KR20170092006A - 반도체 메모리 장치 및 그것의 동작 방법 - Google Patents

반도체 메모리 장치 및 그것의 동작 방법 Download PDF

Info

Publication number
KR20170092006A
KR20170092006A KR1020160012998A KR20160012998A KR20170092006A KR 20170092006 A KR20170092006 A KR 20170092006A KR 1020160012998 A KR1020160012998 A KR 1020160012998A KR 20160012998 A KR20160012998 A KR 20160012998A KR 20170092006 A KR20170092006 A KR 20170092006A
Authority
KR
South Korea
Prior art keywords
line
lines
voltage
select
memory cells
Prior art date
Application number
KR1020160012998A
Other languages
English (en)
Other versions
KR102429452B1 (ko
Inventor
배성호
김지선
정성용
Original Assignee
에스케이하이닉스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이하이닉스 주식회사 filed Critical 에스케이하이닉스 주식회사
Priority to KR1020160012998A priority Critical patent/KR102429452B1/ko
Priority to CN201610352649.9A priority patent/CN107025923B/zh
Publication of KR20170092006A publication Critical patent/KR20170092006A/ko
Application granted granted Critical
Publication of KR102429452B1 publication Critical patent/KR102429452B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/12Bit line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, equalising circuits, for bit lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/30Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/08Word line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, for word lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/18Address timing or clocking circuits; Address control signal generation or management, e.g. for row address strobe [RAS] or column address strobe [CAS] signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Read Only Memory (AREA)
  • Non-Volatile Memory (AREA)

Abstract

본 기술은 전자 장치에 관한 것으로, 보다 구체적으로는 반도체 메모리 장치 및 그것의 동작 방법에 관한 것이다. 본 기술에 따른 향상된 신뢰성을 갖는 반도체 메모리 장치는 비트 라인과 소스 라인 사이에 연결되는 복수의 스트링들을 포함하고, 상기 복수의 스트링들은 선택 라인들에 각각 연결된 선택 트랜지스터들 및 복수의 워드 라인들에 각각 연결된 복수의 메모리 셀들을 포함하는 메모리 셀 어레이 및 상기 복수의 메모리 셀들 중 선택된 메모리 셀들에 대한 읽기 동작을 수행하는 주변 회로를 포함하되, 상기 주변 회로는, 상기 읽기 동작에서 상기 선택 라인들을 상기 복수의 워드 라인들보다 먼저 디스차지 할 수 있다.

Description

반도체 메모리 장치 및 그것의 동작 방법{SEMICONDUCTOR MEMORY DEVICE AND OPERATING METHOD THEREOF}
본 발명은 전자 장치에 관한 것으로, 보다 구체적으로는 반도체 메모리 장치 및 그것의 동작 방법에 관한 것이다.
반도체 메모리 장치(semiconductor memory device)는 실리콘(Si, silicon), 게르마늄(Ge, Germanium), 비화 갈륨(GaAs, gallium arsenide), 인화인듐(InP, indium phospide) 등과 같은 반도체를 이용하여 구현되는 기억장치이다. 반도체 메모리 장치는 크게 휘발성 메모리 장치(Volatile memory device)와 불휘발성 메모리(Nonvolatile memory device)로 구분된다.
휘발성 메모리 장치는 전원 공급이 차단되면 저장하고 있던 데이터가 소멸되는 메모리 장치이다. 휘발성 메모리 장치에는 SRAM (Static RAM), DRAM (Dynamic RAM), SDRAM (Synchronous DRAM) 등이 있다. 불휘발성 메모리 장치는 전원 공급이 차단되어도 저장하고 있던 데이터를 유지하는 메모리 장치이다. 불휘발성 메모리 장치에는 ROM (Read Only Memory), PROM (Programmable ROM), EPROM (Electrically Programmable ROM), EEPROM (Electrically Erasable and Programmable ROM), 플래시 메모리, PRAM (Phase-change RAM), MRAM (Magnetic RAM), RRAM (Resistive RAM), FRAM (Ferroelectric RAM) 등이 있다. 플래시 메모리는 크게 노어 타입과 낸드 타입으로 구분된다.
본 발명의 실시 예는 향상된 신뢰성을 갖는 반도체 메모리 장치 및 그것의 동작 방법을 제공하기 위한 것이다.
본 발명의 실시 예에 따른 비트 라인과 소스 라인 사이에 연결되는 복수의 스트링들을 포함하고, 상기 복수의 스트링들은 선택 라인들에 각각 연결된 선택 트랜지스터들 및 복수의 워드 라인들에 각각 연결된 복수의 메모리 셀들을 포함하는 반도체 메모리 장치의 동작 방법은, 상기 복수의 메모리 셀들 중 선택된 메모리 셀들이 연결된 선택 워드 라인에 읽기 전압을 인가하고 선택되지 않은 메모리 셀들이 연결된 비선택 워드 라인들에 패스 전압을 인가하는 단계, 상기 비트 라인의 출력을 기초로 상기 선택된 메모리 셀들에 저장된 데이터를 독출하는 단계 및 상기 선택 라인들을 상기 선택 워드 라인 및 비선택 워드 라인들 보다 먼저 디스차지하는 단계를 포함한다.
본 발명의 실시 예에 따른 비트 라인과 소스 라인 사이에 연결되는 복수의 스트링들을 포함하고, 상기 복수의 스트링들은 선택 라인들에 각각 연결된 선택 트랜지스터들 및 복수의 워드 라인들에 각각 연결된 복수의 메모리 셀들을 포함하는 반도체 메모리 장치의 동작 방법은, 상기 복수의 메모리 셀들 중 선택된 메모리 셀들이 연결된 선택 워드 라인과 선택되지 않은 메모리 셀들이 연결된 비선택 워드 라인들에 패스 전압을 인가하는 단계, 상기 선택 워드 라인에 패스 전압을 인가한 뒤 제1 기준 시간이 경과 하면, 상기 선택 라인들을 디스차지 하는 단계 및 상기 선택 라인들을 디스차지 한 뒤 제2 기준 시간이 경과 하면, 상기 선택 워드 라인과 비선택 워드 라인들을 디스차지 하는 단계를 포함한다.
본 발명의 실시 예에 따른 반도체 메모리 장치는, 비트 라인과 소스 라인 사이에 연결되는 복수의 스트링들을 포함하고, 상기 복수의 스트링들은 선택 라인들에 각각 연결된 선택 트랜지스터들 및 복수의 워드 라인들에 각각 연결된 복수의 메모리 셀들을 포함하는 메모리 셀 어레이 및 상기 복수의 메모리 셀들 중 선택된 메모리 셀들에 대한 읽기 동작을 수행하는 주변 회로;를 포함하되, 상기 주변 회로는, 상기 읽기 동작에서 상기 선택 라인들을 상기 복수의 워드 라인들보다 먼저 디스차지 한다.
본 발명의 실시 예에 따르면, 향상된 신뢰성을 갖는 반도체 메모리 장치 및 그것의 동작방법이 제공된다.
도 1은 메모리 시스템의 구성을 나타낸 블록도이다.
도 2는 본 발명의 실시 예에 따른 반도체 메모리 장치를 보여주는 블록도이다.
도 3은 도 1의 메모리 셀 어레이 구조를 나타낸 도면이다.
도 4는 도 1의 메모리 셀 어레이의 다른 실시 예를 나타낸 것이다.
도 5는 읽기 동작시 각 라인들에 인가되는 전압을 나타낸 도면이다.
도 6은 도 5의 전압이 인가되는 경우 발생하는 현상을 설명하기 위한 도면이다.
도 7은 본 발명의 실시 예에 따른 반도체 메모리 장치의 동작 방법을 설명하기 위한 도면이다.
도 8은 본 발명의 실시 예에 따른 반도체 메모리 장치의 동작을 설명하기 위한 순서도이다.
도 9는 도 8의 디스차지 동작을 나타내는 순서도이다.
도 10은 도 2의 반도체 메모리 장치를 포함하는 메모리 시스템을 보여주는 블록도이다.
도 11은 도 10의 메모리 시스템의 응용 예를 보여주는 블록도이다.
도 12는 도 11을 참조하여 설명된 메모리 시스템을 포함하는 컴퓨팅 시스템을 보여주는 블록도이다.
본 명세서 또는 출원에 개시되어 있는 본 발명의 개념에 따른 실시 예들에 대해서 특정한 구조적 내지 기능적 설명들은 단지 본 발명의 개념에 따른 실시 예를 설명하기 위한 목적으로 예시된 것으로, 본 발명의 개념에 따른 실시 예들은 다양한 형태로 실시될 수 있으며 본 명세서 또는 출원에 설명된 실시 예들에 한정되는 것으로 해석되어서는 아니 된다.
본 발명의 개념에 따른 실시 예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시 예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1 및/또는 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만, 예컨대 본 발명의 개념에 따른 권리 범위로부터 이탈되지 않은 채, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소는 제1 구성요소로도 명명될 수 있다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 서술된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 명세서에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
실시 예를 설명함에 있어서 본 발명이 속하는 기술 분야에 익히 알려져 있고 본 발명과 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 발명의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시 예를 설명함으로써, 본 발명을 상세히 설명한다. 이하, 본 발명의 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다.
도 1은 메모리 시스템의 구성을 나타낸 블록도이다.
메모리 시스템(50)은 반도체 메모리 장치(100) 및 컨트롤러(200)를 포함한다.
반도체 메모리 장치(100)는 낸드 플래시 메모리(NAND flash memory), 수직형 낸드 플래시 메모리(Vertical NAND), 노아 플래시 메모리(NOR flash memory), 저항성 램(resistive random access memory: RRAM), 상변화 메모리(phase-change memory: PRAM), 자기저항 메모리(magnetoresistive random access memory: MRAM), 강유전체 메모리(ferroelectric random access memory: FRAM), 스핀주입 자화반전 메모리(spin transfer torque random access memory: STT-RAM) 등이 될 수 있다. 또한, 본 발명의 반도체 메모리 장치(100)는 3차원 어레이 구조(three-dimensional array structure)로 구현될 수 있다. 본 발명은 전하 저장층이 전도성 부유 게이트(floating gate; FG)로 구성된 플래시 메모리 장치는 물론, 전하 저장층이 절연막으로 구성된 차지 트랩형 플래시(charge trap flash; CTF)에도 적용될 수 있다.
반도체 메모리 장치(100)는 메모리 셀 어레이(110) 및 메모리 셀 어레이(110)를 구동하기 위한 주변 회로(120)를 포함한다. 메모리 셀 어레이(110)는 복수의 불휘발성 메모리 셀들을 포함한다.
메모리 셀 어레이(110)는 복수의 메모리 블록들을 포함하고, 복수의 메모리 블록들은 그 용도에 따라 시스템 블록 및 사용자 블록 등으로 구분하여 사용될 수 있다.
실시 예에서, 메모리 셀 어레이(110)는 캠(Content Addressable Memory, CAM) 영역(111)을 포함한다. 캠 영역(111)은 적어도 하나의 메모리 블록에 포함되는 복수의 메모리 셀들을 포함할 수 있다. 캠 영역(111)에 해당하는 메모리 블록은 캠 블록일 수 있다. 캠 블록과 메모리 블록은 동일한 구조를 가질 수 있다. 캠 영역(111)에는 반도체 메모리 장치(100)의 설정 정보들을 저장될 수 있다.
구체적으로 캠 영역(111)에는 데이터 입출력 동작과 관련하여 설정된 조건들이나 기타 정보들이 저장될 수 있다. 실시 예에서, 캠 영역(111)에는 읽기/쓰기 실시 횟수(P/E Cycle), 불량 컬럼 어드레스, 불량 블록 어드레스 정보가 저장될 수 있다. 실시 예에서, 캠 영역(111)에는 반도체 메모리 장치(100)가 동작하기 위해 필요한 옵션 정보, 예를 들면 프로그램 전압 정보와, 읽기 전압 정보, 소거 전압 정보 또는 셀의 게이트 산화막 두께 정보 등이 저장될 수 있다. 실시 예에서, 캠 영역(111)에는 리페어 정보가 저장될 수 있다. 반도체 메모리 장치(100)에 전원이 공급되면, 캠 영역(111)에 저장된 정보들은 주변 회로(120)에 의해 독출되고, 주변 회로(120)는 독출된 정보에 따라 설정된 조건으로 메모리 셀들의 데이터 입출력 동작을 수행하도록 메모리 셀 어레이(110)를 제어할 수 있다.
본 발명의 실시 예에 따르면, 캠 영역(111)에는 반도체 메모리 장치가 읽기 동작에서 복수의 라인들의 디스차지 하는데 필요한 제1 기준 시간(tref1) 및 제2 기준 시간(tref2)에 대한 정보가 저장될 수 있다.
제1 기준 시간(tref1)은 반도체 메모리 장치의 선택된 워드 라인의 전압이 패스 전압(Vpass)에 도달하는 시간일 수 있다.
제2 기준 시간(tref2)은 반도체 메모리 장치의 메모리 셀 어레이의 셀렉트 라인들(DSL, SSL)이 디스차지 되는 시간일 수 있다. 셀렉트 라인들(DSL, SSL)의 전압이 접지 전압(GND)에 도달하는 시간일 수 있다.
주변 회로(120)는 컨트롤러(200)의 제어에 응답하여 동작한다. 주변 회로(120)는 컨트롤러(200)의 제어에 응답하여, 메모리 셀 어레이(110)에 데이터를 프로그램 할 수 있다. 주변 회로(120)는 메모리 셀 어레이(110)로부터 데이터를 읽고 메모리 셀 어레이(110)의 데이터를 소거하도록 동작할 수 있다.
다양한 실시 예에서, 반도체 메모리 장치(100)의 읽기 동작 및 프로그램 동작은 페이지 단위로 수행될 수 있다. 반도체 메모리 장치(100)의 소거 동작은 메모리 블록 단위로 수행될 수 있다.
프로그램 동작 시, 주변 회로(120)는 컨트롤러(200)로부터 프로그램 동작을 나타내는 커맨드, 물리 블록 어드레스(PBA)(physical address, PA) 및 쓰기 데이터를 수신할 수 있다. 주변회로(120)는 물리 블록 어드레스(PBA)에 의해 하나의 메모리 블록과 해당 메모리 블록에 포함된 하나의 페이지가 선택되면, 선택된 페이지에 쓰기 데이터를 프로그램 할 수 있다.
읽기 동작 시, 주변 회로(120)는 컨트롤러(200)로부터 읽기 동작을 나타내는 커맨드(이하, 읽기 커맨드), 물리 블록 어드레스(PBA)를 수신할 수 있다. 주변 회로(120)는 물리 블록 어드레스(PBA)에 의해 선택된 하나의 메모리 블록과 그것에 포함된 하나의 페이지로부터 데이터를 읽고, 읽어진 데이터(이하, 페이지 데이터)를 컨트롤러(200)로 출력할 수 있다.
소거 동작 시에, 주변 회로(120)는 컨트롤러(200)로부터 소거 동작을 나타내는 커맨드 및 물리 블록 어드레스(PBA)를 수신할 수 있다. 물리 블록 어드레스(PBA)는 하나의 메모리 블록을 특정할 것이다. 주변 회로(120)는 물리 블록 어드레스(PBA)에 대응하는 메모리 블록의 데이터를 소거할 것이다.
컨트롤러(200)는 반도체 메모리 장치(100)의 전반적인 동작을 제어한다. 컨트롤러(200)는 외부 호스트로부터의 요청에 응답하여 반도체 메모리 장치(100)를 액세스할 수 있다. 컨트롤러(200)는 외부 호스트로부터의 요청에 응답하여 반도체 메모리 장치(100)를 커맨드한다.
실시 예로서, 컨트롤러(200)는 프로그램 동작, 읽기 동작 또는 소거 동작 등을 수행하도록 반도체 메모리 장치(100)를 제어할 것이다. 프로그램 동작 시, 컨트롤러(200)는 프로그램 커맨드, 어드레스 및 데이터를 채널을 통해 반도체 메모리 장치(100)에 제공할 것이다. 읽기 동작 시, 컨트롤러(200)는 읽기 커맨드 및 어드레스를 채널을 통해 반도체 메모리 장치(100)에 제공할 것이다. 소거 동작 시, 컨트롤러(200)는 소거 커맨드 및 어드레스를 채널을 통해 반도체 메모리 장치(100)에 제공할 것이다.
컨트롤러(200)는 램(210), 메모리 제어부(220) 및 에러 정정 회로(230)을 포함할 수 있다.
램(random access memory; RAM)(210)은 메모리 제어부(220)의 제어에 따라 동작하며, 워크 메모리(work memory), 버퍼 메모리(buffer memory), 캐시 메모리(cache memory) 등으로 사용될 수 있다. 램(210)이 워크 메모리로 사용되는 경우에, 메모리 제어부(220)에 의해서 처리되는 데이터가 임시 저장될 수 있다. 램(210)이 버퍼 메모리로 사용되는 경우에는, 호스트(미도시)에서 반도체 메모리 장치(100)로 또는 반도체 메모리 장치(100)에서 호스트(미도시)로 전송될 데이터를 버퍼링 하는데 사용될 수 있다.
메모리 제어부(220)는 반도체 메모리 장치(100)의 읽기 동작, 프로그램 동작, 소거 동작, 그리고 배경(background) 동작을 제어하도록 구성된다. 메모리 제어부(220)는 반도체 메모리 장치(100)를 제어하기 위한 펌웨어(firmware)를 구동하도록 구성된다.
메모리 제어부(220)는 플래시 변환 계층(FTL)을 통해 호스트가 제공한 논리 블록 어드레스(logical block address, LBA)를 물리 블록 어드레스(physical block address, PBA)로 변환할 수 있다. 구체적으로, 플래시 변환 계층(FTL)은 맵핑 테이블을 이용하여 논리 블록 어드레스(LBA)를 입력 받아, 물리 블록 어드레스(PBA)로 변환시킬 수 있다. 물리 블록 어드레스는 메모리 셀 어레이(110)의 특정 워드라인을 지칭하는 페이지 넘버일 수 있다. 플래시 변환 계층의 주소 맵핑 방법에는 맵핑 단위에 따라 여러 가지가 있다. 대표적인 어드레스 맵핑 방법에는 페이지 맵핑 방법(Page mapping method), 블록 맵핑 방법(Block mapping method), 그리고 혼합 맵핑 방법(Hybrid mapping method)이 있다.
에러 정정 코드 회로(230)는 프로그램 할 데이터에 대한 에러 정정 코드(Error Correction Code; ECC)인 패리티를 생성한다. 또한 읽기 동작시, 에러 정정 코드 회로(230)는 독출한 페이지 데이터에 대해 패리티를 이용하여 오류를 정정할 수 있다. 에러 정정 코드 회로(230)는 LDPC(low density parity check) code, BCH (Bose, Chaudhri, Hocquenghem) Code, turbo code, 리드-솔로몬 코드(Reed-Solomon code), convolution code, RSC(recursive systematic code), TCM(trellis-coded modulation), BCM(Block coded modulation), 해밍 코드(hamming code) 등의 코디드 모듈레이션(coded modulation)을 사용하여 에러를 정정할 수 있다.
읽기 동작 시, 에러 정정 코드 회로(230)는 독출된 페이지 데이터의 오류를 정정할 수 있다. 독출된 페이지 데이터에 정정 가능한 비트 수를 초과하는 에러 비트들이 포함된 경우 디코드는 실패할 수 있다. 페이지 데이터에 정정 가능한 비트 수보다 같거나 작은 에러 비트들이 포함된 경우 디코드는 성공할 수 있다.
디코드의 성공은 해당 읽기 커맨드가 패스(pass)되었음을 나타낸다. 디코드의 실패는 해당 읽기 커맨드가 실패(fail)하였음을 나타낸다. 디코드가 성공될 때 컨트롤러(200)는 에러가 정정된 페이지 데이터를 호스트로 출력한다.
도면에는 도시되어 있지 않지만, 컨트롤러(200)는 반도체 메모리 장치(100)와 통신하기 위한 메모리 인터페이스를 더 포함할 수 있다. 메모리 인터페이스는 반도체 메모리 장치(100)와 통신하기 위한 프로토콜을 포함한다. 예를 들면, 메모리 인터페이스는 낸드(NAND) 인터페이스, 노어(NOR) 인터페이스 등과 같은 플래시 인터페이스들 중 적어도 하나를 포함할 수 있다.
또한, 컨트롤러(200)는 호스트 및 컨트롤러(200) 사이의 데이터 교환을 수행하기 위해 호스트 인터페이스를 더 포함할 수 있다. 호스트 인터페이스는 호스트와 컨트롤러(200)간에 통신하기 위한 프로토콜을 포함한다. 예시적으로, 컨트롤러(200)는 USB(Universal Serial Bus) 프로토콜, MMC(multimedia card) 프로토콜, PCI(peripheral component interconnection) 프로토콜, PCI-E(PCI-express) 프로토콜, ATA(Advanced Technology Attachment) 프로토콜, Serial-ATA 프로토콜, Parallel-ATA 프로토콜, SCSI(smallcomputer small interface) 프로토콜, ESDI(enhanced small disk interface) 프로토콜, 그리고 IDE(Integrated Drive Electronics) 프로토콜 등과 같은 다양한 인터페이스 프로토콜들 중 적어도 하나를 통해 외부(호스트)와 통신하도록 구성된다.
도 2는 본 발명의 실시 예에 따른 반도체 메모리 장치를 보여주는 블록도이다.
도 3은 도 2의 메모리 셀 어레이(110) 구조를 나타낸 도면이다.
도 2를 참조하면, 반도체 메모리 장치(100)는 메모리 셀 어레이(110) 및 주변 회로(120, peripheral circuit)를 포함한다.
메모리 셀 어레이(110)는 복수의 메모리 블록들(BLK1~BLKz)을 포함한다. 복수의 메모리 블록들(BLK1~BLKz)은 행 라인들(RL)을 통해 어드레스 디코더(121)에 연결되고, 비트 라인들(BL1~BLm)을 통해 읽기 및 쓰기 회로(123)에 연결된다. 복수의 메모리 블록들(BLK1~BLKz) 각각은 복수의 메모리 셀들을 포함한다. 실시 예로서, 복수의 메모리 셀들은 불휘발성(nonvolatile) 메모리 셀들이다.
메모리 셀 어레이(110)에 포함된 복수의 메모리 셀들은 그 용도에 따라 복수의 블록들로 구분되어 사용될 수 있다.
실시 예에서, 메모리 셀 어레이(110)는 도 1의 캠(Content Addressable Memory, CAM) 영역(111)을 포함할 수 있다. 캠 영역(111)은 적어도 하나의 메모리 블록에 포함되는 복수의 메모리 셀들을 포함할 수 있다. 캠 영역(111)에 해당하는 메모리 블록은 캠 블록일 수 있다. 캠 블록은 메모리 블록들(BLK1~BLKz) 중 적어도 하나의 블록일 수 있다. 캠 블록은 메모리 블록들과 동일한 구조를 가질 수 있다. 캠 영역(111)에는 반도체 메모리 장치(100)의 설정 정보들을 저장될 수 있다. 구체적으로 캠 영역(111)에는 데이터 입출력 동작과 관련하여 설정된 조건들이나 기타 정보들이 저장될 수 있다. 실시 예에서, 캠 영역(111)에는 읽기/쓰기 실시 횟수(P/E Cycle), 불량 컬럼 어드레스, 불량 블록 어드레스 정보가 저장될 수 있다. 실시 예에서, 캠 영역(111)에는 반도체 메모리 장치(100)가 동작하기 위해 필요한 옵션 정보, 예를 들면 프로그램 전압 정보와, 읽기 전압 정보, 소거 전압 정보 또는 셀의 게이트 산화막 두께 정보 등이 저장될 수 있다. 실시 예에서, 캠 영역(111)에는 리페어 정보가 저장될 수 있다.
본 발명의 실시 예에 따르면, 캠 영역(111)에는 반도체 메모리 장치가 읽기 동작에서 복수의 라인들의 디스차지 하는데 필요한 제1 기준 시간(tref1) 및 제2 기준 시간(tref2)에 대한 정보가 저장될 수 있다.
제1 기준 시간(tref1)은 반도체 메모리 장치의 선택된 워드 라인의 전압이 패스 전압(Vpass)에 도달하는 시간일 수 있다.
제2 기준 시간(tref2)은 반도체 메모리 장치의 메모리 셀 어레이의 선택 라인들(DSL, SSL)이 디스차지 되는 시간일 수 있다. 즉, 선택 라인들(DSL, SSL)의 전압이 접지 전압(GND)에 도달하는 시간일 수 있다.
제 1 내지 제 z 메모리 블록들(BLK1~BLKz)은 제 1 내지 제 m 비트 라인들(BL1~BLm)에 공통 연결된다. 제 1 내지 제 z 메모리 블록들(BLK1~BLKz)은 복수의 셀 스트링들을 포함한다. 복수의 셀 스트링들은 각각 제 1 내지 제 m 비트 라인들(BL1~BLm)에 연결된다.
도 3에서, 설명의 편의를 위해 복수의 메모리 블록들(BLK1~BLKz) 중 제 1 메모리 블록(BLK1)에 포함된 요소들이 도시되고, 나머지 메모리 블록들(BLK2~BLKz) 각각에 포함된 요소들은 생략된다. 나머지 메모리 블록들(BLK2~BLKz) 각각은 제 1 메모리 블록(BLK1)과 마찬가지로 구성됨이 이해될 것이다.
메모리 블록(BLK1)은 복수의 셀 스트링들(CS11~CS1m, CS21~CS2m)을 포함한다. 제 1 내지 제 m 셀 스트링들(CS11~CS1m)은 각각 제 1 내지 제 m 비트 라인들(BL1~BLm)에 연결된다.
제 1 내지 제 m 셀 스트링들(CS11~CS1m) 각각은 드레인 선택 트랜지스터(DST), 직렬 연결된 복수의 메모리 셀들(MC1~MCn) 및 소스 선택 트랜지스터(SST)를 포함한다. 드레인 선택 트랜지스터(DST)는 드레인 선택 라인(DSL1)에 연결된다. 제 1 내지 제 n 메모리 셀들(MC1~MCn)은 각각 제 1 내지 제 n 워드 라인들(WL1~WLn)에 연결된다. 소스 선택 트랜지스터(SST)는 소스 선택 라인(SSL1)에 연결된다. 드레인 선택 트랜지스터(DST)의 드레인 측은 해당 비트 라인에 연결된다. 제 1 내지 제 m 셀 스트링들(CS11~CS1m)의 드레인 선택 트랜지스터들은 각각 제 1 내지 제 m 비트 라인들(BL1~BLm)에 연결된다. 소스 선택 트랜지스터(SST)의 소스 측은 공통 소스 라인(CSL)에 연결된다. 실시 예로서, 공통 소스 라인(CSL)은 제 1 내지 제 z 메모리 블록들(BLK1~BLKz)에 공통 연결될 수 있다.
드레인 선택 라인(DSL1), 제 1 내지 제 n 워드 라인들(WL1~WLn), 및 소스 선택 라인(SSL1)은 도 1의 행 라인들(RL)에 포함된다. 드레인 선택 라인(DSL1), 제 1 내지 제 n 워드 라인들(WL1~WLn), 및 소스 선택 라인(SSL1)은 어드레스 디코더(121)에 의해 제어된다. 공통 소스 라인(CSL)은 제어 로직(125)에 의해 제어된다. 제 1 내지 제 m 비트 라인들(BL1~BLm)은 읽기 및 쓰기 회로(123)에 의해 제어된다.
다시 도 2를 참조하면, 주변 회로(120)는 어드레스 디코더(121), 전압 발생기(122), 읽기 및 쓰기 회로(123), 데이터 입출력 회로(124) 그리고 제어 로직(125)을 포함한다. 어드레스 디코더(121)는 행 라인들(RL)을 통해 메모리 셀 어레이(110)에 연결된다. 어드레스 디코더(121)는 제어 로직(125)의 제어에 응답하여 동작하도록 구성된다. 어드레스 디코더(121)는 제어 로직(125)을 통해 어드레스(ADDR)를 수신한다.
실시 예로서, 반도체 메모리 장치(100)의 프로그램 동작 및 읽기 동작은 페이지 단위로 수행된다. 프로그램 동작 및 읽기 동작 시, 어드레스(ADDR)는 블록 어드레스 및 행 어드레스를 포함할 것이다.
어드레스 디코더(121)는 수신된 어드레스(ADDR) 중 블록 어드레스를 디코딩하도록 구성된다. 어드레스 디코더(121)는 디코딩된 블록 어드레스에 따라 메모리 블록들(BLK1~BLKz) 중 하나의 메모리 블록을 선택한다.
어드레스 디코더(121)는 수신된 어드레스(ADDR) 중 행 어드레스를 디코딩하도록 구성된다. 어드레스 디코더(121)는 디코딩된 행 어드레스에 따라 전압 발생기(122)로부터 제공받은 전압들을 행 라인들(RL)에 인가하여 선택된 메모리 블록의 하나의 워드 라인을 선택한다.
프로그램 동작 시에, 어드레스 디코더(121)는 선택된 워드 라인에 프로그램 전압을 인가하고 비선택된 워드 라인들에 프로그램 전압보다 낮은 패스 전압를 인가할 것이다. 프로그램 검증 동작 시에, 어드레스 디코더(121)는 선택된 워드 라인에 검증 전압을 인가하고 비선택된 워드 라인들에 검증 전압보다 높은 검증 패스 전압을 인가할 것이다.
읽기 동작 시에, 어드레스 디코더(121)는 선택된 워드 라인에 읽기 전압을 인가하고, 비선택된 워드 라인들에 읽기 전압보다 높은 패스 전압을 인가할 것이다.
실시 예로서, 반도체 메모리 장치(100)의 소거 동작은 메모리 블록 단위로 수행된다. 소거 동작 시에 어드레스(ADDR)는 블록 어드레스를 포함한다. 어드레스 디코더(121)은 블록 어드레스를 디코딩하고, 디코딩된 블록 어드레스에 따라 하나의 메모리 블록을 선택한다.
실시 예로서, 어드레스 디코더(121)은 블록 디코더, 워드라인 디코더 및 어드레스 버퍼 등을 포함할 수 있다.
전압 발생기(122)는 반도체 메모리 장치(100)에 공급되는 외부 전원 전압을 이용하여 복수의 전압들을 발생하도록 구성된다. 전압 발생기(122)는 제어 로직(125)의 제어에 응답하여 동작한다.
실시 예로서, 전압 발생기(122)는 외부 전원 전압을 레귤레이팅하여 내부 전원 전압을 생성할 수 있다. 전압 발생기(122)에서 생성된 내부 전원 전압은 반도체 메모리 장치(100)의 동작 전압으로서 사용된다.
실시 예로서, 전압 발생기(122)는 외부 전원 전압 또는 내부 전원 전압을 이용하여 복수의 전압들을 생성할 수 있다. 예를 들면, 전압 발생기(122)는 내부 전원 전압을 수신하는 복수의 펌핑 커패시터들을 포함하고, 제어 로직(125)의 제어에 응답하여 복수의 펌핑 커패시터들을 선택적으로 활성화하여 복수의 전압들을 생성할 것이다. 생성된 복수의 전압들은 어드레스 디코더(121)에 의해 선택된 워드 라인들에 인가된다.
읽기 및 쓰기 회로(123)는 제 1 내지 제 m 페이지 버퍼들(PB1~PBm)을 포함한다. 제 1 내지 제 m 페이지 버퍼들(PB1~PBm)은 각각 제 1 내지 제 m 비트 라인들(BL1~BLm)을 통해 메모리 셀 어레이(110)에 연결된다. 제 1 내지 제 m 페이지 버퍼들(PB1~PBm)은 제어 로직(125)의 제어에 응답하여 동작한다.
제 1 내지 제 m 페이지 버퍼들(PB1~PBm)은 데이터 입출력 회로(124)와 데이터를 통신한다. 프로그램 시에, 제 1 내지 제 m 페이지 버퍼들(PB1~PBm)은 데이터 입출력 회로(124) 및 데이터 라인들(DL)을 통해 저장될 데이터(DATA)를 수신한다.
프로그램 동작 시, 제 1 내지 제 m 페이지 버퍼들(PB1~PBm)은 선택된 워드 라인에 프로그램 펄스가 인가될 때, 저장될 데이터(DATA)를 데이터 입출력 회로(124)를 통해 수신한 데이터(DATA)를 비트 라인들(BL1~BLm)을 통해 선택된 메모리 셀들에 전달할 것이다. 전달된 데이터(DATA)에 따라 선택된 페이지의 메모리 셀들은 프로그램 된다. 프로그램 허용 전압(예를 들면, 접지 전압)이 인가되는 비트 라인과 연결된 메모리 셀은 상승된 문턱 전압을 가질 것이다. 프로그램 금지 전압(예를 들면, 전원 전압)이 인가되는 비트 라인과 연결된 메모리 셀의 문턱 전압은 유지될 것이다. 프로그램 검증 동작 시에, 제 1 내지 제 m 페이지 버퍼들(PB1~PBm)은 선택된 메모리 셀들로부터 비트 라인들(BL1~BLm)을 통해 페이지 데이터를 읽는다.
읽기 동작 시, 읽기 및 쓰기 회로(123)는 선택된 페이지의 메모리 셀들로부터 비트 라인들(BL)을 통해 데이터(DATA)를 읽고, 읽어진 데이터(DATA)를 입출력 회로(124)로 출력한다.
소거 동작 시에, 읽기 및 쓰기 회로(123)는 비트 라인들(BL)을 플로팅(floating) 시킬 수 있다.
데이터 입출력 회로(124)는 데이터 라인들(DL)을 통해 제 1 내지 제 m 페이지 버퍼들(PB1~PBm)에 연결된다. 데이터 입출력 회로(124)는 제어 로직(125)의 제어에 응답하여 동작한다. 프로그램 시에, 데이터 입출력 회로(124)는 외부 컨트롤러(미도시)로부터 저장될 데이터(DATA)를 수신한다.
데이터 입출력 회로(124)는 읽기 동작 시, 읽기 및 쓰기 회로(123)에 포함된 제 1 내지 제 m 페이지 버퍼들(PB1~PBm)로부터 전달된 데이터를 외부 컨트롤러로 출력한다.
제어 로직(125)은 어드레스 디코더(121), 전압 발생기(122), 읽기 및 쓰기 회로(123) 및 데이터 입출력 회로(124)에 연결된다. 제어 로직(125)은 반도체 메모리 장치(100)의 전반적인 동작을 제어할 수 있다. 제어 로직(125)은 외부 컨트롤러로부터 커맨드(CMD) 및 어드레스(ADDR)를 수신한다. 제어 로직(125)은 커맨드(CMD)에 응답하여 어드레스 디코더(121), 전압 발생기(122), 읽기 및 쓰기 회로(123) 및 데이터 입출력 회로(124)를 제어하도록 구성된다. 제어 로직(125)은 어드레스(ADDR)를 어드레스 디코더(121)에 전달한다.
본 발명의 실시 예에 따르면, 제어 로직(125)은 반도체 메모리 장치(100)에 전원이 공급되면, 캠 영역(111)에 저장된 정보들을 독출할 수 있다.
본 발명의 실시 예에서, 제어 로직(125)은 읽기 동작 중 워드 라인들과 선택 라인들을 캠 영역(111)으로부터 독출한 제1 기준시간(tref1)과 제2 기준시간(tref2)에 따라 디스차지 할 수 있다.
제어 로직(125)은 읽기 동작시 디스차지 구간에서 선택된 워드 라인에 패스 전압(Vpass)을 인가하도록 전압발생기(122)와 어드레스 디코더(121)를 제어한다.
제어 로직(125)은 선택된 워드 라인에 패스 전압(Vpass)을 인가한 뒤 제1 기준 시간(tref1)이 경과하면, 선택 라인들(DSL, SSL)을 디스차지 할 수 있다. 제어 로직(125)은 제1 기준 시간(tref1)이 경과하면, 선택 라인들(DSL, SSL)에 접지 전압을 인가하도록 전압발생기(122)와 어드레스 디코더(121)를 제어할 수 있다.
제어 로직(125)은 선택 라인들(DSL, SSL)에 접지 전압을 인가한 뒤 제2 기준 시간(tref2)이 경과 하면, 메모리 셀 어레이(110)의 워드 라인들을 디스차지 할 수 있다. 제어 로직(125)는, 제2 기준 시간(tref2)이 경과하면, 워드 라인들을 디스차지 하기 위하여 워드 라인들에 접지 전압을 인가하도록 전압발생기(122)와 어드레스 디코더(121)를 제어할 수 있다.
제어 로직(125)은 제1 기준 시간(tref1) 및 제2 기준 시간(tref2)의 경과 여부를 판단하기 위한 적어도 하나 이상의 카운터 회로를 포함할 수 있다.
다시, 도 3을 참조하면, 메모리 셀 어레이(110)는 복수의 메모리 블록들(BLK1~BLKz)을 포함한다. 도 3에서, 인식의 편의를 위해 제 1 메모리 블록(BLK1)의 내부 구성이 도시되고, 나머지 메모리 블록들(BLK2~BLKz)의 내부 구성은 생략되어 있다. 제 2 내지 제 z 메모리 블록들(BLK2~BLKz)도 제 1 메모리 블록(BLK1)과 마찬가지로 구성됨이 이해될 것이다.
도 3을 참조하면 제 1 메모리 블록(BLK1)은 복수의 셀 스트링들(CS11~CS1m, CS21~CS2m)을 포함한다. 실시 예로서, 복수의 셀 스트링들(CS11~CS1m, CS21~CS2m) 각각은 'U'자형으로 형성될 수 있다. 제 1 메모리 블록(BLK1) 내에서, 행 방향(즉 +X 방향)으로 m개의 셀 스트링들이 배열된다. 도 3에서, 열 방향(즉 +Y 방향)으로 2개의 셀 스트링들이 배열되는 것으로 도시되었다. 하지만 이는 설명의 편의를 위한 것으로서 열 방향으로 3개 이상의 셀 스트링들이 배열될 수 있음이 이해될 것이다.
복수의 셀 스트링들(CS11~CS1m, CS21~CS2m) 각각은 적어도 하나의 소스 선택 트랜지스터(SST), 제 1 내지 제 n 메모리 셀들(MC1~MCn), 파이프 트랜지스터(PT), 그리고 적어도 하나의 드레인 선택 트랜지스터(DST)을 포함한다.
선택 트랜지스터들(SST, DST) 및 메모리 셀들(MC1~MCn) 각각은 유사한 구조를 가질 수 있다. 실시 예로서, 선택 트랜지스터들(SST, DST) 및 메모리 셀들(MC1~MCn) 각각은 채널층, 터널링 절연막, 전하 저장막 및 블로킹 절연막을 포함할 수 있다. 실시 예로서, 채널층을 제공하기 위한 필라(pillar)가 각 셀 스트링(each cell string)에 제공될 수 있다. 실시 예로서, 채널층, 터널링 절연막, 전하 저장막 및 블로킹 절연막 중 적어도 하나를 제공하기 위한 필라가 각 셀 스트링에 제공될 수 있다.
각 셀 스트링의 소스 선택 트랜지스터(SST)는 공통 소스 라인(CSL)과 메모리 셀들(MC1~MCp) 사이에 연결된다.
실시 예로서, 동일한 행에 배열된 셀 스트링들의 소스 선택 트랜지스터들은 행 방향으로 신장되는 소스 선택 라인에 연결되고, 상이한 행에 배열된 셀 스트링들의 소스 선택 트랜지스터들은 상이한 소스 선택 라인들에 연결된다. 도 3에서, 제 1 행의 셀 스트링들(CS11~CS1m)의 소스 선택 트랜지스터들은 제 1 소스 선택 라인(SSL1)에 연결되어 있다. 제 2 행의 셀 스트링들(CS21~CS2m)의 소스 선택 트랜지스터들은 제 2 소스 선택 라인(SSL2)에 연결되어 있다.
다른 실시 예로서, 셀 스트링들(CS11~CS1m, CS21~CS2m)의 소스 선택 트랜지스터들은 하나의 소스 선택 라인에 공통 연결될 수 있다.
각 셀 스트링의 제 1 내지 제 n 메모리 셀들(MC1~MCn)은 소스 선택 트랜지스터(SST)와 드레인 선택 트랜지스터(DST) 사이에 연결된다.
제 1 내지 제 n 메모리 셀들(MC1~MCn)은 제 1 내지 제 p 메모리 셀들(MC1~MCp)과 제 p+1 내지 제 n 메모리 셀들(MCp+1~MCn)로 구분될 수 있다. 제 1 내지 제 p 메모리 셀들(MC1~MCp)은 +Z 방향과 역방향으로 순차적으로 배열되며, 소스 선택 트랜지스터(SST)와 파이프 트랜지스터(PT) 사이에서 직렬 연결된다. 제 p+1 내지 제 n 메모리 셀들(MCp+1~MCn)은 +Z 방향으로 순차적으로 배열되며, 파이프 트랜지스터(PT)와 드레인 선택 트랜지스터(DST) 사이에서 직렬 연결된다. 제 1 내지 제 p 메모리 셀들(MC1~MCp)과 제 p+1 내지 제 n 메모리 셀들(MCp+1~MCn)은 파이프 트랜지스터(PT)를 통해 연결된다. 각 셀 스트링의 제 1 내지 제 n 메모리 셀들(MC1~MCn)의 게이트들은 각각 제 1 내지 제 n 워드 라인들(WL1~WLn)에 연결된다.
실시 예로서, 제 1 내지 제 n 메모리 셀들(MC1~MCn) 중 적어도 하나는 더미 메모리 셀로서 이용될 수 있다. 더미 메모리 셀이 제공되는 경우, 해당 셀 스트링의 전압 또는 전류는 안정적으로 제어될 수 있다. 이에 따라, 메모리 블록(BLK1)에 저장된 데이터의 신뢰성은 향상된다.
각 셀 스트링의 파이프 트랜지스터(PT)의 게이트는 파이프 라인(PL)에 연결된다.
각 셀 스트링의 드레인 선택 트랜지스터(DST)은 해당 비트 라인과 메모리 셀들(MCp+1~MCn) 사이에 연결된다. 행 방향으로 배열되는 셀 스트링들은 행 방향으로 신장되는 드레인 선택 라인에 연결된다. 제 1 행의 셀 스트링들(CS11~CS1m)의 드레인 선택 트랜지스터들은 제 1 드레인 선택 라인(DSL1)에 연결된다. 제 2 행의 셀 스트링들(CS21~CS2m)의 드레인 선택 트랜지스터들은 제 2 드레인 선택 라인(DSL2)에 연결된다.
열 방향으로 배열되는 셀 스트링들은 열 방향으로 신장되는 비트 라인에 연결된다. 도 4에서, 제 1 열의 셀 스트링들(CS11, CS21)은 제 1 비트 라인(BL1)에 연결되어 있다. 제 m 열의 셀 스트링들(CS1m, CS2m)은 제 m 비트 라인(BLm)에 연결되어 있다.
행 방향으로 배열되는 셀 스트링들 내에서 동일한 워드 라인에 연결되는 메모리 셀들은 하나의 페이지를 구성한다. 예를 들면, 제 1 행의 셀 스트링들(CS11~CS1m) 중 제 1 워드 라인(WL1)과 연결된 메모리 셀들은 하나의 페이지를 구성한다. 제 2 행의 셀 스트링들(CS21~CS2m) 중 제 1 워드 라인(WL1)과 연결된 메모리 셀들은 다른 하나의 페이지를 구성한다. 드레인 선택 라인들(DSL1, DSL2) 중 어느 하나가 선택됨으로써 하나의 행 방향으로 배열되는 셀 스트링들이 선택될 것이다. 워드 라인들(WL1~WLn) 중 어느 하나가 선택됨으로써 선택된 셀 스트링들 중 하나의 페이지가 선택될 것이다.
도 4는 도 2의 메모리 셀 어레이(110)의 다른 실시 예를 보여주는 도면이다.
도 4를 참조하면, 메모리 셀 어레이(110)는 복수의 메모리 블록들(BLK1'~BLKz')을 포함한다. 도 4에서, 인식의 편의를 위해 제 1 메모리 블록(BLK1')의 내부 구성이 도시되고, 나머지 메모리 블록들(BLK2'~BLKz')의 내부 구성은 생략되어 있다. 제 2 내지 제 z 메모리 블록들(BLK2'~BLKz')도 제 1 메모리 블록(BLK1')과 마찬가지로 구성됨이 이해될 것이다.
제 1 메모리 블록(BLK1')은 복수의 셀 스트링들(CS11'~CS1m', CS21'~CS2m')을 포함한다. 복수의 셀 스트링들(CS11'~CS1m', CS21'~CS2m') 각각은 +Z 방향을 따라 신장된다. 제 1 메모리 블록(BLK1') 내에서, +X 방향으로 m개의 셀 스트링들이 배열된다. 도 4에서, +Y 방향으로 2개의 셀 스트링들이 배열되는 것으로 도시되었다. 하지만 이는 설명의 편의를 위한 것으로서 열 방향으로 3개 이상의 셀 스트링들이 배열될 수 있음이 이해될 것이다.
복수의 셀 스트링들(CS11'~CS1m', CS21'~CS2m') 각각은, 적어도 하나의 소스 선택 트랜지스터(SST), 제 1 내지 제 n 메모리 셀들(MC1~MCn), 그리고 적어도 하나의 드레인 선택 트랜지스터(DST)를 포함한다.
각 셀 스트링의 소스 선택 트랜지스터(SST)은 공통 소스 라인(CSL)과 메모리 셀들(MC1~MCn) 사이에 연결된다. 동일한 행에 배열된 셀 스트링들의 소스 선택 트랜지스터들은 동일한 소스 선택 라인에 연결된다. 제 1 행에 배열된 셀 스트링들(CS11'~CS1m')의 소스 선택 트랜지스터들은 제 1 소스 선택 라인(SSL1)에 연결된다. 제 2 행에 배열된 셀 스트링들(CS21'~CS2m')의 소스 선택 트랜지스터들은 제 2 소스 선택 라인(SSL2)에 연결된다. 다른 실시 예로서, 셀 스트링들(CS11'~CS1m', CS21'~CS2m')의 소스 선택 트랜지스터들은 하나의 소스 선택 라인에 공통 연결될 수 있다.
각 셀 스트링의 제 1 내지 제 n 메모리 셀들(MC1~MCn)은 소스 선택 트랜지스터(SST)과 드레인 선택 트랜지스터(DST) 사이에서 직렬 연결된다. 제 1 내지 제 n 메모리 셀들(MC1~MCn)의 게이트들은 각각 제 1 내지 제 n 워드 라인들(WL1~WLn)에 연결된다.
실시 예로서, 제 1 내지 제 n 메모리 셀들(MC1~MCn) 중 적어도 하나는 더미 메모리 셀로서 이용될 수 있다. 더미 메모리 셀이 제공되는 경우, 해당 셀 스트링의 전압 또는 전류는 안정적으로 제어될 수 있다. 이에 따라 메모리 블록(BLK1')에 저장된 데이터의 신뢰성은 향상된다.
각 셀 스트링의 드레인 선택 트랜지스터(DST)는 해당 비트 라인과 메모리 셀들(MC1~MCn) 사이에 연결된다. 행 방향으로 배열되는 셀 스트링들의 드레인 선택 트랜지스터들은 행 방향으로 신장되는 드레인 선택 라인에 연결된다. 제 1 행의 셀 스트링들(CS11'~CS1m')의 드레인 선택 트랜지스터들은 제 1 드레인 선택 라인(DSL1)에 연결된다. 제 2 행의 셀 스트링들(CS21'~CS2m')의 드레인 선택 트랜지스터들은 제 2 드레인 선택 라인(DSL2)에 연결된다.
결과적으로, 각 셀 스트링에 파이프 트랜지스터(PT)가 제외된 것을 제외하면 도 4의 메모리 블록(BLK1')은 도 3의 메모리 블록(BLK1)과 유사한 등가 회로를 갖는다.
도 5는 읽기 동작시 각 라인들에 인가되는 전압을 나타낸 도면이다.
도 6은 도 5의 전압이 인가되는 경우 발생하는 현상을 설명하기 위한 도면이다.
반도체 메모리 장치의 읽기 동작은 메모리 셀의 어드레스를 엑세싱(accessing) 한 뒤에 메모리 셀의 상태(status)를 센싱하는 동작이다. 읽기 동작은 메모리 셀이 프로그램 상태인지 소거(erasure) 상태인지, 프로그램 상태인 경우 어떤 레벨(level)의 프로그램 상태인지를 센싱하는 동작이다. 프로그램 동작 및 소거 동작에 수반되는 프로그램 검증(verification)과 소거 검증(verification)은 모두 읽기 동작의 일종이다. 따라서, 본 발명의 실시 예에 따른 검증 동작은 각각 프로그램 검증 동작 및 소거 검증 동작에도 적용될 수 있음을 명시한다.
도 5를 참조하면, 반도체 메모리 장치의 읽기 동작은 크게 프리차지 구간(P1), 읽기 구간(P2) 및 디스차지 구간(P3)로 구분될 수 있다.
프리차지 구간(P1)에서 반도체 메모리 장치는 메모리 셀 어레이에 연결된 각 라인들에 읽기 동작을 수행하기 위해 미리 설정된 전압들을 인가한다.
프리차지 구간(P1)에서 선택된 소스 선택 라인(SSLsel)과 선택된 드레인 선택 라인(DSLsel)에는 각각 소스 선택 전압(Vssl)과 드레인 선택 전압(Vdsl)이 인가된다. 소스 선택 전압(Vssl)과 드레인 선택 전압(Vdsl)은 각각 선택된 메모리 스트링에 포함된 소스 선택 트랜지스터와 드레인 선택 트랜지스터를 턴 온 시킨다.
선택된 워드 라인(SELWL)에는 워드 라인 설정 전압(Vset)이 인가될 수 있다. 여기서 워드 라인 설정 전압(Vset)은 비선택된 워드 라인들(UNSELWL)에 인가되는 패스 전압(Vpass)와 같은 전압 레벨일 수 있다. 다양한 실시 예에서, 워드 라인 설정 전압(Vset)은 선택된 워드 라인(SELWL)을 플로팅 시킬 수 있다. 워드 라인 설정 전압(Vset)은 선택된 워드 라인(SELWL)을 읽기 동작에 필요한 상태로 설정하는 전압이다. 본 발명에 따른 반도체 메모리 장치의 동작에 따르면 다양한 워드 라인 설정 전압이 인가될 수 있다(variable).
비선택된 워드 라인(UNSELWL)들에는 패스 전압(Vpass)이 인가된다. 패스 전압(Vpass)은 비선택된 워드 라인(UNSELWL)에 연결된 메모리 셀들을 턴 온 시킬 수 있는 전압이다.
비트 라인(BL)들에는 비트 라인 전압(VBL)이 인가될 수 있다. 비트 라인 전압(VBL)은 읽기 동작을 위해 비트 라인(BL)들을 프리차지 할 수 있다.
비트라인(BL)의 프리차지 동작 또는 메모리 셀의 이벨류에이션 동작 후 페이지 버퍼(PB)를 통해 비트라인의 전압 레벨이나 전류를 센싱하는 동작들에 대한 설명은 본 발명의 핵심 특징에서 벗어난 부분에 해당하므로 구체적인 설명은 생략한다.
읽기 구간(P2)에서 반도체 메모리 장치는 선택된 워드 라인(SELWL)에 읽기 전압(Vread)을 인가하여 선택된 워드 라인(SELWL)에 연결된 복수의 메모리 셀들에 저장된 데이터를 독출한다.
읽기 구간(P2)동안 소스 선택 라인(SSLsel)과 드레인 선택 라인(DSLsel) 및 비선택된 워드라인(UNSELWL)들에는 프리차지 구간(P1)에서 인가된 전압이 유지된다.
선택된 워드 라인(SELWL)에는 읽기 전압(Vread)이 인가된다.
비트 라인(BL)의 전위는 선택된 워드 라인(SELWL)에 연결된 메모리 셀들의 프로그램 상태에 따라 하이(high), 로우(low) 또는 플로팅(floating) 상태의 값을 가질 수 있다.
디스차지 구간(P3)에서 반도체 메모리 장치는 메모리 셀 어레이에 연결된 각 라인들을 디스차지 한다.
도 5를 참조하면, 반도체 메모리 장치는 선택된 워드 라인(SELWL)에 패스 전압(Vpass)을 인가하여, 모든 워드라인들의 전압 레벨을 동일하게 설정할 수 있다(equalizing). 실시 예에서, 워드 라인들의 전압 레벨을 서로 다른 값을 갖도록 설정할 수도 있다.
t1시점에서, 반도체 메모리 장치는 워드 라인들을 디스차지 시킨다.
도 6을 참조하면, 하나의 메모리 스트링은 소스 선택 라인(SSL)과 연결된 소스 선택 트랜지스터들, 소스 선택 트랜지스터와 직렬로 연결된 더미 메모리 셀들을 포함하고, 더미 메모리 셀들은 각각 더미 워드 라인(DWL)에 연결된다. 더미 메모리 셀과 연결된 복수의 메모리 셀들 각각은 제0 내지 xx 워드 라인들(WL00~WLXX)에 연결될 수 있다. 도 6에서는 설명의 편의를 위해 제0 워드 라인(WL00)에 연결된 메모리 셀은 소거 상태(PV0)이고, 제1 워드 라인(WL01)에 연결된 메모리 셀은 제7 프로그램 상태(PV7)로 프로그램 된 상태라고 가정한다. 제2 내지 제XX 워드 라인들(WL02~WLXX)에 연결된 메모리 셀들은 각각 임의의 프로그램 상태로 프로그램 되어 있을 수 있다.
디스차지 구간(P3)의 t1시점에서 워드라인들이 디스차지된다. 이 때, 소스 선택 라인은 소스 선택 전압이 인가되고 있는 상태이므로 소스 선택 트랜지스터는 턴 온 상태일 수 있다. 드레인 선택 라인에는 드레인 선택 전압이 인가되고 있는 상태이므로, 드레인 선택 트렌지스터는 턴 온 상태일 수 있다. 디스 차지 구간(P3)동안 공통 소스 라인, 드레인 선택 라인 및 비트 라인에는 접지 전압이 인가된다. 모든 워드 라인들에 대한 디스차지가 시작되면, 워드 라인들의 전압은 패스 전압(Vpass)에서 접지 전압(GND)으로 감소한다.
디스차지 구간(P3)에서 워드 라인들에 연결된 메모리 셀들의 문턱전압의 차이에 따라 워드 라인 별로 채널의 온(ON)/오프(OFF) 상태가 달라질 수 있다.
즉, 제0 워드 라인(WL00)에 연결된 메모리 셀의 문턱전압이 제1 워드 라인(WL01)에 연결된 메모리 셀의 문턱전압보다 낮을 경우, 제1 워드 라인(WL01)에 연결된 메모리 셀의 채널이 먼저 오프(OFF)상태에 도달한다. 높은 문턱 전압을 가지는 메모리 셀들의 채널이 낮은 문턱 전압을 갖는 메모리 셀들의 채널보다 먼저 오프(OFF) 상태에 도달하므로, 높은 문턱 전압을 갖는 메모리 셀들의 바운더리 내에 존재하는 낮은 문턱 전압을 갖는 메모리 셀들의 채널은 디스차지 동작에서 플로팅(floating)상태일 수 있다. 따라서 오프(OFF) 상태인 채널 사이에 로컬 부스팅(Local Boosting) 현상이 발생 할 수 있다.
로컬 부스팅(Local Boosting)상태가 발생 하면, 소스 라인 또는 비트 라인의 접지 전압(GND)과의 전위차에 따라 제2 워드 라인(WL02)의 채널에서 제0 워드 라인(WL0)의 채널쪽으로 핫 캐리어의 주입(HCI) 현상이 발생할 수 있다. 따라서, 제0 워드 라인(WL0)에 연결된 메모리 셀은 소거 상태(PV0)임에도 불구하고 문턱 전압이 증가할 수 있다. 이는 읽기 디스터브(read disturbance)를 유발하여 반도체 메모리 장치의 신뢰성을 보장할 수 없게 된다.
도 6에서는 소스 선택 트랜지스터, 드레인 선택 트랜지스터(미도시) 및 더미 메모리 셀이 각각 1개씩 포함되는 메모리 스트링을 도시하였으나, 실시 예에서 소스 선택 트랜지스터, 더미 메모리 셀 및 드레인 선택 트랜지스터(미도시)는 각각 복수개를 포함할 수 있다.
도 7은 본 발명의 실시 예에 따른 반도체 메모리 장치의 동작 방법을 설명하기 위한 도면이다.
도 7의 실시 예에서, 프리차지 구간(P1)과 읽기 구간(P2)에서의 반도체 메모리 장치의 동작은 도 6에서의 동작과 동일하다.
본 발명의 실시 예에 따르면, 반도체 메모리 장치는 디스차지 구간(P3)에서 선택 라인들(SSL, DSL)을 워드라인들 보다 먼저 디스차지 한 뒤, 워드 라인들을 디스차지 한다.
디스차지 구간(P3)에서 반도체 메모리 장치는 선택된 워드 라인(SELWL)에 패스 전압(Vpass)을 인가하여, 모든 워드라인들의 전압 레벨을 동일하게 설정한다(equalizing). 다양한 실시 예에서 반도체 메모리 장치는 워드라인들의 전압이 서로 차이를 갖도록 설정할 수 있다.
선택된 워드 라인(SELWL)에 패스 전압(Vpass)이 인가된 뒤, 제1 기준 시간(tref1)이 경과하면(t3), 반도체 메모리 장치는 선택 라인들(SSLsel, DSLsel)을 디스차지 한다. 반도체 메모리 장치는 선택 라인들(SSLsel, DSLsel)을 디스차지하기 위해 선택 라인들(SSLsel, DSLsel)에 접지 전압을 인가할 수 있다.
제1 기준 시간(tref1)은 선택된 워드 라인(SELWL)의 전압이 패스 전압(Vpass)에 도달하는 데까지 소요되는 시간일 수 있다.
다양한 실시 예에서, 선택 라인들(SSLsel, DSLsel)을 동시에 디스차지 하지 않고, 소스 선택 라인(SSL) 또는 드레인 선택 라인(DSL) 중 어느 하나를 먼저 디스차지 할 수 있다. 또는 반도체 메모리 장치는 선택된 워드 라인(SELWL)의 전압을 패스 전압(Vpass)로 변경하는 이퀄라이징 동작을 수행하지 않고, 디스차지 구간(P3)에서 바로 선택 라인들(SSLsel, DSLsel)을 디스차지 할 수 있다.
반도체 메모리 장치는 선택 라인들에 대한 디스차지가 시작한 뒤, 제2 기준 시간(tref2)이 경과하면(t4), 워드 라인들을 디스차지 할 수 있다. 반도체 메모리 장치는 워드 라인들을 디스차지 하기 위해 선택된 워드 라인(SELWL)과 비선택된 워드 라인(UNSELWL)들에 접지 전압을 인가할 수 있다.
제2 기준 시간(tref2)은 선택 라인들(SSLsel, DSLsel)이 디스차지 되는 시간일 수 있다. 즉, 선택 트랜지스터들(SST, DST)이 턴 오프 되는데 소요되는 시간일 수 있다.
다양한 실시 예에서, 워드 라인들의 디스차지는 동시에 시작되지 않고, 소스 라인 또는 비트 라인 중 어느 하나를 기준으로 멀리 위치한 워드라인부터 순차적으로 디스차지 할 수 있다. 또는 복수의 워드 라인들을 적어도 하나 이상의 워드 라인 그룹들로 구분하고, 소스 라인 또는 비트 라인 중 어느 한쪽에 인접한 워드 라인 그룹부터 순차적으로 디스차지 할 수 있다.
제1 기준 시간(tref1)과 제2 기준 시간(tref2)에 관한 정보는 메모리 셀 어레이의 캠(CAM) 영역에 저장되어 있을 수 있다. 반도체 메모리 장치는 전원이 공급되면, 캠 영역으로부터 제1 기준 시간(tref1)과 제2 기준 시간(tref2)에 관한 정보를 독출하여 도 7의 실시 예에 따라 디스차지 동작을 수행할 수 있다.
도 8은 본 발명의 실시 예에 따른 반도체 메모리 장치의 동작을 설명하기 위한 순서도이다.
도 8을 참조하면, S810 단계에서, 반도체 메모리 장치는 선택된 워드 라인에 읽기 전압(Vread)를 인가하고, 비선택된 워드라인에 패스 전압(Vpass)를 인가할 수 있다. S810단계를 통해 반도체 메모리 장치는 선택된 워드 라인에 연결된 복수의 메모리 셀들에 대한 읽기 동작을 수행한다.
S820단계에서, 반도체 메모리 장치는 워드 라인들과 선택 라인들에 대한 디스차지 동작을 수행한다. S820 단계의 디스차지 동작에 대해서는 도 9를 통해 보다 상세하게 설명한다.
도 9는 도 8의 디스차지 동작을 나타내는 순서도이다.
도 9를 참조하면, 반도체 메모리 장치는 S910단계에서, 선택된 워드 라인에 패스 전압(Vpass)을 인가할 수 있다. S910단계에서 반도체 메모리 장치는 모든 워드라인들의 전압 레벨을 패스 전압(Vpass)으로 조절한다. 다양한 실시 예에서, S910의 이퀄라이징 단계는 생략될 수 있다. S910단계가 생략되는 경우에는 S920단계를 수행하지 아니하고, S930단계로 바로 진행할 수 있다.
S920단계에서, 반도체 메모리 장치는 제1 기준 시간이 경과하였는지를 판단할 수 있다. 제1 기준 시간은 반도체 메모리 장치의 선택된 워드 라인의 전압이 패스 전압(Vpass)에 도달하는 시간일 수 있다.
S920 단계에서 판단 결과 제1 기준 시간이 경과하면, S930단계로 진행한다.
S930 단계에서, 반도체 메모리 장치는 선택 라인들을 디스차지 한다. 선택 라인들은 소스 선택 라인(SSL)과 드레인 선택 라인(DSL)일 수 있다. 반도체 메모리 장치는 선택 라인들을 디스차지하기 위해 선택 라인들에 접지 전압을 인가할 수 있다. 다양한 실시 예에서, 선택 라인들을 동시에 디스차지 하지 않고, 소스 선택 라인(SSL) 또는 드레인 선택 라인(DSL) 중 어느 하나를 먼저 디스차지 할 수 있다.
S940 단계에서, 반도체 메모리 장치는 제2 기준 시간이 경과하였는지 여부를 판단할 수 있다. 제2 기준 시간은 반도체 메모리 장치의 메모리 셀 어레이의 선택 라인들(DSL, SSL)이 디스차지 되는 시간일 수 있다. 선택 라인들(DSL, SSL)의 전압이 접지 전압(GND)에 도달하는 시간일 수 있다.
S940단계에서 판단 결과 제2 기준 시간이 경과하면, S950단계로 진행한다.
S950단계에서 반도체 메모리 장치는 선택된 워드 라인과 비선택된 워드라인들을 디스차지 한다.
다양한 실시 예에서, S950단계의 워드 라인들의 디스차지는 동시에 시작되지 않고, 소스 라인 또는 비트 라인 중 어느 하나를 기준으로 멀리 위치한 워드라인부터 순차적으로 디스차지 할 수 있다. 또는 복수의 워드 라인들을 적어도 하나 이상의 워드 라인 그룹들로 구분하고, 소스 라인 또는 비트 라인 중 어느 한쪽에 인접한 워드 라인 그룹부터 순차적으로 디스차지 할 수 있다.
본 발명의 실시 예에 따르면, 읽기 동작 또는 검증 동작의 디스차지 동작시 선택 라인들을 워드라인들에 앞서 디스차지 할 수 있다. 본 발명의 실시 예에 따르면, 메모리 셀들의 프로그램 상태가 상이함으로 인한 부분적인 로컬 부스팅이 방지되고, 이를 통해 읽기 디스터브를 예방할 수 있다.
도 10은 도 2의 반도체 메모리 장치를 포함하는 메모리 시스템을 보여주는 블록도이다.
도 10을 참조하면, 메모리 시스템(1000)은 반도체 메모리 장치(1300) 및 컨트롤러(1200)를 포함한다.
반도체 메모리 장치(1300)는 도 1를 참조하여 설명된 반도체 메모리 장치(100)와 마찬가지로 구성되고, 동작할 수 있다. 이하, 중복되는 설명은 생략된다.
컨트롤러(1200)는 호스트(Host) 및 반도체 메모리 장치(1300)에 연결된다. 호스트(Host)로부터의 요청에 응답하여, 컨트롤러(1200)는 반도체 메모리 장치(1300)를 액세스하도록 구성된다. 예를 들면, 컨트롤러(1200)는 반도체 메모리 장치(1300)의 리드, 프로그램, 소거, 그리고 배경(background) 동작을 제어하도록 구성된다. 컨트롤러(1200)는 반도체 메모리 장치(1300) 및 호스트(Host) 사이에 인터페이스를 제공하도록 구성된다. 컨트롤러(1200)는 반도체 메모리 장치(1300)을 제어하기 위한 펌웨어(firmware)를 구동하도록 구성된다.
컨트롤러(1200)는 램(1210, Random Access Memory), 프로세싱 유닛(1220, processing unit), 호스트 인터페이스(1230, host interface), 메모리 인터페이스(1240, memory interface) 및 에러 정정 블록(1250)을 포함한다.
램(1210)은 프로세싱 유닛(1220)의 동작 메모리, 반도체 메모리 장치(1300) 및 호스트(Host) 사이의 캐시 메모리, 그리고 반도체 메모리 장치(1300) 및 호스트(Host) 사이의 버퍼 메모리 중 적어도 하나로서 이용된다.
프로세싱 유닛(1220)은 컨트롤러(1200)의 제반 동작을 제어한다.
프로세싱 유닛(1220)은 호스트(Host)로부터 수신된 데이터를 랜더마이즈하도록 구성된다. 예를 들면, 프로세싱 유닛(1220)은 랜더마이징 시드(seed)를 이용하여 호스트(Host)로부터 수신된 데이터를 랜더마이즈할 것이다. 랜더마이즈된 데이터는 저장될 데이터(DATA, 도 1 참조)로서 반도체 메모리 장치(1300)에 제공되어 메모리 셀 어레이(110, 도 1 참조)에 프로그램된다.
프로세싱 유닛(1220)은 리드 동작 시 반도체 메모리 장치(1300)로부터 수신된 데이터를 디랜더마이즈하도록 구성된다. 예를 들면, 프로세싱 유닛(1220)은 디랜더마이징 시드를 이용하여 반도체 메모리 장치(1300)로부터 수신된 데이터를 디랜더마이즈할 것이다. 디랜더마이즈된 데이터는 호스트(Host)로 출력될 것이다.
실시 예로서, 프로세싱 유닛(1220)은 소프트웨어(software) 또는 펌웨어(firmware)를 구동함으로써 랜더마이즈 및 디랜더마이즈를 수행할 수 있다.
호스트 인터페이스(1230)는 호스트(Host) 및 컨트롤러(1200) 사이의 데이터 교환을 수행하기 위한 프로토콜을 포함한다. 예시적인 실시 예로서, 컨트롤러(1200)는 USB (Universal Serial Bus) 프로토콜, MMC (multimedia card) 프로토콜, PCI (peripheral component interconnection) 프로토콜, PCI-E (PCI-express) 프로토콜, ATA (Advanced Technology Attachment) 프로토콜, Serial-ATA 프로토콜, Parallel-ATA 프로토콜, SCSI (small computer small interface) 프로토콜, ESDI (enhanced small disk interface) 프로토콜, 그리고 IDE (Integrated Drive Electronics) 프로토콜, 사유(private) 프로토콜 등과 같은 다양한 인터페이스 프로토콜들 중 적어도 하나를 통해 호스트(Host)와 통신하도록 구성된다.
메모리 인터페이스(1240)는 반도체 메모리 장치(1300)과 인터페이싱한다. 예를 들면, 메모리 인터페이스는 낸드 인터페이스 또는 노어 인터페이스를 포함한다.
에러 정정 블록(1250)은 에러 정정 코드(ECC, Error Correcting Code)를 이용하여 반도체 메모리 장치(1300)로부터 수신된 데이터의 에러를 검출하고, 정정하도록 구성된다.
컨트롤러(1200) 및 반도체 메모리 장치(1300)은 하나의 반도체 장치로 집적될 수 있다. 예시적인 실시 예로서, 컨트롤러(1200) 및 반도체 메모리 장치(1300)은 하나의 반도체 장치로 집적되어, 메모리 카드를 구성할 수 있다. 예를 들면, 컨트롤러(1200) 및 반도체 메모리 장치(1300)은 하나의 반도체 장치로 집적되어 PC 카드(PCMCIA, personal computer memory card international association), 컴팩트 플래시 카드(CF), 스마트 미디어 카드(SM, SMC), 메모리 스틱, 멀티미디어 카드(MMC, RS-MMC, MMCmicro), SD 카드(SD, miniSD, microSD, SDHC), 유니버설 플래시 기억장치(UFS) 등과 같은 메모리 카드를 구성할 것이다.
컨트롤러(1200) 및 반도체 메모리 장치(1300)은 하나의 반도체 장치로 집적되어 반도체 드라이브(SSD, Solid State Drive)를 구성할 수 있다. 반도체 드라이브(SSD)는 반도체 메모리에 데이터를 저장하도록 구성되는 저장 장치를 포함한다. 메모리 시스템(1000)이 반도체 드라이브(SSD)로 이용되는 경우, 메모리 시스템(1000)에 연결된 호스트(Host)의 동작 속도는 획기적으로 개선된다.
다른 예로서, 메모리 시스템(1000)은 컴퓨터, UMPC (Ultra Mobile PC), 워크스테이션, 넷북(net-book), PDA (Personal Digital Assistants), 포터블(portable) 컴퓨터, 웹 타블렛(web tablet), 무선 전화기(wireless phone), 모바일 폰(mobile phone), 스마트폰(smart phone), e-북(e-book), PMP(portable multimedia player), 휴대용 게임기, 네비게이션(navigation) 장치, 블랙박스(black box), 디지털 카메라(digital camera), 3차원 수상기(3-dimensional television), 디지털 음성 녹음기(digital audio recorder), 디지털 음성 재생기(digital audio player), 디지털 영상 녹화기(digital picture recorder), 디지털 영상 재생기(digital picture player), 디지털 동영상 녹화기(digital video recorder), 디지털 동영상 재생기(digital video player), 정보를 무선 환경에서 송수신할 수 있는 장치, 홈 네트워크를 구성하는 다양한 전자 장치들 중 하나, 컴퓨터 네트워크를 구성하는 다양한 전자 장치들 중 하나, 텔레매틱스 네트워크를 구성하는 다양한 전자 장치들 중 하나, RFID 장치, 또는 컴퓨팅 시스템을 구성하는 다양한 구성 요소들 중 하나 등과 같은 전자 장치의 다양한 구성 요소들 중 하나로 제공된다.
예시적인 실시 예로서, 반도체 메모리 장치(1300) 또는 메모리 시스템(1000)은 다양한 형태들의 패키지로 실장될 수 있다. 예를 들면, 반도체 메모리 장치(1300) 또는 메모리 시스템(1000)은 PoP(Package on Package), Ball grid arrays(BGAs), Chip scale packages(CSPs), Plastic Leaded Chip Carrier(PLCC), Plastic Dual In Line Package(PDIP), Die in Waffle Pack, Die in Wafer Form, Chip On Board(COB), Ceramic Dual In Line Package(CERDIP), Plastic Metric Quad Flat Pack(MQFP), Thin Quad Flatpack(TQFP), Small Outline integrated circuit (SOIC), Shrink Small Outline Package(SSOP), Thin Small Outline Package(TSOP), Thin Quad Flatpack(TQFP), System In Package(SIP), Multi-Chip Package(MCP), Wafer-level Fabricated Package(WFP), Wafer-Level Processed Stack Package(WSP) 등과 같은 방식으로 패키지화되어 실장될 수 있다.
도 11은 도 10의 메모리 시스템(1000)의 응용 예(2000)를 보여주는 블록도이다.
도 11을 참조하면, 메모리 시스템(2000)은 반도체 메모리 장치(2100) 및 컨트롤러(2200)를 포함한다. 반도체 메모리 장치(2100)는 복수의 반도체 메모리 칩들을 포함한다. 복수의 반도체 메모리 칩들은 복수의 그룹들로 분할된다.
도 11에서, 복수의 그룹들은 각각 제 1 내지 제 k 채널들(CH1~CHk)을 통해 컨트롤러(2200)와 통신하는 것으로 도시되어 있다. 각 반도체 메모리 칩은 도 1을 참조하여 설명된 반도체 메모리 장치(100) 중 하나와 마찬가지로 구성되고, 동작할 것이다.
각 그룹은 하나의 공통 채널을 통해 컨트롤러(2200)와 통신하도록 구성된다. 컨트롤러(2200)는 도 10을 참조하여 설명된 컨트롤러(1200)와 마찬가지로 구성되고, 복수의 채널들(CH1~CHk)을 통해 반도체 메모리 장치(2100)의 복수의 메모리 칩들을 제어하도록 구성된다.
도 11에서, 하나의 채널에 복수의 반도체 메모리 칩들이 연결되는 것으로 설명되었다. 그러나, 하나의 채널에 하나의 반도체 메모리 칩이 연결되도록 메모리 시스템(2000)이 변형될 수 있음이 이해될 것이다.
도 12는 도 11을 참조하여 설명된 메모리 시스템(2000)을 포함하는 컴퓨팅 시스템(3000)을 보여주는 블록도이다.
도 12를 참조하면, 컴퓨팅 시스템(3000)은 중앙 처리 장치(3100), 램(3200, RAM, Random Access Memory), 사용자 인터페이스(3300), 전원(3400), 시스템 버스(3500), 그리고 메모리 시스템(2000)을 포함한다.
메모리 시스템(2000)은 시스템 버스(3500)를 통해, 중앙처리장치(3100), 램(3200), 사용자 인터페이스(3300), 그리고 전원(3400)에 전기적으로 연결된다. 사용자 인터페이스(3300)를 통해 제공되거나, 중앙 처리 장치(3100)에 의해서 처리된 데이터는 메모리 시스템(2000)에 저장된다.
도 12에서, 반도체 메모리 장치(2100)는 컨트롤러(2200)를 통해 시스템 버스(3500)에 연결되는 것으로 도시되어 있다. 그러나, 반도체 메모리 장치(2100)는 시스템 버스(3500)에 직접 연결되도록 구성될 수 있다. 이때, 컨트롤러(2200)의 기능은 중앙 처리 장치(3100) 및 램(3200)에 의해 수행될 것이다.
도 12에서, 도 11을 참조하여 설명된 메모리 시스템(2000)이 제공되는 것으로 도시되어 있다. 그러나, 메모리 시스템(2000)은 도 11을 참조하여 설명된 메모리 시스템(1000)으로 대체될 수 있다. 실시 예로서, 컴퓨팅 시스템(3000)은 도 10 및 도 11을 참조하여 설명된 메모리 시스템들(1000, 2000)을 모두 포함하도록 구성될 수 있다.
이상과 같이 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시 예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
그러므로, 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
상술한 실시 예들에서, 모든 단계는 선택적으로 수행의 대상이 되거나 생략의 대상이 될 수 있다. 또한 각 실시 예에서 단계들은 반드시 순서대로 일어날 필요는 없으며, 뒤바뀔 수 있다. 한편, 본 명세서와 도면에 개시된 본 명세서의 실시 예들은 본 명세서의 기술 내용을 쉽게 설명하고 본 명세서의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 명세서의 범위를 한정하고자 하는 것은 아니다. 즉 본 명세서의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 명세서가 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.
한편, 본 명세서와 도면에는 본 발명의 바람직한 실시 예에 대하여 개시하였으며, 비록 특정 용어들이 사용되었으나, 이는 단지 본 발명의 기술 내용을 쉽게 설명하고 발명의 이해를 돕기 위한 일반적인 의미에서 사용된 것이지, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시 예 외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.
100: 반도체 메모리 장치
110: 메모리 셀 어레이
120: 주변 회로
121: 어드레스 디코더
122: 전압 발생기
123: 읽기 및 쓰기 회로
124: 데이터 입출력 회로
125: 제어 로직

Claims (20)

  1. 비트 라인과 소스 라인 사이에 연결되는 복수의 스트링들을 포함하고, 상기 복수의 스트링들은 선택 라인들에 각각 연결된 선택 트랜지스터들 및 복수의 워드 라인들에 각각 연결된 복수의 메모리 셀들을 포함하는 반도체 메모리 장치의 동작 방법에 있어서,
    상기 복수의 메모리 셀들 중 선택된 메모리 셀들이 연결된 선택 워드 라인에 읽기 전압을 인가하고 선택되지 않은 메모리 셀들이 연결된 비선택 워드 라인들에 패스 전압을 인가하는 단계;
    상기 선택된 메모리 셀들에 저장된 데이터를 독출하는 단계; 및
    상기 선택 라인들을 상기 선택 워드 라인 및 비선택 워드 라인들 보다 먼저 디스차지하는 단계;를 포함하는 반도체 메모리 장치의 동작 방법.
  2. 제 1항에 있어서, 상기 디스차지 하는 단계는,
    상기 선택 라인들에 접지 전압들을 인가하는 단계; 및
    상기 선택 라인들에 대한 디스차지가 완료된 뒤에 상기 선택 워드 라인과 비선택 워드 라인들에 접지 전압을 인가하는 단계;를 포함하는 동작 방법.
  3. 제 2항에 있어서 상기 선택라인들에 접지 전압들을 인가하는 단계 이전에,
    상기 선택 워드 라인에 패스 전압을 인가하는 단계;를 더 포함하는 동작 방법.
  4. 제 2항에 있어서, 상기 선택 라인들은,
    소스 선택 라인과 드레인 선택 라인을 포함하고,
    상기 선택 라인들에 접지 전압들을 인가하는 단계는,
    상기 소스 선택 라인 또는 드레인 선택 라인 중 어느 하나에 먼저 접지 전압을 인가하는 동작 방법.
  5. 제 2항에 있어서, 상기 선택 워드 라인과 비선택 워드 라인들에 접지 전압을 인가하는 단계는,
    상기 소스 라인 또는 상기 비트 라인 중 어느 하나를 기준으로 멀리 위치한 워드 라인부터 순차적으로 접지 전압을 인가하는 동작 방법.
  6. 제 2항에 있어서, 상기 선택 워드 라인과 비선택 워드 라인들에 접지 전압을 인가하는 단계는,
    상기 복수의 워드 라인들을 적어도 하나 이상의 워드 라인 그룹들로 구분하고, 상기 소스 라인 또는 상기 비트 라인 중 어느 하나에 인접한 워드 라인 그룹부터 순차적으로 접지 전압을 인가하는 동작 방법.
  7. 비트 라인과 소스 라인 사이에 연결되는 복수의 스트링들을 포함하고, 상기 복수의 스트링들은 선택 라인들에 각각 연결된 선택 트랜지스터들 및 복수의 워드 라인들에 각각 연결된 복수의 메모리 셀들을 포함하는 반도체 메모리 장치의 동작 방법에 있어서,
    상기 복수의 메모리 셀들 중 선택된 메모리 셀들이 연결된 선택 워드 라인과 선택되지 않은 메모리 셀들이 연결된 비선택 워드 라인들에 패스 전압을 인가하는 단계;
    상기 선택 워드 라인에 패스 전압을 인가한 뒤 제1 기준 시간이 경과 하면, 상기 선택 라인들을 디스차지 하는 단계; 및
    상기 선택 라인들을 디스차지 한 뒤 제2 기준 시간이 경과 하면, 상기 선택 워드 라인과 비선택 워드 라인들을 디스차지 하는 단계;를 포함하는 동작 방법.
  8. 제 7항에 있어서, 상기 제1 기준 시간은,
    상기 선택 워드 라인의 전압이 패스 전압에 도달하는데 소요되는 시간인 동작 방법.
  9. 제 7항에 있어서, 상기 제2 기준 시간은,
    상기 선택 라인들의 전압이 접지 전압에 도달하는데 소요되는 시간인 동작 방법.
  10. 제 7항에 있어서, 상기 선택 라인들은,
    소스 선택 라인과 드레인 선택 라인을 포함하고,
    상기 선택 라인들을 디스차지 하는 단계는,
    상기 소스 선택 라인 또는 드레인 선택 라인 중 어느 하나를 먼저 디스차지 하는 동작 방법.
  11. 제 7항에 있어서, 상기 선택 워드라인과 비선택 워드라인들을 디스 차지 하는 단계는,
    상기 소스 라인 또는 상기 비트 라인 중 어느 하나를 기준으로 멀리 위치한 워드 라인부터 순차적으로 디스차지 하는 동작 방법.
  12. 제 7항에 있어서, 상기 선택 워드라인과 비선택 워드라인들을 디스 차지 하는 단계는,
    상기 복수의 워드 라인들을 적어도 하나 이상의 워드 라인 그룹들로 구분하고, 상기 소스 라인 또는 상기 비트 라인 중 어느 하나에 인접한 워드 라인 그룹부터 순차적으로 디스차지 하는 동작 방법.
  13. 제 7항에 있어서, 상기 제1 기준 시간과 상기 제2 기준 시간은,
    상기 복수의 메모리 셀들 중 캠 영역(Content Addressable Memory, CAM)에 저장되는 동작 방법.
  14. 비트 라인과 소스 라인 사이에 연결되는 복수의 스트링들을 포함하고, 상기 복수의 스트링들은 선택 라인들에 각각 연결된 선택 트랜지스터들 및 복수의 워드 라인들에 각각 연결된 복수의 메모리 셀들을 포함하는 메모리 셀 어레이; 및
    상기 복수의 메모리 셀들 중 선택된 메모리 셀들에 대한 읽기 동작을 수행하는 주변 회로;를 포함하되,
    상기 주변 회로는,
    상기 읽기 동작에서 상기 선택 라인들을 상기 복수의 워드 라인들보다 먼저 디스차지 하는 반도체 메모리 장치.
  15. 제 14항에 있어서, 상기 주변 회로는,
    외부 컨트롤러로부터 수신한 어드레스에 응답하여 상기 복수의 워드 라인 중 어느 하나를 선택하는 어드레스 디코더;
    상기 읽기 동작시 상기 선택 라인들과 상기 복수의 워드 라인들에 인가될 전압들을 발생하는 전압 발생기; 및
    상기 읽기 동작시 상기 어드레스 디코더 및 상기 전압 발생기를 제어하는 제어 로직;을 포함하는 반도체 메모리 장치.
  16. 제 15항에 있어서, 상기 제어 로직은,
    상기 상기 선택 라인들에 접지 전압들을 인가하고, 상기 선택 라인들에 대한 디스차지가 완료된 뒤에 상기 선택 워드 라인과 비선택 워드 라인들에 접지 전압을 인가하도록 상기 어드레스 디코더 및 상기 전압 발생기를 제어하는 반도체 메모리 장치.
  17. 제 16항에 있어서, 상기 제어 로직은,
    상기 선택라인들에 접지 전압들을 인가하기 전에 상기 복수의 워드 라인들에 패스 전압을 인가하도록 상기 어드레스 디코더 및 상기 전압 발생기를 제어하는 반도체 메모리 장치.
  18. 제 16항에 있어서, 상기 선택 라인들은,
    소스 선택 라인과 드레인 선택 라인을 포함하고,
    상기 제어 로직은,
    상기 소스 선택 라인 또는 드레인 선택 라인 중 어느 하나에 먼저 접지 전압을 인가하도록 상기 어드레스 디코더 및 상기 전압 발생기를 제어하는 반도체 메모리 장치.
  19. 제 16항에 있어서, 상기 제어 로직은,
    상기 소스 라인 또는 상기 비트 라인 중 어느 하나를 기준으로 멀리 위치한 워드 라인부터 순차적으로 접지 전압을 인가하도록 상기 어드레스 디코더 및 상기 전압 발생기를 제어하는 반도체 메모리 장치.
  20. 제 16항에 있어서, 상기 제어 로직은,
    상기 복수의 워드 라인들을 적어도 하나 이상의 워드 라인 그룹들로 구분하고, 상기 소스 라인 또는 상기 비트 라인 중 어느 하나에 인접한 워드 라인 그룹부터 순차적으로 접지 전압을 인가하도록 상기 어드레스 디코더 및 상기 전압 발생기를 제어하는 반도체 메모리 장치.
KR1020160012998A 2016-02-02 2016-02-02 반도체 메모리 장치 및 그것의 동작 방법 KR102429452B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020160012998A KR102429452B1 (ko) 2016-02-02 2016-02-02 반도체 메모리 장치 및 그것의 동작 방법
CN201610352649.9A CN107025923B (zh) 2016-02-02 2016-05-25 半导体存储器装置及其操作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160012998A KR102429452B1 (ko) 2016-02-02 2016-02-02 반도체 메모리 장치 및 그것의 동작 방법

Publications (2)

Publication Number Publication Date
KR20170092006A true KR20170092006A (ko) 2017-08-10
KR102429452B1 KR102429452B1 (ko) 2022-08-05

Family

ID=59524382

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160012998A KR102429452B1 (ko) 2016-02-02 2016-02-02 반도체 메모리 장치 및 그것의 동작 방법

Country Status (2)

Country Link
KR (1) KR102429452B1 (ko)
CN (1) CN107025923B (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190084518A (ko) * 2018-01-08 2019-07-17 에스케이하이닉스 주식회사 메모리 시스템 및 그것의 동작 방법
KR20190087845A (ko) * 2018-01-17 2019-07-25 에스케이하이닉스 주식회사 메모리 시스템 및 그것의 동작 방법
CN114882929A (zh) * 2021-02-05 2022-08-09 旺宏电子股份有限公司 存储装置的操作方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190043043A (ko) * 2017-10-17 2019-04-25 에스케이하이닉스 주식회사 전자장치
US10347315B2 (en) * 2017-10-31 2019-07-09 Sandisk Technologies Llc Group read refresh
KR102422252B1 (ko) * 2017-11-15 2022-07-19 에스케이하이닉스 주식회사 메모리 장치
KR102489551B1 (ko) * 2018-03-23 2023-01-17 에스케이하이닉스 주식회사 메모리 컨트롤러 및 그 동작 방법
KR102598735B1 (ko) * 2018-05-18 2023-11-07 에스케이하이닉스 주식회사 메모리 장치 및 그 동작 방법
KR102608578B1 (ko) * 2019-07-05 2023-12-04 에스케이하이닉스 주식회사 반도체 메모리 장치
US10839927B1 (en) * 2019-08-29 2020-11-17 Micron Technology, Inc. Apparatus and methods for mitigating program disturb
KR102670210B1 (ko) 2019-10-23 2024-05-28 양쯔 메모리 테크놀로지스 씨오., 엘티디. 메모리 디바이스를 프로그래밍하는 방법 및 관련 메모리 디바이스
KR20210123914A (ko) * 2020-04-06 2021-10-14 에스케이하이닉스 주식회사 반도체 장치
CN112435704B (zh) * 2020-12-07 2021-08-27 长江存储科技有限责任公司 非易失性存储器及其读取方法
KR20230009508A (ko) 2020-12-07 2023-01-17 양쯔 메모리 테크놀로지스 씨오., 엘티디. 비-휘발성 메모리 및 그 동작 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140107000A (ko) * 2013-02-27 2014-09-04 삼성전자주식회사 불휘발성 메모리 및 불휘발성 메모리의 동작 방법
KR20140107983A (ko) * 2013-02-28 2014-09-05 삼성전자주식회사 불휘발성 메모리 및 불휘발성 메모리의 읽기 방법
US20150318045A1 (en) * 2014-04-30 2015-11-05 Samsung Electronics Co., Ltd. Nonvolatile memory device, storage device having the same, and operation and read methods thereof
KR20160008875A (ko) * 2014-07-15 2016-01-25 에스케이하이닉스 주식회사 반도체 메모리 장치 및 그것의 동작 방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3829088B2 (ja) * 2001-03-29 2006-10-04 株式会社東芝 半導体記憶装置
KR100889782B1 (ko) * 2006-10-19 2009-03-20 삼성전자주식회사 워드 라인 디스차지 유닛을 구비한 플래시 메모리 장치 및그것의 데이터 읽기 방법
KR100829790B1 (ko) * 2006-10-20 2008-05-19 삼성전자주식회사 플래시 메모리 장치 및 플래시 메모리 장치의 데이터 독출방법
KR100874911B1 (ko) * 2006-10-30 2008-12-19 삼성전자주식회사 리드 디스터브 특성을 개선하는 플래쉬 메모리 어레이의독출 방법
KR101001449B1 (ko) * 2009-04-14 2010-12-14 주식회사 하이닉스반도체 불휘발성 소자의 독출 동작 방법
US9136005B2 (en) * 2010-11-16 2015-09-15 Samsung Electronics Co., Ltd. Erasing methods of three-dimensional nonvolatile memory devices with cell strings and dummy word lines
KR102127416B1 (ko) * 2013-06-27 2020-06-26 삼성전자주식회사 비휘발성 메모리 장치, 그것을 포함하는 메모리 시스템 및 그것의 읽기 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140107000A (ko) * 2013-02-27 2014-09-04 삼성전자주식회사 불휘발성 메모리 및 불휘발성 메모리의 동작 방법
KR20140107983A (ko) * 2013-02-28 2014-09-05 삼성전자주식회사 불휘발성 메모리 및 불휘발성 메모리의 읽기 방법
US20150318045A1 (en) * 2014-04-30 2015-11-05 Samsung Electronics Co., Ltd. Nonvolatile memory device, storage device having the same, and operation and read methods thereof
KR20160008875A (ko) * 2014-07-15 2016-01-25 에스케이하이닉스 주식회사 반도체 메모리 장치 및 그것의 동작 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190084518A (ko) * 2018-01-08 2019-07-17 에스케이하이닉스 주식회사 메모리 시스템 및 그것의 동작 방법
US10607706B2 (en) 2018-01-08 2020-03-31 SK Hynix Inc. Memory system and operating method thereof
KR20190087845A (ko) * 2018-01-17 2019-07-25 에스케이하이닉스 주식회사 메모리 시스템 및 그것의 동작 방법
US10418111B2 (en) 2018-01-17 2019-09-17 SK Hynix Inc. Memory system and operating method thereof
CN114882929A (zh) * 2021-02-05 2022-08-09 旺宏电子股份有限公司 存储装置的操作方法

Also Published As

Publication number Publication date
KR102429452B1 (ko) 2022-08-05
CN107025923B (zh) 2020-09-18
CN107025923A (zh) 2017-08-08

Similar Documents

Publication Publication Date Title
KR102429452B1 (ko) 반도체 메모리 장치 및 그것의 동작 방법
KR102624612B1 (ko) 반도체 메모리 장치 및 그것의 동작 방법
US10147489B2 (en) Semiconductor memory device and operation method for controlling bit line voltage of the same
US10146442B2 (en) Control logic, semiconductor memory device, and operating method
US10339996B2 (en) Semiconductor memory device and method for operating the same
US10515685B2 (en) Semiconductor memory device for performing erase operation and operating method thereof
KR20190019427A (ko) 메모리 장치 및 그 동작 방법
KR20190020880A (ko) 메모리 장치 및 그 동작 방법
US10373689B2 (en) Semiconductor memory device and method of operating the same
US9679660B1 (en) Semiconductor memory device and operating method thereof
KR102565888B1 (ko) 반도체 메모리 장치 및 그것의 동작 방법
KR20170011641A (ko) 반도체 메모리 장치 및 그것의 동작 방법
KR20170059643A (ko) 반도체 메모리 장치 및 그것의 동작 방법
KR102603243B1 (ko) 반도체 메모리 장치 및 그것의 동작 방법
KR20180032916A (ko) 반도체 메모리 장치 및 그것의 동작 방법
KR20160029506A (ko) 삼차원 메모리 셀 어레이를 포함하는 반도체 메모리 장치 및 그것의 동작 방법
KR20170052034A (ko) 반도체 메모리 장치 및 그것의 동작 방법
US10026489B2 (en) Semiconductor memory device and operating method thereof
KR20160059747A (ko) 반도체 메모리 장치 그것의 동작 방법
KR102608815B1 (ko) 반도체 메모리 장치 및 그것의 동작 방법
KR20190012571A (ko) 메모리 장치 및 그 동작 방법
KR20180051984A (ko) 반도체 메모리 장치 및 그것의 동작 방법
KR20170052029A (ko) 반도체 메모리 장치 및 그것의 동작 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant