KR20150080219A - Cathode active material and lithium secondary batteries comprising the same - Google Patents

Cathode active material and lithium secondary batteries comprising the same Download PDF

Info

Publication number
KR20150080219A
KR20150080219A KR1020130168258A KR20130168258A KR20150080219A KR 20150080219 A KR20150080219 A KR 20150080219A KR 1020130168258 A KR1020130168258 A KR 1020130168258A KR 20130168258 A KR20130168258 A KR 20130168258A KR 20150080219 A KR20150080219 A KR 20150080219A
Authority
KR
South Korea
Prior art keywords
active material
lithium
cathode active
metal
capacity
Prior art date
Application number
KR1020130168258A
Other languages
Korean (ko)
Other versions
KR102152370B1 (en
Inventor
최신정
문종석
이미선
김태현
Original Assignee
삼성정밀화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성정밀화학 주식회사 filed Critical 삼성정밀화학 주식회사
Priority to KR1020130168258A priority Critical patent/KR102152370B1/en
Publication of KR20150080219A publication Critical patent/KR20150080219A/en
Application granted granted Critical
Publication of KR102152370B1 publication Critical patent/KR102152370B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a positive electrode active material in which positive ion metal is added to a lithium metal composite oxide of a lithium-superfluous layer structure capable of expression of high capacity, and to a lithium secondary battery comprising the same. According to the present invention, the lithium secondary battery is manufactured by using the positive electrode active material so that capacity per volume and lifespan properties can be improved.

Description

양극 활물질 및 이를 포함하는 리튬 이차전지{Cathode active material and lithium secondary batteries comprising the same}[0001] The present invention relates to a cathode active material and a lithium secondary battery comprising the cathode active material and lithium secondary battery,

본 발명은 고 용량의 발현이 가능한 리튬-과잉의 층상구조 리튬 금속 복합산화물에 양이온 금속이 추가된 양극 활물질 및 이를 포함하는 리튬 이차전지에 관한 것이다.
The present invention relates to a positive electrode active material to which a positive metal is added to a lithium-excess layered lithium metal composite oxide capable of high-capacity development, and a lithium secondary battery comprising the same.

리튬 이차전지는 고용량, 고출력 및 장수명 등의 우수한 성능을 가진 이차전지로서 전자기기, 휴대용 컴퓨터, 휴대폰 등의 소형 전자제품에 광범위하게 활용되고 있다. BACKGROUND ART [0002] A lithium secondary battery is a secondary battery having excellent performance such as a high capacity, a high output and a long life, and is widely used in small electronic products such as electronic devices, portable computers and mobile phones.

최근, 환경문제에 대한 관심이 커짐에 따라 대기 오염의 주요 원인 중 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차의 구동원으로서 높은 에너지 밀도와 고용량을 갖는 리튬 이차전지에 대한 연구가 활발히 진행되고 있다. Recently, as interest in environmental problems has increased, it has become one of the main causes of air pollution. As a driving source of an electric vehicle capable of replacing fossil-fueled vehicles such as gasoline vehicles and diesel vehicles, Research on batteries is actively under way.

이러한 리튬 이차전지의 양극 활물질로서 주로 리튬 함유 코발트 산화물(LiCoO2)이 사용되고 있으며, 그 외에 층상결정 구조의 LiMnO2, 스피넬 결정구조의 LiMn2O4 등의 리튬 함유 망간 산화물과 리튬 함유 니켈 산화물(LiNiO2)의 사용도 고려되고 있다.Lithium-containing cobalt oxide (LiCoO 2 ) is mainly used as a cathode active material of such a lithium secondary battery, and a lithium-containing manganese oxide such as LiMnO 2 having a layered crystal structure and LiMn 2 O 4 having a spinel crystal structure and a lithium- LiNiO 2 ) is also being considered.

상기 양극 활물질들 중, LiCoO2는 안정된 충방전 특성, 우수한 전자 전도성, 높은 전지 전압, 높은 안정성, 및 평탄한 방전전압 특성을 갖는 뛰어난 물질이다. 그러나, 구조적 안정성이 떨어지고, 인체에 대한 독성이 있으며, 원료로서 사용되는 코발트의 매장량이 적고 고가이므로 가격 경쟁력에 한계가 있다는 문제가 있어 전기 자동차와 같은 분야의 동력원으로 대량 사용함에는 한계가 있다.Of the above cathode active materials, LiCoO 2 is an excellent material having stable charge / discharge characteristics, excellent electron conductivity, high battery voltage, high stability, and flat discharge voltage characteristics. However, there is a problem that the structural stability is poor, the toxicity to the human body is low, the amount of cobalt used as a raw material is small and the cost is low, so that there is a limit to price competitiveness.

상기 LiNiO2는 비교적 값이 싸고 높은 방전용량의 전지 특성을 나타내고 있으나, 충방전 사이클에 동반하는 체적 변화에 따라 결정 구조의 급격한 상전이가 나타나고, 공기와 습기에 노출되었을 때, 안전성이 급격히 저하되는 문제점이 있다.LiNiO 2 has a relatively low cost and exhibits a high discharge capacity of the battery. However, the LiNiO 2 exhibits an abrupt phase transition of the crystal structure in accordance with the volume change accompanied with the charge / discharge cycle, and the safety is drastically lowered when exposed to air and moisture .

반면에 리튬 망간 산화물은 원료로서 자원이 풍부하고 환경친화적인 망간을 사용한다는 장점을 가지고 있으므로, LiCoO2를 대체할 수 있는 양극 활물질로서 많은 관심을 모으고 있다. 특히, 스피넬 구조의 리튬 함유 망간 산화물은 열적 안전성이 우수하고 가격이 저렴하며 합성이 용이하다는 장점이 있다. 그러나, 용량이 작고 부반응에 의한 수명 특성 저하가 있으며, 사이클 특성 및 고온 저장 특성이 열악하다는 단점을 가지고 있다.On the other hand, lithium manganese oxide has attracted much interest as a cathode active material that can replace LiCoO 2 because it has the advantage of using manganese which is abundant in resources and environmentally friendly as a raw material. Particularly, the lithium-containing manganese oxide having a spinel structure is advantageous in that it has excellent thermal stability, low cost, and easy synthesis. However, it is disadvantageous in that it has a small capacity, a deterioration in lifetime due to side reaction, and poor cycle characteristics and high-temperature storage characteristics.

그 결과 스피넬의 낮은 용량 문제를 보완하고 망간계 활물질의 우수한 열적 안전성을 확보하기 위한 층상 구조의 리튬 함유 망간 산화물이 제안되었다. As a result, a layered lithium-containing manganese oxide has been proposed in order to compensate for the low capacity of spinel and to ensure excellent thermal stability of the manganese-based active material.

특히, 리튬을 과량으로 포함하는 리튬-과잉 층상계 산화물(Lithium-rich layered oxide: OLO)은 초기 비가역 용량이 다소 크다는 단점이 있지만 4.6V 이상의 높은 전압에서 초기 충전 시 매우 큰 용량을 발현하여 양극 물질로서 활발한 연구의 대상이 되고 있다.In particular, a lithium-rich layered oxide (OLO) containing an excessive amount of lithium has a disadvantage in that the initial irreversible capacity is somewhat large. However, at a high voltage of 4.6 V or more, Which is the subject of vigorous research.

이와 관련하여, 특허문헌 1(국내 특허출원 공개 제2010-0042145호)은 4.6 V 충전 시 고용량을 특성을 나타내는 Li[Li(1-2x)/3NixMn(2-x)/3]O2-δQδ(상기 Q는 할로겐 원소 또는 S이고, 0<x<1/3, 0≤δ≤0.1이다) 또는 Li[LixNiyCo1 -3x-2 yMn2x +y]O2-δQδ(상기 Q는 할로겐 원소 또는 S이고, 0<x<1/3, 0<y<(1-3x)/2, 0≤δ≤0.1이다)를 포함하는 리튬 이차 전지용 양극 활물질에 대해 개시하고 있다. 이 방법에 따른 양극 활물질은 우수한 탭 밀도를 가지며, 상기 양극 활물질을 사용하는 리튬 이차 전지의 경우 수명특성 및 율 특성에 대해서는 어느 정도의 개선 효과를 나타내고 있지만, 더욱 높은 에너지 밀도 및 방전용량을 갖는 리튬 이차전지용 양극 활물질에 대한 연구가 계속적으로 요구되고 있다.In this connection, Patent Document 1 (Japanese Patent Application Laid-Open No. 2010-0042145) discloses a Li [Li (1-2x) / 3 Ni x Mn (2-x) / 3 ] O 2 -? Q ? (Wherein Q is a halogen element or S, 0 <x <1/3, 0?? 0.1) or Li [Li x Ni y Co 1 -3x-2 y Mn 2x + y ] O 2-δ Q δ (wherein Q is a halogen element or S, 0 <x <1/3, 0 <y <(1-3x) / 2, 0≤δ≤0.1). . The cathode active material according to this method has an excellent tap density, and in the case of the lithium secondary battery using the cathode active material, the lifetime characteristics and the rate characteristics are somewhat improved. However, lithium having a higher energy density and discharge capacity Studies on a cathode active material for a secondary battery are continuously required.

이에 본 발명자들은 기존의 리튬-과잉 층상계 산화물(overlithiated oxide: OLO)에 양이온 금속을 포함시킴으로써, 이차전지의 부피당 용량 및 수명특성을 개선시킬 수 있음을 밝히고 본 발명을 완성하였다.
Accordingly, the inventors of the present invention have found that the inclusion of a cationic metal in an existing lithium-excess layered oxide (OLO) can improve the capacity and lifetime characteristics of the secondary battery, thereby completing the present invention.

KRKR 2010-00421452010-0042145 AA

본 발명이 해결하고자 하는 과제는, 리튬-과잉의 층상구조 리튬 금속 복합산화물에 양이온 금속이 추가된 양극 활물질을 제공하는 것이다.A problem to be solved by the present invention is to provide a positive electrode active material in which a cation metal is added to a lithium-excess layered lithium metal composite oxide.

본 발명이 해결하고자 하는 다른 과제는, 상기 양극 활물질을 포함하는 부피당 용량 및 수명특성이 개선된 리튬 이차전지를 제공하는 것이다.
Another object of the present invention is to provide a lithium secondary battery including the positive electrode active material and having improved capacity and life characteristics per unit volume.

이에 상기 과제를 해결하기 위하여, 본 발명은 하기의 화학식 1로 표시되는 층상구조의 리튬 금속 복합산화물을 포함하는 양극 활물질을 제공한다.In order to solve the above problems, the present invention provides a cathode active material comprising a lithium metal composite oxide having a layered structure represented by Chemical Formula 1 below.

화학식 1Formula 1

Li1 +x+ zNiaCobMncMyO2 +d Li 1 + x + z Ni a Co b Mn c M y O 2 + d

(여기서, M은 W, Mo, Ti 및 Zr로 이루어진 그룹에서 선택된 1종 이상의 금속, 0.1 < x < 0.3, 0 < y < 0.1, 0 < z < 0.2, 0 < a < 0.4, 0 < b < 0.4, 0.4 < c < 0.8, 0 < d < 0.5, a + b + c + x + y + z = 1).Wherein M is at least one metal selected from the group consisting of W, Mo, Ti, and Zr, 0 <x <0.3, 0 <y <0.1, 0 <z <0.2, 0 < 0.4, 0.4 <c <0.8, 0 <d <0.5, a + b + c + x + y + z = 1).

바람직하게, 상기 화학식 1에서 상기 z는 2y일 수 있으며, 상기 x의 범위는 0.11 ~ 0.16일 수 있다.Preferably, in Formula 1, z may be 2y, and the range of x may be 0.11 to 0.16.

또한, 본 발명은 상기 양극 활물질을 포함하는 리튬 이차 전지를 제공한다.
The present invention also provides a lithium secondary battery comprising the cathode active material.

본 발명에 따르면, 고 용량의 발현이 가능한 리튬-과잉의 층상구조 리튬 금속 복합산화물에 양이온 금속을 추가한 양극 활물질을 제공함으로써, 이를 포함하는 리튬 이차전지의 부피당 용량 및 수명특성을 개선시킬 수 있다.
According to the present invention, by providing a positive electrode active material in which a positive metal is added to a lithium-excess layered lithium metal composite oxide capable of high-capacity development, capacity and lifetime characteristics of the lithium secondary battery including the positive electrode active material can be improved .

도 1은 텅스텐(W) 도핑량 및 리튬(Li) 함량에 따른 리튬 이차전지의 무게당 용량을 나타내는 그래프이다.1 is a graph showing the capacity per unit weight of a lithium secondary battery according to the amount of tungsten (W) doping and the content of lithium (Li).

<양극 활물질><Cathode Active Material>

본 발명은 Ni, Mn 및 Co로 이루어진 군에서 선택되는 하나 이상의 전이금속을 기반으로 하는 층상구조의 리튬 금속 복합 산화물을 포함하고 있는 양극 활물질에 관한 것으로서, 상기 리튬 금속 복합산화물에는 W, Mo, Ti 및 Zr로 이루어진 그룹에서 선택된 1종 이상의 금속이 포함되어 있는 것을 특징으로 한다.The present invention relates to a cathode active material comprising a lithium metal composite oxide having a layered structure based on at least one transition metal selected from the group consisting of Ni, Mn and Co. The lithium metal composite oxide includes W, Mo, Ti And Zr are contained in the metal layer.

상기 금속은 "+" 산화상태를 갖는 도펀트 금속이며, 상기한 바와 같이 W, Mo, Ti 및 Zr로 이루어진 그룹에서 선택된 1종 이상이 사용되나, 바람직하게는 W 또는 Mo가 사용된다. The metal is a dopant metal having a "+" oxidation state, and at least one selected from the group consisting of W, Mo, Ti and Zr is used as described above, but W or Mo is preferably used.

본 발명에 따른 양극 활물질은 하기의 화학식 1로 표현되는 층상구조의 리튬 금속 복합 산화물이다. The cathode active material according to the present invention is a layered lithium metal composite oxide expressed by the following chemical formula (1).

화학식 1Formula 1

Li1 +x+ zNiaCobMncMyO2 +d Li 1 + x + z Ni a Co b Mn c M y O 2 + d

(여기서, M은 W, Mo, Ti 및 Zr로 이루어진 그룹에서 선택된 1종 이상의 금속, 0.1 < x < 0.3, 0 < y < 0.1, 0 < z < 0.2, 0 < a < 0.4, 0 < b < 0.4, 0.4 < c < 0.8, 0 < d < 0.5, a + b + c + x + y + z = 1).Wherein M is at least one metal selected from the group consisting of W, Mo, Ti, and Zr, 0 <x <0.3, 0 <y <0.1, 0 <z <0.2, 0 < 0.4, 0.4 <c <0.8, 0 <d <0.5, a + b + c + x + y + z = 1).

상기 금속의 함량은 양극 활물질 1몰을 기준으로 0몰 초과 0.1몰 미만이며, 상기 함량이 0.1몰을 이상일 경우 증가된 M만큼 전기화학적 활성종인 Ni, Co, Mn의 양이 감소하므로 용량이 저하되는 문제가 발생될 우려가 있다.The amount of the metal is less than 0.1 mol, more than 0 mol, based on 1 mol of the cathode active material. When the content is more than 0.1 mol, the amount of Ni, Co, Mn which is an electrochemically active species decreases by an increased amount M, There is a possibility of causing a problem.

바람직하게, 본 발명은 금속 도펀트 함량에 대한 Li 함량의 최적 조건을 제시한다. 구체적으로, 하기의 화학식 2에 기재된 바와 같이 리튬 금속 복합산화물에 금속 도펀트가 포함되지 않았을 경우 최고 용량을 나타내는 최적 Li 함량이 "1 + x"라고 가정했을 때, 상기 금속 도펀트 y몰이 상기 리튬 금속 복합 산화물에 추가로 포함될 경우 상기 금속 도펀트 몰수의 2배에 해당하는 Li도 함께 추가하여 전체 Li 몰수 "1 + x + z"에서 "z=2y"인 양극 활물질을 제공한다. 상기 양극 활물질을 포함할 경우 부피당 용량이 향상된 이차전지를 제공할 수 있어 바람직하다.Preferably, the present invention provides an optimum condition for the Li content relative to the metal dopant content. Specifically, assuming that the optimum Li content indicating the maximum capacity is "1 + x" when the metal dopant is not contained in the lithium metal composite oxide as shown in the following chemical formula 2, the metal dopant y mole is the lithium metal complex When Li is added to the oxide, Li corresponding to twice the number of moles of the metal dopant is also added to provide a cathode active material having a total Li mole number of "1 + x + z" to "z = 2y". When the positive electrode active material is included, it is possible to provide a secondary battery with improved capacity per volume.

화학식 2(2)

Li1 + xNiaCobMncO2 +d Li 1 + x Ni a Co b Mn c O 2 + d

(여기서, 0.1 < x < 0.3, 0 < a < 0.4, 0 < b < 0.4, 0.4 < c < 0.8, 0 < d < 0.5, a + b + c + x = 1)(Where 0 < x < 0.3, 0 < a < 0.4, 0 &

상기 화학식 2의 리튬 금속 복합 산화물이 최고 용량을 나타내기 위하여 더욱 바람직하게는 리튬의 몰수는 0.11 < x < 0.16 일 수 있다.In order for the lithium metal complex oxide represented by Formula 2 to exhibit the highest capacity, the number of moles of lithium is more preferably 0.11 < x < 0.16.

상기한 바와 같이, 상기 화학식 2에 추가되는 금속(M) 몰수(y)에 대해 2배의 몰수(2y) 리튬을 추가할 경우, 상기 추가되는 리튬은, 예컨대 Li2WO4 형태의 리튬텅스텐산화물을 형성함으로써 금속 물수의 2배에 해당하는 몰수의 리튬이 비활성종이 된다. 이로 인해, 무게당 용량 개선은 미미할 수 있으나, W 추가에 의한 나노(nano) 스케일의 형상변화로 인해 부피당 용량은 개선된다. 그러므로 화학식 2에 W, Mo 등과 같은 금속 도펀트가 추가될 경우 추가 금속의 2배 몰당량을 추가한 화학식 1이 최고의 부피당 용량을 나타내는 양극활물질이 된다.As described above, if the added molar number (2y) of lithium 2 times the metal (M) molar number (y) to be added to the formula (2), the lithium is added to the, for example, Li 2 WO 4 in the form of lithium tungsten oxide So that lithium in a molar number corresponding to twice the number of metal ions is inactivated. As a result, the improvement in capacity per weight may be small, but the capacity per volume is improved due to the change in the shape of the nano scale due to the addition of W. Therefore, when a metal dopant such as W, Mo or the like is added to the general formula (2), the compound of formula (1), which is twice the molar equivalent of the additional metal, becomes the cathode active material exhibiting the highest capacity per volume.

위와 같은 본 발명에 따른 양극 활물질은 다음과 같은 제조방법에 의하여 제조될 수 있다.
The cathode active material according to the present invention can be produced by the following production method.

<양극 활물질의 제조방법>&Lt; Method for producing positive electrode active material &

본 발명에 따른 양극 활물질 제조방법은, 전이금속 화합물 전구체를 합성하는 단계; 상기 전이금속 화합물 전구체와 금속 공급원을 혼합하여 2차 전구체를 합성하는 단계; 및 상기 2차 전구체와 Li 공급원을 혼합한 후 600 ~ 1000 ℃에서 열처리하는 단계를 포함한다.The method for producing a cathode active material according to the present invention comprises: synthesizing a transition metal compound precursor; Synthesizing a second precursor by mixing the transition metal compound precursor and a metal source; And mixing the secondary precursor with a Li source, followed by heat treatment at 600 to 1000 ° C.

이하, 본 발명에 따른 양극 활물질을 제조방법에 대하여 구체적으로 설명하면 다음과 같다.Hereinafter, a method for producing the cathode active material according to the present invention will be described in detail.

먼저, 수산화물 형태인 전이금속 수산화물 전구체를 합성한다.First, a transition metal hydroxide precursor in the hydroxide form is synthesized.

전이금속 수산화물 형태의 전구체 합성을 위해서는, 물에 용해되는 염의 형태로, 니켈 황산염, 니켈 질산염 및 니켈 탄산염으로 이루어진 군에서 선택된 1종; 코발트 황산염, 코발트 질산염 및 코발트 탄산염으로 이루어진 그룹에서 선택된 1종; 그리고 망간 황산염, 망간 질산염 및 망간 탄산염으로 이루어진 그룹에서 선택된 1 종을 일정 몰농도로 녹여서 수용액을 제조한 후, NaOH, NH4OH및 KOH로 이루어진 그룹에서 선택된 1종 이상의 염기를 이용하여 pH 10 ~ 12범위에서 수산화물의 형태로 침전시킨다.For the synthesis of a precursor in the form of a transition metal hydroxide, it is preferred to use one selected from the group consisting of nickel sulfate, nickel nitrate and nickel carbonate in the form of a salt dissolved in water; Cobalt sulfate, cobalt nitrate and cobalt carbonate; The aqueous solution is prepared by dissolving one selected from the group consisting of manganese sulfate, manganese nitrate, and manganese carbonate at a constant molar concentration, and then, by using at least one base selected from the group consisting of NaOH, NH 4 OH, and KOH, 12 &lt; / RTI &gt; in the form of hydroxides.

이때, 상기pH가 10보다 낮은 경우에는 입자의 핵 생성속도보다 입자 응집속도가 더 커서 입자의 크기가 3㎛ 이상으로 성장할 수 있고, pH가 12보다 높은 경우에는 입자의 핵 생성속도가 입자 응집속도보다 커서 입자의 응집이 되지 않아 Ni, Co, Mn 등의 전이금속 각 성분이 균질하게 혼합된 전이금속 수산화물을 얻기 어렵다는 문제가 생길 수 있다. At this time, when the pH is lower than 10, the particle aggregation rate is larger than the nucleation rate of the particles, and the particle size may grow to 3 μm or more. When the pH is higher than 12, The particles are not agglomerated and there may arise a problem that it is difficult to obtain a transition metal hydroxide in which each component of the transition metal such as Ni, Co, Mn is homogeneously mixed.

이렇게 침전된 분말의 표면에 흡착되어 있는 SO4 2 -, NH4 +, NO3 -, Na+, K+ 등을 증류수를 이용하여 수 차례 세정하여 고순도의 전이금속 수산화물 전구체를 합성한다. 이렇게 합성된 전이금속 수산화물 전구체를 150℃의 오븐에서 24시간 이상 건조하여 수분 함유량이 0.1 wt% 이하가 되도록 한다.The SO 4 2 - , NH 4 + , NO 3 - , Na + , K + adsorbed on the surface of the precipitated powder is washed several times with distilled water to synthesize a high purity transition metal hydroxide precursor. The thus-synthesized transition metal hydroxide precursor is dried in an oven at 150 ° C for at least 24 hours so that the water content is 0.1 wt% or less.

이렇게 제조된 상기 전이금속 화합물 전구체는 화학식 NiaCobMnc(OH)2 (0.1 ≤ a < 0.5, 0 ≤ b < 0.7, 0.2 ≤ c < 0.9, a + b + c = 1)로 표시되는 전이금속 수산화물 형태인 것이 바람직하다.The transition metal compound precursor thus prepared is represented by the formula Ni a Co b Mn c (OH) 2 (0.1 ≤ a <0.5, 0 ≤ b <0.7, 0.2 ≤ c <0.9, a + b + c = 1) It is preferred that the transition metal hydroxide is in the form of a transition metal hydroxide.

건조가 완료된 전이금속 수산화물 전구체와, 도펀트 금속의 공급을 위한 금속염 수용액을 혼합한 후, 1시간 이상 교반하면서 80 ℃에서 물을 증발시킴으로써 2차 전구체를 합성한다.After mixing the dried transition metal hydroxide precursor with the metal salt aqueous solution for supplying the dopant metal, the second precursor is synthesized by evaporating water at 80 ° C while stirring for 1 hour or more.

상기 금속염으로서는 텅스텐염, 몰리브덴염, 티타늄염 및 지르코늄염으로 이루어진 그룹에서 선택된 1종 이상일 수 있다. 바람직하게는 상기 금속염은 텅스텐, 몰리브덴, 티타늄 및 지르코륨의 할로겐화물 일 수 있고, 상기 텅스텐 염의 예로서는 WCl4, WCl6 등을 들 수 있다.The metal salt may be at least one selected from the group consisting of tungsten salts, molybdenum salts, titanium salts and zirconium salts. Preferably, the metal salt may be a halide of tungsten, molybdenum, titanium or zirconium. Examples of the tungsten salt include WCl 4 and WCl 6 .

이어서, 상기 2차 전구체, Li 공급원인 탄산리튬(Li2CO3)을 균질하게 혼합한 후, 600 ~ 1000 ℃ 온도 범위에서, 5 ~ 30 시간 동안 열처리하여 도펀트 금속을 포함하는 리튬 금속 복합산화물을 얻는다.Subsequently, the secondary precursor, lithium carbonate (Li 2 CO 3 ) serving as a Li source is homogeneously mixed and then heat-treated at 600 to 1000 ° C. for 5 to 30 hours to form a lithium metal composite oxide containing a dopant metal .

상기 열처리 온도가 600℃ 미만일 경우 Li 공급원과 전이금속 수산화물 전구체 간의 고용이 잘 이루어지지 않을 우려가 있고, 반면 1000℃를 초과할 경우 활물질의 입자 사이즈가 너무 증가하여 전지 특성이 감소하는 문제가 발생할 수 있다.
If the heat treatment temperature is less than 600 ° C, there is a possibility that the solid solution between the Li source and the transition metal hydroxide precursor may not be well mixed. On the other hand, if the temperature exceeds 1000 ° C, the particle size of the active material is excessively increased, have.

<양극 활물질을 포함하는 리튬 이차 전지>&Lt; Lithium Secondary Battery Containing Cathode Active Material >

본 발명에 따른 양극 활물질은, 리튬 이차 전지의 양극 소재로서 활용될 수 있고, 공지의 이차 전지와 동일한 구조 및 제조방법에 의하여 제조될 수 있다.The cathode active material according to the present invention can be utilized as a cathode material of a lithium secondary battery and can be manufactured by the same structure and manufacturing method as a known secondary battery.

바람직하게는, 리튬 이차전지는 현재 본 기술 분야에서 널리 알려져 있는 통상적인 방법으로서, 양극과 음극 사이에 다공성 분리막을 넣고 전해질을 투입하여 제조할 수 있다. 음극으로는 리튬 메탈, 분리막은 다공성 PE 재질의 분리막, 전해질로는 1.3M LiPF6 EC : DMC : EC이 5 : 3 : 2의 중량비로 혼합된 용액을 사용하여 제조한다.Preferably, the lithium secondary battery can be manufactured by putting a porous separator between an anode and a cathode and introducing an electrolyte into the lithium secondary battery, which is a common method widely known in the art. The electrolyte is prepared by mixing a mixture of lithium metal at a ratio of 5: 3: 2 by using lithium metal as a cathode, a separator of porous PE as a separator, and electrolyte: 1.3M LiPF 6 EC: DMC: EC.

이하에서는, 본 발명에 따른 양극 활물질의 제조방법 및 이에 의해 제조된 양극 활물질을 포함하는 리튬 이차 전지에 대하여, 바람직한 실시예 및 비교예를 통하여 상세히 설명한다. 그러나, 이러한 실시예는 본 발명의 바람직한 일 실시예에 불과할 뿐, 본 발명이 이러한 실시예에 의하여 한정되는 것으로 해석되어서는 아니된다.
Hereinafter, a lithium secondary battery including a method for producing a cathode active material according to the present invention and a cathode active material produced thereby will be described in detail with reference to preferred embodiments and comparative examples. However, these embodiments are only a preferred embodiment of the present invention, and the present invention should not be interpreted as being limited by these embodiments.

실시예Example 1 One

① 전이 금속 수산화물 전구체 합성① Synthesis of transition metal hydroxide precursors

황산니켈 (NiSO4), 황산코발트 (CoSO4), 황산망간 (MnSO4)을 2 : 2 : 6의 몰비로 혼합하여 2M의 금속염 수용액을 제조하였다. 제조된 금속염 수용액을 10L 연속 반응기에 0.5L/h의 속도로 투입하였다. Nickel sulfate (NiSO 4 ), cobalt sulfate (CoSO 4 ) and manganese sulfate (MnSO 4 ) were mixed at a molar ratio of 2: 2: 6 to prepare a 2M aqueous metal salt solution. The prepared metal salt aqueous solution was introduced into a 10 L continuous reactor at a rate of 0.5 L / h.

2M 농도의 암모니아수(NH4OH)를 상기 반응기의 암모니아수 공급부를 통하여 0.5L/hr의 속도로 투입하고, 여기에 2M 농도의 수산화나트륨(NaOH) 수용액을 반응기의 수산화나트륨 수용액 공급부를 통하여 자동 투입하면서, pH미터와 제어부를 통해 pH 10.8이 유지되도록 하였다. 반응기의 온도는 50℃로 하고, 체류시간(RT)은 10시간으로 조절하였으며, 500rpm의 속도로 교반하였다.Ammonia water (NH 4 OH) at a concentration of 2 M was fed through the ammonia supply unit of the reactor at a rate of 0.5 L / hr, and an aqueous solution of sodium hydroxide (NaOH) at a concentration of 2 M was automatically supplied through the sodium hydroxide aqueous solution supply unit , pH 10.8 was maintained through pH meter and control unit. The temperature of the reactor was adjusted to 50 캜, the residence time (RT) was adjusted to 10 hours, and the stirring was carried out at a speed of 500 rpm.

이렇게 얻어진 반응 용액을 필터를 통해 여과하고 증류수로 정제한 후, 120℃의 오븐에서 24시간 건조하여 전이 금속 수산화물 전구체 Ni0 .2Co0 .2Mn0 .6(OH)2 (1차 전구체)를 합성했다.
So then the resultant reaction solution was filtered through a filter and purified by purified water, in a 120 ℃ oven dried for 24 hours to the transition metal hydroxide precursor Ni 0 .2 Co 0 .2 Mn 0 .6 (OH) 2 (1 tea precursor) .

② 2차 전구체 합성② Secondary precursor synthesis

상기 ①에서 합성한 전이 금속 수산화물 전구체와 텅스텐(W)염인 WCl6 수용액을 혼합한 후 3시간 동안 교반하면서 80℃에서 물을 증발시킴으로써 2차 전구체를 얻었다. 이때 ①에서 합성된 1차 전구체 : W = 0.85 : 0.01 몰비로 혼합하였다.
The transition metal hydroxide precursor synthesized in (1) above and a WCl 6 aqueous solution of tungsten (W) were mixed and then water was evaporated at 80 ° C. for 3 hours to obtain a second precursor. At this time, the first precursor synthesized in (1): W = 0.85: 0.01 was mixed at a molar ratio.

③ 양극 활물질 합성③ Cathode active material synthesis

상기 ②에서 2차 전구체와 탄산리튬(LC = LiC0.5O1.5)을 혼합한 후, 700 ℃에서 10시간 동안 열처리하여 리튬 금속 복합산화물을 합성하여 양극 활물질 분말을 얻었다. 이때 ①에서 합성된 전구체 : LC : W = 0.85 : 1.14 : 0.01 몰비로 되도록 탄산리튬을 혼합하였다. The second precursor was mixed with lithium carbonate (LC = LiC 0.5 O 1.5 ) in the above step (2) and then heat-treated at 700 ° C for 10 hours to synthesize a lithium metal composite oxide to obtain a cathode active material powder. At this time, lithium carbonate was mixed so that the precursor synthesized in (1): LC: W = 0.85: 1.14: 0.01 molar ratio.

상기 리튬 금속 복합산화물은 화학식 Li1 .14Ni0 .17Co0 .17Mn0 .51W0 .01O2 .011로 표현되는 리튬 금속복합 산화물이다.
The lithium composite metal oxide is a lithium-metal composite oxide represented by the formula Li 1 .14 Ni 0 .17 Co 0 .17 Mn 0 .51 W 0 .01 O 2 .011.

실시예Example 2 내지 9 및  2 to 9 and 비교예Comparative Example 1 내지 6 1 to 6

상기 1차 전구체 : LC : W의 몰비를 하기의 표 1과 같이 조절한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 금속복합 산화물을 제조하였다.A lithium metal complex oxide was prepared in the same manner as in Example 1, except that the molar ratio of the first precursor: LC: W was adjusted as shown in Table 1 below.

1차 전구체Primary precursor LCLC WW 실시예 1Example 1 0.850.85 1.141.14 0.010.01 실시예 2Example 2 0.840.84 1.151.15 0.010.01 실시예 3Example 3 0.830.83 1.161.16 0.010.01 실시예 4Example 4 0.820.82 1.171.17 0.010.01 실시예 5Example 5 0.810.81 1.181.18 0.010.01 실시예 6Example 6 0.800.80 1.191.19 0.010.01 실시예 7Example 7 0.800.80 1.181.18 0.020.02 실시예 8Example 8 0.790.79 1.191.19 0.020.02 실시예 9Example 9 0.780.78 1.201.20 0.020.02 비교예 1Comparative Example 1 0.890.89 1.111.11 00 비교예 2Comparative Example 2 0.870.87 1.131.13 00 비교예 3Comparative Example 3 0.860.86 1.141.14 00 비교예 4Comparative Example 4 0.850.85 1.151.15 00 비교예 5Comparative Example 5 0.840.84 1.161.16 00 비교예 6Comparative Example 6 0.830.83 1.171.17 00

<전지용량 및 수명특성 평가>&Lt; Evaluation of battery capacity and service life characteristics &

실시예 및 비교예에서 합성된 양극 활물질과, 도전재인 Denka Black, 바인더인 폴리비닐리덴 플루오라이드 (PVDF) 를 92 : 4 : 4의 중량비로 혼합하여 슬러리를 제조하였다. 상기 슬러리를 알루미늄 (Al) 호일 위에 균일하게 코팅하여 양극 전극 극판을 제작하였다.Denka Black, a conductive material, and polyvinylidene fluoride (PVDF) as a binder were mixed at a weight ratio of 92: 4: 4 to prepare a slurry. The slurry was uniformly coated on an aluminum (Al) foil to prepare a positive electrode electrode plate.

음극으로는 리튬 메탈, 분리막으로는 다공성 PE 재질의 분리막, 전해질로는, 1.3M LiPF6 EC(ethylene carbonate) : DMC(dimethyl carbonate) : EC이 5 : 3 : 2의 중량비로 혼합된 용액을 사용하여 코인 셀 타입의 리튬 이차전지를 제작하였다.
A mixture of lithium metal as a cathode, a porous PE separator as a separator, and a mixture of 1,3M LiPF 6 EC (dimethyl carbonate): EC in a weight ratio of 5: 3: 2 was used as an electrolyte Thereby preparing a coin cell type lithium secondary battery.

전지 용량(무게당 용량)Battery capacity (capacity per weight)

제작한 코인셀은 25℃ 항온에 24시간 방치한 후, 리튬이차전지 충·방전 시험장치(Toyo System사)를 사용하고, 테스트 셀의 전압영역을 3.0 ~ 4.6V로 설정, CC(Constant Current)/CV(Constant Voltage) 모드에서 0.2C의 전류로 충·방전을 진행하고 방전용량을 구했다.
The prepared coin cell was allowed to stand at a constant temperature of 25 ° C for 24 hours, and then a lithium secondary battery charge / discharge test apparatus (Toyo System) was used. The voltage range of the test cell was set to 3.0 to 4.6 V, / CV (Constant Voltage) mode, charging / discharging was carried out at a current of 0.2 C and the discharge capacity was obtained.

부피당 용량Capacity per volume

양극 활물질 3g에 3톤의 압력을 30초간 가한 후, 형성된 펠렛의 외형 부피를 기준으로 펠렛의 밀도를 측정하였다. 상기 무게당 용량에 펠렛 밀도를 곱하여 부피당 용량을 측정하였다.
Three grams of the cathode active material was applied with a pressure of 3 tons for 30 seconds, and the density of the pellets was measured based on the external volume of the formed pellets. The volume per weight was multiplied by the pellet density to determine the volume per volume.

수명 특성Life characteristics

첫 사이클 이후에는 테스트 셀의 전압영역을 2.5 ~ 4.6V로 설정, CC/CV 모드에서 1C의 전류로 충·방전하여 50사이클 반복하고, 용량 유지율을 평가하였다. 용량 유지율은 하기 식으로 산출하였다.After the first cycle, the voltage range of the test cell was set to 2.5 to 4.6 V, the current of 1 C was charged / discharged in the CC / CV mode, and the cycle was repeated for 50 cycles. The capacity retention rate was calculated by the following formula.

용량 유지율 (%) = (50회 충방전 후 방전용량 / 초기 방전용량) * 100
Capacity retention rate (%) = (discharge capacity after 50 charge / discharge / initial discharge capacity) * 100

상기 평가방법에 따라, 실시예 1 내지 9 및 비교예 1 내지 6에서 제조된 양극 활물질을 포함하는 리튬 이차전지의 무게당용량, 부피당 용량 및 용량유지율을 하기 표 2에 나타내었다.The capacity, capacity per volume and capacity retention rate of the lithium secondary battery including the cathode active material prepared in Examples 1 to 9 and Comparative Examples 1 to 6 according to the above evaluation methods are shown in Table 2 below.

실험Experiment 무게당 용량
(mAh/g)
Capacity per weight
(mAh / g)
부피당 용량
(mAh/cc)
Capacity per volume
(mAh / cc)
용량유지율
(%)
Capacity retention rate
(%)
실시예1Example 1 237237 664664 9191 실시예2Example 2 240240 672672 9191 실시예3Example 3 244244 683683 9090 실시예4Example 4 247247 692692 9090 실시예5Example 5 245245 686686 9191 실시예6Example 6 238238 666666 9191 실시예7Example 7 243243 680680 9090 실시예8Example 8 245245 686686 9191 실시예9Example 9 243243 680680 9191 비교예1Comparative Example 1 230230 575575 6565 비교예2Comparative Example 2 241241 603603 6262 비교예3Comparative Example 3 244244 610610 5050 비교예4Comparative Example 4 246246 615615 5656 비교예5Comparative Example 5 244244 610610 5757 비교예6Comparative Example 6 230230 575575 6767

상기 표 2를 살펴보면, 본 발명의 실시예 1 내지 9에 따라 제조된 양극 활물질을 이용하여 제조된 코인셀의 경우, 비교예 1 내지 6에 비하여 무게당 용량 유사수준이거나 약간 낮게 나타났으나, 부피당 용량 및 수명특성은 현저히 개선되었음을 알 수 있다.As shown in Table 2, the coin cell manufactured using the cathode active material prepared according to Examples 1 to 9 of the present invention showed a similar or slightly lower capacity-to-weight ratio than Comparative Examples 1 to 6, Capacity and lifetime characteristics are remarkably improved.

또한, 텅스텐(W) 도핑량 및 Li함량에 따른 무게당 용량을 나타내는 도 1을 살펴 보면, W 함량이 변함에 따라 최대 무게당 용량을 나타내는 Li 함량이 높아지며, W 함량의 0.01몰씩 증가할수록 Li함량은 0.02몰씩 증가할 때 최대 용량을 나타내었다.1 showing the capacity per weight according to the doping amount of tungsten (W) and the Li content, the Li content showing the maximum capacity per weight was increased with the W content, and as the W content was increased by 0.01 mol, the Li content Showed the maximum capacity when it was increased by 0.02 mol.

Claims (4)

하기의 화학식 1로 표시되는 층상구조의 리튬 금속 복합산화물을 포함하는 양극 활물질:
화학식 1
Li1 +x+ zNiaCobMncMyO2 +d
(여기서, M은 W, Mo, Ti 및 Zr로 이루어진 그룹에서 선택된 1종 이상의 금속, 0.1 < x < 0.3, 0 < y < 0.1, 0 < z < 0.2, 0 < a < 0.4, 0 < b < 0.4, 0.4 < c < 0.8, 0 < d < 0.5, a + b + c + x + y + z = 1).
1. A cathode active material comprising a lithium metal composite oxide having a layered structure represented by the following Chemical Formula 1:
Formula 1
Li 1 + x + z Ni a Co b Mn c M y O 2 + d
Wherein M is at least one metal selected from the group consisting of W, Mo, Ti, and Zr, 0 <x <0.3, 0 <y <0.1, 0 <z <0.2, 0 < 0.4, 0.4 <c <0.8, 0 <d <0.5, a + b + c + x + y + z = 1).
제 1 항에 있어서,
상기 화학식 1에서 상기 z는 2y인 것을 특징으로 하는 양극 활물질.
The method according to claim 1,
Wherein z is 2 &lt; y &gt; in formula (1).
제 1 항에 있어서,
상기 화학식 1에서 상기 x는 0.11 ~ 0.16인 것을 특징으로 하는 양극 활물질.
The method according to claim 1,
The positive active material of claim 1, wherein x is 0.11 to 0.16.
제 1 항 내지 제 3 항 중의 어느 한 항의 양극 활물질을 포함하는 리튬 이차 전지.A lithium secondary battery comprising the cathode active material according to any one of claims 1 to 3.
KR1020130168258A 2013-12-31 2013-12-31 Cathode active material and lithium secondary batteries comprising the same KR102152370B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130168258A KR102152370B1 (en) 2013-12-31 2013-12-31 Cathode active material and lithium secondary batteries comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130168258A KR102152370B1 (en) 2013-12-31 2013-12-31 Cathode active material and lithium secondary batteries comprising the same

Publications (2)

Publication Number Publication Date
KR20150080219A true KR20150080219A (en) 2015-07-09
KR102152370B1 KR102152370B1 (en) 2020-09-07

Family

ID=53792067

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130168258A KR102152370B1 (en) 2013-12-31 2013-12-31 Cathode active material and lithium secondary batteries comprising the same

Country Status (1)

Country Link
KR (1) KR102152370B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170063387A (en) * 2015-11-30 2017-06-08 주식회사 엘지화학 Positive electrode active material for secondary battery, method for preparing the same, and secondary battery comprising the same
KR20180076601A (en) * 2016-12-28 2018-07-06 울산과학기술원 Cathode active material for lithium ion secondary batteries, method for manufacturing the same, and lithium ion secondary batteries including the same
WO2019066297A3 (en) * 2017-09-29 2019-05-23 주식회사 엘지화학 Positive electrode active material comprising lithium-rich lithium manganese-based oxide, and lithium tungsten compound, or additionally, tungsten compound, on lithium-rich lithium manganese-based oxide, and lithium secondary battery positive electrode comprising same
US11289695B2 (en) 2017-09-29 2022-03-29 Lg Energy Solution, Ltd. Positive electrode active material comprising lithium-rich lithium manganese-based oxide and further comprising lithium tungsten compound, or additionally tungsten compound on the lithium-rich lithium manganese-based oxide, and positive electrode for lithium secondary battery comprising the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230051828A (en) 2021-10-12 2023-04-19 성균관대학교산학협력단 A cathode active material for a lithium ion battery comprising a metal having a fixed oxidation number and an excess lithium layered oxide, and a lithium ion battery comprising the same
KR20230051853A (en) 2021-10-12 2023-04-19 성균관대학교산학협력단 A cathode active material for a lithium ion battery substituted with a metal having a fixed oxidation number, and a lithium ion battery comprising the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320184A (en) * 2004-05-06 2005-11-17 Nippon Denko Kk Lithium-manganese multiple oxide and its producing method
KR20100042145A (en) 2008-10-15 2010-04-23 한양대학교 산학협력단 Cathode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same
KR20110076955A (en) * 2008-09-30 2011-07-06 엔비아 시스템즈 인코포레이티드 Fluorine doped lithium rich metal oxide positive electrode battery materials with high specific capacity and corresponding batteries
KR20130108332A (en) * 2010-09-03 2013-10-02 엔비아 시스템즈 인코포레이티드 Very long cycling of lithium ion batteries with lithium rich cathode materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320184A (en) * 2004-05-06 2005-11-17 Nippon Denko Kk Lithium-manganese multiple oxide and its producing method
KR20110076955A (en) * 2008-09-30 2011-07-06 엔비아 시스템즈 인코포레이티드 Fluorine doped lithium rich metal oxide positive electrode battery materials with high specific capacity and corresponding batteries
KR20100042145A (en) 2008-10-15 2010-04-23 한양대학교 산학협력단 Cathode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same
KR20130108332A (en) * 2010-09-03 2013-10-02 엔비아 시스템즈 인코포레이티드 Very long cycling of lithium ion batteries with lithium rich cathode materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170063387A (en) * 2015-11-30 2017-06-08 주식회사 엘지화학 Positive electrode active material for secondary battery, method for preparing the same, and secondary battery comprising the same
KR20180076601A (en) * 2016-12-28 2018-07-06 울산과학기술원 Cathode active material for lithium ion secondary batteries, method for manufacturing the same, and lithium ion secondary batteries including the same
WO2019066297A3 (en) * 2017-09-29 2019-05-23 주식회사 엘지화학 Positive electrode active material comprising lithium-rich lithium manganese-based oxide, and lithium tungsten compound, or additionally, tungsten compound, on lithium-rich lithium manganese-based oxide, and lithium secondary battery positive electrode comprising same
US11289695B2 (en) 2017-09-29 2022-03-29 Lg Energy Solution, Ltd. Positive electrode active material comprising lithium-rich lithium manganese-based oxide and further comprising lithium tungsten compound, or additionally tungsten compound on the lithium-rich lithium manganese-based oxide, and positive electrode for lithium secondary battery comprising the same

Also Published As

Publication number Publication date
KR102152370B1 (en) 2020-09-07

Similar Documents

Publication Publication Date Title
KR101746187B1 (en) Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
KR101577180B1 (en) Positive electrode active material with improved energy density
CN102210047B (en) Positive electrode for lithium secondary battery, and lithium secondary battery
KR101378580B1 (en) Cathod active material, lithium rechargeble battery including the same, and method of activiting the same
KR102210892B1 (en) Cathode active material, method for preparing the same, and lithium secondary batteries comprising the same
KR101577179B1 (en) Cathod active material for lithium rechargeable battery and lithium rechargeable battery comprising the same
KR101470092B1 (en) Cathode active material, method for preparing the same, and lithium secondary batteries comprising the same
KR102357836B1 (en) Cathode active material for lithium secondary and lithium secondary batteries comprising the same
KR20170075596A (en) Positive electrode active material for rechargeable lithium battery, method for menufacturing the same, and rechargeable lithium battery including the same
KR20170102293A (en) Multicomponent materials having a classification structure for lithium ion batteries, a method for manufacturing the same, an anode of a lithium ion battery and a lithium ion battery
KR20140099218A (en) Cathod active material for lithium rechargeable battery, preparing method thereof and lithium rechargeable battery containing the same
KR20150023856A (en) Lithium rich positive electrode material, positive electrode of lithium battery and lithium battery
KR102152370B1 (en) Cathode active material and lithium secondary batteries comprising the same
KR20120009779A (en) Manufacturing method of positive active material precursor and lithium metal composite oxides for lithium secondary battery
KR20140119621A (en) Precusor for lithium rich active material and lithium rich active material made by the same
WO2010139142A1 (en) Positive electrode materials of secondary lithium battery and preparation methods thereof
KR100805910B1 (en) Olivine type positive active material for lithium battery, method for preparing the same, and lithium battery comprising the same
KR20140148269A (en) Cathod active material for lithium rechargeable battery
KR20090102138A (en) Olivine type positive active material precursor for lithium battery, olivine type positive active material for lithium battery, method for preparing the same, and lithium battery comprising the same
KR101449811B1 (en) Cathode active material, method for preparing the same, and lithium secondary batteries comprising the same
KR101991254B1 (en) Positive Active material with high Power density and longevity
KR20150059820A (en) Manufacturing method of cathod active material for lithium rechargible battery by coprecipitation, and cathod active material for lithium rechargeable battery made by the same
KR102381520B1 (en) Positive active material for lithium rechargeable battery, lithium rechargeable battery including the same, and manufacturing method for the same
KR102161288B1 (en) Method for preparing Cathode active material, cathode active material prepared by the same, and lithium secondary batteries comprising the same
KR102152882B1 (en) Cathode active material and lithium secondary batteries comprising the same

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant