KR20140123156A - Heat generating membranes with excellent fiexibility - Google Patents

Heat generating membranes with excellent fiexibility Download PDF

Info

Publication number
KR20140123156A
KR20140123156A KR1020130039643A KR20130039643A KR20140123156A KR 20140123156 A KR20140123156 A KR 20140123156A KR 1020130039643 A KR1020130039643 A KR 1020130039643A KR 20130039643 A KR20130039643 A KR 20130039643A KR 20140123156 A KR20140123156 A KR 20140123156A
Authority
KR
South Korea
Prior art keywords
membrane
carbon nanofibers
heat
nanofibers
membrane according
Prior art date
Application number
KR1020130039643A
Other languages
Korean (ko)
Other versions
KR101477201B1 (en
Inventor
김학용
박미라
최유리
최자운
채수형
이준엽
김경화
Original Assignee
주식회사 우리나노
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 우리나노, 전북대학교산학협력단 filed Critical 주식회사 우리나노
Priority to KR1020130039643A priority Critical patent/KR101477201B1/en
Publication of KR20140123156A publication Critical patent/KR20140123156A/en
Application granted granted Critical
Publication of KR101477201B1 publication Critical patent/KR101477201B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/34Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heater elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite

Abstract

According to the present invention, a heating membrane includes: a membrane (M) consisting of carbon nanofibers; an electrode wire (W) arranged on the membrane (M); and a cell (C) configured to apply a voltage to the electrode wire (W). The heating membrane has excellent flexibility and can effectively prevent a loss of heating function due to a short circuit caused by folding, thereby being particularly suitable to be applied to a three-dimensional structure such as clothing or the like. Furthermore, the heating membrane allows its temperature to be increased even when a low voltage below 10 V is applied thereto because the heating membrane includes the membrane consisting of carbon nanofibers, thereby enabling long-term heat insulation even with a small-capacity cell. As a result, the heating membrane can be applied to sports clothes or industrial purposes where heat insulation is required by being attached to various clothing products or three-dimensional structures.

Description

유연성이 우수한 발열 멤브레인{Heat generating membranes with excellent fiexibility}[0001] Heat-generating membranes with excellent flexibility [

본 발명은 유연성이 우수한 발열 멤브레인에 관한 것으로서, 구체적으로는 탄소나노섬유로 구성된 멤브레인에 전극선과 전지가 각각 배열/연결되어 10V 이하의 낮은 전압으로도 온도상승이 가능함과 동시에 유연성이 뛰어나 의류 등의 3차원 구조물에 적용시에도 접힘현상 등으로 단락이 안생겨 발열 기능을 계속 유지할 수 있는 발열 멤브레인에 관한 것이다.
More particularly, the present invention relates to an exothermic membrane excellent in flexibility, and more particularly, to a membrane made of carbon nanofibers, in which an electrode line and a battery are arranged and connected to each other so that the temperature can be raised even at a low voltage of 10 V or less, The present invention relates to a heat-generating membrane capable of continuously maintaining a heat-generating function due to a short-circuit due to a folding phenomenon even when applied to a three-dimensional structure.

면상 발열체에 대한 종래기술로서 대한민국 공개실용신안 제20-2011-0004213호 등에서는 통상적인 직물 또는 부직포 상에 카본 페이스트를 코팅한 후 여기에 전극선과 전기를 각각 배열 / 연결시킨 종래의 면상발열체를 제안하고 있다.As a conventional technique for a planar heating element, Korean Utility Model Publication No. 20-2011-0004213 and the like propose a conventional planar heating element in which a carbon paste is coated on a common woven fabric or nonwoven fabric, and electrode wires and electricity are respectively arranged and connected to the carbon paste. .

그러나, 상기와 같이 직물 또는 부직포 상에 카본 페이스트를 코팅하는 경우 코팅 직물 또는 코팅 부직포는 유연성이 현저하게 떨어진다. 그로 인해 의류 등과 같은 3차원 구조물에 상기 종래의 면상 발열체를 적용할 경우, 유연성이 부족하여 접힘현상 등에 의한 단락이 발생되어 발열 기능이 중단되는 문제가 있었다.However, when the carbon paste is coated on the woven fabric or the nonwoven fabric as described above, the coated fabric or the coated nonwoven fabric has a considerably reduced flexibility. Therefore, when the conventional planar heating element is applied to a three-dimensional structure such as clothing, flexibility is not sufficient and a short circuit due to a folding phenomenon occurs, thereby causing a problem that the heating function is interrupted.

또한, 종래의 면상 발열체의 경우에는 온도 상승 효과를 얻기 위해서 높은 전압을 부여해야하고, 그로 인해 전지 수명이 단축되는 문제도 있었다.
In addition, in the case of the conventional surface heating element, a high voltage is required to obtain a temperature raising effect, thereby shortening the life of the battery.

본 발명의 과제는 유연성이 우수하여 의류 등과 같은 3차원 구조물에 적용시에도 접힘현상으로 인한 단락으로 발열기능이 중단되는 것을 효과적으로 방지할 수 있는 발열 멤브레인을 제공하는 것이다.The object of the present invention is to provide a heat-resistant membrane which is excellent in flexibility and can effectively prevent a heat-generating function from being interrupted due to a short circuit due to a folding phenomenon even when applied to a three-dimensional structure such as clothing.

본 발명의 또 다른 과제는 10V이하의 낮은 전압을 인가시에도 발열 기능이 발현될 수 있어서 소용량 전지로도 장시간 사용이 가능한 발열 멤브레인을 제공하는 것이다.
Another object of the present invention is to provide a heat-generating membrane which can be used even when a small capacity battery is used for a long time because a heat generating function can be exhibited even when a low voltage of 10 V or less is applied.

이와 같은 과제를 달성하기 위해서, 본 발명에서는 탄소나노섬유로 구성된 멤브레인(M)을 발열 본체로 사용하는 것을 특징으로 한다.In order to achieve the above object, the present invention is characterized in that a membrane M composed of carbon nanofibers is used as a heating body.

구체적으로, 본 발명은 탄소나노섬유로 구성된 멤브레인(M) 상에 전극선(W)을 일정 패턴 / 간격으로 형성시킨 후 상기 전극선(W)에 전지(C)를 한다.
Specifically, the present invention forms the electrode lines W in a predetermined pattern / interval on the membrane M composed of carbon nanofibers, and then places the cells C on the electrode lines W.

본 발명의 발명 멤브레인은 유연성이 우수하여 접힘 현상으로 인한 단락으로 발열기능이 상실되는 것을 효과적으로 방지할 수 있다.The membrane of the present invention is excellent in flexibility and can effectively prevent a heat-generating function from being lost due to a short circuit due to a folding phenomenon.

그로 인해 본 발명의 발열 멤브레인은 의류 등과 같은 3차원 구조물에 적응하는데 특히 유리하다.As a result, the heat-generating membrane of the present invention is particularly advantageous in adapting to a three-dimensional structure such as clothing.

또한, 본 발명의 멤브레인은 탄소나노섬유로 구성된 멤브레인을 포함하기 때문에 10V 이하의 낮은 전압을 가하여 온도 상승이 가능하므로 소용량 전지로도 장시간 보온이 가능하고, 그로 인해 각종 의류제품 또는 3차원 구조물에 부착하여 보온이 필요한 스포츠 의류나 산업용 용도로 적용될 수 있다.Since the membrane of the present invention includes a membrane composed of carbon nanofibers, the temperature can be raised by applying a low voltage of 10 V or less, so that it is possible to maintain a long time with a small capacity battery, And can be applied to sportswear or industrial applications requiring heat insulation.

도 1은 실시예 1로 제조한 발열 멤브레인에 가해지는 전력에 따른 발열 멤브레인의 온도 상승 관계를 나타내는 그래프.
도 2는 실시에 1로 제조한 발열 멤브레인에 가해지는 전압에 따른 전류 측정 결과를 나타내는 그래프.
도 3은 본 발명에 따른 발열 멤브레인의 모식도
도 4는 탄소나노섬유들이 섬유축 방향으로 정열되어 있는 멤브레인(M)의 전자현미경 사진.
도 5는 탄소나노섬유들이 무질서하게 정열되어 있는 멤브레인(M)의 전자현미경 사진.
1 is a graph showing a temperature rise relationship of a heat-generating membrane according to electric power applied to the exothermic membrane manufactured in Example 1. Fig.
FIG. 2 is a graph showing a current measurement result according to a voltage applied to the exothermic membrane manufactured in Embodiment 1. FIG.
3 is a schematic diagram of a heat-generating membrane according to the present invention
4 is an electron micrograph of a membrane (M) in which carbon nanofibers are aligned in the fiber axis direction.
5 is an electron micrograph of a membrane (M) in which carbon nanofibers are randomly aligned.

이하, 첨부한 도면등을 통하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 따른 발열 멤브레인은 도 3에 도시된 바와 같이 탄소나노섬유로 구성된 멤브레인(M); 상기 멤브레인(M) 상에 배열된 전극선(W); 및 상기 전극선(W)에 전압을 가해주는 전지(C);를 포함한다.The heat-generating membrane according to the present invention comprises a membrane M composed of carbon nanofibers as shown in FIG. 3; An electrode line W arranged on the membrane M; And a cell (C) for applying a voltage to the electrode line (W).

도 3은 본 발명에 따른 발열 멤브레인의 모식도 이다.3 is a schematic diagram of a heat-generating membrane according to the present invention.

상기 탄소나노섬유로 구성된 멤브레인(M)내 탄소나노섬유들은 도 5와 같이 무질서하게 배열될 수도 있고 도 4와 같이 섬유 길이방향을 따라 정열될 수도 있고, 섬유 폭방향을 따라 정열될 수도 있고, 섬유 폭방향 및 길이방향 모두를 따라 정열될 수도 있다.The carbon nanofibers in the membrane M composed of the carbon nanofibers may be randomly arranged as shown in FIG. 5, aligned along the fiber longitudinal direction as shown in FIG. 4, aligned along the fiber width direction, And may be aligned along both the width direction and the longitudinal direction.

도 4 내지 도 5는 탄소나노섬유들로 구성된 멤브레인(M)의 전자현미경 사진이다.4 to 5 are electron micrographs of a membrane M composed of carbon nanofibers.

탄소나노섬유로 구성된 멤브레인(M)은 폴리머 용액을 전기방사하여 나노섬유로 구성된 멤브레인을 제조하는 공정과, 상기 나노섬유로 구성된 멤브레인을 탄화처리하는 공정을 차례로 거쳐 제조될 수 있다.The membrane (M) composed of carbon nanofibers can be manufactured by sequentially preparing a membrane composed of nanofibers by electrospunning a polymer solution and a process of carbonizing the membrane composed of the nanofibers.

상기 폴리머 용액을 구성하는 폴리머로서는 폴리아크릴니트릴, 폴리에틸렌, 폴리프로필렌 또는 폴리아믹액시드 등이 사용된다.As the polymer constituting the polymer solution, polyacrylonitrile, polyethylene, polypropylene or polyamic liquid seeds and the like are used.

탄소나노섬유으로 구성된 멤브레인은 폴리아크릴니트릴을 이용하여 전기방사를 통하여 제조할 수도 있고 또한 폴리에틸렌 혹은 폴리프로필렌 등을 프리커서로 사용하여 전기방사 후에 나노섬유를 제조하고 이 멤브레인을 설폰화하여 탄화처리하면 탄소나노섬유의 제조가 가능하다. 또한 폴리아믹산을 기반으로 하고 이를 이용하여 나노섬유를 제조하고 열안정화 공정을 통하고 고온에서 탄화처리를 행하면 탄소나노섬유로 구성된 멤브레인의 제조가 가능하게 된다. Membranes composed of carbon nanofibers can be prepared by electrospinning using polyacrylonitrile. Nanofibers can be prepared after electrospinning using polyethylene or polypropylene as a precursor, and the membranes are sulfonated and carbonized It is possible to manufacture carbon nanofibers. Also, it is possible to manufacture a membrane composed of carbon nanofibers by preparing nanofibers based on polyamic acid, and carrying out carbonization treatment at a high temperature through a thermal stabilization process.

기타 탄소나노섬유로 구성된 멤브레인의 제조는 탄소가 다수 함유된 셀룰로오스 등을 포함한 피치계등을 활용하여 제조가 가능하다.The production of membranes composed of other carbon nanofibers can be carried out by using a pitch system including cellulose having a large number of carbon atoms.

탄소나노섬유로 구성된 멤브레인(M)은 다른섬유체와 라미네이팅이 안된 형태로도 사용될 수 있지만, 또 다른 대안으로서 코팅직물, 직물, 편물 또는 부직포에 부착된 형태로도 사용될 수도 있다.The membrane M composed of carbon nanofibers can be used in a form that is unlaminated with other fibers, but may also be used in a form attached to a coating fabric, fabric, knitted fabric or nonwoven fabric as another alternative.

상기 전극선(W)은 탄소섬유로 구성된 멤브레인(M) 일부에만 은(Ag) 페이스트를 코팅하여 형성할 수도 있고, 은(Ag) 나노 와이어를 사용할 수도 있다.The electrode line W may be formed by coating a part of the membrane M made of carbon fibers with silver (Ag) paste or using silver (Ag) nanowires.

상기 전지(C)는 1차 건건지 또는 2차 전지 어느 것이라도 무관하다.The battery (C) may be either a primary dry cell or a secondary cell.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 살펴본다.Hereinafter, the present invention will be described in more detail with reference to Examples.

그러나 본 발명의 보호범위는 후술하는 실시예만으로 한정되는 것은 아니다.
However, the scope of protection of the present invention is not limited to the following embodiments.

실시예Example 1 One

중량평균분자량(Mw)이 150,000인 폴리아크릴니트릴(Aldrich 회사 제품)을 용매인 디메틸포름아미드에 용해하여 고형분이 9중량%이고 점도가 477센티포아스인 방사도프를 제조하였다. 직경이 15mm인 내부에 10각형으로 형성된 튜브 형태로 구성된 방사구를 이용하고 이 튜브를 회전속도를 2000 rpm으로 회전하고 여기에 35 kV의 고전압을 가하여 전기방사를 통하여 1000 m/min으로 회전하는 컬렉터를 사용하여 회전하는 방향으로 나노섬유를 배열하고 회전방향으로 배열된 나노섬유 멤브레인을 절단하였다. 계속해서 절단된 나노섬유 멤브레인을 90°방향을 변경하여 다시 컬렉터에 부착하여 컬렉터를 1000m/min으로 회전하고 여기에 다시 전기방사를 행한다. 이렇게 하여 섬유 축방향과 축 수직방향 모두를 따라 나노섬유가 배열된 폴리아크릴니트릴 나노섬유 멤브레인을 제조하였다. 이와 같이 제조한 나노섬유 멤브레인을 긴장 하에서 250℃에서 질소분위기 하에서 1시간 동안 열안정화를 행하고 그런 다음에 1100℃에서 공기중에서 긴장상태로 탄화 처리를 행하여 탄소나노섬유로 구성된 멤브레인을 제조하였다. Polyacrylonitrile (product of Aldrich) having a weight average molecular weight (Mw) of 150,000 was dissolved in dimethylformamide as a solvent to prepare a spinning dope having a solid content of 9 wt% and a viscosity of 477 centipoise. The tube was rotated at a rotation speed of 2000 rpm and a high voltage of 35 kV was applied to the tube. The collector was rotated at 1000 m / min through electrospinning. Were used to arrange the nanofibers in the rotating direction and cut the nanofiber membranes arranged in the rotating direction. Subsequently, the cut nanofiber membrane was changed in the direction of 90 °, and then the collector was attached again to the collector, and the collector was rotated at 1000 m / min and electrospinning was performed again. Thus, a polyacrylonitrile nanofiber membrane having nanofibers arranged along both the fiber axis direction and the axial direction was manufactured. The thus prepared nanofiber membrane was thermally stabilized at 250 ° C under nitrogen atmosphere for 1 hour under tension, and then carbonized at 1100 ° C in a tense state in air to prepare a membrane composed of carbon nanofibers.

제조된 상기 멤브레인을 전자현미경으로 촬영한 결과는 도 5와 같았고, 탄소나노섬유의 평균 직경은 300nm 이었다. 제조된 멤브레인의 전기적 특성을 cyclic voltametric tester(Versa STAT4, Ametek)를 사용하여 전압-전류 특성을 측정한 결과는 도 2와 같았고 매우 우수한 전도성 특성을 보이고 있다. 탄소나노섬유로 구성된 멤브레인에 은 페이스트를 사용하여 간격이 1cm x 1cm 정사각형 형태로 전극선을 형성하고 이 전극선에 전압을 가할 수 있도록 하고 여기에 일정한 전류에서 전압을 조절할 수 있는 POTENTIOSTAT/GALVANOSTAT(Houto Denko)를 이용하여 전압을 가하고 온도계를 이용하여 온도를 측정한 결과는 도 1과 같았다.
The membrane thus prepared was photographed by an electron microscope. The result was as shown in FIG. 5, and the average diameter of the carbon nanofibers was 300 nm. The electrical characteristics of the prepared membrane were measured using a cyclic voltammetric tester (Versa STAT4, Ametek). The results are shown in FIG. 2, showing very good conductivity characteristics. In the case of POTENTIOSTAT / GALVANOSTAT (Houto Denko), which is able to apply a voltage to this electrode line and control the voltage at a constant current, it is possible to form an electrode line with a 1cm x 1cm square shape using a silver paste on a membrane made of carbon nanofiber. And the temperature was measured using a thermometer. The results are shown in Fig.

실시예Example 2 2

중량평균분자량(Mw)이 150,000인 폴리아크릴니트릴(Aldrich 회사 제품)을 용매인 디메틸포름아미드에 용해하여 고형분이 9중량%이고 점도가 477센티포아스인 방사도프를 제조하였다. 일반적인 노즐 형태인 0.9 mm인 니들을 이용하고 35 kV를 전압하에서 일반적인 전기방사를 통하여 나노섬유가 무질서하게 배열된 폴리아크릴니트릴 나노섬유 멤브레인을 제조하였다. 이와 같이 제조한 나노섬유 멤브레인을 긴장 하에서 250℃에서 질소분위기 하에서 1시간 동안 열안정화를 행하고 그런 다음에 1100℃에서 공기중에서 긴장상태로 탄화 처리를 행하여 탄소나노섬유로 구성된 멤브레인을 제조하였다. 전자현미경으로 측정한 결과를 보인 도가 도 5이고 탄소나노섬유의 평균 직경은 180nm 이었다. 제조된 멤브레인의 전기적 특성을 cyclic voltametric tester(Versa STAT4, Ametek)를 사용하여 전압-전류 특성을 측정한 결과 저항 83Ω 으로서 우수한 전도성을 나타내었다. 탄소나노섬유로 구성된 멤브레인에 은 페이스트를 사용하여 간격이 1cm x 1cm 정사각형 형태로 전극선을 형성하고 이 전극선에 전압을 가할 수 있도록 하고 여기에 일정한 전류에서 전압을 조절할 수 있는 POTENTIOSTAT/GALVANOSTAT(Houto Denko)를 이용하여 전압을 가하여 온도를 측정한 결과 아래와 같은 관계를 얻었다. Polyacrylonitrile (product of Aldrich) having a weight average molecular weight (Mw) of 150,000 was dissolved in dimethylformamide as a solvent to prepare a spinning dope having a solid content of 9 wt% and a viscosity of 477 centipoise. Polyacrylonitrile nanofiber membranes were fabricated in which nanofibers were randomly arranged through ordinary electrospinning at a voltage of 35 kV using a needle of 0.9 mm in the general shape of a nozzle. The thus prepared nanofiber membrane was thermally stabilized at 250 ° C under nitrogen atmosphere for 1 hour under tension, and then carbonized at 1100 ° C in a tense state in air to prepare a membrane composed of carbon nanofibers. FIG. 5 shows the result of measurement with an electron microscope, and the average diameter of the carbon nanofibers was 180 nm. The electrical properties of the prepared membrane were measured using a cyclic voltammetric tester (Versa STAT4, Ametek). In the case of POTENTIOSTAT / GALVANOSTAT (Houto Denko), which is able to apply a voltage to this electrode line and control the voltage at a constant current, it is possible to form an electrode line with a 1cm x 1cm square shape using a silver paste on a membrane made of carbon nanofiber. And the temperature was measured by applying a voltage. As a result, the following relation was obtained.

온도 = 22.0 + 69.5 × 전력(W)
Temperature = 22.0 + 69.5 x power (W)

W : 전극선
C : 전지
M : 탄소나노섬유들로 구성된 멤브레인
W: Electrode line
C: Battery
M: Membrane composed of carbon nanofibers

Claims (10)

탄소나노섬유로 구성된 멤브레인(M);
상기 멤브레인(M) 상에 배열된 전극선(W); 및 상기 전극선(W)에 전압을 가해주는 전지(C);를 포함하는 것을 특징으로 하는 유연성이 우수한 발열 멤브레인.
A membrane M composed of carbon nanofibers;
An electrode line W arranged on the membrane M; And a cell (C) for applying a voltage to the electrode line (W).
제1항에 있어서, 탄소나노섬유로 구성된 멤브레인(M)은 탄소나노섬유가 무질서하게 배열되어 있는 것을 특징으로 하는 유연성이 우수한 발열 멤브레인.The heat-resisting membrane according to claim 1, wherein the membrane (M) composed of carbon nanofibers is arranged in a disordered manner in the carbon nanofibers. 제1항에 있어서, 탄소나노섬유로 구성된 멤브레인(M)은 탄소나노섬유가 섬유 길이방향을 따라 정렬되어 있는 것을 특징으로 하는 유연성이 우수한 발열 멤브레인.The heat-resistant membrane according to claim 1, wherein the membrane (M) composed of the carbon nanofibers has the carbon nanofibers aligned along the fiber length direction. 제1항에 있어서, 탄소나노섬유로 구성된 멤브레인(M)은 탄소나노섬유가 섬유 폭방향을 따라 정렬되어 있는 것을 특징으로 하는 유연성이 우수한 발열 멤브레인.The heat-resisting membrane according to claim 1, wherein the membrane (M) composed of carbon nanofibers has carbon nanofibers aligned along the fiber width direction. 제1항에 있어서, 탄소나노섬유로 구성된 멤브레인(M)은 탄소나노섬유가 섬유 길이 및 폭방향을 따라 정렬되어 있는 것을 특징으로 하는 유연성이 우수한 발열 멤브레인.The heat-resisting membrane according to claim 1, wherein the membrane (M) composed of carbon nanofibers is formed of carbon nanofibers aligned along the fiber length and width direction. 제1항에 있어서, 탄소나노섬유로 구성된 멤브레인(M)은 폴리머 용액을 전기방사하여 나노섬유로 구성된 멤브레인을 제조하는 공정과, 상기 나노섬유로 구성된 멤브레인을 탄화처리하는 공정을 차례로 거쳐 제조되는 것을 특징으로 하는 유연성이 우수한 발열 멤브레인.The method according to claim 1, wherein the membrane (M) composed of carbon nanofibers is prepared by sequentially preparing a membrane composed of nanofibers by electrospinning a polymer solution and a step of carbonizing the membrane composed of the nanofibers Features a flexible, exothermic membrane. 제6항에 있어서, 폴리머 용액을 구성하는 폴리머는 폴리아크릴니트릴, 폴리에틸렌, 폴리프로필렌 및 폴리아믹액시드 중에서 선택된 1종인 것을 특징으로 하는 유연성이 우수한 발열 멤브레인.7. The exothermic membrane according to claim 6, wherein the polymer constituting the polymer solution is one selected from the group consisting of polyacrylonitrile, polyethylene, polypropylene and polyamic acid solution. 제1항에 있어서, 전지(C)는 1차 건전지 및 2차 건전지 중에서 선택된 1종인 것을 특징으로 하는 유연성이 우수한 발열 멤브레인.The heat-generating membrane according to claim 1, wherein the battery (C) is one selected from a primary battery and a secondary battery. 제1항에 있어서, 탄소나노섬유로 구성된 멤브레인(M)은 코팅직물, 직물, 편물 및 부직포 중에서 선택된 1종의 섬유체와 부착된 형태인 것을 특징으로 하는 유연성이 우수한 발열 멤브레인.The heat-resistant membrane according to claim 1, wherein the membrane (M) composed of carbon nanofibers is attached to one kind of fibrous body selected from a coating fabric, a fabric, a knitted fabric and a nonwoven fabric. 제1항에 있어서, 전극선(W)은 은 페이스트 및 은 나노 와이어로 형성되는 것을 특징으로 하는 유연성이 우수한 발열 멤브레인.The heat-generating membrane according to claim 1, wherein the electrode wire (W) is formed of silver paste and silver nanowire.
KR1020130039643A 2013-04-11 2013-04-11 Heat generating membranes with excellent fiexibility KR101477201B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130039643A KR101477201B1 (en) 2013-04-11 2013-04-11 Heat generating membranes with excellent fiexibility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130039643A KR101477201B1 (en) 2013-04-11 2013-04-11 Heat generating membranes with excellent fiexibility

Publications (2)

Publication Number Publication Date
KR20140123156A true KR20140123156A (en) 2014-10-22
KR101477201B1 KR101477201B1 (en) 2014-12-30

Family

ID=51993937

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130039643A KR101477201B1 (en) 2013-04-11 2013-04-11 Heat generating membranes with excellent fiexibility

Country Status (1)

Country Link
KR (1) KR101477201B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365141A (en) * 2018-01-10 2018-08-03 江西江特电动车有限公司 Battery module, battery temperature control system with heating function and temperature control method
KR20200022306A (en) * 2018-08-22 2020-03-03 전북대학교산학협력단 Manufacturing method of Hanji flooring heating element and apparatus of Hanji flooring heating element by block replacement technique
KR102292175B1 (en) * 2020-02-13 2021-08-23 한국과학기술원 High conductive and high air permeable grid-type woven carbon-nanofiber membrane and their fabrication method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100791997B1 (en) * 2006-04-04 2008-01-04 (주)탑나노시스 Conductor
KR100791998B1 (en) * 2006-04-04 2008-01-04 (주)탑나노시스 Method for manufacturing conductive composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365141A (en) * 2018-01-10 2018-08-03 江西江特电动车有限公司 Battery module, battery temperature control system with heating function and temperature control method
KR20200022306A (en) * 2018-08-22 2020-03-03 전북대학교산학협력단 Manufacturing method of Hanji flooring heating element and apparatus of Hanji flooring heating element by block replacement technique
KR102292175B1 (en) * 2020-02-13 2021-08-23 한국과학기술원 High conductive and high air permeable grid-type woven carbon-nanofiber membrane and their fabrication method

Also Published As

Publication number Publication date
KR101477201B1 (en) 2014-12-30

Similar Documents

Publication Publication Date Title
Dalton et al. Thermoelectric properties of electrospun carbon nanofibres derived from lignin
Yuan et al. Twisted yarns for fiber-shaped supercapacitors based on wetspun PEDOT: PSS fibers from aqueous coagulation
Liu et al. Advances in flexible and wearable energy‐storage textiles
Li et al. Highly-wrinkled reduced graphene oxide-conductive polymer fibers for flexible fiber-shaped and interdigital-designed supercapacitors
Jost et al. Natural fiber welded electrode yarns for knittable textile supercapacitors
Yu et al. Scalable preparation of high performance fibrous electrodes with bio-inspired compact core-fluffy sheath structure for wearable supercapacitors
Darabi et al. Green conducting cellulose yarns for machine-sewn electronic textiles
Zhao et al. Nitrogen-doped carbon networks derived from the electrospun polyacrylonitrile@ branched polyethylenimine nanofibers as flexible supercapacitor electrodes
Han et al. Fabrication of nanofibrous sensors by electrospinning
Kim et al. Effect of electrolyte in electrospun poly (vinylidene fluoride-co-hexafluoropropylene) nanofibers on dye-sensitized solar cells
CN110359128A (en) A kind of fibrous material, fiber gel, stretchable electrically conductive composite fibre with super-elasticity and frost resistance and preparation method thereof
CN104611914B (en) Method for preparing carbon fiber cloth with high specific surface area based on electrostatic spinning process
KR101477201B1 (en) Heat generating membranes with excellent fiexibility
Badawy et al. Natural silk for energy and sensing applications: a review
CN108611792A (en) A kind of stretchable conductive material and application thereof based on Modal knitted fabric
Ma et al. Wearable supercapacitors based on conductive cotton yarns
CN111519354A (en) High-thermal-conductivity phase-change energy storage material based on electrostatic spinning and preparation method thereof
Wang et al. Reliable coaxial wet spinning strategy to fabricate flexible MnO2-based fiber supercapacitors
Fathy et al. Electrospun polymethylacrylate nanofibers membranes for quasi-solid-state dye sensitized solar cells
Eslah et al. Synthesis and characterization of tungsten trioxide/polyaniline/polyacrylonitrile composite nanofibers for application as a counter electrode of DSSCs
CN106328945A (en) Preparation method of flexible high-conductivity composite carbon fiber
Garcia-Gomez et al. Enhancement of electrochemical properties on TiO 2/carbon nanofibers by electrospinning process
Abu-Thabit et al. Smart textile supercapacitors coated with conducting polymers for energy storage applications
Lai et al. Macroscale amphiphilic aerogel fibers made from nonwoven nanofibers for large active mass loading
Shi et al. Continuous carbon nanofiber bundles with tunable pore structures and functions for weavable fibrous supercapacitors

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191220

Year of fee payment: 6