 반도체 소자(10)의 배면은 제 1, 제 2 전극 패드(도 1b의 15a, 도 1b의 15b)가 노출되는 일면이다.
상기와 같이 제 2 고정 기판(51b)으로 반도체 소자(10)를 전사시키는 것은, 도 4c와 같이 확산 부재(40)가 복수 개의 반도체 소자(10), 파장 변환 부재(20) 및 반사 부재(30)를 완전히 덮도록 배치되는 경우, 확산 부재(40)의 상부면에서 반도체 소자(10)와 반사 부재(30)를 구분할 수 없기 때문이다.
따라서, 도 4e와 같이, 상부면에서 반도체 소자(10)와 반사 부재(30)를 확인하여 인접한 반도체 소자(10) 사이의 스크라이빙(scribing) 라인을 따라 인접한 반도체 소자(10) 사이를 절단할 수 있다. 인접한 반도체 소자(10) 사이를 절단하는 것은, 인접한 반도체 소자(10)의 반사 부재(30) 및 확산 부재(40)를 절단하여 실시될 수 있다.
그리고, 도 4f와 같이, 복수 개의 반도체 소자(10)를 제 3 고정 기판(52)으로 전사시킨다. 이 때, 반도체 소자(10)가 제 3 고정 기판(52)에 밀착되어 확산 부재(40)가 반도체 소자 패키지(100)의 상부면에서 노출될 수 있다. 제 3 고정 기판(52)은 신축성을 가져, 상, 하, 좌, 우로 신장(expending)될 수 있으며, 이에 따라, 인접한 반도체 소자 패키지(100)가 서로 이격될 수 있다.
도 5a 내지 도 5h는 다른 실시 예의 반도체 소자 패키지의 제조 방법을 나타낸 단면도이다.
도 5a와 같이, 제 1 고정 기판(51a) 상에 복수 개의 반도체 소자(10)를 배치할 수 있다. 제 1 고정 기판(51a)은 접착력을 갖는 테이프일 수 있으며, 이에 한정하지 않는다.
그리고, 각 반도체 소자(10) 상부면에 파장 변환 부재(20)를 배치한다. 예를 들어, 파장 변환 부재(20)가 필름 형태인 경우, 반도체 소자(10) 상부면에 파장 변환 부재(20)를 부착할 수 있다. 특히, 파장 변환 부재(20)를 반도체 소자(10) 상에 부착할 때 공정 마진 및 반도체 소자 패키지의 광 추출 효율 및 색특성을 향상시키기 위해, 파장 변환 부재(20)의 가장자리는 반도체 소자(10)의 가장자리에서 돌출될 수 있다.
도 5b와 같이, 반도체 소자(10)의 이격 영역에 반사 부재(30)를 형성한다. 반사 부재(30)는 액상의 반사 물질을 반도체 소자(10)의 이격 영역에 도포하고, 이를 경화시켜 형성될 수 있다.
이어, 도 5c와 같이, 스크라이빙(scribing) 라인을 따라 인접한 반도체 소자(10) 사이를 절단할 수 있다. 이 때, 인접한 반도체 소자(10) 사이의 반사 부재(30)를 절단한다. 그리고, 도 5d와 같이, 제 1 고정 기판(51a) 상에 분리된 복수 개의 반도체 소자(10)가 서로 이격되도록 재배열한다.
이어, 도 5e와 같이, 인접한 반도체 소자(10) 사이 및 파장 변환 부재(20)와 반사 부재(30)를 완전히 감싸도록 확산 부재(40)를 형성한다. 확산 부재(40)는 스프레이 방식으로 분사되거나 액상으로 도포될 수 있다. 예를 들어, 파장 변환 부재(20)와 반사 부재(30) 상에 확산 물질을 도포하고 몰드를 이용하여 확산 부재(40)를 형성할 수 있다.
그리고, 도 5f와 같이, 제 1 고정 기판(51a) 상에 부착된 복수 개의 반도체 소자(10)를 제 2 고정 기판(51b)으로 전사시킨다. 이 때, 확산 부재(20)가 제 2 고정 기판(51b)에 밀착되어 복수 개의 반도체 소자(10)의 배면이 노출될 수 있다. 이 때, 복수 개의 반도체 소자(10)의 배면은 제 1, 제 2 전극 패드(도 1b의 15a, 도 1b의 15b)가 노출되는 일면이다.
그리고, 도 5g와 같이, 상부면에서 반도체 소자(10)와 반사 부재(30)를 확인하여 스크라이빙(scribing) 라인을 따라 인접한 반도체 소자(10) 사이를 절단할 수 있다.
이어, 도 5h와 같이, 복수 개의 반도체 소자(10)를 제 3 고정 기판(52)으로 전사시킨다. 이 때, 반도체 소자(10)가 제 3 고정 기판(52)에 밀착되어 확산 부재(40)가 반도체 소자 패키지(100)의 상부면에서 노출될 수 있다. 제 3 고정 기판(52)은 신축성을 가져, 상, 하, 좌, 우로 신장(expending)될 수 있으며, 이에 따라, 인접한 반도체 소자 패키지(100)가 서로 이격될 수 있다.
일반적인 반도체 소자 패키지의 제조 방법은 반도체 소자 상에 파장 변환 필름을 배치시키고, 파장 변환 필름이 노출된 상태에서 반도체 소자를 다른 고정 기판에 전사하는 공정을 포함한다. 따라서, 파장 변환 필름이 반도체 소자의 상부면에서 박리될 수 있다.
반면에, 본 발명 실시 예의 반도체 소자 패키지의 제조 방법은 파장 변환 필름(20)의 상부면 및 측면이 반사 부재(30) 및 확산 부재(40)에 의해 완전히 감싸진 구조에서 반도체 소자(10)를 다른 고정 기판으로 전사한다. 따라서, 전사 공정 시 파장 변환 필름(20)이 반도체 소자(10)에서 박리되는 것을 효율적으로 방지할 수 있다.
상술한 반도체 소자 패키지(100)는 조명 시스템의 광원으로 사용될 수 있으며, 예를 들어 영상 표시 장치의 광원이나 조명 장치 등의 광원으로 사용될 수 있다.
영상 표시 장치의 백라이트 유닛으로 사용될 때 에지 타입의 백라이트 유닛으로 사용되거나 직하 타입의 백라이트 유닛으로 사용될 수 있고, 조명 장치의 광원으로 사용될 때 등기구나 벌브 타입으로 사용될 수도 있으며, 또한 이동 단말기의 광원으로 사용될 수도 있다.
발광 소자는 상술한 발광 다이오드 외에 레이저 다이오드가 있다.
레이저 다이오드는, 발광 소자와 동일하게, 상술한 구조의 제 1 도전형 반도체층과 활성층 및 제 2 도전형 반도체층을 포함할 수 있다. 그리고, p-형의 제 1 도전형 반도체와 n-형의 제 2 도전형 반도체를 접합시킨 뒤 전류를 흘러주었을 때 빛이 방출되는 electro-luminescence(전계발광) 현상을 이용하나, 방출되는 광의 방향성과 위상에서 차이점이 있다. 즉, 레이저 다이오드는 여기 방출(stimulated emission)이라는 현상과 보강간섭 현상 등을 이용하여 하나의 특정한 파장(단색광, monochromatic beam)을 가지는 빛이 동일한 위상을 가지고 동일한 방향으로 방출될 수 있으며, 이러한 특성으로 인하여 광통신이나 의료용 장비 및 반도체 공정 장비 등에 사용될 수 있다.
수광 소자로는 빛을 검출하여 그 강도를 전기 신호로 변환하는 일종의 트랜스듀서인 광 검출기(photodetector)를 예로 들 수 있다. 이러한 광 검출기로서, 광전지(실리콘, 셀렌), 광도전 소자(황화 카드뮴, 셀렌화 카드뮴), 포토 다이오드(예를 들어, visible blind spectral region이나 true blind spectral region에서 피크 파장을 갖는 PD), 포토 트랜지스터, 광전자 증배관, 광전관(진공, 가스 봉입), IR(Infra-Red) 검출기 등이 있으나, 실시 예는 이에 국한되지 않는다.
또한, 광검출기와 같은 반도체 소자는 일반적으로 광변환 효율이 우수한 직접 천이 반도체(direct bandgap semiconductor)를 이용하여 제작될 수 있다. 또는, 광검출기는 구조가 다양하여 가장 일반적인 구조로는 p-n 접합을 이용하는 pin형 광검출기와, 쇼트키접합(Schottky junction)을 이용하는 쇼트키형 광검출기와, MSM(Metal Semiconductor Metal)형 광검출기 등이 있다.
포토 다이오드(Photodiode)는 발광소자와 동일하게, 상술한 구조의 제 1 도전형 반도체층과 활성층 및 제 2 도전형 반도체층을 포함할 수 있고, pn접합 또는 pin 구조로 이루어진다. 포토 다이오드는 역바이어스 혹은 제로바이어스를 가하여 동작하게 되며, 광이 포토 다이오드에 입사되면 전자와 정공이 생성되어 전류가 흐른다. 이때 전류의 크기는 포토 다이오드에 입사되는 광의 강도에 거의 비례할 수 있다.
광전지 또는 태양 전지(solar cell)는 포토 다이오드의 일종으로, 광을 전류로 변환할 수 있다. 태양 전지는, 발광소자와 동일하게, 상술한 구조의 제 1 도전형 반도체층과 활성층 및 제 2 도전형 반도체층을 포함할 수 있다.
또한, p-n 접합을 이용한 일반적인 다이오드의 정류 특성을 통하여 전자 회로의 정류기로 이용될 수도 있으며, 초고주파 회로에 적용되어 발진 회로 등에 적용될 수 있다.
또한, 상술한 반도체 소자는 반드시 반도체로만 구현되지 않으며 경우에 따라 금속 물질을 더 포함할 수도 있다. 예를 들어, 수광 소자와 같은 반도체 소자는 Ag, Al, Au, In, Ga, N, Zn, Se, P, 또는 As 중 적어도 하나를 이용하여 구현될 수 있으며, p형이나 n형 도펀트에 의해 도핑된 반도체 물질이나 진성 반도체 물질을 이용하여 구현될 수도 있다.
이상에서 실시 예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시 예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
10: 반도체 소자 10a: 반도체 소자 상부면
11: 기판 12a: 제 1 반도체층
12b: 활성층 12c: 제 2 반도체층
12: 발광 구조물 13a: 제 1 전극
13b: 제 2 전극 14: 절연층
15a: 제 1 전극 패드 15b: 제 2 전극 패드
20: 파장 변환 부재 20a: 파장 변환 부재 상부면
20b: 파장 변환 부재 하부면 30: 반사 부재
30a: 반사 부재 상부면 40: 확산 부재
51a: 제 1 고정 기판 51b: 제 2 고정 기판
52: 제 3 고정 기판

Claims (9)

  1. 반도체 소자;
    상기 반도체 소자의 상부면에 배치된 파장 변환 부재;
    상기 반도체 소자의 네 측면을 감싸며, 상부면의 높이가 상기 반도체 소자의 상부면의 높이보다 높으며, 상기 파장 변환 부재의 상부면의 높이보다 낮은 반사 부재; 및
    상기 반사 부재와 상기 파장 변환 부재의 상부면을 덮도록 배치된 확산 부재를 포함하는 반도체 소자 패키지.
  2. 제 1 항에 있어서,
    상기 반사 부재의 상부면과 상기 확산 부재의 하부면이 밀착되는 계면은 상기 반사 부재의 측면과 접하는 반도체 소자 패키지.
  3. 제 1 항에 있어서,
    상기 반사 부재의 상부면의 높이와 상기 반도체 소자의 상부면의 높이의 차이는 상기 파장 변환 부재의 두께의 1/4 이상이며 3/4 이하인 반도체 소자 패키지.
  4. 제 1 항에 있어서,
    상기 파장 변환 부재의 가장자리가 상기 반도체 소자의 가장자리에서 돌출된 반도체 소자 패키지.
  5. 제 4 항에 있어서,
    상기 반사 부재는 서로 다른 제 1 폭과 제 2 폭을 포함하며,
    상기 제 1 폭은 상기 반도체 소자의 측면과 중첩되는 영역의 상기 반사 부재의 폭이며, 상기 제 2 폭은 상기 파장 변환 부재의 측면과 중첩되는 영역의 반사 부재의 폭인 반도체 소자 패키지.
  6. 제 5 항에 있어서,
    상기 제 2 폭은 상기 반도체 소자의 가장자리에서 돌출된 상기 파장 변환 부재의 영역의 폭과 동일하거나 넓은 반도체 소자 패키지.
  7. 제 1 항에 있어서,
    상기 확산 부재와 상기 파장 변환 부재는 동일한 물질을 포함하는 반도체 소자 패키지.
  8. 제 7 항에 있어서,
    상기 확산 부재와 상기 파장 변환 부재는 투명한 실리콘 수지를 포함하는 반도체 소자 패키지.
  9. 제 1 항에 있어서,
    상기 확산 부재는 상기 반사 부재의 네 측면까지 감싸도록 배치된 반도체 소자 패키지.
KR1020160059815A 2016-05-02 2016-05-16 반도체 소자 패키지 KR102537073B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020160059815A KR102537073B1 (ko) 2016-05-16 2016-05-16 반도체 소자 패키지
US16/098,340 US20190165226A1 (en) 2016-05-02 2017-05-02 Semiconductor element package
CN201780027155.6A CN109075232B (zh) 2016-05-02 2017-05-02 半导体元件封装
PCT/KR2017/004637 WO2017191966A1 (ko) 2016-05-02 2017-05-02 반도체 소자 패키지

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160059815A KR102537073B1 (ko) 2016-05-16 2016-05-16 반도체 소자 패키지

Publications (2)

Publication Number Publication Date
KR20170129008A true KR20170129008A (ko) 2017-11-24
KR102537073B1 KR102537073B1 (ko) 2023-05-26

Family

ID=60810507

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160059815A KR102537073B1 (ko) 2016-05-02 2016-05-16 반도체 소자 패키지

Country Status (1)

Country Link
KR (1) KR102537073B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200134466A (ko) * 2019-05-22 2020-12-02 엘지이노텍 주식회사 발광소자패키지 및 광원장치
CN113823723A (zh) * 2020-06-18 2021-12-21 光宝光电(常州)有限公司 发光二极管封装结构

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070083919A (ko) * 2004-11-03 2007-08-24 트리도닉 옵토엘렉트로닉스 게엠베하 색변환재를 포함하는 발광다이오드 장치
KR20120134375A (ko) * 2011-06-02 2012-12-12 삼성전자주식회사 발광소자 패키지 및 그 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070083919A (ko) * 2004-11-03 2007-08-24 트리도닉 옵토엘렉트로닉스 게엠베하 색변환재를 포함하는 발광다이오드 장치
KR20120134375A (ko) * 2011-06-02 2012-12-12 삼성전자주식회사 발광소자 패키지 및 그 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200134466A (ko) * 2019-05-22 2020-12-02 엘지이노텍 주식회사 발광소자패키지 및 광원장치
CN113823723A (zh) * 2020-06-18 2021-12-21 光宝光电(常州)有限公司 发光二极管封装结构

Also Published As

Publication number Publication date
KR102537073B1 (ko) 2023-05-26

Similar Documents

Publication Publication Date Title
CN109075232B (zh) 半导体元件封装
KR102573587B1 (ko) 반도체 소자 및 이를 포함하는 표시 장치
KR102575580B1 (ko) 반도체 소자
KR102434368B1 (ko) 반도체 소자
KR102656815B1 (ko) 반도체 소자
KR102410809B1 (ko) 반도체 소자
KR102537073B1 (ko) 반도체 소자 패키지
KR20180126739A (ko) 반도체 소자 패키지 및 그 제조 방법
KR20180086840A (ko) 반도체 소자 패키지 및 광원 모듈
KR102437784B1 (ko) 반도체 소자
KR20170124283A (ko) 반도체 소자 패키지
KR20190109848A (ko) 반도체 소자
KR20170125587A (ko) 반도체 소자 패키지
KR20190056133A (ko) 반도체 소자
KR20180090529A (ko) 반도체 소자 패키지
KR102564211B1 (ko) 반도체 소자 및 이의 제조 방법
KR20170135381A (ko) 반도체 소자 패키지
KR102470302B1 (ko) 반도체 소자 패키지
KR102468809B1 (ko) 반도체 소자
KR102653956B1 (ko) 반도체 소자
KR102411948B1 (ko) 반도체 소자
KR20180077535A (ko) 반도체 소자
KR102385938B1 (ko) 반도체 소자 패키지
KR20180057144A (ko) 반도체 소자 및 이를 포함하는 반도체 패키지
KR20180016182A (ko) 반도체 소자 및 이를 포함하는 반도체 패키지

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant