KR20170111970A - Polyacrylronitrile type carbon fiber and method of manufacturing the same - Google Patents

Polyacrylronitrile type carbon fiber and method of manufacturing the same Download PDF

Info

Publication number
KR20170111970A
KR20170111970A KR1020160038345A KR20160038345A KR20170111970A KR 20170111970 A KR20170111970 A KR 20170111970A KR 1020160038345 A KR1020160038345 A KR 1020160038345A KR 20160038345 A KR20160038345 A KR 20160038345A KR 20170111970 A KR20170111970 A KR 20170111970A
Authority
KR
South Korea
Prior art keywords
polyacrylonitrile
carbon fiber
carbon
carbon nanotubes
average length
Prior art date
Application number
KR1020160038345A
Other languages
Korean (ko)
Other versions
KR102309004B9 (en
KR102309004B1 (en
Inventor
윤준영
이창훈
이태상
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to KR1020160038345A priority Critical patent/KR102309004B1/en
Publication of KR20170111970A publication Critical patent/KR20170111970A/en
Application granted granted Critical
Publication of KR102309004B1 publication Critical patent/KR102309004B1/en
Publication of KR102309004B9 publication Critical patent/KR102309004B9/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/06Washing or drying
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • D10B2101/122Nanocarbons
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength

Abstract

본 발명의 폴리아크릴로니트릴계 탄소섬유는 탄소섬유 내에 정제후 순도가 98.5%이상이고 정제후 평균길이가 1~100㎛인 탄소나노튜브가 존재하여 4.0Gpa 이상의 고강도와 350Gpa 이상의 고모듈러스를 동시에 구비한다.
본 발명에서는 상기 탄소섬유를 2,000℃ 이하의 온도에서 열처리하는 방법으로 제조한다.
구체적으로, (ⅰ) 용매내에 평균길이가 1~100㎛이고 순도가 98.5% 이상인 탄소나노튜브를 중합단량체 대비 0.02~0.25중량% 투입, 분산한 다음, (ⅱ) 여기에 중합단량체 등을 투입, 반응시켜 방사도프를 제조한 다음, (ⅲ) 상기 방사도프를 방사한 후 수세 및 연신하여 상기 탄소나노튜브를 함유하는 폴리아크릴계 전구체 섬유를 제조한 다음, (ⅳ) 상기 폴리아크릴로니트릴계 전구체 섬유를 1,300~2,000℃로 열처리하여 강도 및 모듈러스가 우수한 탄소섬유를 제조한다.
본 발명의 탄소섬유는 고강도와 고모듈러스를 동시에 구비하기 때문에 이를 대형 구조물용 건축소재로 사용시 대형 구조물의 충격 저항성과 진동 저항성을 크게 향상시켜 준다.
The polyacrylonitrile-based carbon fiber of the present invention contains carbon nanotubes having a purity of 98.5% or more after purification and an average length of 1 to 100 占 퐉 after purification in a carbon fiber, so that a high strength of not less than 4.0 GPa and a high modulus of not less than 350 GPa do.
In the present invention, the carbon fibers are prepared by a heat treatment at a temperature of 2,000 DEG C or less.
Specifically, (i) 0.02 to 0.25% by weight of carbon nanotubes having an average length of 1 to 100 μm and a purity of 98.5% or more in the solvent is added to and dispersed in the solvent, and then (ii) a polymerization monomer or the like is added thereto, (Iii) spinning the spinning dope, followed by washing with water and stretching to prepare a polyacrylic precursor fiber containing the carbon nanotubes, and (iv) drying the polyacrylonitrile precursor fiber Is heat-treated at 1,300 ~ 2,000 ° C to produce carbon fibers having excellent strength and modulus.
Since the carbon fiber of the present invention has high strength and high modulus at the same time, it greatly improves impact resistance and vibration resistance of a large structure when used as a building material for a large structure.

Description

폴리아크릴로니트릴계 탄소섬유 및 그의 제조방법{Polyacrylronitrile type carbon fiber and method of manufacturing the same}TECHNICAL FIELD The present invention relates to a polyacrylonitrile-based carbon fiber,

본 발명을 폴리아크릴로니트릴계 탄소섬유 및 그의 제조방법에 관한 것으로서, 보다 구체적으로는 탄소섬유 내에 정제후 평균길이가 1~100㎛이고 순도가 98.5% 이상인 탄소나노섬유가 존재하며 4.0Gpa 이상의 고강도와 350Gpa 이상의 고모듈러스를 동시에 구비하는 폴리아크릴로니트릴계 탄소섬유에 관한 것이다. 또한 본 발명은 2,000℃ 이하의 온도에서 폴리아크릴로니트릴계 전구체 섬유를 열처리하여 상기 폴리아크릴로니트릴계 탄소섬유를 제조하는 방법에 관한 것이다.The present invention relates to a polyacrylonitrile-based carbon fiber, and more specifically, to a method for producing a polyacrylonitrile-based carbon fiber having carbon nanofibers having an average length of 1 to 100 μm and a purity of 98.5% And a high modulus of at least 350 GPa at the same time. The present invention also relates to a method for producing polyacrylonitrile-based carbon fibers by heat-treating polyacrylonitrile-based precursor fibers at a temperature of 2,000 DEG C or less.

일반적으로 탄소섬유는 폴리아크릴로니트릴계 중합체 또는 공중합체 용액(방사도프)을 방사, 건조 및 연신하여 얻어지는 폴리아크릴로니트릴계 전구체 섬유를 약 200~300℃의 온도로 열처리하는 초기 열안정화 공정 및 내염화 공정을 통하여 분자구조가 고리화되어 열적으로 안정화된 산화 아크릴로니트릴 섬유(Oxi-PAN 섬유)를 제조한 다음, 이를 다시 1,250℃~2,000℃ 또는 2,000℃ 이상으로 열처리하는 탄화공정을 거쳐 탄소만의 육각구조를 형성시키는 방법으로 제조되어 왔다.Generally, the carbon fibers are subjected to an initial thermal stabilization step of heat-treating the polyacrylonitrile precursor fibers obtained by spinning, drying and stretching a polyacrylonitrile-based polymer or copolymer solution (spinning dope) at a temperature of about 200 to 300 ° C and The oxidized acrylonitrile fiber (Oxi-PAN fiber), which is thermally stabilized by cyclization of the molecular structure through the chlorination process, is then subjected to a carbonization process in which it is heat-treated at 1,250 ° C. to 2,000 ° C. or above 2,000 ° C., To form a hexagonal structure of the honeycomb structure.

상기 탄화공정의 열처리 온도를 1,250~2,000℃로 하는 경우 제조되는 탄소섬유의 강도는 약 6.7Gpa 까지 향상되지만 모듈러스는 일정 수준까지만 향상되기 때문에, 다시 말해 최대 320Gpa 까지만 향상되기 때문에 4.0Gpa 이상의 고강도와 350Gpa 이상의 고모듈러스를 동시에 구비하는 탄소섬유를 제조할 수 없는 문제점이 있었다.When the heat treatment temperature of the carbonization process is set to 1,250 to 2,000 ° C., the strength of the carbon fiber produced is improved to about 6.7 Gpa, but the modulus is improved only to a certain level. There is a problem in that it is impossible to produce carbon fibers simultaneously having high modulus.

한편, 상기 탄화공정의 열처리 온도를 2,000℃보다 높게 하는 경우 제조되는 탄소섬유의 모듈러스는 약 588Gpa 수준까지 향상되지만, 강도는 오히려 감소하여 4.0Gpa 미만으로 떨어지기 때문에 4.0Gpa 이상의 고강도와 350Gpa 이상의 고모듈러스를 동시에 구비하는 탄소섬유를 제조할 수 없는 문제점이 있었다.On the other hand, when the heat treatment temperature of the carbonization process is higher than 2,000 DEG C, the modulus of the carbon fiber produced is improved to about 588Gpa, but the strength is lowered to less than 4.0Gpa, Can not be produced at the same time.

이상에서 설명한 바와 같이 종래의 탄소섬유는 4.0Gpa 이상의 고강도와 350Gpa 이상의 고모듈러스를 동시에 구비하지 못하기 때문에 이를 대형구조물용 건축소재로 사용할 경우 대형 구조물 충격저항성 및 진동저항성이 약해지는 문제점 등이 있었다.As described above, the conventional carbon fiber has a high strength of 4.0 Gpa or more and a high modulus of 350 GPa or more. Therefore, when it is used as a building material for a large structure, impact resistance and vibration resistance of a large structure are weakened.

본 발명의 과제는 4.0Gpa 이상의 고강도와 350Gpa 이상의 고모듈러스를 동시에 구비하여 충격저항성 및 진동저항성이 뛰어난 폴리아크릴로니트릴계 탄소섬유를 제공하는 것이다.A problem to be solved by the present invention is to provide a polyacrylonitrile-based carbon fiber having a high strength of not less than 4.0 GPa and a high modulus of not less than 350 GPa, and which is excellent in impact resistance and vibration resistance.

본 발명의 또 다른 과제는 탄소나노튜브를 함유하는 폴리아크릴로니트릴계 전구체 섬유를 1,300~2,000℃의 온도로 열처리(탄화처리)하여 상기와 같이 고강도와 고모듈러스를 동시에 구비하는 폴리아크릴로니트릴계 탄소섬유를 제조하는 방법을 제공하는 것이다.Another object of the present invention is to provide a polyacrylonitrile-based precursor fiber containing carbon nanotubes by heat-treating (carburizing) the polyacrylonitrile-based precursor fiber at a temperature of 1,300 to 2,000 DEG C to simultaneously form a high- To provide a method for producing carbon fibers.

이와 같은 과제들을 달성하기 위해서, (ⅰ) 용매내에 평균길이가 1~100㎛이고 순도가 98.5% 이상인 탄소나노튜브를 중합단량체 대비 0.02~0.25중량% 투입, 분산한 다음, (ⅱ) 여기에 중합단량체 등을 투입, 반응시켜 방사도프를 제조한 다음, (ⅲ) 상기 방사도프를 방사한 후 수세 및 연신하여 상기 탄소나노튜브를 함유하는 폴리아크릴계 전구체 섬유를 제조한 다음, (ⅳ) 상기 폴리아크릴로니트릴계 전구체 섬유를 1,300~2,000℃로 열처리하여 4.0Gpa 이상의 고강도와 350Gpa 이상의 모듈러스를 동시에 구비하는 폴리아크릴로니트릴계 탄소섬유를 제조한다.(I) 0.02 to 0.25 wt% of carbon nanotubes having an average length of 1 to 100 mu m and a purity of 98.5% or more relative to the polymerized monomer are dispersed and dispersed in a solvent, and then (ii) (Iii) spinning the spinning dope, washing and stretching the spinning dope to prepare a polyacrylic precursor fiber containing the carbon nanotube, and (iv) The polyacrylonitrile-based carbon fibers having a high strength of not less than 4.0 GPa and a modulus of not less than 350 GPa are simultaneously produced by heat-treating the rhonitrile-based precursor fibers at 1,300 to 2,000 ° C.

본 발명의 탄소섬유는 고강도와 고모듈러스를 동시에 구비하기 때문에 이를 대형 구조물용 건축소재로 사용시 대형 구조물의 충격 저항성과 진동 저항성을 크게 향상시켜 준다.Since the carbon fiber of the present invention has high strength and high modulus at the same time, it greatly improves impact resistance and vibration resistance of a large structure when used as a building material for a large structure.

이하, 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에 따른 폴리아크릴로니트릴계 탄소섬유는 탄소섬유 내에 탄소나노튜브가 존재하며, 강도가 4.0~7.0Gpa이고, 모듈러스가 350~550Gpa 이다.The polyacrylonitrile-based carbon fiber according to the present invention has carbon nanotubes in the carbon fiber, has a strength of 4.0 to 7.0Gpa and a modulus of 350 to 550Gpa.

상기 탄소나노튜브는 정제후 순도가 98.5~100%이고, 정제후 평균길이가 1~100㎛인 것이 바람직하다.Preferably, the carbon nanotubes have a purity of 98.5 to 100% after purification and an average length of 1 to 100 μm after purification.

본 발명에 따른 강도 및 모듈러스가 동시에 우수한 폴리아크릴로니트릴계 탄소섬유의 제조방법은 용매 내에 정제후 평균길이가 1~100㎛이고 정제후 순도가 98.5~100%인 탄소나노튜브를 중합단량체 대비 0.02~0.25중량% 투입한 후 분산시키는 공정; 중합반응기 내에 상기와 같이 탄소나노튜브가 분산된 용매를 먼저 투입한 후, 계속해서 중합단량체, 점도증가제 및 중합개시제를 투입, 반응시켜 방사도프(Dope) 제조하는 공정; 상기 방사도프를 방사한 후 수세 및 연신하여 상기 탄소나노튜브를 함유하는 폴리아크릴로니트릴계 전구체 섬유를 제조하는 공정; 및 상기 폴리아크릴로니트릴계 전구체 섬유를 1,250~2,000℃로서 열처리하여 폴리아크릴로니트릴계 탄소섬유를 제조하는 공정;을 포함한다.The method for producing a polyacrylonitrile-based carbon fiber having excellent strength and modulus at the same time according to the present invention is characterized in that carbon nanotubes having an average length of 1 to 100 mu m after purifying in a solvent and having a purity of 98.5 to 100% To 0.25% by weight; A step in which a solvent in which the carbon nanotubes are dispersed is first introduced into the polymerization reactor, and then a polymerization monomer, a viscosity increasing agent and a polymerization initiator are added and reacted to prepare a spinning dope; Spinning and spinning the spinning dope to produce polyacrylonitrile-based precursor fibers containing the carbon nanotubes; And heat-treating the polyacrylonitrile-based precursor fiber at 1,250 to 2,000 DEG C to produce a polyacrylonitrile-based carbon fiber.

본 발명에서는 먼저, 용매 내에 정제후 평균길이가 1~100㎛이고 정제후 순도가 98.5~100%인 탄소나노튜브를 중합단량체 대비 0.02~0.25중량% 투입한 후, 분산시켜 준다.In the present invention, 0.02 to 0.25% by weight of carbon nanotubes having an average length of 1 to 100 μm after purification and having a purity of 98.5 to 100% after purification is added to the solvent and dispersed in the solvent.

용매내 탄소나노튜브의 투입량이 중합단량체 대비 0.02중량% 미만일 경우에는 탄소섬유의 강도 및 모듈러스 향상효과가 없게 되고, 중합단량체 대비 0.25중량%를 초과하는 경우에는 탄소나노튜브의 분산성이 떨어지는 문제가 발생되어 바람직하지 못하다.When the amount of the carbon nanotubes in the solvent is less than 0.02 wt%, the strength and modulus of the carbon fiber are not improved. When the amount of the carbon nanotubes is more than 0.25 wt%, the dispersibility of the carbon nanotubes is inferior Which is undesirable.

또한, 탄소나노튜브의 평균길이가 1㎛ 미만인 경우에는 탄소섬유의 물성 보강 효과가 현저하게 저하되고, 100㎛를 초과하는 경우에는 분산성이 나빠져 방사도프의 방사성이 저하되거나 방사가 불가능하게 될 수도 있다.When the average length of the carbon nanotubes is less than 1 mu m, the effect of reinforcing the physical properties of the carbon fibers is remarkably deteriorated. When the average length of the carbon nanotubes exceeds 100 mu m, the dispersibility is deteriorated, have.

또한, 탄소나노튜브의 순도가 98.5% 미만인 경우에는 폴리아크릴로니트릴계 방사용액을 중합하는 공정 중에 부반응이 발생되거나 탄화공정에서 발화 가능성이 높아지게 된다.When the purity of the carbon nanotubes is less than 98.5%, side reactions may occur during the polymerization of the polyacrylonitrile spinning solution or the possibility of ignition in the carbonization process may increase.

상기 탄소나노튜브, 다시 말해 정제 후 평균길이가 1~100㎛인 탄소나노튜브는 평균직경이 1.5~8㎚이고 평균길이가 100~500㎛이고 1층 내지 3층 벽(Well) 구조를 갖는 탄소나노섬유 원료를 사용하여 제조하는 것이 바람직하다.Carbon nanotubes having an average length of 1 to 100 탆 after purification have an average diameter of 1.5 to 8 nm and an average length of 100 to 500 탆 and carbon having a 1 to 3 layer well structure It is preferable to use the nanofiber raw material.

탄소나노튜브 원료의 직경이 8㎚를 초과하게 되면 탄소나노튜브가 탄소섬유의 공유결합 사이 사이에 존재하기 어려워져 탄소섬유의 강도 및 모듈러스 보강효과가 떨어지게 된다.If the diameter of the raw material of the carbon nanotube exceeds 8 nm, the carbon nanotube is hardly present between the covalent bonds of the carbon fiber, and the strength and modulus reinforcing effect of the carbon fiber are deteriorated.

탄소섬유의 원료를 길이가 100㎛ 미만인 경우에는 정제공정과 중합/방사공정에서 가해지는 응력에 의해 잘게 절단되어 정제 후 탄소나노튜브의 평균길이가 1㎛ 미만으로 떨어질 우려가 높아진다.When the length of the raw material of the carbon fiber is less than 100 mu m, there is a high possibility that the average length of the carbon nanotubes falls to less than 1 mu m after finely cut by the stress applied in the purification step and polymerization / spinning step.

상기 용매는 디메틸설폭사이드(Dimethylsulfoxide), 디메틸아세트아미드(Dimethylacetamide), 디메틸포름아미드(Dimethylformamide), 염화아연(ZnCl2)용액, 티오시안산나트륨(NaSCN) 용액 또는 시안화수소(HCN) 용액 등이다.The solvent may be dimethylsulfoxide, dimethylacetamide, dimethylformamide, ZnCl 2 solution, sodium thiocyanate (NaSCN) solution or hydrogen cyanide (HCN) solution.

다음으로는, 중합반응 내에 상기와 같이 탄소나노튜브가 분산된 용매를 먼저 투입한 후, 계속해서 중합단량체, 점도증가제 및 중합개시제 등을 투입, 반응시켜 전구체 섬유 제조용 방사도프(Spinning Dope)를 제조한다.Next, a solvent in which carbon nanotubes are dispersed as described above is first charged into the polymerization reaction, and then a polymerization monomer, a viscosity increasing agent, a polymerization initiator, and the like are added and reacted to prepare a spinning dope for producing precursor fibers .

만약, 중합반응기 내에 탄소나노튜브가 분산된 용매보다 중합 단량체인 아크릴로니트릴을 먼저 투입하게 되면 반응성이 우수한 아크릴로니트릴이 중합개시제 없이도 일부 중합되기 시작하기 때문에 탄소나노튜브의 분산성이 크게 떨어지게 된다.If acrylonitrile, which is a polymerization monomer, is added before a solvent in which carbon nanotubes are dispersed in a polymerization reactor, acrylonitrile having excellent reactivity starts to be partially polymerized even without a polymerization initiator, resulting in poor dispersion of carbon nanotubes .

상기 중합단량체로는 아크릴로니트릴을 단독으로 사용할 수도 있고, 아크릴로니트릴, 메타크릴산 및 이타콘산을 함께 사용할 수도 있다.As the polymerizable monomer, acrylonitrile may be used alone, or acrylonitrile, methacrylic acid and itaconic acid may be used together.

다음으로는, 상기 방사도프를 방사한 후 수세 및 연신하여 상기 탄소나노튜브를 함유하는 폴리아크릴로니트릴계 전구체 섬유를 제조한다.Next, after spinning the spinning dope, it is washed and stretched to produce polyacrylonitrile-based precursor fibers containing the carbon nanotubes.

상기 폴리아크릴로니트릴계 전구체 섬유에 함유된 탄소나노튜브의 함량은 0.02~0.25중량%인 것이 바람직하다.The content of the carbon nanotubes contained in the polyacrylonitrile-based precursor fibers is preferably 0.02 to 0.25% by weight.

폴리아크릴로니트릴계 전구체 섬유내 상기 탄소나노튜브의 함량이 0.02중량% 미만일 경우에는 제조되는 폴리아크릴로니트릴계 탄소섬유의 강도 및 모듈러스 등의 물성 보강 효과가 미미해 지고, 0.25중량%를 초과하는 경우에는 폴리아크릴로니트릴계 전구체 섬유를 제조하는 방사공정의 방사성이 크게 저하되고 폴리아크릴로니트릴계 전구체 섬유의 연신비율이 낮아져 폴리아크릴로니트릴계 전구체 섬유 내에 비결정영역이 높아져 결국 제조되는 탄소섬유의 강도가 저하된다.When the content of the carbon nanotubes in the polyacrylonitrile precursor fibers is less than 0.02% by weight, the strength and modulus of the polyacrylonitrile-based carbon fiber to be produced are insufficient, and when the content is more than 0.25% by weight The radioactivity of the spinning process for producing the polyacrylonitrile-based precursor fiber is significantly lowered, the draw ratio of the polyacrylonitrile-based precursor fiber is lowered, the amorphous region is increased in the polyacrylonitrile-based precursor fiber, and the strength .

마지막으로, 상기 폴리아크릴로니트릴계 전구체 섬유를 1,250~2,000℃로 열처리하여 강도가 4.0Gpa 이상인 모듈러스가 350Gpa 이상인 폴리아크릴로니트릴계 탄소섬유를 제조한다.Finally, the polyacrylonitrile-based precursor fiber is heat-treated at 1,250 to 2,000 DEG C to produce a polyacrylonitrile-based carbon fiber having a modulus of 350 GPa or more and a strength of 4.0 Gpa or more.

본 발명의 탄소섬유는 고강도와 고모듈러스를 동시에 구비하기 때문에 이를 대형 구조물용 건축소재로 사용시 대형 구조물의 충격 저항성과 진동 저항성을 크게 향상시켜 준다.Since the carbon fiber of the present invention has high strength and high modulus at the same time, it greatly improves impact resistance and vibration resistance of a large structure when used as a building material for a large structure.

이하, 실시예 및 비교실시예를 통하여 본 발명을 보다 구체적으로 살펴본다.Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples.

그러나 본 발명의 보호범위는 하기 실시예만으로 한정되게 해석 되어서는 안된다.However, the scope of protection of the present invention should not be construed as being limited only to the following examples.

실시예Example 1 One

평균직경이 4.5㎚이고, 평균길이가 420㎛인 멀티웰(Multi well) 구조의 탄소나노튜브 원료를 사용하여 정제후 평균길이가 10㎛이고 순도가 98.7%인 탄소나노튜브를 제조하였다.A carbon nanotube having an average length of 10 μm and a purity of 98.7% was prepared after purification using a multi-well carbon nanotube raw material having an average diameter of 4.5 nm and an average length of 420 μm.

디메틸설폭사이드(용매) 내에 상기 탄소나노튜브를 이후 공정에서 투입되는 아크릴로니트릴 모노머 대비 0.05중량% 투입, 분산시켜 탄소나노튜브가 분산된 용매를 준비하였다.The carbon nanotubes were added to and dispersed in dimethylsulfoxide (solvent) in an amount of 0.05 wt% based on the acrylonitrile monomer to be added in the subsequent step to prepare a solvent in which the carbon nanotubes were dispersed.

다음으로, 중합반응기 내에 탄소나노튜브가 분산된 상기 용매(디메틸설폭사이드)를 먼저 투입한 다음, 계속해서 여기에 아크릴로니트릴 95몰%, 메타크릴산 3몰% 및 이타콘산 2몰%로 구성되는 중합단량체와 상기 이타콘산과 동량의 암모니아(중화제)를 투입, 반응시켜 폴리아크릴로니트릴계 공중합체(고형분)의 농도가 18중량%인 방사도프를 제조하였다.Next, the solvent (dimethylsulfoxide) in which the carbon nanotubes were dispersed was first charged into the polymerization reactor, and then 95 mol% of acrylonitrile, 3 mol% of methacrylic acid and 2 mol% of itaconic acid And the same amount of ammonia (neutralizing agent) as that of itaconic acid were added and reacted to prepare a spinning dope having a concentration of the polyacrylonitrile-based copolymer (solid content) of 18% by weight.

다음으로, 상기 방사도프를 방사구금(온도 45℃, 직경 0.08㎜, 구멍수 6,000개의 구금을 2개 사용)을 통해 방사하고, 방사된 섬유를 45℃로 제어되는 40% 디메틸설폭사이드 수용액인 응고액 내로 통과시킨 후 수세 및 연신하여 탄소나노튜브 함량이 0.15중량%인 폴리아크릴로니트릴계 전구체 섬유를 제조하였다.Next, the spinning dope was spun through a spinneret (temperature: 45 ° C, diameter 0.08 mm, using two spinnerets with 6,000 holes), and the spinneret was spin-coated with 40% dimethylsulfoxide aqueous solution Washed with water and then stretched to prepare a polyacrylonitrile precursor fiber having a carbon nanotube content of 0.15% by weight.

다음으로, 상기 탄소나노튜브 함유 폴리아크릴로니트릴계 전구체 섬유를 250℃의 온도로 내염화시킨 다음, 계속해서 1,600℃의 온도로 탄화시켜 8,600 데니어의 폴리아크릴로니트릴계 탄소섬유를 제조하였다.Next, the carbon nanotube-containing polyacrylonitrile-based precursor fibers were chlorinated at a temperature of 250 ° C and subsequently carbonized at a temperature of 1,600 ° C to prepare polyacrylonitrile-based carbon fibers of 8,600 denier.

제조된 폴리아크릴로니트릴계 탄소섬유의 강도 및 모듈러스를 측정한 결과는 표 1과 같았다.The strength and modulus of the produced polyacrylonitrile-based carbon fiber were measured and the results are shown in Table 1. [

실시예Example 2 2

평균직경이 2.5㎚이고, 평균길이가 210㎛인 싱글웰(Single well) 구조의 탄소나노튜브 원료를 사용하여 정제후 평균길이가 90㎛이고 순도가 99.9%인 탄소나노튜브를 제조하였다.A carbon nanotube having an average length of 90 탆 and a purity of 99.9% was prepared by using a single well structure carbon nanotube raw material having an average diameter of 2.5 nm and an average length of 210 탆.

디메틸설폭사이드(용매) 내에 상기 탄소나노튜브를 이후 공정에서 투입되는 아크릴로니트릴 모노머 대비 0.14중량% 투입, 분산시켜 탄소나노튜브가 분산된 용매를 준비하였다.The carbon nanotubes were charged into and dispersed in dimethylsulfoxide (solvent) in an amount of 0.14 wt% relative to the acrylonitrile monomer to be added in the subsequent process, thereby preparing a solvent in which the carbon nanotubes were dispersed.

다음으로, 중합반응기 내에 탄소나노튜브가 분산된 상기 용매(디메틸설폭사이드)를 먼저 투입한 다음, 계속해서 여기에 아크릴로니트릴 95몰%, 메타크릴산 3몰% 및 이타콘산 2몰%로 구성되는 중합단량체와 상기 이타콘산과 동량의 암모니아(중화제)를 투입, 반응시켜 폴리아크릴로니트릴계 공중합체(고형분)의 농도가 18중량%인 방사도프를 제조하였다.Next, the solvent (dimethylsulfoxide) in which the carbon nanotubes were dispersed was first charged into the polymerization reactor, and then 95 mol% of acrylonitrile, 3 mol% of methacrylic acid and 2 mol% of itaconic acid And the same amount of ammonia (neutralizing agent) as that of itaconic acid were added and reacted to prepare a spinning dope having a concentration of the polyacrylonitrile-based copolymer (solid content) of 18% by weight.

다음으로, 상기 방사도프를 방사구금(온도 45℃, 직경 0.08㎜, 구멍수 6,000개의 구금을 2개 사용)을 통해 방사하고, 방사된 섬유를 45℃로 제어되는 40% 디메틸설폭사이드 수용액인 응고액 내로 통과시킨 후 수세 및 연신하여 탄소나노튜브 함량이 0.2중량%인 폴리아크릴로니트릴계 전구체 섬유를 제조하였다.Next, the spinning dope was spun through a spinneret (temperature: 45 ° C, diameter 0.08 mm, using two spinnerets with 6,000 holes), and the spinneret was spin-coated with 40% dimethylsulfoxide aqueous solution Washed with water and stretched to obtain a polyacrylonitrile-based precursor fiber having a carbon nanotube content of 0.2 wt%.

다음으로, 상기 탄소나노튜브 함유 폴리아크릴로니트릴계 전구체 섬유를 250℃의 온도로 내염화시킨 다음, 계속해서 1,950℃의 온도로 탄화시켜 8,600 데니어의 폴리아크릴로니트릴계 탄소섬유를 제조하였다.Next, the carbon nanotube-containing polyacrylonitrile-based precursor fibers were chlorinated at a temperature of 250 ° C and then carbonized at 1,950 ° C to produce polyacrylonitrile-based carbon fibers of 8,600 denier.

제조된 폴리아크릴로니트릴계 탄소섬유의 강도 및 모듈러스를 측정한 결과는 표 1과 같았다.The strength and modulus of the produced polyacrylonitrile-based carbon fiber were measured and the results are shown in Table 1. [

비교실시예Comparative Example 1 One

중합반응기 내에 디메틸설폭사이드(용매)와 아크릴로니트릴 95몰%, 메타크릴산 3몰% 및 이타콘산 2몰%로 구성되는 중합단량체와 상기 이타콘산과 동량의 암모니아(중화제)를 투입, 반응시켜 폴리아크릴로니트릴계 공중합체(고형분)의 농도가 18중량%인 방사도프를 제조하였다.(Polymerizable monomer) composed of 95 mol% of acrylonitrile, 3 mol% of methacrylic acid and 2 mol% of itaconic acid, and ammonia (neutralizing agent) of the same amount as that of itaconic acid were charged and reacted in the polymerization reactor To prepare a spinning dope having a concentration of the polyacrylonitrile-based copolymer (solid content) of 18% by weight.

다음으로, 상기 방사도프를 방사구금(온도 45℃, 직경 0.08㎜, 구멍수 6,000개의 구금을 2개 사용)을 통해 방사하고, 방사된 섬유를 45℃로 제어되는 40% 디메틸설폭사이드 수용액인 응고액 내로 통과시킨 후 수세 및 연신하여 폴리아크릴로니트릴계 전구체 섬유를 제조하였다.Next, the spinning dope was spun through a spinneret (temperature: 45 ° C, diameter 0.08 mm, using two spinnerets with 6,000 holes), and the spinneret was spin-coated with 40% dimethylsulfoxide aqueous solution Passed through a high-volume liquid, and then washed and stretched to prepare polyacrylonitrile-based precursor fibers.

다음으로, 상기 폴리아크릴로니트릴계 전구체 섬유를 250℃의 온도로 내염화시킨 다음, 계속해서 1,700℃의 온도로 탄화시켜 8,600 데니어의 폴리아크릴로니트릴계 탄소섬유를 제조하였다.Next, the polyacrylonitrile-based precursor fibers were chlorinated at a temperature of 250 DEG C and then carbonized at a temperature of 1,700 DEG C to prepare polyacrylonitrile-based carbon fibers of 8,600 denier.

제조된 폴리아크릴로니트릴계 탄소섬유의 강도 및 모듈러스를 측정한 결과는 표 1과 같았다.The strength and modulus of the produced polyacrylonitrile-based carbon fiber were measured and the results are shown in Table 1. [

비교실시예Comparative Example 2 2

평균직경이 3.5㎚이고, 평균길이가 420㎛인 멀티웰(Multi well) 구조의 탄소나노튜브 원료를 사용하여 정제후 평균길이가 90㎛이고 순도가 99.9%인 탄소나노튜브를 제조하였다.Carbon nanotubes having an average length of 90 탆 and a purity of 99.9% were prepared using a multi-well carbon nanotube raw material having an average diameter of 3.5 nm and an average length of 420 탆.

디메틸설폭사이드(용매) 내에 상기 탄소나노튜브를 이후 공정에서 투입되는 아크릴로니트릴 모노머 대비 0.01중량% 투입, 분산시켜 탄소나노튜브가 분산된 용매를 준비하였다.The carbon nanotubes were added to and dispersed in dimethylsulfoxide (solvent) in an amount of 0.01 wt% based on the acrylonitrile monomer to be added in the subsequent process, thereby preparing a solvent in which carbon nanotubes were dispersed.

다음으로, 중합반응기 내에 탄소나노튜브가 분산된 상기 용매(디메틸설폭사이드)를 먼저 투입한 다음, 계속해서 여기에 아크릴로니트릴 95몰%, 메타크릴산 3몰% 및 이타콘산 2몰%로 구성되는 중합단량체와 상기 이타콘산과 동량의 암모니아(중화제)를 투입, 반응시켜 폴리아크릴로니트릴계 공중합체(고형분)의 농도가 18중량%인 방사도프를 제조하였다.Next, the solvent (dimethylsulfoxide) in which the carbon nanotubes were dispersed was first charged into the polymerization reactor, and then 95 mol% of acrylonitrile, 3 mol% of methacrylic acid and 2 mol% of itaconic acid And the same amount of ammonia (neutralizing agent) as that of itaconic acid were added and reacted to prepare a spinning dope having a concentration of the polyacrylonitrile-based copolymer (solid content) of 18% by weight.

다음으로, 상기 방사도프를 방사구금(온도 45℃, 직경 0.08㎜, 구멍수 6,000개의 구금을 2개 사용)을 통해 방사하고, 방사된 섬유를 45℃로 제어되는 40% 디메틸설폭사이드 수용액인 응고액 내로 통과시킨 후 수세 및 연신하여 탄소나노튜브 함량이 0.15중량%인 폴리아크릴로니트릴계 전구체 섬유를 제조하였다.Next, the spinning dope was spun through a spinneret (temperature: 45 ° C, diameter 0.08 mm, using two spinnerets with 6,000 holes), and the spinneret was spin-coated with 40% dimethylsulfoxide aqueous solution Washed with water and then stretched to prepare a polyacrylonitrile precursor fiber having a carbon nanotube content of 0.15% by weight.

다음으로, 상기 탄소나노튜브 함유 폴리아크릴로니트릴계 전구체 섬유를 250℃의 온도로 내염화시킨 다음, 계속해서 2,200℃의 온도로 탄화시켜 8,600 데니어의 폴리아크릴로니트릴계 탄소섬유를 제조하였다.Next, the carbon nanotube-containing polyacrylonitrile precursor fibers were subjected to chlorination at a temperature of 250 ° C, followed by carbonization at a temperature of 2,200 ° C to prepare polyacrylonitrile-based carbon fibers of 8,600 denier.

제조된 폴리아크릴로니트릴계 탄소섬유의 강도 및 모듈러스를 측정한 결과는 표 1과 같았다.The strength and modulus of the produced polyacrylonitrile-based carbon fiber were measured and the results are shown in Table 1. [

구분division 강도(Gpa)Strength (Gpa) 모듈러스(Gpa)Modulus (Gpa) 실시예 1Example 1 4.54.5 390390 실시예 2Example 2 5.35.3 470470 비교실시예 1Comparative Example 1 4.74.7 244244 비교실시예 2Comparative Example 2 2.82.8 420420

상기 강도 및 모듈러스는 ASTM D 3822에 의거하여 만능시험기를 사용하여 측정하였다.The strength and modulus were measured using a universal testing machine in accordance with ASTM D 3822.

Claims (8)

탄소섬유 내에 탄소나노튜브가 존재하며, 강도가 4.0~7.0Gpa이고, 모듈러스가 350~550Gpa인 것을 특징으로 하는 폴리아크릴로니트릴계 탄소섬유.Wherein the carbon nanotube is present in the carbon fiber, the strength is 4.0 to 7.0 Gpa, and the modulus is 350 to 550 Gpa. 제1항에 있어서, 탄소나노튜브는 정제후 순도가 98.5~100%이고, 정제후 평균길이가 1~100㎛인 것을 특징으로 하는 폴리아크릴로니트릴계 탄소섬유.The polyacrylonitrile-based carbon fiber according to claim 1, wherein the purity of the carbon nanotube after purification is 98.5 to 100%, and the average length after purification is 1 to 100 탆. 용매 내에 정제후 평균길이가 1~100㎛이고 정제후 순도가 98.5~100%인 탄소나노튜브를 중합단량체 대비 0.02~0.25중량% 투입한 후 분산시키는 공정;
중합반응기 내에 상기와 같이 탄소나노튜브가 분산된 용매를 먼저 투입한 후, 계속해서 중합단량체, 점도증가제 및 중합개시제를 투입, 반응시켜 방사도프(Dope) 제조하는 공정;
상기 방사도프를 방사한 후 수세 및 연신하여 상기 탄소나노튜브를 함유하는 폴리아크릴로니트릴계 전구체 섬유를 제조하는 공정; 및
상기 폴리아크릴로니트릴계 전구체 섬유를 1,250~2,000℃로서 열처리하여 폴리아크릴로니트릴계 탄소섬유를 제조하는 공정;을 포함하는 것을 특징으로 하는 폴리아크릴로니트릴계 탄소섬유의 제조방법.
0.02 to 0.25 wt% of carbon nanotubes having an average length of 1 to 100 mu m after purifying in a solvent and having a purity of 98.5 to 100% after purification, and then dispersing;
A step in which a solvent in which the carbon nanotubes are dispersed is first introduced into the polymerization reactor, and then a polymerization monomer, a viscosity increasing agent and a polymerization initiator are added and reacted to prepare a spinning dope;
Spinning and spinning the spinning dope to produce polyacrylonitrile-based precursor fibers containing the carbon nanotubes; And
And heat-treating the polyacrylonitrile-based precursor fiber at 1,250 to 2,000 DEG C to produce a polyacrylonitrile-based carbon fiber.
제3항에 있어서, 정제후 평균길이가 1~100㎛인 탄소나노튜브는 평균직경이 1.5~8㎚이고, 평균길이가 100~500㎛이고, 1층 내지 3층벽 구조를 갖는 탄소나노튜브 원료를 사용하여 제조하는 것을 특징으로 하는 폴리아크릴로니트릴계 탄소섬유의 제조방법.The carbon nanotube according to claim 3, wherein the carbon nanotubes having an average length of 1 to 100 占 퐉 after purification have an average diameter of 1.5 to 8 nm and an average length of 100 to 500 占 퐉, Wherein the polyacrylonitrile-based carbon fiber is produced by using the polyacrylonitrile-based carbon fiber. 제3항에 있어서, 중합단량체 아크릴로니트릴인 것을 특징으로 하는 폴리아크릴로니트릴계 탄소섬유의 제조방법.The method for producing a polyacrylonitrile-based carbon fiber according to claim 3, wherein the polymerizable monomer is acrylonitrile. 제3항에 있어서, 중합단량체는 아크릴로니트릴, 메타크릴산 및 이타콘산인 것을 특징으로 하는 폴리아크릴로니트릴계 탄소섬유의 제조방법.The method of producing a polyacrylonitrile-based carbon fiber according to claim 3, wherein the polymerizable monomer is acrylonitrile, methacrylic acid, and itaconic acid. 제3항에 있어서, 용매는 디메틸설폭사이드(Dimethylsulfoxide), 디메틸아세트아미드(Dimethylacetamide), 디메틸포름아미드(Dimethylformamide), 염화아연(ZnCl2)용액, 티오시안산나트륨(NaSCN) 용액 및 시안화수소(HCN) 용액 중에서 선택된 1종인 것을 특징으로 하는 폴리아크릴로니트릴계 탄소섬유의 제조방법.The method of claim 3 wherein the solvent is dimethyl sulfoxide (Dimethylsulfoxide), dimethylacetamide (Dimethylacetamide), dimethylformamide (Dimethylformamide), zinc chloride (ZnCl 2) solution, thiocyanate, sodium (NaSCN) solution and hydrogen cyanide (HCN ) Solution of a polyacrylonitrile-based carbon fiber. 제3항에 있어서, 상기 폴리아크릴로니트릴계 전구체 섬유 내에 함유된 탄소나노튜브의 함량이 0.02~0.25중량%인 것을 특징으로 하는 폴리아크릴로니트릴계 탄소섬유의 제조방법.4. The method for producing a polyacrylonitrile-based carbon fiber according to claim 3, wherein the content of the carbon nanotubes contained in the polyacrylonitrile-based precursor fibers is 0.02 to 0.25% by weight.
KR1020160038345A 2016-03-30 2016-03-30 Polyacrylronitrile type carbon fiber and method of manufacturing the same KR102309004B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160038345A KR102309004B1 (en) 2016-03-30 2016-03-30 Polyacrylronitrile type carbon fiber and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160038345A KR102309004B1 (en) 2016-03-30 2016-03-30 Polyacrylronitrile type carbon fiber and method of manufacturing the same

Publications (3)

Publication Number Publication Date
KR20170111970A true KR20170111970A (en) 2017-10-12
KR102309004B1 KR102309004B1 (en) 2021-10-05
KR102309004B9 KR102309004B9 (en) 2022-05-10

Family

ID=60141686

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160038345A KR102309004B1 (en) 2016-03-30 2016-03-30 Polyacrylronitrile type carbon fiber and method of manufacturing the same

Country Status (1)

Country Link
KR (1) KR102309004B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507917A (en) * 2022-01-20 2022-05-17 苏州蓝泰特种纤维新材料有限公司 Preparation method of modified carbon-based fiber and composite material thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100011551A (en) * 2008-07-25 2010-02-03 주식회사 효성 Polyacrylonitrile based carbon fiber reinforced carbon nanotube and preparing method the same
JP2010168723A (en) * 2008-12-26 2010-08-05 Toyobo Co Ltd Method for producing precursor fiber for obtaining carbon fiber having high strength and high elastic modulus
JP5261405B2 (en) * 2009-01-16 2013-08-14 東洋紡株式会社 Method for producing precursor fiber for obtaining high strength and high modulus carbon fiber
KR101447078B1 (en) * 2013-10-22 2014-10-06 재단법인 한국탄소융합기술원 Method for making high electro conductive and high strengthened pan-based carbon fiber and pan precursor for the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100011551A (en) * 2008-07-25 2010-02-03 주식회사 효성 Polyacrylonitrile based carbon fiber reinforced carbon nanotube and preparing method the same
JP2010168723A (en) * 2008-12-26 2010-08-05 Toyobo Co Ltd Method for producing precursor fiber for obtaining carbon fiber having high strength and high elastic modulus
JP5261405B2 (en) * 2009-01-16 2013-08-14 東洋紡株式会社 Method for producing precursor fiber for obtaining high strength and high modulus carbon fiber
KR101447078B1 (en) * 2013-10-22 2014-10-06 재단법인 한국탄소융합기술원 Method for making high electro conductive and high strengthened pan-based carbon fiber and pan precursor for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507917A (en) * 2022-01-20 2022-05-17 苏州蓝泰特种纤维新材料有限公司 Preparation method of modified carbon-based fiber and composite material thereof

Also Published As

Publication number Publication date
KR102309004B9 (en) 2022-05-10
KR102309004B1 (en) 2021-10-05

Similar Documents

Publication Publication Date Title
KR101467620B1 (en) Manufacturing method of carbon fiber and precursor
US20150118142A1 (en) Formation of carbon nanotube-enhanced fibers and carbon nanotube-enahnced hybrid structures
KR101272525B1 (en) Preparation Method for Hollow Carbon Fiber
KR20160142538A (en) Method of manufacturing carbon fiber with thick denier
KR102309004B1 (en) Polyacrylronitrile type carbon fiber and method of manufacturing the same
JP7264190B2 (en) Method for manufacturing carbon material
TWI422633B (en) Polyacrylonitrile-based copolymer/cnt composites, carbon fibers and fabrication method of carbon fiber
JPS6314094B2 (en)
JP4875238B2 (en) Method for producing carbon fiber and precursor thereof, and method for attaching oil agent
JP4887219B2 (en) Method for producing carbon fiber precursor acrylonitrile fiber
US4154807A (en) Process for the production of carbon fibers
JP5811529B2 (en) Carbon fiber bundle manufacturing method
JP3994488B2 (en) Carbon fiber manufacturing method
KR101909892B1 (en) The method of producing the polyacrylonitrile precursor for carbon fiber and the method of producing carbon fiber
JP2018111904A (en) Carbon material and method for producing the same
KR20110130186A (en) Manufacturing method of carbon fiber
JP2004238779A (en) Method for producing carbon fiber
KR20120007183A (en) Manufacturing method of carbon fiber
KR101148569B1 (en) Method for manufacturing carbon fiber
JP2007332498A (en) Method for producing carbon fiber bundle
KR20120048895A (en) Manufacturing method of carbon fiber
JP2018111638A (en) Carbon material and method for producing the same
JPH02259118A (en) Graphite fiber having high tensile strength
JP2018111905A (en) Carbon material and method for producing the same
JPH0433890B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]