KR20140067414A - Pre-treatment method of synthesis for electrode catalyst - Google Patents

Pre-treatment method of synthesis for electrode catalyst Download PDF

Info

Publication number
KR20140067414A
KR20140067414A KR1020120134608A KR20120134608A KR20140067414A KR 20140067414 A KR20140067414 A KR 20140067414A KR 1020120134608 A KR1020120134608 A KR 1020120134608A KR 20120134608 A KR20120134608 A KR 20120134608A KR 20140067414 A KR20140067414 A KR 20140067414A
Authority
KR
South Korea
Prior art keywords
carbon
dispersing
mixture
particle size
electrode catalyst
Prior art date
Application number
KR1020120134608A
Other languages
Korean (ko)
Other versions
KR101434652B1 (en
Inventor
김해리
박병일
김세훈
차문순
여권구
노범욱
황인철
최진성
Original Assignee
오덱(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오덱(주) filed Critical 오덱(주)
Priority to KR1020120134608A priority Critical patent/KR101434652B1/en
Publication of KR20140067414A publication Critical patent/KR20140067414A/en
Application granted granted Critical
Publication of KR101434652B1 publication Critical patent/KR101434652B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The present invention relates to a pre-treatment method for the synthesis of an electrode catalyst. More specifically, the method comprises a mixing step of mixing a carrier and a solvent; a homogenizing step of homogenizing the particle size of the mixture mixed through the mixing step; a dispersing step of dispersing the mixture homogenized through the homogenizing step; and an analyzing step of analyzing the particle size of the mixture dispersed through the dispersing step.

Description

전극촉매 합성을 위한 전처리 공정법{PRE-TREATMENT METHOD OF SYNTHESIS FOR ELECTRODE CATALYST}[0001] PRE-TREATMENT METHOD OF SYNTHESIS FOR ELECTRODE CATALYST [0002]

본 발명은 전극촉매 합성을 위한 전처리 공정법에 관한 것으로, 더욱 상세하게는 전극촉매의 대량생산을 위한 개선된 전처리공정으로 혼합단계, 균질화단계, 분산단계 및 분석단계로 이루어진다.
More particularly, the present invention relates to an improved pretreatment process for mass production of an electrode catalyst, which comprises a mixing step, a homogenizing step, a dispersing step and an analyzing step.

본 발명은 전극촉매 합성을 위한 전처리 공정법에 관한 것으로, 더욱 상세하게는 전극촉매의 대량생산을 위한 개선된 전처리공정으로 혼합단계, 균질화단계, 분산단계 및 분석단계로 이루어진다.More particularly, the present invention relates to an improved pretreatment process for mass production of an electrode catalyst, which comprises a mixing step, a homogenizing step, a dispersing step and an analyzing step.

연료전지는 전해질, 작동온도 및 연료의 종류에 따라 MCFC(용융탄산염 연료전지), SOFC(고체산화물형 연료전지), AFC(알칼리 연료전지), PAFC(인산형 연료전지), PEMFC(고분자 전해질 연료전지) 및 DMFC(직접 메탄올 연료전지) 등으로 구분되며, 이들 여러 가지 연료전지 중에서 PEMFC는 에너지 변환 효율이 우수하고 저온에서도 높은 전류밀도를 얻을 수 있는 장점을 지니므로 전기자동차의 전력 공급용, 이동용, 군사용 및 가정용 등 다양한 분야에 적용이 가능한 PEMFC의 개발이 활발히 진행되고 있다. 일반적으로, PEMFC의 성능은 MEA내 전극촉매의 성능에 의해 크게 좌우되고 또한 귀금속의 가격이 매우 비싸기 때문에 촉매는 연료전지 원가에도 많은 영향을 미치고 있다. 이에 연료전지 성능과 원가절감을 만족시키기 위한 촉매개발 연구가 많이 이루어지고 있으며 특히 촉매합성이 대량화 되어감에 따라 백금입자의 분산성 향상과 더불어 촉매 합성 공정 개선에 대한 개발이 중요시되고 있다.Fuel cells can be classified as MCFC (Molten Carbonate Fuel Cell), SOFC (Solid Oxide Fuel Cell), AFC (Alkali Fuel Cell), PAFC (Phosphoric Acid Fuel Cell), PEMFC (Polymer Electrolyte Fuel And DMFC (Direct Methanol Fuel Cell). Among these fuel cells, PEMFC has excellent energy conversion efficiency and high current density can be obtained even at low temperature. Therefore, electric power supply, , A PEMFC that can be applied to various fields such as military use and home use is being actively developed. In general, the performance of a PEMFC depends largely on the performance of the electrocatalyst in the MEA and the cost of the noble metal is very high, so that the catalyst has a great influence on the fuel cell cost. Therefore, the development of catalysts for satisfying fuel cell performance and cost reduction has been carried out. Especially, as the synthesis of catalysts becomes larger and larger, the improvement of dispersibility of platinum particles and improvement of catalyst synthesis process are important.

전극촉매에 쓰이는 담지체의 경우 전기전도도와 표면적을 고려하기 위하여 탄소계열 담지체를 이용하지만 탄소담지체의 경우 탄소 자체의 가볍고 전기적인 성질을 포함하고 있기 때문에 서로 간의 결합력으로 뭉쳐있으려는 경향이 강하다. 더욱이 대용량의 합성의 경우 탄소의 양이 많기 때문에 탄소의 전기적인 성질에 대한 영향을 더 크게 받는다. 따라서 물리적으로 에너지를 가하여 서로 뭉쳐 있는 탄소담지체들을 용매 상에 고르게 분포시켜야 합성 진행시 귀금속입자가 탄소 표면에 분산될 수 있는 범위가 증가하며 귀금속 입자를 균일하게 분산시킬 수 있다. 따라서 전처리 과정을 통한 탄소 담지체의 분산은 촉매를 합성하는데 매우 중요한 조건 중 하나이다.Carriers used in electrocatalysts tend to use carbon-based carriers to take account of electrical conductivity and surface area, but carbon carriers have a strong tendency to bond with each other because they contain light and electric properties of carbon itself . In addition, large amounts of synthesis have a large effect on the electrical properties of carbon because of the high amount of carbon. Therefore, it is necessary to uniformly distribute the noble metal particles by increasing the range in which the noble metal particles can be dispersed on the carbon surface during the synthesis, by physically distributing the carbon carriers that are bundled together by applying energy to the solvent. Therefore, dispersion of carbon support through pretreatment is one of the most important conditions for synthesis of catalyst.

종래의 전극촉매 합성을 위한 전처리 과정의 경우 전처리를 하는데 시간이 오래 소요되며 Homogenizer와 Ultra sonic을 사용하기 때문에 batch 형태의 분산만이 가능하여 용량제한의 한계가 있었다. 또한 원하는 탄소담지체의 분산도를 만족하기 위해서는 4시간 이상 장시간의 전처리 시간이 소요되어 전체 합성 소요시간을 증가시킨다. 또한 batch 형태의 전처리 과정으로 인하여 카본 용액의 부분별로 입자사이즈가 고르지 않은 문제점이 발생한다.
In the case of the pretreatment process for the conventional electrode catalyst synthesis, it takes a long time to perform the pretreatment, and since the homogenizer and the ultra sonic are used, only the batch type dispersion is possible, and the capacity limitation is limited. In order to satisfy the dispersion degree of the desired carbon support, a long pretreatment time of 4 hours or more is required, thereby increasing the total synthesis time. In addition, due to the pretreatment process of the batch type, there is a problem that the particle size of the carbon solution is not uniform.

본 발명의 목적은 초고압분산기를 이용하여 전처리 공정에 걸리는 시간을 현저히 단축하고 담지체의 분산 정도를 향상시키는데 탁월한 효과를 나타내는 전극촉매 합성을 위한 전처리 공정법을 제공하는 것이다.
An object of the present invention is to provide a pretreatment process for synthesizing an electrode catalyst which shows an excellent effect of significantly shortening the time required for the pretreatment process and improving the degree of dispersion of the carrier using an ultra high pressure disperser.

본 발명의 목적은 담지체와 용매를 혼합하는 혼합단계, 상기 혼합단계를 통해 혼합된 혼합물의 입자크기를 균질화하는 균질화단계, 상기 균질화단계를 통해 균질화된 혼합물을 분산시키는 분산단계 및 상기 분산단계를 통해 분산된 혼합물의 입도를 분석하는 분석단계로 이루어지는 것을 특징으로 하는 전극촉매 합성을 위한 전처리 공정법을 제공함에 의해서 달성될 수 있다.An object of the present invention is to provide a process for producing a homogenized mixture, comprising a mixing step of mixing a carrier and a solvent, a homogenization step of homogenizing the particle size of the mixed mixture through the mixing step, a dispersion step of dispersing the homogenized mixture through the homogenization step, And an analyzing step of analyzing the particle size of the dispersed mixture. The present invention can be achieved by providing a pretreatment process for synthesizing an electrode catalyst.

본 발명의 바람직한 특징에 따르면, 상기 담지체는 Carbon black, Carbon nano tube 및 Carbon nano fiber로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것을 특징으로 한다.According to a preferred aspect of the present invention, the support body is formed of at least one selected from the group consisting of carbon black, a carbon nano tube, and a carbon nano fiber.

본 발명의 더 바람직한 특징에 따르면, 상기 용매는 에틸렌글리콜로 이루어지는 것을 특징으로 한다.According to a further preferred feature of the present invention, the solvent is characterized by being composed of ethylene glycol.

본 발명의 더욱 바람직한 특징에 따르면, 상기 담지체와 상기 용매는 1:15 내지 25 중량부 비율로 혼합하는 것을 특징으로 이루어진다.According to a further preferred feature of the present invention, the carrier and the solvent are mixed at a ratio of 1:15 to 25 parts by weight.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 균질화단계는 상기 혼합단계를 통해 혼합된 혼합물의 입자 크기를 70 내지 100㎛로 균질화하는 것을 특징으로 이루어진다.According to a further preferred feature of the present invention, the homogenizing step homogenizes the particle size of the mixed mixture through the mixing step to 70 to 100 탆.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 분산단계는 상기 균질화단계를 통해 균질화된 혼합물을 초고압분산기를 이용하여 1 내지 30분 동안 1 내지 5회에 걸쳐서 분산시키는 것을 특징으로 이루어진다.
According to an even more preferred feature of the present invention, the dispersion step comprises dispersing the homogenized mixture through the homogenization step for 1 to 30 minutes for 1 to 5 times using an ultra-high pressure disperser.

본 발명에 따른 전극촉매 합성을 위한 전처리 공정법은 초고압분산기를 이용하여 전처리 공정에 걸리는 시간을 현저히 단축하고 담지체의 분산 정도를 향상시키는데 탁월한 효과를 나타낸다.The pretreatment process for synthesizing an electrode catalyst according to the present invention is remarkably effective in shortening the time required for the pretreatment process and improving the degree of dispersion of the carrier using an ultra high pressure disperser.

또한, 초고압분산기를 이용함으로써, 분산하고자 하는 담지체의 용량에 제한을 받지 않으므로 촉매의 대량생산을 위한 합성공정에도 적용할 수 있는 장점을 나타낸다.
The use of the ultra high pressure disperser also shows the advantage of being applicable to the synthesis process for the mass production of the catalyst since it is not limited by the capacity of the carrier to be dispersed.

도 1은 전술한 실시예2를 통해 제조된 전극촉매와 전술한 비교예2를 통해 제조된 전극촉매를 비교 관찰하여 나타낸 사진이다.
도 2는 본 발명에 따른 전극촉매 합성을 위한 전처리 공정법을 나타낸 순서도이다.
FIG. 1 is a photograph showing the electrode catalyst prepared in Example 2 and the electrode catalyst prepared in Comparative Example 2. FIG.
2 is a flowchart showing a pre-treatment process for synthesizing an electrode catalyst according to the present invention.

이하에는 본 발명의 바람직한 실시예와 각 성분의 물성을 상세하게 설명하되, 이는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명을 용이하게 실시할 수 있을 정도로 상세하게 설명하기 위한 것이지, 이로 인해 본 발명의 기술적인 사상이나 범주가 한정되는 것을 의미하지는 않는다.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. These embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. And does not mean that the technical idea or category of the present invention is limited.

본 발명에 따른 전극촉매 합성을 위한 전처리 공정법은 담지체와 용매를 혼합하는 혼합단계(S101), 전술한 혼합단계(S101)를 통해 혼합된 혼합물의 입자크기를 균질화하는 균질화단계(S103), 전술한 균질화단계(S103)를 통해 균질화된 혼합물을 분산시키는 분산단계(S105) 및 전술한 분산단계(S105)를 통해 분산된 혼합물의 입도를 분석하는 분석단계(S107)로 이루어진다.The pretreatment process for synthesizing an electrode catalyst according to the present invention comprises a mixing step (S101) of mixing a carrier and a solvent, a homogenization step (S103) of homogenizing the particle size of the mixed mixture through the mixing step (S101) A dispersion step (S105) of dispersing the homogenized mixture through the homogenization step (S103) and an analysis step (S107) of analyzing the particle size of the dispersed mixture through the dispersion step (S105) described above.

전술한 혼합단계(S101)는 전술한 담지체와 용매는 1:15 내지 25 중량부 비율로 혼합하여 이루어지며, 전술한 담지체는 Carbon black, Carbon nanotube 및 Carbon nanofiber로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것이 바람직하다. 전술한 Carbon black은 미세한 탄소분말로, 더욱 상세하게는 입자의 크기가 1 내지 500㎕으로 흑연과 비슷하며 공업적으로는 천연가스 및 타르 등을 불완전연소시켜 생긴 그을음을 모으거나 열 분해하여 제조하고 있다. 전술한 Carbon nanotube는 탄소 6개로 이루어진 육각형들이 서로 연결되어 관 모양을 이루고 있는 신소재로, 더욱 상세하게는 1개의 탄소 원자가 3개의 다른 탄소 원자와 결합한 육각형 벌집 모양의 속이 비어있는 튜브형 구조로서 1 내지 30㎚크기의 탄소 원자로만 이루어진 소재이며, 열전도율, 전기전도 및 강도가 우수한 성질을 나타낸다. 전술한 Carbon nanofiber는 탄소 섬유의 그을음 또는 탄소 나노섬유의 그을음으로 흑연 층이 원통형의 나노구조로 50 내지 200㎚크기의 탄소 원자로만 이루어져 있으며, 탄소나노튜브와 매우 비슷한 성질과 특성을 나타낸다.In the above mixing step (S101), the above-described carrier and solvent are mixed at a ratio of 1:15 to 25 parts by weight, and the above-mentioned carrier is at least one selected from the group consisting of Carbon black, Carbon nanotube and Carbon nanofiber . Carbon black is a fine carbon powder, and more specifically, it has a particle size of 1 to 500 비슷 which is similar to graphite and is industrially manufactured by collecting or thermally decomposing soot generated by incomplete combustion of natural gas and tar have. The above-described carbon nanotube is a new material having six carbon hexagons connected to each other to form a tubular shape. More specifically, the carbon nanotube has a hexagonal honeycomb hollow structure in which one carbon atom is bonded to three different carbon atoms. Nm carbon atoms and exhibits excellent properties of thermal conductivity, electrical conductivity and strength. The carbon nanofiber described above consists of soot of carbon fiber or soot of carbon nanofibers, and the graphite layer is a cylindrical nano structure having only 50 to 200 nm carbon atoms, and exhibits properties and properties very similar to carbon nanotubes.

전술한 용매는 에틸렌글리콜로 이루어지는 것이 바람직하며, 전술한 에틸렌글리콜(ethylene glycol)은 모노에틸렌글리콜 또는 에테인-1,2-다이올이라고도 하며, 더욱 상세하게는, 무색 액체로 습기를 잘 흡수하고 산화하면 글리콜산, 글리옥살 및 옥살산 등이 된다.The above-mentioned solvent is preferably composed of ethylene glycol, and the above-mentioned ethylene glycol is also referred to as monoethylene glycol or ethane-1,2-diol, more specifically, as a colorless liquid, Glycolic acid, glyoxal, and oxalic acid.

전술한 균질화단계(S103)는 전술한 혼합단계(S101)를 통해 혼합된 혼합물의 입자 크기를 70 내지 100㎛로 균질화하여 이루어지는 것이 바람직하며, 전술한 혼합물의 입자 크기를 Homogenizer 및 초음파 분산 장비를 이용하여 균질화함으로써 분산단계(S105)에서 이용되는 초고압분산기의 오리피스 사이즈에 적합하여 분산단계(S105)가 용이하게 이루어질 수 있도록 하는 역할을 한다.The homogenization step (S103) is preferably performed by homogenizing the particle size of the mixed mixture through the mixing step (S101) described above, and the particle size of the mixture is measured using a homogenizer and an ultrasonic dispersion apparatus Thereby making it possible to easily perform the dispersing step (S105) in accordance with the orifice size of the ultra high pressure disperser used in the dispersing step (S105).

전술한 분산단계(S105)는 전술한 균질화단계(S103)를 통해 균질화된 혼합물을 분산시키는 단계로, 전술한 균질화단계를 통해 균질화된 혼합물을 초고압분산기를 이용하여 1 내지 30분 동안 1 내지 5회에 걸쳐서 분산시키는 것이 바람직하다.The dispersing step S105 is a step of dispersing the homogenized mixture through the homogenization step S103 described above. The homogenized mixture is homogenized through the homogenization step for 1 to 30 minutes for 1 to 5 times To be dispersed.

전술한 분석단계(S107)는 전술한 분산단계(S105)를 통해 분산된 혼합물의 입도를 분석하는 단계로, 분산된 혼합물의 입도를 입도분석기를 이용하여 분석함으로써, 별도의 후처리 공정을 거치지 않고 전처리 공정에 이어서 전극촉매를 합성하는 공정으로 바로 이어질 수 있도록 하는 역할을 한다.
The above-described analysis step S107 is a step of analyzing the particle size of the dispersed mixture through the dispersing step (S105) described above. By analyzing the particle size of the dispersed mixture using a particle size analyzer, Followed by a step of synthesizing an electrode catalyst, followed by a pretreatment step.

이하에서는 본 발명에 따른 전극촉매 합성을 위한 전처리 공정법을 실시예를 들어 설명하기로 한다.
Hereinafter, a pretreatment process for synthesizing an electrode catalyst according to the present invention will be described.

<실시예1>&Lt; Example 1 >

Carbon nanofiber 5중량부와 에틸렌글리콜 95중량부를 혼합하고, Homogenizer를 이용하여 혼합물의 입자 크기를 70 내지 100㎛로 균질화하여, 균질화된 혼합물을 초고압분산기를 이용하여 3분 동안 1회에 걸쳐 분산시킨 후, 분산된 혼합물을 입도분석기를 통과시켜 입도를 확인하는 전처리 공정을 실시하였다.
5 parts by weight of carbon nanofiber and 95 parts by weight of ethylene glycol were mixed, homogenized with a homogenizer to a particle size of 70 to 100 μm, and the homogenized mixture was dispersed once for 3 minutes using an ultra high pressure disperser , And a pretreatment process of passing the dispersed mixture through a particle size analyzer to confirm the particle size was carried out.

<실시예2>&Lt; Example 2 >

전술한 실시예1의 전처리 공정을 거친 탄소담지체에 백금-팔라듐 전구체를 투입하여 금속입자가 1차적으로 표면에 물리적 흡착을 하고난 후 가열하여 백금 전구체를 환원반응시키고 2차 고착반응이 일어나도록 한다. 2차 고착반응이 끝난 후, 온도를 낮추어 세척, 여과 및 건조의 후처리 공정을 통하여 전극촉매를 제조하였다.
The platinum-palladium precursor was added to the carbon carrier subjected to the pretreatment process of Example 1 to cause the metal particles to be physically adsorbed on the surface and then heated to reduce the platinum precursor to cause a secondary adhesion reaction do. After the secondary adhesion reaction, the electrode catalyst was prepared by washing, filtering and drying after lowering the temperature.

<비교예1>&Lt; Comparative Example 1 &

Carbon nanofiber 5중량부와 에틸렌글리콜 95중량부를 혼합하고, Homogenizer와 Sonic bath를 혼합하여 30분간 전처리 공정을 실시하였다.
5 parts by weight of carbon nanofiber and 95 parts by weight of ethylene glycol were mixed, and a homogenizer and a sonic bath were mixed and pretreated for 30 minutes.

<비교예2>&Lt; Comparative Example 2 &

전술한 비교예1의 전처리 공정을 거친 탄소담지체에 백금-팔라듐 전구체를 투입하여 금속입자가 1차적으로 표면에 물리적 흡착을 하고난 후 가열하여 백금 전구체를 환원반응시키고 2차 고착반응이 일어나도록 한다. 2차 고착반응이 끝난 후, 온도를 낮추어 세척, 여과 및 건조의 후처리 공정을 통하여 전극촉매를 제조하였다.
The platinum-palladium precursor was added to the carbon carrier subjected to the pretreatment process of Comparative Example 1 to cause the metal particles to be physically adsorbed on the surface, and then heated to reduce the platinum precursor to cause a secondary adhesion reaction do. After the secondary adhesion reaction, the electrode catalyst was prepared by washing, filtering and drying after lowering the temperature.

<시험예1>&Lt; Test Example 1 >

전술한 실시예1의 전처리 공정을 거친 탄소담지체 및 전술한 비교예1의 전처리 공정을 거친 탄소담지체의 입자크기와 전처리 공정에 소요된 시간을 비교하여 그 결과를 아래 그림 1 내지 표 1에 나타내었다.The particle size of the carbon carrier subjected to the pretreatment process of Example 1 and the pretreatment process of Comparative Example 1 described above were compared with the time required for the pretreatment process and the results are shown in FIGS. Respectively.

<그림1><Figure 1>

Figure pat00001
Figure pat00001

<표1><Table 1>

Figure pat00002
Figure pat00002

전술한 그림 1 내지 표 1을 살펴보면, 비교예1의 전처리 공정을 거친 탄소담지체 입자에 비해 실시예1의 전처리 공정을 거친 탄소담지체의 입자가 11.35㎛로 현저히 작은 입자 사이즈를 나타내며, 전처리 공정에 소요되는 시간 역시 3분으로 비교예1의 전처리 공정에 비하여 20배나 감소한 것을 알 수 있다.
1 to Table 1, the particles of the carbon carrier after the pretreatment process of Example 1 had a particle size remarkably smaller than that of the carbon carrier particles subjected to the pretreatment process of Comparative Example 1 to 11.35 占 퐉, Is also 3 minutes, which is 20 times less than the pretreatment process of Comparative Example 1. [

<시험예2>&Lt; Test Example 2 &

전술한 실시예2를 통해 제조된 전극촉매와 전술한 비교예2를 통해 제조된 전극촉매를 비교 관찰하여 그 결과를 도 1에 나타내었다.The electrode catalyst prepared in Example 2 was compared with the electrode catalyst prepared in Comparative Example 2, and the results are shown in FIG.

전술한 도 1을 살펴보면, 전술한 비교예2를 통해 제조된 촉매의 경우 귀금속 입자가 분포되지 못한 Dead space가 존재하며, Dead space가 발생하면서 담지 되지 못한 귀금속 입자들이 겹겹이 쌓여있거나 응집되어 있는 현상을 확인할 수 있다. 이는 전처리 공정이 충분히 이루어지지 않은 탄소담지체로 인하여 탄소입자와 탄소입자가 서로 뭉치는 현상으로 인하여 표면 일부를 가리고, 이로 인하여 귀금속 입자가 결합할 수 있는 표면이 충분히 확대되지 못하기 때문이다. 반면에, 실시예2를 통해 제조된 촉매의 경우에는 탄소담지체의 표면이 충분히 도출되어 귀금속의 담지가 용이하게 이루어지며 고르게 분산된 것을 확인할 수 있다.
1, there is a dead space in which noble metal particles are not distributed in the case of the catalyst prepared in Comparative Example 2, and noble metal particles that are not supported while dead space is generated are stacked or aggregated Can be confirmed. This is because the surface of a part of the surface is covered by the carbon support which is not sufficiently pretreated due to the aggregation of the carbon particles and the carbon particles, and thus the surface to which the noble metal particles can bind can not be sufficiently enlarged. On the other hand, in the case of the catalyst prepared in Example 2, it was confirmed that the surface of the carbon support was sufficiently drawn out, noble metal was easily supported, and the catalyst was evenly dispersed.

따라서, 본 발명에 따른 전극촉매 합성을 위한 전처리 공정법은 초고압분산기를 이용하여 전처리 공정에 걸리는 시간을 현저히 단축하고 담지체의 분산 정도를 향상시키는데 탁월한 효과를 나타낸다.Therefore, the pretreatment process for synthesizing the electrode catalyst according to the present invention is remarkably effective in shortening the time required for the pretreatment process and improving the degree of dispersion of the carrier using an ultra high pressure disperser.

또한, 초고압분산기를 이용함으로써, 분산하고자 하는 담지체의 용량에 제한을 받지 않으므로 촉매의 대량생산을 위한 합성공정에도 적용할 수 있는 장점을 나타낸다.
The use of the ultra high pressure disperser also shows the advantage of being applicable to the synthesis process for the mass production of the catalyst since it is not limited by the capacity of the carrier to be dispersed.

S101; 혼합단계
S103; 균질화단계
S105; 분산단계
S107; 분석단계
S101; Mixing step
S103; Homogenization step
S105; Dispersion step
S107; Analysis step

Claims (6)

담지체와 용매를 혼합하는 혼합단계;
상기 혼합단계를 통해 혼합된 혼합물의 입자크기를 균질화하는 균질화단계;
상기 균질화단계를 통해 균질화된 혼합물을 분산시키는 분산단계; 및
상기 분산단계를 통해 분산된 혼합물의 입도를 분석하는 분석단계;로 이루어지는 것을 특징으로 하는 전극촉매 합성을 위한 전처리 공정법.
A mixing step of mixing the carrier and the solvent;
Homogenizing the particle size of the mixed mixture through the mixing step;
A dispersing step of dispersing the homogenized mixture through the homogenization step; And
And analyzing the particle size of the dispersed mixture through the dispersing step.
청구항 1에 있어서,
상기 담지체는 Carbon black, Carbon nanotube 및 Carbon nanofiber로 이루어진 그룹에서 선택된 하나 이상으로 이루어지는 것을 특징으로 하는 전극촉매 합성을 위한 전처리 공정법.
The method according to claim 1,
Wherein the carrier comprises at least one selected from the group consisting of carbon black, carbon nanotube, and carbon nanofiber.
청구항 1에 있어서,
상기 용매는 에틸렌글리콜로 이루어지는 것을 특징으로 하는 전극촉매 합성을 위한 전처리 공정법.
The method according to claim 1,
Characterized in that the solvent is composed of ethylene glycol.
청구항 1에 있어서,
상기 담지체와 상기 용매는 1:15 내지 25 중량부 비율로 혼합하는 것을 특징으로 하는 전극촉매 합성을 위한 전처리 공정법.
The method according to claim 1,
Wherein the carrier and the solvent are mixed at a ratio of 1:15 to 25 parts by weight.
청구항 1에 있어서,
상기 균질화단계는 상기 혼합단계를 통해 혼합된 혼합물의 입자 크기를 70 내지 100㎛로 균질화하는 것을 특징으로 하는 전극촉매 합성을 위한 전처리 공정법.
The method according to claim 1,
Wherein the homogenization is performed by homogenizing the mixed particles of the mixture through the mixing step to a size of 70 to 100 mu m.
청구항 1에 있어서,
상기 분산단계는 상기 균질화단계를 통해 균질화된 혼합물을 초고압분산기를 이용하여 1 내지 30분 동안 1 내지 5회에 걸쳐서 분산시키는 것을 특징으로 하는 전극촉매 합성을 위한 전처리 공정법.
The method according to claim 1,
Wherein the dispersing step comprises dispersing the homogenized mixture through the homogenization step using an ultra high pressure disperser for 1 to 30 minutes for 1 to 5 times.
KR1020120134608A 2012-11-26 2012-11-26 Pre-treatment method of synthesis for electrode catalyst KR101434652B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120134608A KR101434652B1 (en) 2012-11-26 2012-11-26 Pre-treatment method of synthesis for electrode catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120134608A KR101434652B1 (en) 2012-11-26 2012-11-26 Pre-treatment method of synthesis for electrode catalyst

Publications (2)

Publication Number Publication Date
KR20140067414A true KR20140067414A (en) 2014-06-05
KR101434652B1 KR101434652B1 (en) 2014-08-26

Family

ID=51123653

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120134608A KR101434652B1 (en) 2012-11-26 2012-11-26 Pre-treatment method of synthesis for electrode catalyst

Country Status (1)

Country Link
KR (1) KR101434652B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108899544A (en) * 2018-06-06 2018-11-27 哈尔滨万鑫石墨谷科技有限公司 A kind of ultra-high purity/ultra-fine carbon nanotube conducting slurry and its preparation method and application
WO2021206331A1 (en) * 2020-04-10 2021-10-14 희성촉매 주식회사 Method for preparing carbon black support for fuel cell
KR20220109652A (en) * 2021-01-29 2022-08-05 주식회사 코렌스알티엑스 Manufacturing method of catalyst supporter and catalyst for a fuel cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100631858B1 (en) 2005-12-22 2006-10-04 제일모직주식회사 Carbon black dispersion composition for black matrix of color filter in liquid crystal display
KR101033883B1 (en) 2009-06-25 2011-05-11 기아자동차주식회사 Preparation method of supported catalysts with a high proportion containing a platinum

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108899544A (en) * 2018-06-06 2018-11-27 哈尔滨万鑫石墨谷科技有限公司 A kind of ultra-high purity/ultra-fine carbon nanotube conducting slurry and its preparation method and application
WO2021206331A1 (en) * 2020-04-10 2021-10-14 희성촉매 주식회사 Method for preparing carbon black support for fuel cell
KR102314233B1 (en) * 2020-04-10 2021-10-18 희성촉매 주식회사 A method for preparing carbon black supports used for fuel cell
KR20210126221A (en) * 2020-04-10 2021-10-20 희성촉매 주식회사 A method for preparing carbon black supports used for fuel cell
KR20220109652A (en) * 2021-01-29 2022-08-05 주식회사 코렌스알티엑스 Manufacturing method of catalyst supporter and catalyst for a fuel cell

Also Published As

Publication number Publication date
KR101434652B1 (en) 2014-08-26

Similar Documents

Publication Publication Date Title
Biddinger et al. Nitrogen-containing carbon nanostructures as oxygen-reduction catalysts
Mu et al. Graphene-carbon nanofiber hybrid supported Pt nanoparticles with enhanced catalytic performance for methanol oxidation and oxygen reduction
Qiu et al. Three-dimensional phosphorus-doped graphitic-C3N4 self-assembly with NH2-functionalized carbon composite materials for enhanced oxygen reduction reaction
Tsuji et al. Fast preparation of PtRu catalysts supported on carbon nanofibers by the microwave-polyol method and their application to fuel cells
CN101425583B (en) Fuel cell membrane electrode and preparation thereof
Charreteur et al. Increasing the activity of Fe/N/C catalysts in PEM fuel cell cathodes using carbon blacks with a high-disordered carbon content
JP4185064B2 (en) Cathode electrode for liquid fuel type polymer electrolyte fuel cell and liquid fuel type polymer electrolyte fuel cell
CN101465434B (en) Fuel battery membrane electrode and preparation method thereof
Yaldagard et al. Carbonaceous nanostructured support materials for low temperature fuel cell electrocatalysts—A review
CN103372429B (en) Preparation method of Pt/C (platinum/carbon) catalyst for fuel cell
US8518608B2 (en) Preparation of supported electrocatalyst comprising multiwalled carbon nanotubes
CN101641816B (en) Process for the electrochemical catalysts of fuel cells based on polymer electrolytes
JP2015138780A (en) Electrode catalyst for fuel cell, method of preparing the same, and electrode for fuel cell and fuel cell that including the same
Prehn et al. Towards nitrogen-containing CNTs for fuel cell electrodes
CN104218250A (en) PtM/C electrocatalyst for fuel cell and preparation method of PtM/C electrocatalyst for fuel cell
Kayarkatte et al. Freestanding catalyst layers: A novel electrode fabrication technique for PEM fuel cells via electrospinning
Zou et al. Investigation of perovskite oxide SrCo0. 8Cu0. 1Nb0. 1O3–δ as a cathode material for room temperature direct ammonia fuel cells
JP6572416B1 (en) Conductive nanofiber member, fuel cell member, fuel cell, and method of manufacturing conductive nanofiber member
KR101434652B1 (en) Pre-treatment method of synthesis for electrode catalyst
Li et al. Preparation of self-nitrogen-doped porous carbon nanofibers and their supported PtPd alloy catalysts for oxygen reduction reaction
Gao et al. Facile synthesis of Pt nanoparticles supported on graphene/Vulcan XC-72 carbon and their application for methanol oxidation
JP2019083167A (en) Electrode catalyst layer
JP2018190545A (en) Electrode catalyst for fuel cell and method for producing the same
Zhou et al. Pt nanoparticles coated on multiwalled carbon nanotubes by the modification of small-sized molybdenum phosphide for enhanced methanol electro-oxidation
Lu et al. Pt-supported C–MnO 2 as a catalyst for polymer electrolyte membrane fuel cells

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170822

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180821

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190820

Year of fee payment: 6