KR20150053943A - 고전압 전기장 방법을 사용하는 연료 생성 - Google Patents

고전압 전기장 방법을 사용하는 연료 생성 Download PDF

Info

Publication number
KR20150053943A
KR20150053943A KR1020157008611A KR20157008611A KR20150053943A KR 20150053943 A KR20150053943 A KR 20150053943A KR 1020157008611 A KR1020157008611 A KR 1020157008611A KR 20157008611 A KR20157008611 A KR 20157008611A KR 20150053943 A KR20150053943 A KR 20150053943A
Authority
KR
South Korea
Prior art keywords
working fluid
high voltage
mixture
plasma
electric field
Prior art date
Application number
KR1020157008611A
Other languages
English (en)
Inventor
게프레이 히어슨
거스 에프. 슈즈
Original Assignee
파워다인, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 파워다인, 인코포레이티드 filed Critical 파워다인, 인코포레이티드
Publication of KR20150053943A publication Critical patent/KR20150053943A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/002Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor carried out in the plasma state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0009Settling tanks making use of electricity or magnetism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/20Agglomeration, binding or encapsulation of solid waste
    • B09B3/25Agglomeration, binding or encapsulation of solid waste using mineral binders or matrix
    • B09B3/29Agglomeration, binding or encapsulation of solid waste using mineral binders or matrix involving a melting or softening step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/12Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/333Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the platinum-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/50Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C1/00Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid
    • F02C1/04Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly
    • F02C1/05Gas-turbine plants characterised by the use of hot gases or unheated pressurised gases, as the working fluid the working fluid being heated indirectly characterised by the type or source of heat, e.g. using nuclear or solar energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/42Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/44Plasma torches using an arc using more than one torch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/00063Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00186Controlling or regulating processes controlling the composition of the reactive mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0815Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes involving stationary electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0871Heating or cooling of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0875Gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0877Liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0879Solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0892Materials to be treated involving catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • B01J2219/0898Hot plasma
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/062Hydrocarbon production, e.g. Fischer-Tropsch process
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0861Methods of heating the process for making hydrogen or synthesis gas by plasma
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0883Methods of cooling by indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/123Heating the gasifier by electromagnetic waves, e.g. microwaves
    • C10J2300/1238Heating the gasifier by electromagnetic waves, e.g. microwaves by plasma
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1671Integration of gasification processes with another plant or parts within the plant with the production of electricity
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1671Integration of gasification processes with another plant or parts within the plant with the production of electricity
    • C10J2300/1675Integration of gasification processes with another plant or parts within the plant with the production of electricity making use of a steam turbine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0415Light distillates, e.g. LPG, naphtha
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0415Light distillates, e.g. LPG, naphtha
    • C10L2200/0423Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/043Kerosene, jet fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0438Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
    • C10L2200/0446Diesel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • C10L2200/0492Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/023Specifically adapted fuels for internal combustion engines for gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/026Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/04Specifically adapted fuels for turbines, planes, power generation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/06Heat exchange, direct or indirect
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/30Pressing, compressing or compacting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/38Applying an electric field or inclusion of electrodes in the apparatus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/42Fischer-Tropsch steps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Abstract

연료 제조 방법이 개시되어 있다. 상기 방법은 제 1 작업 유체, 제 2 작업 유체, 및 제 3 작업 유체를 제공하는 단계를 포함할 수 있다. 상기 방법은 또한 제 1 플라즈마를 생성하기 위해 상기 제 1 작업 유체를 제 1 고전압 전기장에 노출시키는 단계, 제 2 플라즈마를 생성하기 위해 상기 제 2 작업 유체를 제 2 고전압 전기장에 노출시키는 단계, 및 제 3 플라즈마를 생성하기 위해 상기 제 3 작업 유체를 제 3 고전압 전기장에 노출시키는 단계를 포함할 수 있다. 상기 방법은 또한 탄소계 공급원료를 제공하는 단계, 혼합물을 형성하기 위하여 상기 탄소계 공급원료를 처리 챔버 내의 상기 제 3 플라즈마, 상기 제 2 플라즈마 및 상기 제 1 플라즈마와 접촉시키는 단계, 냉각 혼합물을 형성하기 위해 열교환 장치를 사용하여 상기 혼합물을 냉각시키는 단계 및 연료를 생성하기 위해 상기 냉각된 혼합물을 촉매와 접촉시키는 단계를 포함할 수 있다.

Description

고전압 전기장 방법을 사용하는 연료 생성{FUEL GENERATION USING HIGH-VOLTAGE ELECTRIC FIELDS METHODS}
본 발명은 2012년 9월 5일자로 출원된 발명의 명칭이 "연료 재료 및 전력 생성 방법, 및 플라즈마 소스를 사용하는 봉쇄용 독소"인 미국 가출원 제61/697,148호의 우선권 및 이익을 청구한다. 상기 출원은 모든 목적을 위해 그 전체가 참고용으로 본원에 합체된다.
연료 재료는, 수소와 같은 단순한 가스들로부터 일반적으로 항공 연료에서 발견되는 복잡한 혼합물들로, 광범위하게 다양한 형태들로 도입된다. 각 타입의 연료에 대한 화학적 조성의 폭넓은 범위로 인해, 연료들이 다양한 공정들을 통해 생성될 수 있다. 결과적으로, 특정 연료들은 연료 합성을 위한 전용 설비를 필요로 할 수 있다. 따라서, 그와 같은 설비는 전용되는 연료들만을 생성하도록 최적화될 수 있다. 또한, 각각의 설비는 연료 합성을 위한 공급원료들 및/또는 전구체 물질들을 필요로 할 수 있다.
제한된 수의 용이하게 이용 가능한 공급원료들로부터 다양한 가스 및/또는 액체 연료들을 생성하기 위한 개발 중인 고효율의 방법들이 강한 흥미를 유발한다. 개량된 효율은 또한 외부 전력원에 기초하여 설비를 감소시키기 위한 적어도 일부 전력을 생성하는 연료 생성 설비를 부분적으로 가짐으로써 얻을 수 있다. 개량된 효율은 또한 연료 생성 방법들을 최적화하기 위해 반응 온도 및 기타 다양한 처리 상태들을 적절히 조절하기 위한 다양한 관점의 처리 제어를 갖는 설비에 의해 얻어질 수 있다.
일 실시예에 있어서, 연료 제조 방법은 제 1 작업 유체, 제 2 작업 유체, 및 제 3 작업 유체를 제공하는 단계를 포함한다. 상기 방법은 또한 제 1 플라즈마를 생성하기 위해 상기 제 1 작업 유체를 제 1 고전압 전기장에 노출시키는 단계와, 제 2 플라즈마를 생성하기 위해 제 2 작업 유체를 제 2 고전압 전기장에 노출시키는 단계, 및 제 3 플라즈마를 생성하기 위해 제 3 작업 유체를 제 3 고전압 전기장에 노출시키는 단계를 또한 포함할 수 있다. 상기 방법은 또한 탄소계 공급원료를 제공하는 단계 및 혼합물을 생성하기 위하여 탄소계 공급원료를 제 3 유체 플라즈마, 제 2 유체 플라즈마, 및 제 1 유체 플라즈마와 접촉시키는 단계, 냉각 혼합물을 형성하기 위해 열교환 장치를 사용하여 상기 혼합물을 냉각시키는 단계, 및 연료를 생성하기 위해 상기 냉각된 혼합물을 촉매와 접촉시키는 단계를 포함할 수 있다.
도 1a는 일 실시예에 따른 적어도 하나의 플라즈마 소스로부터 연료를 생성하기 위한 시스템의 블록도를 나타내는 도면.
도 1b는 일 실시예에 따른 고전압 전기장 발생기의 블록도를 나타내는 도면.
도 2는 일 실시예에 따른 연료 제조 방법의 흐름도를 나타내는 도면.
도 3은 일 실시예에 따른 고전압 전기장에 작업 유체를 노출시키는 방법에 대한 흐름도를 나타내는 도면.
도 4는 일 실시예에 따른 혼합물을 냉각시키는 방법에 대한 흐름도를 나타내는 도면.
본 발명은 기재된 특정 시스템들, 장치들 및 방법들에 제한되지 않고, 변경될 수 있다. 본 발명에 사용된 전문 용어들은 오직 특정 설명 또는 실시예들을 기술할 목적으로 사용될 뿐, 범위를 제한하려는 의도를 갖지 아니한다.
본 문헌에서 사용된 바와 같이, 단수형의 형태들("a", "an" 및 "the")은 그 문맥이 달리 명백하게 지시하지 않는 한 복수의 대상들을 포함한다. 달리 정의하지 않는 한, 본원에 사용된 모든 기술적 및 과학적 개념들은 당업자들에 의해 일반적으로 이해될 수 있는 바와 같은 의미를 갖는다. 본 발명은 본 발명에 기재된 실시예들이 종래 발명으로 인해 그들이 본 발명을 선행할 권리를 갖는다는 사실을 인정하는 것으로 이해되어서는 않된다. 본 문헌에서 사용되는 바와 같은 "포함한다"는 용어의 의미는 "구비한다"라는 의미를 가지나, 그에 한정되지는 않는다.
적용을 위해, 다음의 개념들은 이하에 개시될 각각의 의미들을 갖게 될 것이다.
사용된 바와 같이, 연료는 에너지원을 제공하는 임의의 조성 물질(구성 물질)과 관련된다. 본원에서 사용될 수 있는 특정 연료들은 나프타, 디젤 연료, 디젤 연료 블렌드(blend), 제트 추진제 8(JP-8) 연료, 제트 연료, 제트 연료 블렌드, 또는 가솔린을 포함할 수 있다. 나프타는 대부분 5개의 탄소 및 중화학적 성분들을 포함하는 공정 스트림일 수 있다. 나프타는 예를 들어 가솔린 블렌딩 스톡으로서 처리 및 사용될 수 있는 크래킹된(cracked) 탄화수소의 탈뷰테인 스트림(debutanized stream)일 수 있다. 제트 연료는 일반적으로 항공 연료로서 사용하기에 적합한 연료일 수 있다. 제트 연료는 예를 들면 항공 터빈 연료를 위한 ASTM D 1655 규격과 같은 하나 이상의 규칙 또는 요건을 따를 수 있다. 일부 실시예에 있어서, 상기 제트 연료는 액체 탄화수소 연료일 수 있다. 일부 실시예에 있어서, 상기 제트 연료는 주요 성분으로서 파라핀뿐만 아니라 다양한 아로마틱스 및 나프텐을 포함할 수 있다. 디젤 연료 블렌드와 같은 블렌드 또는 제트 연료 블렌드는 각각 적어도 부분적으로 디젤 연료 또는 제트 연료를 함유하는 연료 블렌드를 나타낸다.
플라즈마의 지향성 유동을 발생시킬 수 있는 장치로서 플라즈마 토치를 들 수 있다. 실례가 되는 플라즈마 토치들로는, 제한적이지는 않지만, 유도 커플 플라즈마(Inductively Coupled Plasma), 전달 아크 DC 플라즈마(Transferred Arc DC Plasma), 및 비전달 아크 DC 플라즈마와 같은 이온 가스 발생 시스템을 포함할 수 있다. 본원에 사용된 바와 같은, "토치(torch)" 또는 "토치들"이라는 용어는 플라즈마 토치들을 나타낸다. 플라즈마 토치들은 약 10,000℉ 내지 약 20,000℉(약 5,540℃ 내지 약 11,080℃) 이하의, 또는 그 이상의 온도 범위에 도달할 수 있다. 각각의 플라즈마 토치는 플라즈마 반응기의 일부일 수 있으며, 상기 반응기는 일반적으로 플라즈마 토치가 사용되는 반응 용기와 플라즈마 토치의 혼합 형태를 가질 수 있다.
본원에서 사용되고 있는 바와 같은 피셔-트롭슈(Fischer- Tropsch) 공정은 다음의 화학식(CnH(2n+2))에 따른 다양한 탄화수소 분자들을 생성하는 일련의 화학적 반응들을 나타낸다. 상기 일련의 화학적 반응들은 다음과 같은 알칸들을 생성할 수 있다:
(2n+1)H2 + nCO → CnH(2n+2) + nH20
여기서, n은 양의 정수이다. 메탄의 형성(n = 1)은 메탄이 표준 온도 및 압력에서 가스이므로 일반적으로 배제될 수 있다. 생성된 대부분의 알칸들은 직쇄의 경향을 가지며 또한 연료로서 적합할 수 있다. 알칸 형성에 더하여, 경쟁 반응들이 소량의 알칸뿐만 아니라 알콜 및 기타 산소화된 탄화수소들을 제공하며, 이에 대하여는 다음에 더욱 상세히 설명된다.
본원에 설명된 다양한 실시예들에 있어서, 연료 제조 방법은 제 1 플라즈마를 생성하기 위해 제 1 작업 유체를 제 1 고전압 전기장에 노출시키는 단계와, 제 2 플라즈마를 생성하기 위해 제 2 작업 유체를 제 2 고전압 전기장에 노출시키는 단계와, 제 3 플라즈마를 생성하기 위해 제 3 작업 유체를 제 3 고전압 전기장에 노출시키는 단계와, 혼합물을 형성하기 위하여 제 1 플라즈마, 제 2 플라즈마 및 제 3 플라즈마를 공급원료와 접촉시키는 단계를 포함할 수 있다. 상기 혼합물은 냉각 혼합물을 형성하기 위해 상기 혼합물을 냉각시킬 수 있는 열교환 장치로 이송될 수 있다. 상기 냉각된 혼합물은 연료를 생성하기 위해 촉매와 접촉될 수 있다. 일부 비제한적 예에 있어서, 상기 연료는 나프타, 디젤 연료, 디젤 연료 블렌드, JP-8 연료, 제트 연료, 또는 제트 연료 블렌드 중 적어도 하나를 포함할 수 있다. 일부 실시예에서, 특정 양의 다양한 성분들(공급원료, 작업 유체들)은 결과적으로 생성된 특정 양의 연료로 될 수 있다. 예를 들어, 약 30 톤의 공급원료는 500 갤론 내지 약 750 갤론의 연료를 생성하는데 사용될 수 있다.
도 1a는 일 실시예에 따른 연료 제조 시스템을 나타내고 있다. 일반적으로 도면부호 100으로 나타낸 상기 시스템은 공급원료 소스(102), 하나 이상의 고전압 전기장 발생기들(105, 110, 115), 제 1 처리 챔버(FPC)(120), 열 교환기(125), 제 2 처리 챔버(SPC)(130), 및 연료 저장 탱크(135)를 포함할 수 있다.
공급원료 소스(102)는 일반적으로 공급원료 재료를 포함하고 제 1 처리 챔버(120)로 공급원료 재료를 제공하도록 구성될 수 있다. 일부 실시예에서, 공급원료는 탄소계 공급원료일 수 있다. 이러한 탄소계 공급원료는 탄소계 공급원료 공급부로부터 공급될 수 있다. 제한없이, 공급원료의 예시적인 예들은 하나 이상의 바가스(bagasse), 석탄, 목재, 녹색 폐기물(green waste), 사탕무, 옥수수 또는 바이오 폐기 제품들을 포함할 수 있다. 본원에 사용된 바가스는 일반적으로 플랜트-기반 소스로부터 얻어지는 임의의 섬유 물질을 의미한다. 따라서, 하나의 비제한적 예에 있어서, 바가스는, 특히 수수 줄기들이 즙을 제거하기 위해 분쇄된 후의, 사탕수수 또는 수수 줄기들로부터 얻는 섬유 물질을 포함할 수 있다. 녹색 페기물은 일반적으로, 풀 커팅(grass cutting), 플라워 커팅(flower cutting), 생울타리를 잘라 낸 쪼가리들, 나뭇잎, 관목, 초목, 및 벌채물과 같은 정원 또는 공원 폐기 물질, 및/또는 과일 및 음식 처리 과정에서 나온 폐기물을 포함할 수 있는 생분해성 폐기물을 포함할 수 있다. 바이오 폐기 제품들은 일반적으로 예를 들면 동물이나 식물 유래의 음식 찌꺼기와 같은 부엌 폐기물을 포함할 수 있다.
공급원료를 FPC에 제공하는 공급원료 소스(102)에 의해서 사용된 기계적 요소는 다양한 공정 파라미터에 따라 제어될 수 있다. 공급원료의 수송의 제어는 제어 시스템에 의해서 공급될 수 있다. 일부 실시예에서, 제어 시스템은 공급원료를 FPC에 제공하는데 사용된 기계적 요소에 특정될 수 있다. 다른 실시예에서, 제어 시스템은 하기에 더욱 상세하게 기술된 바와 같이 전체 시스템(100)을 제어하기 위하여 제어 시스템 안으로 통합될 수 있다.
하나 이상의 고전압 전기장 발생기들(105, 110, 115) 각각은 일반적으로 고전압 전위를 발생시키기 위해 사용될 수 있는 임의의 다양한 요소들일 수 있다. 따라서, 도 1b에 도시된 바와 같이, 상기 하나 이상의 고전압 전기장 발생기들(105, 110, 115) 각각은 적어도 하나의 애노드 표면(150), 적어도 하나의 캐소드 표면(155), 및 상기 애노드 표면과 캐소드 표면 사이의 전위(160)를 가질 수 있다. 결과적으로, 자기장(165) 및 전기장(170)은 상기 전위(160)가 상기 적어도 하나의 애노드 표면(150)과 상기 하나 이상의 캐소드 표면(155) 사이에 인가될 때 발생될 수 있다. 일부 실시예들에 있어서, 이하에서 더욱 상세하게 설명되고 수평 방향 화살표로 나타낸, 가스의 유동은 실제로 상기 자기장(165)과 수직을 이룰 수 있다. 다른 실시예들에 있어서, 상기 수직 방향 화살표로 나타낸, 가스의 유동은 실제로 상기 자기장(165)과 평행을 이룰 수 있다. 상기 자기장(165)과 상기 전기장(170)은 각각 상기 애노드 표면(150)과 상기 캐소드 표면(155) 사이의 갭을 통해 유동하는 가스에 영향을 미칠 수 있다. 비제한적 예에 있어서, 상기 전기장(170)은 가스를 안정화시키고 그리고/또는 상기 가스를 이온화시킬 수 있다. 다른 비제한적 예에 있어서, 상기 자기장(165)은 가스의 스핀(spin) 및/또는 속도를 변경시킬 수 있다.
다시 도 1a를 참고하면, 일부 실시예들에 있어서, 상기 하나 이상의 고전압 전기장 발생기들(105, 110, 115) 각각은 플라즈마 토치일 수 있다. 도 1a가 3개의 고전압 전기장 발생기들(105, 110, 115)을 도시하고 있으나, 당업자라면 본 발명의 범위를 벗어나지 않은 한도 내에서 어떠한 수의 고전압 전기장 발생기들도 사용될 수 있음을 인식할 수 있을 것이다. 따라서, 예를 들면, 상기 시스템(100)은 1, 2, 3, 4, 5, 6, 7, 8, 또는 그 이상의 고전압 전기장 발생기들을 포함할 수 있다.
상기 하나 이상의 고전압 전기장 발생기들(105, 110, 115) 각각의 소스는 하나 이상의 제어 시스템들(미도시)에 의해 제어될 수 있음을 인지할 수 있다. 상기 하나 이상의 제어 시스템들은 상기 하나 이상의 고전압 전기장 발생기들(105, 110, 115) 모두를 함께 제어할 수 있으며 또한 전체 시스템(100)을 위한 제어 시스템과는 다르거나 또는 상기 제어 시스템을 포함할 수 있다. 대안적으로, 상기 하나 이상의 고전압 전기장 발생기들(105, 110, 115) 각각은 별도의 제어 시스템을 가질 수 있다. 고전압 전기장 발생기들(105, 110, 115)을 위한 제어 시스템은 상기 플라즈마 토치의 전압 및 상기 플라즈마 토치의 주파수와 같은 토치 매개변수들에 대한 제어 함수들을 포함할 수 있다. 상기 고전압 전기장 발생기들(105, 110, 115)의 제어는, 제한적이지는 않지만, 고전압 전기장을 발생시키는 요소들에 인가된 전압의 측정, 고전압 전기장 발생기를 위한 전압 공급의 전류 드레인(current drain), 상기 고전압 전기장 발생기의 플라즈마 출력의 온도, 및 상기 고전압 전기장 발생기에 의해 발생된 플라즈마의 구성을 포함하는 하나 이상의 공정 측정에 기초할 수 있다. [상기 고전압 전기장 발생기들(105, 110, 115)에 의해서 예시된] 고전압 전기장 발생기들 각각은 하나 이상의 처리 알고리즘들에 따라 제어될 수 있음을 또한 인식할 수 있다. 상기 고전압 전기장 발생기들(105, 110, 115)은 (개별 제어기들 또는 단일 제어기에 의해 제공되는 바와) 동일한 처리 방법들 및/또는 알고리즘들에 따라 제어될 수 있다. 대안적으로, 상기 고전압 전기장 발생기들(105, 110, 115) 각각은 (개별 제어기들 또는 단일 제어기에 의해 제공되는 바와) 다른 처리 방법 및/또는 알고리즘에 따라 제어될 수 있다.
본원에 사용되는 FPC(120)는, 예를 들면, 이산화탄소, 산소, 및/또는 물의 존재 하의 공급원료 및/또는 작업 유체의 연소가 발생할 때, 온도, 압력, 부식 등과 같은 하나 이상의 처리 상태들에 저항할 수 있는 챔버에 관한 것이다. 일부 실시예들에 있어서, 상기 FPC(120)는 상기 하나 이상의 고전압 전기장 발생기들(105, 110, 115)과 합체될 수 있다. 일부 실시예들에 있어서, 상기 FPC(120)는 상기 다양한 고전압 전기장 발생기들(105, 110, 115)로부터 플라즈마와 공급원료 소스(102)로부터의 공급원료를 수용하기 위한 하나 이상의 입구 및 혼합물을 방출하기 위한 적어도 하나의 출구를 포함할 수 있으며, 이에 대하여는 본원에서 더욱 상세히 설명된다. 예시적 FPC(120)는, 적어도 하나의 플라즈마 토치를 포함하는, 리텍 시스템, 엘엘씨(Retech Systems, LLC)(유키아, 캐나다)로부터 이용할 수 있는 플라즈마 아크 원심 처리(PACT) 시스템일 수 있다.
다양한 실시예들에 있어서, 상기 FPC(120)는 진공 또는 거의 진공에서 지속될 수 있다. 특정 실시예에 있어서, 상기 FPC(120)는 약 50 kPa 내지 약 507 kPa(약 0.5 atm 내지 약 5 atm), 구체적으로는 약 50 kPa, 약 100 kPa, 약 150 kPa, 약 200 kPa, 약 250 kPa, 약 300 kPa, 약 350 kPa, 약 400 kPa, 약 450 kPa, 약 500 kPa, 약 507 kPa, 또는 (종말점들을 포함하는) 이들 값들 중 어느 둘 사이의 어떤 값 또는 범위의 압력에서 지속될 수 있다.
상기 FPC(120)에서 혼합물은 약 4000℃ 내지 약 6000℃의 온도에 도달할 수 있으며, 이에 대하여는 본원에서 더욱 상세히 설명된다. 상기 고전압 전기장 발생기들(105, 110, 115)이 작동하는 다양한 상태에 따라, 보다 높은 또는 보다 낮은 온도들이 얻어질 수 있다. 상기 혼합물들이 냉각제 부가 장치(미도시)를 사용하여 상기 FPC(120) 내에서, 상기 FPC의 출구 포트에서, 상기 FPC 출구에 있는 (파이프 또는 기타 도관과 같은) 이송 장치에서, 또는 상기 위치들의 혼합 위치에서 냉각될 수 있다. 일부 실시예들에 있어서, 상기 냉각제 부가 장치는 냉각에 영향을 미치는 냉각제를 사용할 수 있다. 예시적인 냉각제로는 액체 산소(LOX)를 포함할 수 있다. 상기 냉각제 부가 장치에 의해 상기 혼합물 내로 도입되는 냉각제의 양은 상기 제어 시스템에 의해 제어될 수 있다. 일부 비제한적 예에 있어서, 상기 혼합물에 추가된 냉각제의 양은 혼합물의 온도, 혼합물의 구성, 혼합물의 기타 측정 매개변수들에 따라 제어될 수 있다. 일부 실시예들에 있어서, 상기 제어 시스템은 오직 냉각제 부가 장치와 관련될 수 있다. 다른 실시예들에 있어서, 상기 제어 시스템은 전체 시스템(100)을 제어하기 위해 시스템 내에 합체될 수 있다. 냉각제를 상기 혼합물에 추가함으로써 유발 혼합물(혼합된 혼합물)의 온도는 약 1450℃ 내지 약 1650℃, 구체적으로는 약 1450℃, 약 1500℃, 약 1550℃, 약 1600℃, 약 1650℃, 또는 이들 값들 중 어느 둘 사이의 값 또는 범위로 감소될 수 있다. 상기 혼합된 혼합물이 상기 혼합물과는 다른 구성을 가질 수 있다는 사실도 또한 인식될 수 있을 것이다.
상기 열 교환기(125)는 일반적으로, 예를 들면, 가스 대 다른 가스, 가스 대 액체, 액체 대 다른 액체 등과 같은 하나의 매체로부터 다른 매체로 열 에너지를 전달하도록 구성되는 장치일 수 있다. 상기 열 교환기(125)의 실례로서는 증기 발생 열 교환기(예를 들면, 보일러), 가스-가스 상호교환기, 보일러 공급수 교환기, 강제 공기 교환기, 냉각수 교환기, 또는 그들의 혼합체를 포함할 수 있다. 각각 연속적인 저압 증기 레벨을 생성하는 복수의 열 교환기들(125)의 사용이 본 발명의 범위 내에 포함되도록 고려된다. 예를 들어, 상기 열 교환기(125)는 복사 열 교환기, 대류 열 교환기, 또는 그들의 혼합 형태를 포함할 수 있다. 증기 및 응축물이 상기 열 교환 공정으로부터 발생될 수 있으며 또한 다른 압력을 갖는 하나 이상의 증기 제품을 포함할 수 있다. 특정 실시예에 있어서, 상기 열 교환기(125)는 예를 들면 NEM(라이덴, 네덜란드)에 의해 제조된 장치와 같은 열 회수 증기 발생기(HRSG)일 수 있다. 상기 HRSG(125)는 상기 HRSG가 상기 FPC(120)로부터 혼합물을 수용할 때 어떠한 혼합물의 손실 또는 열화가 발생하지 않도록 구성될 수 있다. 따라서, 상기 HRSG(125)는 상기 혼합물과 접촉할 때 다양한 온도, 압력, 부식성 화학물질 등에 저항할 수 있다. 일부 실시예들에 있어서, 상기 HRSG(125)는 상기 혼합물의 상승 온도를 수용하는데 도움을 주기 위해 세라믹으로 라이닝될 수 있다. 일부 실시예들에 있어서, 상기 HRSG(125)는 상기 혼합물 또는 상기 FPC(120)로부터 방출되는 혼합된 혼합물을 수용하기 위한 제 1 입구, 물과 같은 유체를 수용하기 위한 제 2 입구, 증기를 방출하기 위한 제 1 출구, 및 냉각된 혼합물을 방출하기 위한 제 2 출구를 포함할 수 있으며, 이에 대하여는 본원에서 더욱 상세히 설명된다. 일부 실시예들에 있어서, 상기 제 2 입구를 통해 상기 열 교환기(125)로 진입하는 물의 양은 제어 시스템에 의해 제어될 수 있으며, 이에 대하여는 본원에서 더욱 상세히 설명된다. 비제한적 예로서 증기를 포함할 수 있는 가열된 열 교환 물질은 상기 제 1 출구에 의해 상기 열 교환기(125)에서 배출될 수 있다. 가열된 열 교환 물질은 제 1 전력 공급을 발생시키기 위해 제 1 전기 터빈으로 추가로 이송될 수 있다.
다양한 실시예들에 있어서, 상기 열 교환 물질은 상기 열 교환기(125)에서 증기 공급량으로 전환될 수 있는 물일 수 있다. 일단 증기의 공급이 전기 터빈을 활성화시킨 경우, 상기 증기의 공급량은 액체수로 냉각될 수 있다. 일부 실시예들에 있어서, 상기 액체수는 상기 열 교환기(125)로 복귀되어서, 다량의 혼합물 또는 혼합된 혼합물에 의해 재가열될 수 있다. 대안적으로, 상기 전기 터빈이 활성화된 후, 증기의 제 1 공급량은 작업 유체 소스로 복귀되어서, 하나 이상의 고전압 전기장 발생기(105, 110, 115)로 공급될 수 있다.
제 2 처리 챔버(130)는 본 발명에 의해 제한받지 않으며, 일반적으로 반응을 제어 및 포함하기 위해 사용될 수 있는 챔버, 노, 튜브 등과 같은 임의의 타입의 구조물일 수 있다. 상기 제 2 처리 챔버는 복수의 챔버들을 포함할 수 있다는 사실을 인식할 수 있을 것이다. 특정 실시예들에 있어서, 상기 제 2 처리 챔버(130)는 임의의 피셔-트롭슈 공정을 위해 구성되는 챔버일 수 있다.
연료 저장 탱크(135)는 본 발명에 의해 제한받지 않으며, 일반적으로 적어도 상기 제 2 처리 챔버(130)로부터 연료를 수용하도록 구성되는 임의의 용기일 수 있다. 또한, 상기 연료 저장 탱크(135)는 예를 들면 연료, 이송 연료, 분배 연료 및/또는 유사물들을 저장하기 위해 사용될 수 있다.
다양한 실시예들에 있어서, 상기 시스템(100)은 또한 가스 분리기(미도시)를 포함할 수 있다. 상기 가스 분리기는, 예를 들면, 막 분리 시스템, 분자체(molecular sieve), 또는 그들의 혼합체를 포함할 수 있다. 상기 가스 분리기는 일반적으로 본원에 기재된 다양한 요소들을 분리시키기 위해 사용될 수 있으며, 상기 분리된 요소들을 선택적으로 다양한 가스 보유 컨테이너들 내에 적층시킬 수 있다. 예를 들면, H2 컨테이너 및 CO 컨테이너와 같은, 상기 가스 보유 컨테이너들은 각각 유출량 계측 장치를 포함할 수 있다. 각각의 유출량 계측 장치는 제어기에 의해 제어될 수 있다. 대안적으로, 각각의 가스 보유 컨테이너의 상기 유출량 계측 장치들은 동일한 제어기에 의해 제어될 수 있다. 각각의 가스 보유 컨테이너는 또한 대응하는 유출량 계측 장치와 관련된 가스 출력 포트를 가질 수 있다. 각각의 가스 출력 포트는 가스를 대응하는 가스 보유 컨테이너로부터 공통의 공급 덕트 내로 지향시킬 수 있다.
상기 각각의 가스 보유 컨테이너의 유출량 계측 장치들은 제어된 구성을 갖는 냉각된 혼합물을 생성하기 위해 가스량을 공통 공급 덕트 내로 허용하도록 제어될 수 있으며, 이에 대하여는 본원에서 더욱 상세히 설명된다. 하나의 비제한적 예에서, 상기 냉각된 혼합물은 상기 공통 공급 덕트와 관련된 하나 이상의 가스 조성 센서들에 기초하여 제어될 수 있다. 다른 비제한적 예에서, 상기 냉각된 혼합물은 각각의 가스 보유 컨테이너에 의해 방출되는 가스의 용적에 기초하여 제어될 수 있다. 또 다른 비제한적 예에서, 상기 냉각된 혼합물은 각각의 가스 보유 컨테이너에 함유된 가스의 압력에 기초하여 제어될 수 있다. 따라서, 상기 냉각된 혼합물 요소들의 다양한 비율을 얻을 수 있으며, 이에 대하여는 본원에서 더욱 상세히 설명된다.
도 2는 일 실시예에 따른 연료 제조 방법의 흐름도를 나타낸다. 상기 방법은 제 1 작업 유체를 제공하는 단계(205), 제 2 작업 유체를 제공하는 단계(215), 제 3 작업 유체를 제공하는 단계(225)를 포함할 수 있다. 하나의 비제한적 실시예에 있어서, 상기 제 1 작업 유체는 산소 가스(O2)일 수 있고, 상기 제 2 작업 유체는 수증기(H20)일 수 있고, 또한 상기 제 3 작업 유체는 이산화탄소 가스(CO2)일 수 있다.
상기 제 1 처리 챔버 내의 CO2, 02 및 H2O는 본원에 기술된 바와 같은 각각의 플라즈마 토치들을 위한 작업 유체들로서 사용될 수 있음을 인지할 수 있다. 따라서, 각각의 가스는 고전압 전기장에 노출될 수 있다. 그와 같은 노출의 결과로서, 상기 가스들은 프리라디칼종들(free radical species)로 환원될 수 있다. 예를 들어, H2O는 하이드록실 라디칼(OH)로 환원될 수 있으며, O2는 수퍼옥사이드아니온 라디칼(02 ㆍ-)로 환원될 수 있다. 또한, 상기 가스들은 이온화 종들로 환원될 수 있다. 예를 들어, O2는 O-, O2 -, O2 +, 및/또는 O+로 환원될 수 있다. 고전압 전기장으로의 가스 노출로 인해 생성되는 반응성 종들의 타입과 양은 가스들을 오직 열에만 노출시킬 때 생성되는 것들과는 다를 수 있다.
각각의 작업 유체는 자체 작업 유체 소스에 의해 공급될 수 있다. 하나의 비제한적 예에 있어서, CO2는 CO2 소스로부터 공급될 수 있으며, 02는 02 소스로부터 공급될 수 있으며, 수증기(H20)는 H20 소스로부터 공급될 수 있다. 상기 고전압 필드 소스들 각각으로부터의 플라즈마의 제어는 상기 고전압 필드 소스들 각각에 공급된 작업 유체의 양들에 대한 제어를 포함할 수 있다는 사실을 인식할 수 있다. 비록 도시되지는 않았지만, CO2, 02 및 H2O에 대한 작업 유체 공급원들도 또한 제어 및 측정 요소들을 포함할 수 있다는 사실은 명백하다. 그와 같은 요소들은, 비제한적으로, 상기 작업 유체 공급원(밸브들) 각각에 의해 공급되는 작업 유체의 양 및 (예를 들면, 화학적 조성의 측정 또는 전달된 가스의 압력과 같은) 공급된 작업 유체 각각의 양을 측정하기 위한 장치를 제어하기 위한 요소들을 포함할 수 있다. 그와 같은 측정 및 제어 장치들은 상술된 바와 같이 하나 이상의 제어 시스템에 의해 제어될 수 있다는 사실 또한 이해될 수 있을 것이다. 일부 실시예들에 있어서, 상기 제어 시스템들은 하나 이상의 작업 유체 공급원들에 특화될 수 있다. 다른 실시예들에 있어서, 모든 작업 유체 공급원들은 동일한 제어 시스템에 의해 제어될 수 있다. 일부 실시예들에 있어서, 상기 작업 유체 공급원들은 전체 전력 발생 시스템에 공통인 제어 시스템에 의해 제어될 수 있다.
비록 본원에는 설명하고 있지 않지만, 실시예는 CO2, 02 및 H2O로서 설명되는 3개의 작업 유체들을 포함할 수 있으며, 이들은 하나 이상의 고전압 전기장 발생기들로 공급되기 전에 한개, 또는 두개의 결합 작업 유체들로 결합될 수 있다. 비제한적 예로서, 상기 CO2, 02, 및 H2O는 고전압 전기장 발생기(105, 110, 115)로 공급될 단일 결합 작업 유체 내에 결합될 수 있다(도 1a). 더 나아가, 상기 CO2, 02, H2O에 대한 각각의 공급원과 관련된 제어기들은 최적화된 가스비를 생성하도록 각각의 특정량의 가스가 상기 결합된 작업 유체에 첨가되게 한다. 마찬가지로, 단일 플라즈마 토치와 관련된 제어기는 상기 플라즈마가 상기 결합된 작업 유체 내의 특정 가스비에 대한 최적의 상태 하에 작업하도록 할 수 있다.
상기 제 1 작업 유체는 제 1 플라즈마를 생성하기 위해 고전압 전기장에 노출될 수 있다(210). 도 3에 도시된 바와 같이, 상기 제 1 작업 유체를 상기 고전압 전기장으로 노출시키는 단계(210)는 애노드 표면을 제공하는 단계(305)와 캐소드 표면을 제공하는 단계(310)를 포함할 수 있다. 상기 애노드 표면과 상기 캐소드 표면은 상기 2개의 표면들 사이에 갭을 형성하기 위한 거리만큼 분리될 수 있다. 상기 거리는 일반적으로 (선택된 전기 전압에 대해) 상기 전기장이 약 0.3 kV/cm 내지 약 8.0 kV/cm, 구체적으로는 약 0.3 kV/cm, 약 0.3149 kV/cm, 약 0.5 kV/cm, 약 0.75 kV/cm, 약 1.0 kV/cm, 약 1.25 kV/cm, 약 1.5 kV/cm, 약 1.574 kV/cm, 약 2.0 kV/cm, 약 2.5 kV/cm, 약 3.0 kV/cm, 약 3.149 kV/cm, 약 3.5 kV/cm, 약 4.0 kV/cm, 약 4.5 kV/cm, 약 5.0 kV/cm, 약 5.5 kV/cm, 약 6.0 kV/cm, 약 6.5 kV/cm, 약 7.0 kV/cm, 약 7.5 kV/cm, 약 7.559 kV/cm, 약 8.0 kV/cm, 또는 (종말점들을 포함하는) 이들 값들 중 임의의 2개의 값들 사이의 임의의 값 또는 범위가 되도록 선택될 수 있다. 예시적 거리들은 약 0.15 cm 내지 약 0.65 cm, 구체적으로는 약 0.15 cm, 약 0.20 cm, 약 0.25 cm, 약 0.30 cm, 약 0.3175 cm, 약 0.35 cm, 약 0.40 cm, 약 0.45 cm, 약 0.50 cm, 약 0.55 cm, 약 0.60 cm, 약 0.65 cm, 또는 (종말점들을 포함하는) 이들 값들 중 임의의 2개의 값들 사이의 임의의 값 또는 범위일 수 있다. 따라서, 소망의 전기장을 성취하기 위해, 상기 애노드 표면과 상기 캐소드 표면 사이에 전압 전위가 제공될 수 있다(315). 예를 들어, 제 1 고전압 전위가 상기 애노드 표면과 상기 캐소드 표면 사이에 유도될 수 있으며, 상기 제 1 작업 유체가 상기 2개의 표면들 사이의 갭을 가로지르도록 유도될 수 있다(320). 하나의 비제한적 실시예에 있어서, 상기 고전압 전위는 약 2.4 kV x 갭 거리(㎝) 내지 약 60 kV x 갭 거리(㎝), 구체적으로는 약 2.4 kV, 약 5 kV, 약 10 kV, 약 20 kV, 약 30 kV, 약 40 kV, 약 50 kV, 약 60kV, 또는 (종말점들을 포함하는) 이들 값들 중 임의의 2개의 값들 사이의 임의의 값 또는 범위일 수 있다. 따라서, 예를 들어, (0.3175 cm인) 상기 애노드 표면과 상기 캐소드 표면 사이의 전압은 2.4 kV이며, 따라서 약 7.559 kV/cm의 전기장이 유발된다. 다른 비제한적 실시예에 있어서, 상기 고전압 전위는 약 1 MHz 내지 약 50 MHz의 주파수, 구체적으로는 약 1 MHz, 약 5 MHz, 약 10 MHz, 약 20 MHz, 약 25 MHz, 약 30 MHz, 약 40 MHz, 약 50 MHz, 또는 (종말점들을 포함하는) 이들 값들 중 임의의 2개의 값들 사이의 임의의 값 또는 범위의 주파수를 갖는 교류 전류(AC) 전위일 수 있다. 다른 비제한적 실시예에 있어서, 상기 고전압 전위는 약 100 암페어 내지 약 1000 암페어의 전류, 구체적으로는 약 100 암페어, 약 200 암페어, 약 300 암페어, 약 400 암페어, 약 500 암페어, 약 600 암페어, 약 700 암페어, 약 800 암페어, 약 900 암페어, 약 1000 암페어, 또는 (종말점들을 포함하는) 이들 값들 중 임의의 2개의 값들 사이의 임의의 값 또는 범위의 전류를 가질 수 있다.
다시 도 2로 돌아가서, 제 2 작업 유체가 제 2 플라즈마를 생성시키기 위해 고전압 전기장에 노출될 수 있다(220). 도 3에 도시된 바와 같이, 상기 제 2 작업 유체를 상기 고전압 전기장에 노출시키는 단계(220)는 애노드 표면을 제공하는 단계(305)와 캐소드 표면을 제공하는 단계(310)를 포함할 수 있다. 상기 애노드 표면과 상기 캐소드 표면은 상기 2개의 표면들 사이에 갭을 형성하기 위한 거리만큼 분리될 수 있다. 상기 거리는 일반적으로 (선택된 전기 전압에 대해) 상기 전기장이 약 0.3 kV/cm 내지 약 8.0 kV/cm, 구체적으로는 약 0.3 kV/cm, 약 0.3149 kV/cm, 약 0.5 kV/cm, 약 0.75 kV/cm, 약 1.0 kV/cm, 약 1.25 kV/cm, 약 1.5 kV/cm, 약 1.574 kV/cm, 약 2.0 kV/cm, 약 2.5 kV/cm, 약 3.0 kV/cm, 약 3.149 kV/cm, 약 3.5 kV/cm, 약 4.0 kV/cm, 약 4.5 kV/cm, 약 5.0 kV/cm, 약 5.5 kV/cm, 약 6.0 kV/cm, 약 6.5 kV/cm, 약 7.0 kV/cm, 약 7.5 kV/cm, 약 7.559 kV/cm, 약 8.0 kV/cm, 또는 (종말점들을 포함하는) 이들 값들 중 임의의 2개의 값들 사이의 임의의 값 또는 범위가 되도록 선택될 수 있다. 예시적 거리들은 약 0.15 cm 내지 약 0.65 cm, 구체적으로는 약 0.15 cm, 약 0.20 cm, 약 0.25 cm, 약 0.30 cm, 약 0.3175 cm, 약 0.35 cm, 약 0.40 cm, 약 0.45 cm, 약 0.50 cm, 약 0.55 cm, 약 0.60 cm, 약 0.65 cm, 또는 (종말점들을 포함하는) 이들 값들 중 임의의 2개의 값들 사이의 임의의 값 또는 범위일 수 있다. 따라서, 소망의 전기장을 성취하기 위해, 상기 애노드 표면과 상기 캐소드 표면 사이에 전압 전위가 제공될 수 있다(315). 예를 들어, 제 2 고전압 전위가 상기 애노드 표면과 상기 캐소드 표면 사이에 유도될 수 있으며, 상기 제 2 작업 유체가 상기 2개의 표면들 사이의 갭을 가로지르도록 유도될 수 있다(320). 하나의 비제한적 실시예에 있어서, 상기 높은 전압 전위는 약 2.4 kV x 갭 거리(㎝) 내지 약 60 kV x 갭 거리(㎝), 구체적으로는 약 2.4 kV, 약 5 kV, 약 10 kV, 약 20 kV, 약 30 kV, 약 40 kV, 약 50 kV, 약 60kV, 또는 (종말점들을 포함하는) 이들 값들 중 임의의 2개의 값들 사이의 임의의 값 또는 범위일 수 있다. 따라서, 예를 들어, (0.3175 cm인) 상기 애노드 표면과 상기 캐소드 표면 사이의 전압은 2.4 kV이며, 따라서 약 7.559 kV/cm의 전기장이 유발된다. 다른 비제한적 실시예에 있어서, 상기 고전압 전위는 약 1 MHz 내지 약 50 MHz의 주파수, 구체적으로는 약 1 MHz, 약 5 MHz, 약 10 MHz, 약 20 MHz, 약 25 MHz, 약 30 MHz, 약 40 MHz, 약 50 MHz, 또는 (종말점들을 포함하는) 이들 값들 중 임의의 2개의 값들 사이의 임의의 값 또는 범위의 주파수를 갖는 교류 전류(AC) 전위일 수 있다. 다른 비제한적 실시예에 있어서, 상기 고전압 전위는 약 100 암페어 내지 약 1000 암페어의 전류, 구체적으로는 약 100 암페어, 약 200 암페어, 약 300 암페어, 약 400 암페어, 약 500 암페어, 약 600 암페어, 약 700 암페어, 약 800 암페어, 약 900 암페어, 약 1000 암페어, 또는 (종말점들을 포함하는) 이들 값들 중 임의의 2개의 값들 사이의 임의의 값 또는 범위의 전류를 가질 수 있다.
다시 도 2로 돌아가서, 제 3 작업 유체가 제 3 플라즈마를 생성시키기 위해 고전압 전기장에 노출될 수 있다(230). 도 3에 도시된 바와 같이, 상기 제 3 작업 유체를 상기 고전압 전기장에 노출시키는 단계(230)는 애노드 표면을 제공하는 단계(305)와 캐소드 표면을 제공하는 단계(310)를 포함할 수 있다. 상기 애노드 표면과 상기 캐소드 표면은 상기 2개의 표면들 사이에 갭을 형성하기 위한 거리만큼 분리될 수 있다. 상기 거리는 일반적으로 (선택된 전기 전압에 대해) 상기 전기장이 약 0.3 kV/cm 내지 약 8.0 kV/cm, 구체적으로는 약 0.3 kV/cm, 약 0.3149 kV/cm, 약 0.5 kV/cm, 약 0.75 kV/cm, 약 1.0 kV/cm, 약 1.25 kV/cm, 약 1.5 kV/cm, 약 1.574 kV/cm, 약 2.0 kV/cm, 약 2.5 kV/cm, 약 3.0 kV/cm, 약 3.149 kV/cm, 약 3.5 kV/cm, 약 4.0 kV/cm, 약 4.5 kV/cm, 약 5.0 kV/cm, 약 5.5 kV/cm, 약 6.0 kV/cm, 약 6.5 kV/cm, 약 7.0 kV/cm, 약 7.5 kV/cm, 약 7.559 kV/cm, 약 8.0 kV/cm, 또는 (종말점들을 포함하는) 이들 값들 중 임의의 2개의 값들 사이의 임의의 값 또는 범위가 되도록 선택될 수 있다. 예시적 거리들은 약 0.15 cm 내지 약 0.65 cm, 구체적으로는 약 0.15 cm, 약 0.20 cm, 약 0.25 cm, 약 0.30 cm, 약 0.3175 cm, 약 0.35 cm, 약 0.40 cm, 약 0.45 cm, 약 0.50 cm, 약 0.55 cm, 약 0.60 cm, 약 0.65 cm, 또는 (종말점들을 포함하는) 이들 값들 중 임의의 2개의 값들 사이의 임의의 값 또는 범위일 수 있다. 따라서, 소망의 전기장을 성취하기 위해, 상기 애노드 표면과 상기 캐소드 표면 사이에 전압 전위가 제공될 수 있다(315). 예를 들어, 제 3 고전압 전위가 상기 애노드 표면과 상기 캐소드 표면 사이에 유도될 수 있으며, 상기 제 3 작업 유체가 상기 2개의 표면들 사이의 갭을 가로지르도록 유도될 수 있다(320). 하나의 비제한적 실시예에 있어서, 상기 높은 전압 전위는 약 2.4 kV x 갭 거리(㎝) 내지 약 60 kV x 갭 거리(㎝), 구체적으로는 약 2.4 kV, 약 5 kV, 약 10 kV, 약 20 kV, 약 30 kV, 약 40 kV, 약 50 kV, 약 60kV, 또는 (종말점들을 포함하는) 이들 값들 중 임의의 2개의 값들 사이의 임의의 값 또는 범위일 수 있다. 따라서, 예를 들어, (0.3175 cm인) 상기 애노드 표면과 상기 캐소드 표면 사이의 전압은 2.4 kV이며, 따라서 약 7.559 kV/cm의 전기장이 유발된다. 다른 비제한적 실시예에 있어서, 상기 고전압 전위는 약 1 MHz 내지 약 50 MHz의 주파수, 구체적으로는 약 1 MHz, 약 5 MHz, 약 10 MHz, 약 20 MHz, 약 25 MHz, 약 30 MHz, 약 40 MHz, 약 50 MHz, 또는 (종말점들을 포함하는) 이들 값들 중 임의의 2개의 값들 사이의 임의의 값 또는 범위의 주파수를 갖는 교류 전류(AC) 전위일 수 있다. 다른 비제한적 실시예에 있어서, 상기 고전압 전위는 약 100 암페어 내지 약 1000 암페어의 전류, 구체적으로는 약 100 암페어, 약 200 암페어, 약 300 암페어, 약 400 암페어, 약 500 암페어, 약 600 암페어, 약 700 암페어, 약 800 암페어, 약 900 암페어, 약 1000 암페어, 또는 (종말점들을 포함하는) 이들 값들 중 임의의 2개의 값들 사이의 임의의 값 또는 범위의 전류를 가질 수 있다.
상기 제 1 작업 유체, 상기 제 2 작업 유체 및 상기 제 3 작업 유체와 접촉하는 상기 애노드 및 캐소드 표면들은 동일 세트의 표면들이거나 또는 다른 세트의 표면들 일 수 있다는 사실을 이해할 수 있어야 한다. 만약 각각의 작업 유체가 독립된 쌍의 애노드 및 캐소드 표면들과 접촉할 경우, 각각의 갭 거리들은 반드시 동일하거나 또는 다를 수 있으며, 상기 작업 유체들들이 노출되는 고전압 전위들은 반드시 동일하거나 또는 다른 특성들을 가질 수 있다.
하나의 비제한적 예에 있어서, 상기 제 1 작업 유체를 제 1 고전압 전기장에 노출시키는 단계(210)는 상기 제 1 작업 유체가 제 1 플라즈마 토치를 관통하게 하는 단계를 포함할 수 있다. 다른 비제한적 예에 있어서, 상기 제 2 작업 유체를 제 2 고전압 전기장에 노출시키는 단계(220)는 상기 제 2 작업 유체가 제 2 플라즈마 토치를 관통하게 하는 단계를 포함할 수 있다. 다른 비제한적 예에 있어서, 상기 제 3 작업 유체를 제 3 고전압 전기장에 노출시키는 단계(230)는 상기 제 3 작업 유체가 제 3 플라즈마 토치를 관통하게 하는 단계를 포함할 수 있다. 상기 제 1 작업 유체, 상기 제 2 작업 유체 및 상기 제 3 작업 유체는 동일한 플라즈마 토치를 관통하거나 또는 개별 플라즈마 토치들을 관통할 수 있다. 또한, 상기 제 1 작업 유체, 상기 제 2 작업 유체 및 상기 제 3 작업 유체는 연속적으로 플라즈마 토치를 관통하거나 또는 실제로 동일한 시간에 플라즈마 토치를 관통할 수 있다.
일부 실시예들에 있어서, 상기 다양한 작업 유체들을 다양한 고전압 전기장들에 노출시키는 단계(210, 220, 230)는 상기 다양한 플라즈마들을 약 36,000℉(20,000℃)의 온도에 도달하게 할 수 있다. 상기 온도는, 상술된 바와 같이, 각각의 다양한 작업 유체들에서 다양한 개별 화합물들을 효과적으로 분리시키기에 충분히 높은 온도일 수 있다.
다양한 실시예에서, 공급원료가 제공될 수 있다(232). 상술한 바와 같이, 공급원료는 일반적으로 하나 이상의 바가스, 석탄, 목재, 녹색 폐기물, 사탕무, 옥수수 또는 바이오 폐기 제품들을 포함할 수 있다. 상기 제 1 플라즈마, 상기 제 2 플라즈마 및 상기 제 3 플라즈마는 혼합물을 형성하기 위해 임의의 시간적 또는 공간적 순서로 공급원료와 조합될 수 있다(235). 예를 들어, 상기 제 1 플라즈마, 상기 제 2 플라즈마 및 상기 제 3 플라즈마는 상기 제 2 플라즈마를 상기 제 1 플라즈마, 상기 제 3 플라즈마, 및 상기 공급원료와 혼합시키도록 지시함으로써, 상기 제 1 플라즈마를 상기 제 2 플라즈마, 상기 제 3 플라즈마, 및 상기 공급원료와 혼합시키도록 지시함으로써, 상기 제 3 플라즈마를 상기 제 1 플라즈마, 상기 제 2 플라즈마, 및 상기 공급원료와 혼합시키도록 지시함으로써, 상기 공급원료를 상기 제 1 플라즈마, 상기 제 2 플라즈마, 및 상기 제 3 플라즈마와 조합시키도록 지시함으로써, 또는 상기 제 1 플라즈마, 상기 제 2 플라즈마, 상기 제 3 플라즈마, 및 상기 공급원료를 함께 혼합시키도록 지시함으로써 접촉될 수 있다(235). 여러 성분들을 조합하는 단계(235)는 혼합, 예혼합, 접촉, 용해 등을 포함하는 임의의 방법의 조합일 수 있다. 상기 제 1 플라즈마, 상기 제 2 플라즈마, 상기 제 3 플라즈마, 및 상기 공급원료를 조합하는 단계(235)는 모든 3개의 플라즈마 및 공급원료를 수용하는 혼합물을 형성할 수 있다. 일부 비제한적 실시예들에 있어서, 상기 혼합물은 약 7232℉ 내지 약 10,832℉(약 4000℃ 내지 약 6000℃)의 온도, 구체적으로는 약 7232℉, 약 7300℉. 약 7500℉, 약 8000℉, 약 8500℉, 약 9000℉, 약 9500℉, 약 10,000℉, 약 10,500℉, 약 10,832℉ 또는 (종말점들을 포함하는) 이들 값들 중 임의의 2개의 값들 사이의 임의의 값 또는 범위의 온도를 가질 수 있다. 따라서, 상기 혼합물은 상기 개별 고전압 전기장들을 관통할 때 상기 제 1, 제 2, 및 제 3 플라즈마의 초기 온도로부터 냉각될 수 있다.
일부 실시예들에 있어서, 상기 혼합물은 열 교환기로 이송될 수 있다(240). 이송 단계(240)는 본 설명에 의해 제한되지 않으며, 임의의 이송 방법을 통해 실현될 수 있다. 하나 이상의 펌프들, 도관들, 채널들, 덕트들, 파이프들, 및/또는 그와 유사한 수단들이 상기 혼합물의 이송(240)에 사용될 수 있다.
다양한 실시예들에 있어서, 상기 혼합물은 약 100℉ 내지 약 2950℉(약 38℃ 내지 약 1620℃)의 온도, 구체적으로는 약 38℃, 약 100℃, 약 150℃, 약 200℃, 약 260℃, 약 500℃, 약 750℃, 약 1100℃, 약 1300℃, 약 1600℃, 약 1620℃, 또는 (종말점들을 포함하는) 이들 값들 중 임의의 값들 사이의 임의의 값 또는 범위의 온도로 냉각될 수 있다(245). 특정 실시예들에 있어서, 상기 혼합물은 약 100℉ 내지 약 400℉(약 38℃ 내지 약 204℃)의 온도로 냉각될 수 있다(245). 일부 실시예들에 있어서, 상기 냉각 단계는, 본원에 설명된 바와 같이, 다양한 요소들의 분리와 같은 상기 혼합물의 조성에 있어 변화를 가질 수 있다. 따라서, 상기 요소들은, 본원에 더욱 상세히 설명되어 있는 바와 같이, 가스 분리기를 통해 분리될 수 있으며 또한 다양한 보유 컨테이너들로 지향될 수 있다.
일부 실시예들에 있어서, 도 4에 도시된 바와 같이, 냉각 단계(245)는 냉각된 혼합물을 생성하기 위해 예를 들면 HRSG와 같은 열교환 장치 내의 열 교환기와 상기 혼합물을 접촉시킴으로써(405) 완료될 수 있다. 일부 실시예들에 있어서, 상기 혼합물로부터 교환된 열은 회수 증기 발생기로 열을 제공하기 위해 상기 열교환 장치에 의해 전달될 수 있으며(410), 이에 대하여는 본원에 더욱 상세히 설명되어 있다. 상기 회수 증기 발생기로의 열전달에 의해 발생된 증기는 플라즈마로의 전환을 위해 적어도 부분적으로 제 2 작업 유체로서 사용될 수 있는 예열된 수증기를 제공할 수 있다. 따라서, 상기 열전달에 의해 발생된 증기는 재사용 가능한 열원을 제공함으로써 본원에 설명된 시스템 및 방법들의 효율을 증가시킬 수 있다. 일부 실시예들에 있어서, 상기 회수 증기 발생기는 (액체수 또는 그와 유사물과 같은) 증발성 유체를 가열 및 증발시키기 위해(415) 상기 혼합물로부터의 열을 사용할 수 있다. 상기 유발된 증발 유체(예를 들면, 증기)는 증기 동력 전기 터빈으로 지향되고 또한 상기 전기 터빈과 접촉할 수 있다(420). 상기 증기 동력 전기 터빈은 차례로 적어도 부분적으로 본원에 설명된 시스템 및/또는 연료를 생성하기 위해 사용되는 설비에 전력을 제공하기 위해 사용될 수 있는 전력을 발생시킬 수 있다.
다양한 실시예들에 있어서, 상기 혼합물을 냉각시키는 단계(245)는 상기 혼합물을 제 1 온도로부터 제 2 온도로 감소시키기 위해 액체 산소(O2)로 냉각시키는 단계를 포함할 수 있다. 본원에 설명된 바와 같이, 상기 제 1 온도는 약 7232℉ 내지 약 10,832℉(약 4000℃ 내지 약 6000℃)일 수 있다. 본원에 설명된 바와 같이, 상기 제 2 온도는 약 4892℉ 내지 약 5432℉(약 2700℃ 내지 약 3000℃)일 수 있다. 이와 같은 냉각 단계(245)는 상기 혼합물에서의 O2 및 H2O를 분해시켜 O- 및 0+, H+ 및 OH-, 및/또는 H- 및 OH+로 되게 할 수 있다. 상기 냉각 단계(245)는 열화학적 재환원을 추가로 허용할 수 있으며, 그에 의해서 화합물들 H2, H2O, O2, 및/또는 H2O2이 유발된다.
다양한 실시예들에 있어서, 냉각 단계(245)는 수성 가스 이동 반응(WGSR)을 유발할 수 있다. WGSR은 일산화탄소가 이산화탄소 및 수소를 형성하기 위해 수증기와 반응하는 가역적 화학 반응이다(일산화탄소와 수소의 혼합물은 수성 가스로서 알려져 있다):
Figure pct00001

여기서, ΔHreac = 298.15 K에서 -41.16 kJ.
상기 WGSR은 온도 감응적일 수 있으며, 온도가 르 샤틀리에 원리(Le Chatelier's principle)에 기초하여 증가함에 따라 반응 물질을 향해 이동하는 경향을 갖는다. 약 600 K 내지 약 2000 K의 온도 범위에 걸쳐, 상기 WGSR에 대한 평형상수의 로그는 다음과 같이 주어진다:
Figure pct00002
여기서, Kequil의 값은 1,100K에서 1에 접근한다. 상기 공정은 2개의 단계들에서 사용될 수 있다. 첫번째 단계는 약 662℉ (350℃)에서의 고온 이동(HTS)을 포함할 수 있다. 두번째 단계는 약 374℉ 내지 약 410℉(약 190℃ 내지 약 210℃)에서의 저온 이동(LTS)을 포함할 수 있다. 이와 같은 공정을 위한 표준 산업용 촉매로는 HTS 단계를 위해 산화크로뮴으로 촉진되는 산화철 및 LTS 단계를 위해 산화 아연 및 산화 알루미늄으로 구성되는 복합체 상의 구리를 포함할 수 있다.
다양한 실시예들에 있어서, 냉각된 혼합물은 적어도 일산화탄소 및 수소 가스를 포함할 수 있다. 일부 비제한적인 실시예들에 있어서, 상기 냉각된 혼합물은 약 1:2 내지 약 1:5의 일산화탄소와 수소 가스의 비, 구체적으로는 약 1:2, 약 1:3, 약 1:4, 약 1:5 또는 (종말점들을 포함하는) 이들 값들 중 임의의 2개의 값들 사이의 임의의 값 또는 범위의 일산화탄소와 수소 가스의 비를 포함할 수 있다. 다양한 실시에들에 있어서, 상기 혼합물의 비는 상기 플라즈마를 가스 분리기 내에 위치시킴으로써 그리고 가스 보유 컨테이너로 또는 가스 보유 컨테이너로부터 요소들을 첨가 또는 제거하기 위해 용적식 유량계를 사용함으로써 효과적으로 측정 및/또는 유지될 수 있다. 따라서, 특정 비를 유지하기 위해 사용될 수 있는 가스량을 지시하기 위해 다양한 유량계가 사용될 수 있다. 일부 실시예들에 있어서, 일산화탄소 대 수소 가스의 적절한 비가 효과적인 피셔-트롭슈 공정을 따르도록 하고, (본원에 기술된) 촉매가 오염되지 않게 하고, 그리고/또는 상기 촉매가 정상 열화 이상으로 저하되지 않게 하는 것은 중요 요인이 될 수 있다
다시 도 2로 돌아가서, 다양한 실시예들에 있어서, 상기 냉각된 혼합물은 촉매와 접촉될 수 있다(250). 상기 냉각된 혼합물을 촉매와 접촉시키는 단계(250)는 연료의 생성을 유발시킨다. 상기 접촉 단계(250)로부터 유발되는 연료의 타입은 상기 플라즈마 내의 수소 가스 대 일산화탄소의 비에 의해 결정될 수 있으며, 이에 대하여는 본원에서 더욱 상세히 설명되었다. 상기 냉각된 혼합물을 상기 촉매와 접촉시키는 단계(250)는 상기 냉각된 혼합물을 제 2 처리 챔버(130)로 이송시키는 단계를 포함할 수 있다(도 1a). 상기 촉매는 예를 들면 피셔-트롭슈(F-T)-타입 촉매 또는 F-T 촉매일 수 있다. 일부 실시예들에 있어서, 상기 F-T 촉매는 철, 코발트, 니켈, 또는 루테늄을 포함할 수 있다. 또한, 상기 F-T 촉매는 복수의 추가 물질들에 의해 지지, 촉진 및/또는 활성화될 수 있다. 일부 실시예들에 있어서, 상기 촉매는 코발트, 철, 루테늄, 니켈, 구리, 알칼리 금속 산화물, 실리카, 알루미나, 또는 제올라이트 중 적어도 하나를 포함할 수 있다. 일부 실시예들에 있어서, 상기 촉매는 예를 들면 이머징 퓨얼즈 테크놀러지(Eerging Fuels Technology)(Tulsa, OK)사로부터 상업적으로 이용할 수 있는 다양한 촉매들과 같은 피셔-트롭슈 변이 촉매일 수 있다. 일부 실시예들에 있어서, 상기 촉매는 일정 기간에 걸쳐 열화될 수 있으며 또한 교체될 수 있다.
다양한 실시예들에 있어서, 상기 연료는 수집될 수 있다(255). 수집은 본 발명에 의해 제한되지 않으며, 수집, 저장, 이송, 분배 및/또는 유사 수단 형태를 포함할 수 있다. 예를 들어, 일부 실시예들에 있어서, 상기 연료는 연료 저장 탱크(135)에 수집될 수 있다(255)(도 1a).
상술된 설명에 있어서, 본 발명의 일부를 형성하는 첨부 도면들을 참고한다. 도면들에 있어서, 유사한 부호들은 문맥 상 달리 지시하지 않는 한 일반적으로 동일한 요소들을 나타낸다. 상세한 설명, 도면들 및 청구항들에 설명된 예시적 실시예들은 제한하는 의미를 갖지 아니한다. 본 발명의 주제의 정신과 범위를 벗어나지 않는 한도 내에서 다른 실시예들이 사용될 수 있으며, 또한 다른 변화를 줄 수 있다. 일반적으로 본원에 기재되고, 도면들에서 설명하고 있는 본 발명의 양태들은 다양하고 폭넓은 구성들로 배열, 대체, 결합, 분리 및 설계될 수 있다는 사실을 용이하게 이해할 수 있을 것이며, 이 모든 것들은 본원에서 명쾌하게 고려되고 있다.
본 발명은 본원에 설명된 특정 실시예들의 관점으로 제한되지 아니하고, 다양한 양태들로 설명하도록 의도하고 있다. 당업자에게 명백하고 또한 본 발명의 정신과 범위를 벗어나지 않는 한도 내에서 다수의 변경 및 수정이 가능할 수 있다. 본원에 열거된 설명에 추가하여, 본 발명의 범위 내에서 기능적으로 등가적인 방법 및 장치들이 상술된 설명들로부터 당업자들에게 명백할 것이다. 그와 같은 변경 및 수정은 첨부된 청구항들의 범위 내에 포함되도록 의도되었다. 본 발명은 그와 같은 청구항들이 제공하는 등가의 전체 범위에 따르는 첨부된 청구항들의 관점에서만 제한될 것이다. 본 발명은, 당연히 변할 수 있는, 특정 방법, 반응물들, 화합물들, 구성들 또는 생물학적 시스템들에 한정되지 않는다는 사실을 이해해야 한다. 본원에 사용된 전문용어는 오직 특정 실시예들을 설명할 목적을 가질 뿐 제한적인 의도를 갖지 아니한다는 사실 또한 이해해야 한다.
본원에서의 실제적인 임의의 복수 및/또는 단수 용어들의 사용과 관련하여, 당업자라면 문단 및/또는 용례에 적합하게 복수로부터 단수로 그리고/또는 단수로부터 복수로 해석할 수 있다. 다양한 단수/복수 변경이 명료성을 위해 본원에서 명백하게 이루어질 수 있다.
일반적으로, 본원에서, 특히 첨부된 청구항들에서(예를 들면, 첨부된 청구항들의 특징부들) 사용된 용어들은 일반적으로 "포괄적" 의미의 용어들로서 의도된다(예를 들어, "포함하는"이라는 용어는 제한적이지 않은 "포함하는"으로서 이해되어야 하며, "가진다"는 용어는 "적어도 가진다"로서 이해되어야 하며, "포함한다"라는 용어는 "포함하지만 제한되지는 않는다"로서 이해되어야 하는 등등)는 사실을 당업자라면 이해할 수 있을 것이다. 다양한 구성들, 방법들, 및 장치들이 다양한 요소들 또는 단계들을 "포함한다"(포함하나 제한되지는 않는다는 의미로 이해)는 개념으로 설명되었으나, 상기 구성들, 방법들, 및 장치들은 또한 반드시 상기 다양한 요소들 및 단계들로 구성되거나 또는 상기 다양한 요소들 및 단계들로 구성될 수 있으며, 그와 같은 전문용어는 반드시 폐쇄 부재 그룹을 규정하는 것으로서 이해되어야 한다. 또한 당업자라면, 만약 도입된 청구항의 설명에서 특정 수를 의도할 경우, 그와 같은 의도는 청구항에서 명쾌하게 설명되며, 그와 같은 설명의 부재시에는 그와 같은 의도는 전혀 존재하지 않는다. 예를 들어, 이해를 돕기 위한 것으로서, 다음의 첨부된 청구항들은 청구항의 기재를 개시하기 위해 서두 구절들인 "적어도 하나" 및 "하나 이상의"라는 용어들을 포함할 수 있다. 그러나, 동일한 청구항이 서두 구절들인 "하나 이상" 또는 "적어도 하나" 및 "a" 또는 "an"과 같은 부정관사들을 포함할 때조차, 그와 같은 구절들의 사용은 부정관사("a" 또는 "an")에 의한 청구항 기재의 도입이 그와 같이 도입된 청구항 기재를 포함하는 임의의 특정 청구항을 오직 그와 같은 하나의 기재를 포함하는 실시예들로 제한하는 것을 의미하는 것으로서 이해되어서는 않되며(예를 들면, 부정관사("a" 및/또는"an")는 "적어도 하나" 또는 "하나 이상"을 의미하도록 이해되야만 한다); 마찬가지로 이는 청구항 기재들을 도입하기 위해 사용되는 정관사의 사용에도 유효하다. 또한, 도입된 청구항 기재의 특정 수가 명확하게 인용되었다 할지라도, 당업자라면 그와 같은 기재가 적어도 기재된 수를 의미하는 것으로 이해되어야 한다는 사실을 인식하게 될 것이다(예를 들면, 다른 수식어 없이, "2개의 기재들"의 기본 기재는 적어도 2개의 기재 또는 2개 이상의 기재를 의미한다). 또한, "A, B, 및 C 중 적어도 하나 등"과 유사한 관례를 사용하는 경우에, 일반적으로 그와 같은 구성은 당업자가 상기 관례를 이해할 것이라는 관점에서 의도된다(예를 들어, "A, B, 및 C 중 적어도 하나를 갖는 시스템"은 A 단독으로, B 단독으로, C 단독으로, A와 B를 함께, A와 C를 함께, B와 C를 함께, 및/또는 A, B, 및 C를 함께 등등을 갖는 시스템을 포함하지만 그에 제한되지 않는다). "A, B, 또는 C 중 적어도 하나 등"과 유사한 관례를 사용하는 경우에, 일반적으로 그와 같은 구성은 당업자가 상기 관례를 이해할 것이라는 관점에서 의도된다(예를 들어, "A, B, 또는 C 중 적어도 하나를 갖는 시스템"은 A 단독으로, B 단독으로, C 단독으로, A와 B를 함께, A와 C를 함께, B와 C를 함께, 및/또는 A, B, 및 C를 함께 등등을 갖는 시스템을 포함하지만 그에 제한되지 않는다). 또한, 상세한 설명, 청구항, 또는 도면에 관계 없이, 2개 이상의 대안적 용어들을 나타내는 사실상 임의의 분리성 단어 및/또는 구문은 상기 용어들 중 하나, 상기 용어들 중 어느 하나, 또는 용어들 모두를 포함할 가능성을 고려하는 것으로 이해되어야 한다는 사실을 당업자라면 이해할 수 있을 것이다. 예를 들어, 구문 "A 또는 B"는 "A" 또는 "B" 또는 "A 및 B"의 가능성을 포함하는 것으로 이해되야 할 것이다.
또한, 본 발명의 특징들 양태들이 마쿠쉬 그룹(Markush Group) 관점에서 기술되는 경우, 당업자라면 본 발명이 또한 임의의 개별 개체 또는 하위 개체의 마쿠쉬 그룹의 관점에서 기술된다는 사실을 인식해야 할 것이다.
당업자들이 이해할 수 있는 바와 같이, 임의의 그리고 모든 목적들을 위해, 설명의 관점에서와 같이, 본원에 설명된 모든 범위들은 임의의 그리고 모든 가능한 하위 범위들 및 그 하위 범위들의 결합을 포함한다. 적어도 등가의 1/2, 1/3, 1/4, 1/5, 1/10 등으로 분리되는 임의의 기재 범위가 동일 범위를 충분히 설명 및 부여하는 것으로 쉽게 인식될 수 있다. 비제한적 예로서, 본원에 개시된 각각의 범위는 1/3의 하부, 1/3의 중간부 및 1/3의 상부 등으로 용이하게 분리될 수 있다. 또한 당업자라면 이해할 수 있는 바와 같이, "~까지", "적어도" 등과 같은 모든 언어들은 나열된 수를 포함하며 또한 상술된 바와 같은 하위 범위들로 연속 분리될 수 있는 범위와 관련된다. 마지막으로, 당업자라면 이해할 수 있는 바와 같이, 하나의 범위가 각각의 개별 부재를 포함한다. 따라서, 예를 들어, 1 내지 3 셀을 갖는 그룹은 1, 2, 또는 3 셀을 갖는 그룹과 관련된다. 마찬가지로, 1 내지 5 셀을 갖는 그룹은 1, 2, 3, 4, 또는 5 등의 셀을 갖는 그룹과 관련된다.
상술된 그리고 기타 다양한 특징들 및 기능들 또는 그의 대안들은 많은 기타 다른 시스템들 또는 용례들로 결합될 수 있다. 이 후, 당업자들에 의해 현재 예측할 수 없거나 또는 기대할 수 없는 다양한 대안들, 변형들, 변경들 또는 개량들이 실현될 수 있으며, 이들 각각은 설명된 실시예들에 포함되는 것으로 의도될 수 있다.

Claims (28)

  1. 연료 제조 방법에 있어서,
    제 1 작업 유체를 제공하는 단계와;
    제 1 플라즈마를 생성하기 위해 상기 제 1 작업 유체를 제 1 고전압 전기장에 노출시키는 단계와;
    제 2 작업 유체를 제공하는 단계와;
    제 2 플라즈마를 생성하기 위해 상기 제 2 작업 유체를 제 2 고전압 전기장에 노출시키는 단계와;
    제 3 작업 유체를 제공하는 단계와;
    제 3 플라즈마를 생성하기 위해 상기 제 3 작업 유체를 제 3 고전압 전기장에 노출시키는 단계와;
    탄소계 공급원료를 제공하는 단계와;
    혼합물을 형성하기 위하여 상기 탄소계 공급원료를 처리 챔버 내의 상기 제 3 플라즈마, 상기 제 2 플라즈마 및 상기 제 1 플라즈마와 접촉시키는 단계와;
    냉각 혼합물을 형성하기 위해 열교환 장치를 사용하여 상기 혼합물을 냉각시키는 단계; 및
    연료를 생성하기 위해 상기 냉각된 혼합물을 촉매와 접촉시키는 단계를 포함하는 연료 제조 방법.
  2. 제 1 항에 있어서, 상기 혼합물을 상기 열교환 장치로 이송시키는 단계를 추가로 포함하는 연료 제조 방법.
  3. 제 1 항에 있어서, 상기 연료를 수집하는 단계를 추가로 포함하는 연료 제조 방법.
  4. 제 1 항에 있어서, 상기 제 1 작업 유체는 산소 가스인 연료 제조 방법.
  5. 제 1 항에 있어서, 상기 제 2 작업 유체는 수증기인 연료 제조 방법.
  6. 제 1 항에 있어서, 상기 제 3 작업 유체는 이산화탄소 가스인 연료 제조 방법.
  7. 제 1 항에 있어서, 상기 제 1 작업 유체를 제 1 고전압 전기장에 노출시키는 단계는:
    애노드 표면을 제공하는 단계와;
    상기 애노드 표면으로부터 소정 거리에 캐소드 표면을 제공하여, 상기 애노드 표면과 상기 캐소드 표면 사이에 갭을 형성하는 단계와;
    상기 애노드 표면과 상기 캐소드 표면 사이에 약 2.4 kV x 거리(㎝) 내지 약 60 kV x 거리(㎝)의 고전압 전위를 제공하는 단계; 및
    상기 제 1 작업 유체가 상기 갭을 가로지르게 하는 단계를 포함하는 연료 제조 방법.
  8. 제 7 항에 있어서, 상기 고전압 전위는 약 1 MHz 내지 약 50 MHz의 주파수를 갖는 연료 제조 방법.
  9. 제 1 항에 있어서, 상기 제 2 작업 유체를 제 2 고전압 전기장에 노출시키는 단계는:
    애노드 표면을 제공하는 단계와;
    상기 애노드 표면으로부터 소정 거리에 캐소드 표면을 제공하여, 상기 애노드 표면과 상기 캐소드 표면 사이에 갭을 형성하는 단계와;
    상기 애노드 표면과 상기 캐소드 표면 사이에 약 2.4 kV x 거리(㎝) 내지 약 60 kV x 거리(㎝)의 고전압 전위를 제공하는 단계; 및
    상기 제 2 작업 유체가 상기 갭을 가로지르게 하는 단계를 포함하는 연료 제조 방법.
  10. 제 9 항에 있어서, 상기 고전압 전위는 약 1 MHz 내지 약 50 MHz의 주파수를 갖는 연료 제조 방법.
  11. 제 1 항에 있어서, 상기 제 3 작업 유체를 제 3 고전압 전기장에 노출시키는 단계는:
    애노드 표면을 제공하는 단계와;
    상기 애노드 표면으로부터 소정 거리에 캐소드 표면을 제공하여, 상기 애노드 표면과 상기 캐소드 표면 사이에 갭을 형성하는 단계와;
    상기 애노드 표면과 상기 캐소드 표면 사이에 약 2.4 kV x 거리(㎝) 내지 약 60 kV x 거리(㎝)의 고전압 전위를 제공하는 단계; 및
    상기 제 3 작업 유체가 상기 갭을 가로지르게 하는 단계를 포함하는 연료 제조 방법.
  12. 제 11 항에 있어서, 상기 고전압 전위는 약 1 MHz 내지 약 50 MHz의 주파수를 갖는 연료 제조 방법.
  13. 제 1 항에 있어서, 상기 제 1 작업 유체를 제 1 고전압 전기장에 노출시키는 단계는 상기 제 1 작업 유체가 플라즈마 토치를 통과하게 하는 단계를 포함하는 연료 제조 방법.
  14. 제 1 항에 있어서, 상기 제 2 작업 유체를 제 2 고전압 전기장에 노출시키는 단계는 상기 제 2 작업 유체가 플라즈마 토치를 통과하게 하는 단계를 포함하는 연료 제조 방법.
  15. 제 1 항에 있어서, 상기 제 3 작업 유체를 제 3 고전압 전기장에 노출시키는 단계는 상기 제 3 작업 유체가 플라즈마 토치를 통과하게 하는 단계를 포함하는 연료 제조 방법.
  16. 제 1 항에 있어서, 상기 탄소계 공급원료는 바가스(bagasse), 석탄, 목재, 녹색 폐기물(green waste), 사탕무, 옥수수 또는 바이오 폐기 제품들 중 적어도 하나를 포함하는 연료 제조 방법.
  17. 제 1 항에 있어서, 상기 혼합물은 약 7232℉(4000℃) 내지 약 36,032℉(20,000℃)의 온도를 갖는 연료 제조 방법.
  18. 제 1 항에 있어서, 상기 혼합물을 냉각시키는 단계는 상기 혼합물을 약 100℉(38℃) 내지 약 2950℉(1620℃)의 온도로 냉각시키는 단계를 포함하는 연료 제조 방법.
  19. 제 1 항에 있어서, 상기 열교환 장치는 열 회수 증기 발생기인 연료 제조 방법.
  20. 제 19 항에 있어서, 상기 제 2 작업 유체는 상기 열 회수 증기 발생기에 의해 생성된 증기의 양을 적어도 일부 포함하는 연료 제조 방법.
  21. 제 1 항에 있어서, 상기 냉각된 혼합물은 적어도 일산화탄소 및 수소 가스를 포함하는 연료 제조 방법.
  22. 제 1 항에 있어서, 상기 냉각된 혼합물은 적어도 약 1:2 비율의 일산화탄소와 수소 가스를 포함하는 연료 제조 방법.
  23. 제 1 항에 있어서, 상기 냉각된 혼합물은 이산화탄소를 포함하는 연료 제조 방법.
  24. 제 23 항에 있어서, 상기 제 3 작업 유체는 상기 냉각된 혼합물로부터 습득된 이산화탄소의 양을 적어도 일부 포함하는 연료 제조 방법.
  25. 제 1 항에 있어서, 상기 촉매는 피셔-트롭슈(Fischer-Tropsch) 타입의 촉매인 연료 제조 방법.
  26. 제 1 항에 있어서, 상기 촉매는 코발트, 철, 루테늄, 니켈, 구리, 알카리 금속 산화물, 실리카, 알루미나 또는 제올라이트 중 적어도 하나를 포함하는 연료 제조 방법.
  27. 제 1 항에 있어서, 상기 연료는 나프타, 디젤 연료, 디젤 연료 블렌드(blend), JP-8 연료, 제트 연료, 또는 제트 연료 블렌드 또는 가솔린 중 적어도 하나를 포함하는 연료 제조 방법.
  28. 제 1 항에 있어서, 상기 열교환 장치를 사용하여 상기 혼합물을 냉각시키는 단계는:
    상기 혼합물을 상기 열교환 장치와 접촉시킴으로써, 적어도 일부의 열을 상기 혼합물로부터 증발 가능 유체의 소스로 전달시키는 단계;
    상기 혼합물로부터의 적어도 일부의 열로 상기 증발 가능 유체를 증발시키는 단계;
    상기 증발 가능 유체를 전기 발생기와 접촉시키는 단계; 및
    상기 전기 발생기에 의해서 전력을 발생시키는 단계를 포함하는 연료 제조 방법.
KR1020157008611A 2012-09-05 2013-09-05 고전압 전기장 방법을 사용하는 연료 생성 KR20150053943A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261697148P 2012-09-05 2012-09-05
US61/697,148 2012-09-05
PCT/US2013/058315 WO2014039711A1 (en) 2012-09-05 2013-09-05 Fuel generation using high-voltage electric fields methods

Publications (1)

Publication Number Publication Date
KR20150053943A true KR20150053943A (ko) 2015-05-19

Family

ID=55538140

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157008611A KR20150053943A (ko) 2012-09-05 2013-09-05 고전압 전기장 방법을 사용하는 연료 생성

Country Status (6)

Country Link
US (1) US9765270B2 (ko)
EP (1) EP2893326A4 (ko)
KR (1) KR20150053943A (ko)
BR (1) BR112015004832A2 (ko)
HK (1) HK1212438A1 (ko)
WO (1) WO2014039711A1 (ko)

Family Cites Families (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1746464A (en) 1925-07-21 1930-02-11 Fischer Franz Process for the production of paraffin-hydrocarbons with more than one carbon atom
GB573982A (en) 1941-01-14 1945-12-17 Synthetic Oils Ltd Improvements in or relating to methods of producing hydrocarbon oils from gaseous mixtures of hydrogen and carbon monoxide
US3979205A (en) 1971-04-07 1976-09-07 Wanzenberg Fritz Walter Metal recovery method
SE434163B (sv) 1981-03-10 1984-07-09 Skf Steel Eng Ab Sett och anordning for framstellning av en huvudsakligen koloxid och vetgas innehallande gas ur kol- och/eller kolvetehaltigt utgangsmaterial
SE451033B (sv) 1982-01-18 1987-08-24 Skf Steel Eng Ab Sett och anordning for omvandling av avfallsmaterial med plasmagenerator
GB8405381D0 (en) 1984-03-01 1984-04-04 Shell Int Research Catalytic treatment of hydrocarbon oils
FR2610087B1 (fr) 1987-01-22 1989-11-24 Aerospatiale Procede et dispositif pour la destruction de dechets solides par pyrolyse
YU46333B (sh) 1987-04-30 1993-05-28 Oy Partek Ab Talilna pec
US4770109A (en) 1987-05-04 1988-09-13 Retech, Inc. Apparatus and method for high temperature disposal of hazardous waste materials
US5136137A (en) 1987-05-04 1992-08-04 Retech, Inc. Apparatus for high temperature disposal of hazardous waste materials
DK158382C (da) 1987-10-15 1990-10-22 Rockwool Int Fremgangsmaade ved fremstilling af en smelte til dannelse af mineraluld samt apparat til udoevelse af fremgangsmaaden
US4845334A (en) 1988-01-26 1989-07-04 Oregon Metallurgical Corporation Plasma furnace inert gas recycling system and process
US4898748A (en) 1988-08-31 1990-02-06 The Board Of Trustees Of Leland Stanford Junior University Method for enhancing chemical reactivity in thermal plasma processes
US5138959A (en) 1988-09-15 1992-08-18 Prabhakar Kulkarni Method for treatment of hazardous waste in absence of oxygen
US5319176A (en) 1991-01-24 1994-06-07 Ritchie G. Studer Plasma arc decomposition of hazardous wastes into vitrified solids and non-hazardous gasses
US5288969A (en) 1991-08-16 1994-02-22 Regents Of The University Of California Electrodeless plasma torch apparatus and methods for the dissociation of hazardous waste
US5725616A (en) 1991-12-12 1998-03-10 Kvaerner Engineering A.S. Method for combustion of hydrocarbons
JP3284606B2 (ja) 1992-09-24 2002-05-20 石川島播磨重工業株式会社 灰溶融炉
US5301620A (en) 1993-04-01 1994-04-12 Molten Metal Technology, Inc. Reactor and method for disassociating waste
US5534659A (en) 1994-04-18 1996-07-09 Plasma Energy Applied Technology Incorporated Apparatus and method for treating hazardous waste
US5611947A (en) 1994-09-07 1997-03-18 Alliant Techsystems, Inc. Induction steam plasma torch for generating a steam plasma for treating a feed slurry
US5798496A (en) 1995-01-09 1998-08-25 Eckhoff; Paul S. Plasma-based waste disposal system
US5666891A (en) 1995-02-02 1997-09-16 Battelle Memorial Institute ARC plasma-melter electro conversion system for waste treatment and resource recovery
US5798497A (en) 1995-02-02 1998-08-25 Battelle Memorial Institute Tunable, self-powered integrated arc plasma-melter vitrification system for waste treatment and resource recovery
US6018471A (en) 1995-02-02 2000-01-25 Integrated Environmental Technologies Methods and apparatus for treating waste
US7576296B2 (en) 1995-03-14 2009-08-18 Battelle Energy Alliance, Llc Thermal synthesis apparatus
US5749937A (en) 1995-03-14 1998-05-12 Lockheed Idaho Technologies Company Fast quench reactor and method
US6187226B1 (en) 1995-03-14 2001-02-13 Bechtel Bwxt Idaho, Llc Thermal device and method for production of carbon monoxide and hydrogen by thermal dissociation of hydrocarbon gases
US6821500B2 (en) 1995-03-14 2004-11-23 Bechtel Bwxt Idaho, Llc Thermal synthesis apparatus and process
US5673635A (en) 1995-06-12 1997-10-07 L.E. Maxwitat Process for the recycling of organic wastes
US5544597A (en) 1995-08-29 1996-08-13 Plasma Technology Corporation Plasma pyrolysis and vitrification of municipal waste
US6355904B1 (en) 1996-06-07 2002-03-12 Science Applications International Corporation Method and system for high-temperature waste treatment
US5868027A (en) 1996-09-30 1999-02-09 Mississippi State University Measurement of viscosity of a melt in a plasma centrifugal furnace
US7338563B2 (en) 1996-10-16 2008-03-04 Clark Steve L Process for cleaning hydrocarbons from soils
CA2188357C (en) 1996-10-21 1999-09-07 Peter G. Tsantrizos plasma gasification and vitrification of ashes
US6602920B2 (en) 1998-11-25 2003-08-05 The Texas A&M University System Method for converting natural gas to liquid hydrocarbons
US6153852A (en) 1999-02-12 2000-11-28 Thermal Conversion Corp Use of a chemically reactive plasma for thermal-chemical processes
EP1038942A1 (en) 1999-03-24 2000-09-27 Abb Research Ltd. Fuel synthesis process by dielectric barrier discharge of a gaseous composition, fuel thus obtained and apparatus therefore
US6173002B1 (en) 1999-04-21 2001-01-09 Edgar J. Robert Electric arc gasifier as a waste processor
SE516722C2 (sv) 1999-04-28 2002-02-19 Hana Barankova Förfarande och apparat för plasmabehandling av gas
CN1372528A (zh) 1999-07-29 2002-10-02 戴维***技术公司 化石燃料转化成富氢气体的等离子体转化器
US6372156B1 (en) 1999-08-19 2002-04-16 Bechtel Bwxt Idaho, Llc Methods of chemically converting first materials to second materials utilizing hybrid-plasma systems
US6552295B2 (en) 1999-12-20 2003-04-22 Research Triangle Institute Plasma furnace disposal of hazardous wastes
US6395197B1 (en) 1999-12-21 2002-05-28 Bechtel Bwxt Idaho Llc Hydrogen and elemental carbon production from natural gas and other hydrocarbons
US6289851B1 (en) 2000-10-18 2001-09-18 Institute Of Gas Technology Compact low-nox high-efficiency heating apparatus
JP4756739B2 (ja) * 2000-12-28 2011-08-24 株式会社筑波バイオテック研究所 溶存性有機物や微量有害物質を含む水の浄化装置
US6685754B2 (en) 2001-03-06 2004-02-03 Alchemix Corporation Method for the production of hydrogen-containing gaseous mixtures
DE60125740T2 (de) 2001-06-26 2007-10-04 H2 Tec Ag Verfahren und Vorrichtung zur Herstellung von Wasserstoff
US7622693B2 (en) 2001-07-16 2009-11-24 Foret Plasma Labs, Llc Plasma whirl reactor apparatus and methods of use
US9481584B2 (en) 2001-07-16 2016-11-01 Foret Plasma Labs, Llc System, method and apparatus for treating liquids with wave energy from plasma
US6987792B2 (en) 2001-08-22 2006-01-17 Solena Group, Inc. Plasma pyrolysis, gasification and vitrification of organic material
US6976362B2 (en) 2001-09-25 2005-12-20 Rentech, Inc. Integrated Fischer-Tropsch and power production plant with low CO2 emissions
CA2357527C (en) 2001-10-01 2009-12-01 Technology Convergence Inc. Methanol recycle stream
US6505567B1 (en) 2001-11-26 2003-01-14 Alstom (Switzerland) Ltd Oxygen fired circulating fluidized bed steam generator
AUPS220302A0 (en) 2002-05-08 2002-06-06 Chang, Chak Man Thomas A plasma formed within bubbles in an aqueous medium and uses therefore
CN100413564C (zh) 2002-05-08 2008-08-27 刘健安 有害废物的处理方法及装备
CA2424805C (en) 2003-04-04 2009-05-26 Pyrogenesis Inc. Two-stage plasma process for converting waste into fuel gas and apparatus therefor
US20060233699A1 (en) 2003-04-15 2006-10-19 Mills Randell L Plasma reactor and process for producing lower-energy hydrogen species
US6874434B1 (en) 2003-04-18 2005-04-05 Bigelow Aerospace Biomass waste disposal method and apparatus
US7279655B2 (en) * 2003-06-11 2007-10-09 Plasmet Corporation Inductively coupled plasma/partial oxidation reformation of carbonaceous compounds to produce fuel for energy production
WO2005005009A2 (en) 2003-06-30 2005-01-20 Bar-Gadda, Llc. Dissociation of molecular water into molecular hydrogen
US7384619B2 (en) 2003-06-30 2008-06-10 Bar-Gadda, Llc Method for generating hydrogen from water or steam in a plasma
US7183451B2 (en) 2003-09-23 2007-02-27 Synfuels International, Inc. Process for the conversion of natural gas to hydrocarbon liquids
US7070634B1 (en) 2003-11-03 2006-07-04 Wang Chi S Plasma reformer for hydrogen production from water and fuel
US7452392B2 (en) 2003-11-29 2008-11-18 Nick Peter A Process for pyrolytic heat recovery enhanced with gasification of organic material
US7028478B2 (en) 2003-12-16 2006-04-18 Advanced Combustion Energy Systems, Inc. Method and apparatus for the production of energy
GB0402106D0 (en) 2004-01-30 2004-03-03 Syngenta Participations Ag Improved fertility restoration for ogura cytoplasmic male sterile brassica and method
FR2866414B1 (fr) 2004-02-18 2006-03-17 Commissariat Energie Atomique Dispositif et procede de destruction de dechets liquides, pulverulents ou gazeux par plasma inductif
US6971323B2 (en) 2004-03-19 2005-12-06 Peat International, Inc. Method and apparatus for treating waste
US7024800B2 (en) 2004-07-19 2006-04-11 Earthrenew, Inc. Process and system for drying and heat treating materials
US7216484B2 (en) 2005-03-11 2007-05-15 Villalobos Victor M Arc-hydrolysis steam generator apparatus and method
DE102005021500A1 (de) 2005-05-10 2006-11-16 Uhde Gmbh Verfahren zur Aufheizung eines Dampf-/Erdgasgemisches im Bereich eines Gassammelrohres nach einem Primärreformer
WO2006128286A1 (en) 2005-06-03 2006-12-07 Plasco Energy Group Inc. A system for the conversion of coal to a gas of a specified composition
KR20080040664A (ko) 2005-06-03 2008-05-08 플라스코 에너지 그룹 인코포레이티드 탄소질 공급원료를 특정 조성의 가스로 변환하기 위한 장치
US20070017228A1 (en) 2005-07-06 2007-01-25 Integrated Environmental Technologies, Llc Method for enhancing the efficient operation of electrical power plants and energy storage
GB0516695D0 (en) 2005-08-15 2005-09-21 Boc Group Plc Microwave plasma reactor
CN1810938A (zh) 2005-08-24 2006-08-02 周开根 一种用水和油合成燃气的方法及其燃烧器
FR2892127B1 (fr) * 2005-10-14 2012-10-19 Commissariat Energie Atomique Dispositif de gazeification de la biomasse et de dechets organiques sous haute temperature et avec apport d'energie exterieure pour la generation d'un gaz de synthese de haute qualite
GB0521830D0 (en) 2005-10-26 2005-12-07 Boc Group Plc Plasma reactor
US7736400B2 (en) 2006-02-14 2010-06-15 Gas Technology Institute Plasma assisted conversion of carbonaceous materials into a gas
US7832344B2 (en) 2006-02-28 2010-11-16 Peat International, Inc. Method and apparatus of treating waste
EP2007175A4 (en) 2006-03-07 2014-05-14 Univ Ryukyus PLASMA GENERATOR AND METHOD FOR PRODUCING PLASMA THEREFOR
KR100807806B1 (ko) 2006-04-04 2008-02-27 제주대학교 산학협력단 직류 아크 플라즈마트론 장치 및 사용 방법
US20070267289A1 (en) 2006-04-06 2007-11-22 Harry Jabs Hydrogen production using plasma- based reformation
WO2007131239A2 (en) 2006-05-05 2007-11-15 Plasco Energy Group Inc. A control system for the conversion of a carbonaceous feedstock into gas
US20070258869A1 (en) 2006-05-05 2007-11-08 Andreas Tsangaris Residue Conditioning System
NZ573217A (en) 2006-05-05 2011-11-25 Plascoenergy Ip Holdings S L Bilbao Schaffhausen Branch A facility for conversion of carbonaceous feedstock into a reformulated syngas containing CO and H2
US8475551B2 (en) 2006-05-05 2013-07-02 Plasco Energy Group Inc. Gas reformulating system using plasma torch heat
DE102006035893A1 (de) * 2006-07-31 2008-02-07 Wolf, Bodo M., Dr. Verfahren zur Wiederaufarbeitung von Verbrennungsprodukten fossiler Brennstoffe
FR2904830B1 (fr) 2006-08-08 2012-10-19 Inst Francais Du Petrole Procede de production de gaz de synthese avec oxydation partielle et vaporeformage
US7833296B2 (en) 2006-10-02 2010-11-16 Clark Steve L Reduced-emission gasification and oxidation of hydrocarbon materials for power generation
US20080083701A1 (en) 2006-10-04 2008-04-10 Mks Instruments, Inc. Oxygen conditioning of plasma vessels
US20080223047A1 (en) 2006-10-19 2008-09-18 Troy Lee Oliver Xplogen TM: a system, method, and apparatus for generating energy from a series of dissociation reactions
BRPI0718468B8 (pt) 2006-10-20 2018-07-24 Shell Int Research método para tratar uma formação de areias betuminosas.
US20090049748A1 (en) * 2007-01-04 2009-02-26 Eric Day Method and system for converting waste into energy
CN101743293A (zh) 2007-04-18 2010-06-16 Sgc能源Sgps公司 废物至液体烃精炼***
CA2685609A1 (en) 2007-05-04 2008-11-13 Principle Energy Solutions, Inc. Production of hydrocarbons from carbon and hydrogen sources
US8268094B2 (en) 2007-05-09 2012-09-18 Air Products And Chemicals, Inc. Furnace atmosphere activation method and apparatus
AR066535A1 (es) 2007-05-11 2009-08-26 Plasco Energy Group Inc Un sistema de reformulacion de gas inicial en un gas reformulado y procedimiento para dicha reformulacion.
JP5372927B2 (ja) 2007-07-06 2013-12-18 エヴァコ エルエルシー 水を単体ガスに使用箇所で安価かつカーボンフリーに解離して水素関連発電を行う方法と装置
WO2009008519A1 (ja) 2007-07-12 2009-01-15 Imagineering, Inc. ガス処理装置、ガス処理システム及びガス処理方法、並びにそれを用いた排気ガス処理システム及び内燃機関
KR100898813B1 (ko) 2007-10-11 2009-05-22 문 기 조 이산화탄소의 플라즈마 분해 장치 및 방법
US8199790B2 (en) 2007-11-02 2012-06-12 Plasma Waste Recycling, Inc. Reactor vessel for plasma gasification
US20090133407A1 (en) 2007-11-28 2009-05-28 Nrg Energy, Inc. Plasma gasification system
US8845772B2 (en) 2008-01-23 2014-09-30 Peter J. Schubert Process and system for syngas production from biomass materials
US8303916B2 (en) 2008-02-01 2012-11-06 Oscura, Inc. Gaseous transfer in multiple metal bath reactors
EP2247347A4 (en) 2008-02-08 2013-08-14 Peat International Inc METHOD AND APPARATUS FOR PROCESSING WASTE
US8519354B2 (en) 2008-02-12 2013-08-27 Purdue Research Foundation Low temperature plasma probe and methods of use thereof
GB0811631D0 (en) 2008-06-25 2008-07-30 Horizon Ventures Ltd Processing of waste
US8110012B2 (en) 2008-07-31 2012-02-07 Alstom Technology Ltd System for hot solids combustion and gasification
IT1391148B1 (it) 2008-08-06 2011-11-18 Reco 2 S R L Metodo e apparato per purificare gas
US7674443B1 (en) 2008-08-18 2010-03-09 Irvin Davis Zero emission gasification, power generation, carbon oxides management and metallurgical reduction processes, apparatus, systems, and integration thereof
WO2010056462A1 (en) 2008-11-12 2010-05-20 Uni-Control, Llc Biological water-gas shift reaction system comprising plasma gasification
GB2466664B (en) 2009-01-06 2015-04-01 Perlemax Ltd Plasma microreactor apparatus, sterilisation unit and analyser
US20110067376A1 (en) 2009-03-16 2011-03-24 Geovada, Llc Plasma-based waste-to-energy techniques
US20100229522A1 (en) 2009-03-16 2010-09-16 Jim Kingzett Plasma-Assisted E-Waste Conversion Techniques
MY151894A (en) 2009-07-17 2014-07-14 Green Energy And Technology Sdn Bhd Advanced thermal reactor
WO2011091327A1 (en) 2010-01-21 2011-07-28 Usa Green Energy Group, Llc Generating steam from carbonaceous material
US9500362B2 (en) 2010-01-21 2016-11-22 Powerdyne, Inc. Generating steam from carbonaceous material
EP2534122A4 (en) 2010-02-08 2013-12-18 Fulcrum Bioenergy Inc METHODS FOR ECONOMICALLY CONVERTING SOLID MUNICIPAL WASTE TO ETHANOL
WO2011100695A2 (en) 2010-02-13 2011-08-18 Mcalister Roy E Carbon-based durable goods and renewable fuel from biomass waste dissociation
EP2459681A4 (en) 2010-03-01 2012-08-29 Plasco Energy Group Inc CARBON CONVERSION SYSTEM WITH INTEGRATED MACHINING ZONES
MX2013000092A (es) 2010-07-01 2014-06-04 Aarmonia Chemicals Private Ltd Aditivo de combustible diesel.
US9045337B2 (en) * 2010-08-09 2015-06-02 Lai O. Kuku Waste material, coal, used tires and biomass conversion to alternative energy and synthetic fuels solutions system with carbon capture and liquefaction
US9551277B2 (en) 2010-09-24 2017-01-24 Plasma Tech Holdings, Llc Renewable combined cycle low turbine boost
US20120090985A1 (en) 2010-10-01 2012-04-19 Drexel University Non-equilibrium gliding arc plasma system for co2 dissociation
WO2012061278A1 (en) 2010-11-05 2012-05-10 Synos Technology, Inc. Radical reactor with multiple plasma chambers
CA2816597C (en) 2010-11-10 2016-11-29 Air Products And Chemicals, Inc. Syngas produced by plasma gasification
KR101255152B1 (ko) * 2010-12-01 2013-04-22 한국기초과학지원연구원 플라즈마 가스화기를 이용한 발전 시스템
WO2012077198A1 (ja) 2010-12-08 2012-06-14 トヨタ自動車株式会社 燃料製造システム
BR112013029599A2 (pt) 2011-05-16 2019-09-24 Powerdyne Inc sistema de produção de vapor e método
US20140239232A1 (en) 2011-06-21 2014-08-28 Vernon Eric Staton Apparatus and method for hydrocarbon pyrolysis

Also Published As

Publication number Publication date
EP2893326A1 (en) 2015-07-15
WO2014039711A1 (en) 2014-03-13
HK1212438A1 (en) 2016-06-10
BR112015004832A2 (pt) 2017-07-04
EP2893326A4 (en) 2016-05-18
US20150232772A1 (en) 2015-08-20
US9765270B2 (en) 2017-09-19

Similar Documents

Publication Publication Date Title
US8784617B2 (en) Process of converting gaseous hydrocarbons to a liquid hydrocarbon composition
JP2022522968A (ja) オレフィン合成における再生可能エネルギーの使用
KR20070122215A (ko) 합성 탄화수소 화합물 제조를 위한 시스템, 방법 및 조성물
US9677431B2 (en) Methods for generating hydrogen gas using plasma sources
KR101581263B1 (ko) 피셔-트롭슈 촉매 및 플라즈마 소스를 사용하는 연료 재료를 생성하는 시스템
JP2022527864A (ja) C1~c4アルカン含有ガスから水素および固体炭素を生成する装置およびプロセス
US9410452B2 (en) Fuel generation using high-voltage electric fields methods
US9382818B2 (en) Fuel generation using high-voltage electric fields methods
KR101581261B1 (ko) H2o, co2, o2 및 탄소 공급 원료로부터 전력을 생성하는 방법
WO2014165162A1 (en) Systems and methods for producing fuel from parallel processed syngas
KR20150053943A (ko) 고전압 전기장 방법을 사용하는 연료 생성
US20100155216A1 (en) Device and method for thermal decomposition of organic materials
Nakanishi et al. Comparison of reforming behaviors of hexane and isooctane in microwave steam plasma
RU2814016C2 (ru) Устройство и способ получения водорода и нелетучего углерода из содержащего с1-с4-алканы газа
CN213824746U (zh) 一种新型、等离子体中、高温煤焦油组合炼油装置
Maşera Thermodynamic analysis of plasma-assisted reforming of methane
CN112585245A (zh) 利用多个放电模块的重油裂化装置规模化扩大
CN105366640A (zh) 一种基于生物质气化初级燃气的水蒸汽催化重整制氢气的方法及装置

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid