WO2021206331A1 - Method for preparing carbon black support for fuel cell - Google Patents

Method for preparing carbon black support for fuel cell Download PDF

Info

Publication number
WO2021206331A1
WO2021206331A1 PCT/KR2021/003749 KR2021003749W WO2021206331A1 WO 2021206331 A1 WO2021206331 A1 WO 2021206331A1 KR 2021003749 W KR2021003749 W KR 2021003749W WO 2021206331 A1 WO2021206331 A1 WO 2021206331A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon black
auxiliary
stirrer
reactor
ribs
Prior art date
Application number
PCT/KR2021/003749
Other languages
French (fr)
Korean (ko)
Inventor
유영산
이현우
이도균
Original Assignee
희성촉매 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 희성촉매 주식회사 filed Critical 희성촉매 주식회사
Publication of WO2021206331A1 publication Critical patent/WO2021206331A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/20Stationary reactors having moving elements inside in the form of helices, e.g. screw reactors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/56Treatment of carbon black ; Purification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method for reforming carbon black used as a carrier for platinum and platinum-transition metal active materials in fuel cells, specifically proton exchange membrane fuel cells (PEMFC) and phosphoric acid fuel cells (PAFC), and more Specifically, it relates to a carbon black reforming method in which the carbon black atomization step is preceded before the carbon black activation step and a fixed bed reactor applied to improve the uniformity, surface area and crystallinity of carbon black in the carbon black activation step, the fixed bed reactor A helical ribbon type stirrer that can supply water vapor and inert gas to the top, bottom, left and right sides of the reactor can be installed.
  • PEMFC proton exchange membrane fuel cells
  • PAFC phosphoric acid fuel cells
  • a fuel cell that generates energy using hydrogen is considered as one of the most eco-friendly power generation systems.
  • a fuel cell is an environmentally friendly fuel cell that generates energy through an electrochemical reaction in which hydrogen oxidation reaction occurs at the anode and oxygen reduction reaction occurs at the cathode, and hydrogen and oxygen react to produce water as a product. is a power generation system.
  • Platinum (Pt) an active material
  • carbon black is mainly used as a carrier, that is, a support to improve the dispersion of the active material.
  • the surface area, pore structure and crystallinity of carbon black are directly related to the dispersion of the active material, electrical conductivity and corrosion properties of carbon black. Schematically, the surface area and pore structure of carbon black are major factors that determine the dispersion and mass transfer rate of noble metals as active materials. It is desirable to have an appropriate surface area and pore structure by being physically connected to each other. On the other hand, the higher the crystallinity of carbon black, the more advantageous it is to improve electrical conductivity and reverse voltage durability.
  • carbon black is produced from petrochemical by-products, and carbon black is formed when raw materials of hydrocarbons are heated under an inert gas at a high temperature of 1000° C. or higher.
  • Small primary particles with a size of several nanometers exposed to high temperatures are aggregated into larger aggregates and also grow into aggregates, which are connected aggregates. Since the crystallinity of carbon black increases as the exposure temperature increases, the crystallinity of the aggregates or aggregates varies depending on the exposure temperature and time, not only between the particles, but also between the particles and the crystallinity of the inside and the outside even in a single particle.
  • the steam activation method As a method of controlling or modifying the surface area, pore structure, and crystallinity of carbon black, the steam activation method is known, and the basic principle is that when carbon black and water vapor are reacted at a high temperature (activation), CO, CO 2 and H 2 are produced as shown in the following formula.
  • the surface area, pore structure, and crystallinity of carbon black change during generation, and specifically, the surface area, pore structure, and crystallinity of carbon black vary depending on the activation temperature, time, and amount of moisture supplied.
  • the degree of activity varies depending on the crystalline mixing ratio. It is known that the greater the amount of amorphous carbon, which is easy to react with the amount of supplied moisture, the greater the activity.
  • a liquid activation method that is, after laminating a carbon black carrier inside the reactor, spraying water vapor and inert gas from the lower end to the upper end to scatter carbon, A process of reacting while flowing is disclosed.
  • the present inventors have found that, in the process of reforming carbon black used as a carrier for a catalytically active material of a fuel cell, the atomization step of carbon black precedes the carbon black activation step, and then, in the carbon black activation step, the inside of the reactor is moved vertically and horizontally. It was confirmed that when a fixed bed reactor equipped with a helical ribbon-type stirrer capable of supplying water vapor and inert gas was applied, the physical properties of carbon black, i.e., the uniformity, surface area, and crystallinity of the physical properties within the reactor, were improved, and the yield was improved.
  • the present inventors found that when the obtained carbon raw material is atomized (dispersion) and the carbon black aggregate or aggregate is formed into primary particles and then activated, the carbon black interior can be activated and the specific surface area is greatly improved.
  • the term "primary particleization” refers to the process of pulverizing or micronizing carbon black obtained in the form of aggregates or aggregates in a high-pressure homogenizer to form primary particles or agglomerates of particles having a much smaller diameter compared to aggregates or aggregates. means, and does not necessarily mean that only primary particles are pulverized.
  • the present inventors applied a fixed-bed reactor capable of reacting by contact with water vapor in a static state without scattering carbon black in the activation step, and a helical ribbon-type main stirrer is installed in the reactor, and the main stirrer is a hollow main stirrer. It consists of a rotating shaft, a plurality of ribs connected at regular intervals in the longitudinal direction of the main rotating shaft and in vertical communication with the main rotating shaft, and a helical ribbon-shaped stirring plate mounted on each of the ribs, and each of the ribs has A plurality of injection ports are provided at regular intervals.
  • An auxiliary stirrer may be connected to the helical ribbon-type main stirrer, and the auxiliary stirrer is a hollow auxiliary rotary shaft, a plurality of auxiliary ribs connected at regular intervals in the longitudinal direction of the auxiliary rotary shaft and in vertical communication with the auxiliary rotary shaft, the auxiliary It consists of a support shaft connected to the end of the rib, and a long plate-type stirring plate mounted at an inclination relative to the auxiliary rotation axis between the support shaft and the auxiliary rotation shaft, and each of the auxiliary ribs is provided with a plurality of injection holes at regular intervals.
  • Moisture and inert gas are supplied through the nozzles of the ribs connected to the left and right based on the longitudinal direction of the main and/or auxiliary stirrers rotating in the reactor according to the present invention, and the main and/or auxiliary rotation axes are supplied to the inside of the reactor.
  • the uniformity of physical properties of carbon black is increased by the simultaneous reaction of carbon black and water vapor.
  • the stirrers react while stirring at the lowest speed to minimize the reduction in yield due to entrainment.
  • the present invention it is possible to easily control or improve the final yield, crystallinity, surface area, and pore structure of activated carbon black. While keeping the stirring speed to a minimum, moisture and inert gas supplied from the left, right, upper, middle and lower ribs react uniformly with the carbon black stirred by the stirrer, and the yield of carbon black lost by entrainment is within 3% of the total, greatly improving the yield. do. After the reaction, the surface area and crystallinity deviation between samples obtained at the upper, middle, lower, left and right positions inside the reactor is also significantly improved to within 3%. In addition, when the carbon black particles are adjusted to a small size with a high-pressure disperser, that is, after pulverization, react with water vapor to increase the surface area and crystallinity by 15% or more at the same temperature.
  • FIG. 1 shows a schematic perspective view, a top view and a side view of a stirrer mounted inside a stationary reactor applied in the activation step of the present invention.
  • a top view is shown in the upper left
  • a side view is shown in the lower left
  • a perspective view is disclosed in the right.
  • Figure 2 shows a schematic perspective view, a plan view and a side view of the main stirrer among the stirrers of the present invention.
  • Figure 3 shows a schematic perspective view, a plan view and a side view of an auxiliary stirrer among the stirrers of the present invention.
  • FIG. 8A is a TEM photograph of the obtained carbon black raw material
  • FIG. 8B is a TEM photograph of carbon black after pulverization.
  • the present invention relates to a carbon black reforming method used as a platinum active material carrier or support for a fuel cell, the carbon black raw material has a diameter of 15 to 20 micrometers, and the carbon black raw material is obtained in the form of aggregates or aggregates of primary particles do.
  • Carbon black may also be referred to as carbon, carbon, or activated carbon, and it is generally understood that aggregates of carbon black have a diameter of several tens of nm, and aggregates have a diameter of ⁇ m.
  • the reforming method of the present invention consists of a step of pulverizing a carbon black raw material and a step of activating the pulverized carbon black. After the pulverization step, it is dispersed or pulverized into primary particles or agglomerates of particles smaller in size than the raw material carbon black.
  • 8A is a TEM photograph of the obtained carbon black raw material
  • FIG. 8B is a TEM photograph of carbon black after pulverization.
  • the pulverization step is a step of atomizing the carbon black raw material having a diameter of 15 to 20 ⁇ m into a mass of primary particles or particles having a smaller diameter.
  • the carbon black raw material obtained in the form of aggregates through the pulverization or atomization step may be dispersed or pulverized into aggregates or smaller primary particles, and then reformed with high efficiency in the activation step.
  • steam activation is performed with water at about 1000° C., and pores are formed in the pulverized carbon black due to the oxidizing power of water vapor.
  • Variables such as temperature/reaction time/amount applied in the activation step are understood as major factors determining the specific surface area and pore structure of carbon black.
  • the pulverization step when a pressure of 300 to 1,000 bar is applied to a mixed solution of carbon black and ethylene glycol and passed through a micro orifice module with a diameter of about 75 ⁇ m, particle atomization proceeds due to impact, shear, cavitation, etc.
  • the carbon mixture flowing into the pipe of the micro orifice module is primarily crushed by impact between the wall and particles, and the mixed solution passing through the pipe at supersonic speed by high pressure is subjected to shear resistance due to resistance such as speed difference and friction. This action results in secondary pulverization.
  • cavitation occurs due to the pressure difference generated by the high pressure, which leads to atomization between the carbon particles in the carbon mixture, and is then dried at 80 to 150 degrees to exist on the carbon surface and in the pores. remove the solution.
  • Active phase the high-temperature conditions, of 800 to 1200, 900 to 1100 [deg.]
  • inert gas for pulverized carbon black in, N 2 or Ar preferably water vapor with N 2 and agitation, and carbon black reforming proceeds.
  • the present invention provides a stationary reactor for accelerating the reaction while maintaining the flow of carbon black in the reactor to a minimum in the steam activation of a carbon carrier for a fuel cell.
  • a helical ribbon-type impeller is used between the carbon blacks stacked in the reactor to stir the carbon black to the top and bottom of the reactor.
  • the reactor is configured such that there is no left-right temperature gradient.
  • the helical ribbon-type impeller has a large ribbon width and a narrow top-to-bottom spacing so that low-density carbon can be mixed evenly between the upper, lower, and left and right sides.
  • the contact efficiency is increased by supplying moisture and inert gas through a plurality of nozzles provided in the fields.
  • the pulverization step is preceded before the activation step to maximize the contact with moisture by making carbon black containing amorphous particles into single particles as much as possible.
  • the impeller rotates at the maximum RPM in which the atomized carbon does not scatter or float inside the reactor, and water and inert gas are simultaneously supplied at a predetermined temperature to control the desired surface area, pore size distribution and crystallinity to activate carbon black for a certain period of time. can do.
  • the stationary reactor according to the present invention is a concept relative to the conventional fluidized reactor.
  • a carbon black carrier is laminated inside the reactor, and then water vapor and inert gas are sprayed from the lower end to the upper end to cause carbon black to react while scattering and floating, but problems such as yield loss and inhomogeneity of properties has been pointed out
  • the present inventors propose a stationary reactor in which carbon black is not suspended but flows almost statically by a stirrer.
  • the fixed reactor is also referred to as a fixed bed reactor.
  • FIG. 1 is a perspective view of an exemplary stirrer 100 mounted inside a fixed bed reactor.
  • the stirrer is installed inside the reactor, and the stirrer is composed of a main stirrer 110 schematically shown in FIG. 2 and an auxiliary stirrer 120 shown in FIG. 3 .
  • the main stirrer is installed outside the reactor through the hollow connecting shaft 130 and is coupled to a driving unit (not shown) that communicates with the fluid supply unit (not shown). While the connecting shaft 130 is rotated inside the reactor by the driving unit and through the fluid supply unit, hot water vapor and inert gas are provided to the hollow of the connecting shaft at the same time.
  • the main stirrer 110 in the form of a helical ribbon according to the present invention is disposed at the top inside the reactor and is combined with the auxiliary stirrer 120 that can be disposed at the bottom to complete the stirrer 100, but it can be implemented in the activation step without an auxiliary stirrer. .
  • the auxiliary stirrer is removable if necessary.
  • the main stirrer 110 includes a hollow main rotating shaft 111, a plurality of ribs 115 connected at regular intervals in the longitudinal direction of the main rotating shaft and communicating in a vertical direction with the main rotating shaft, and a helical ribbon mounted on each of the ribs.
  • auxiliary stirrer 120 may be connected to the helical ribbon-shaped main stirrer, and the auxiliary stirrer is connected at regular intervals in the longitudinal direction of the hollow auxiliary rotary shaft 121 and the auxiliary rotary shaft, and is perpendicular to the auxiliary rotary shaft.
  • a plurality of injection holes 1251 are provided at regular intervals in each of the auxiliary ribs.
  • the auxiliary rib length is designed to be operable inside the reactor.
  • the long plate-type stirring plate is provided to be inclined at about 30 to 40 degrees with respect to the auxiliary rotation shaft, and the carbon black contained in the lower part of the reactor flows and rises to the upper main stirrer 110 .
  • the lower end of the hollow main rotary shaft 111 of the main stirrer 110 is coupled to communicate with the hollow auxiliary rotary shaft 121 of the auxiliary stirrer. Since the rotation shafts 111 and 121 are coupled to the ribs 115 and 125 in a fluid communication manner, water vapor and inert gas provided through the rotation shaft are formed in the ribs through a plurality of injection holes 1151 and 1251 inside the reactor. It is ejected into the furnace and mixed with carbon black flowing by the stirring plates 118 and 128, and steam activation proceeds.
  • a pulverized carbon black carrier is introduced into the reactor.
  • the amount of the input is not limited, but it is preferably input at a level that can contact the stirring plate in the form of a helical ribbon.
  • Nitrogen gas and high-temperature steam are provided through a supply unit (not shown), and rotation of the connecting shaft is started through a driving unit (not shown).
  • the connecting shaft is rotated at 30 rpm to maximize the water vapor contact while minimizing the flow of the injected carbon black.
  • Nitrogen gas and water vapor provided through the supply part are discharged into the reactor through the connecting shaft, the rotating shaft and the rib dispersion holes, and come into contact with the carbon black which is slowly moved in the spiral direction by the stirring plate to oxidize the carbon black, thereby modifying the surface area and the pore structure.
  • the auxiliary stirrer is designed in an inclined long way to raise the carbon black contained in the bottom of the reactor, and the upper stirring plate in the form of a helical ribbon enables a uniform and overall carbon black flow. Unlike the conventional fluidized reactor, scattering of carbon black is suppressed, thereby improving the yield and improving the homogeneity.
  • Carbon black product name: Denka Black, specific surface area 64 m 2 /g, 1 g
  • ethylene glycol 460 g
  • atomization was performed by applying a pressure of 300 to 1,000 bar.
  • 70 g of the obtained particulate sample was put into a stationary reactor, and the nitrogen flow rate was 0.2 L/min, a reaction temperature of 1000° C., and a molar ratio of water vapor/carbon black was 1.96 for 6 hours. After the reactor was stopped, it was purged with nitrogen gas to 80° C. or less, and the activated carbon black was recovered and analyzed for particle size, crystal size, and the like.
  • the activation step was performed in the same manner as in Example 1 in the raw material state without pulverizing carbon black.
  • Table 1 summarizes carbon black activation conditions and properties before and after activation.
  • Example 1 Example 2 Comparative Example 2
  • Example 3 Example 4
  • Raw material specific surface area m 2 /g
  • 64 64 64 64 125 125 125 Crystal size before activation (nm) 3.72 3.88 3.90 2.53 2.61 2.63
  • Active penetration D90 ( ⁇ m) 18.2 4.2 4.8 23.0 8.0 7.9 activation temperature ( ⁇ C) 1000 1000 950 1000 1000 950 H 2 O/Carbon (mol/mol) 1.96 1.96 1.75 1.96 1.96 1.75 transference number (%)
  • Example 2 in order to compensate for the weakening of durability due to the decrease in the crystal size of carbon black in Example 1, the temperature inside the reactor was lowered from 1000° C. to 950° C., and the H 2 O/Carbon molar ratio was changed from 1.96 to 1.75. It was lowered and activated. Referring to Table 1, the crystal size could be maintained at the same level as that of Comparative Example 1. In addition, the yield is greatly increased due to the low temperature reaction and the low H 2 O/Carbon molar ratio, which can be said to be a more economical process. However, the reduction in crystal size by activation is limited to some carbon blacks, and there are also many carbon blacks whose crystal size increases when carbon is activated (Table 1 of Comparative Examples 2, 3, and 4). See results).
  • Denka Black a carbon raw material
  • the graphite peak of 2-Theta 27.5 degree is low, and when it is activated, the corresponding peak tends to decrease.
  • the crystal plane portion between the particles is increased as a whole, and the graphite peak increases.
  • thermogravimetric analysis shows the results of thermogravimetric analysis.
  • the temperature at which carbon is oxidized decreases by about 40°C in thermogravimetric analysis.
  • This result is data related to carbon durability, and as the oxidation temperature decreases, there is a possibility that the durability of carbon decreases.
  • carbon is activated at 950° C. after particle unification, the decrease in oxidation temperature is reduced to about 15° C.
  • FIG. 6 is a particle size analysis result.
  • carbon black raw material shows a particle size distribution of about 0.5 ⁇ 32 ⁇ m, and when it is made into single particles using a high-pressure disperser, it shows a particle size distribution of about 0.25 ⁇ 10 ⁇ m, and when the obtained fine particles are activated in a stationary reactor, it is about 0.5 ⁇ 16 ⁇ m to obtain a particle size distribution of
  • Figure 7 shows the pore distribution analysis results. Compared with the carbon black raw material, it can be seen that the mesopores of 30 to 40 ⁇ increase after particle unification and activation.

Abstract

The present invention relates to a method for modifying carbon black for a fuel cell, the carbon black being used as a support of platinum and platinum-transition metal active materials, and to: a method for modifying carbon black in which a carbon black atomization step is carried out before a carbon black activation step; and a fixed-bed reactor applied in the carbon black activation step to improve the uniformity, surface area, and crystallinity of carbon black. The fixed-bed reactor can be provided with a helical ribbon-type agitator capable of supplying steam and inert gases upward, downward, leftward, and rightward inside the reactor.

Description

연료전지용 카본블랙 담체 제조방법Manufacturing method of carbon black carrier for fuel cell
본 발명은 연료전지, 구체적으로 양성자 교환막 연료전지 (PEMFC) 및 인산형 연료전지 (PAFC)의 백금, 백금-전이금속 활성물질의 담체로 사용되는 카본블랙(carbonblack)의 개질 방법에 관한 것이고, 더욱 상세하게는 카본블랙 활성화 단계 전에 카본블랙의 미립화 단계가 선행되는 카본블랙의 개질 방법 및 카본블랙 활성화 단계에서 카본블랙의 균일도, 표면적 및 결정성이 개선되도록 적용되는 고정층 반응기에 관한 것이며, 상기 고정층 반응기에는 반응기 내부 상하, 좌우로 수증기와 비활성기체를 공급할 수 있는 헬리컬 리본형(Helical ribbon type) 교반기가 장착될 수 있다.The present invention relates to a method for reforming carbon black used as a carrier for platinum and platinum-transition metal active materials in fuel cells, specifically proton exchange membrane fuel cells (PEMFC) and phosphoric acid fuel cells (PAFC), and more Specifically, it relates to a carbon black reforming method in which the carbon black atomization step is preceded before the carbon black activation step and a fixed bed reactor applied to improve the uniformity, surface area and crystallinity of carbon black in the carbon black activation step, the fixed bed reactor A helical ribbon type stirrer that can supply water vapor and inert gas to the top, bottom, left and right sides of the reactor can be installed.
전세계적으로 환경오염과 미래에너지원 확보를 위해 기존 화석연료 대신 신재생에너지로 대체하려는 움직임이 활발하다. 그 중 수소를 이용하여 에너지를 발생시키는 연료전지는 가장 친환경적인 발전시스템의 하나로 손꼽히고 있다. 연료전지는 음극(Anode)에서 수소의 산화반응, 양극(Cathode)에서 산소의 환원반응이 일어나게 되며, 결국 수소와 산소가 반응하여 생성물로 물이 생성되는 전기화학반응을 통해 에너지를 발생시키는 친환경적인 발전시스템이다.There is an active movement around the world to replace existing fossil fuels with new and renewable energy for environmental pollution and securing future energy sources. Among them, a fuel cell that generates energy using hydrogen is considered as one of the most eco-friendly power generation systems. A fuel cell is an environmentally friendly fuel cell that generates energy through an electrochemical reaction in which hydrogen oxidation reaction occurs at the anode and oxygen reduction reaction occurs at the cathode, and hydrogen and oxygen react to produce water as a product. is a power generation system.
음극(Anode) 반응: H 2 → 2H + + 2e - (0.00 V vs. SHE)Anode reaction: H 2 → 2H + + 2e - (0.00 V vs. SHE)
양극(Cathode) 반응: 1/2O 2 + 2H + + 2e - → H 2O (1.23V vs. SHE)Cathode reaction: 1/2O 2 + 2H + + 2e - → H 2 O (1.23V vs. SHE)
전체(Overall) 반응: H 2 + 1/2O 2 → H 2O (이론기전력 △E = 1.23 V)Overall reaction: H 2 + 1/2O 2 → H 2 O (theoretical electromotive force ΔE = 1.23 V)
연료전지의 음극 및 양극 촉매로서 활성물질인 백금(Pt)이 주로 사용되고, 활성물질의 분산도 증진을 위해 주로 카본블랙이 담체 즉 지지체로 사용된다. 카본블랙의 표면적, 세공구조 및 결정성은 활성물질의 분산도, 전기전도도 및 카본블랙의 부식특성과 직결된다. 개략적으로, 카본블랙의 표면적과 세공구조는 활성물질인 귀금속의 분산도 및 물질전달 속도를 결정하는 주요 인자이고, 통상 연료전지용 담체로 사용되는 카본블랙은 마이크로 세공 분율은 작으면서 메조세공이 3차원적으로 서로 연결되어 적절한 표면적 및 세공구조를 가지는 것이 바람직하며, 한편 전기전도성과 역전압 내구성 향상을 위하여 카본블랙의 결정성이 높을수록 유리하다. 일반적으로 카본블랙은 석유화학 부산물로부터 제조되며, 1000℃ 이상 고온에서 탄화수소류의 원료를 비활성기체 하에서 가열하면 카본블랙이 형성된다. 고온에 노출된 수 나노미터 크기의 작은 1차 입자(primary particle)는 좀 더 큰 집합체(aggregate)로 뭉쳐지고, 또한 집합체가 연결된 형태인 응집체(agglomerate)로 성장한다. 카본블랙의 결정성은 노출 온도가 높을수록 증가하므로, 뭉쳐진 집합체 또는 응집체의 노출온도와 시간에 따라 결정성은 입자와 입자간에도 다를 뿐 아니라, 단일 입자에서도 내부와 외부의 결정성에 차이가 생긴다.Platinum (Pt), an active material, is mainly used as a catalyst for the anode and cathode of a fuel cell, and carbon black is mainly used as a carrier, that is, a support to improve the dispersion of the active material. The surface area, pore structure and crystallinity of carbon black are directly related to the dispersion of the active material, electrical conductivity and corrosion properties of carbon black. Schematically, the surface area and pore structure of carbon black are major factors that determine the dispersion and mass transfer rate of noble metals as active materials. It is desirable to have an appropriate surface area and pore structure by being physically connected to each other. On the other hand, the higher the crystallinity of carbon black, the more advantageous it is to improve electrical conductivity and reverse voltage durability. In general, carbon black is produced from petrochemical by-products, and carbon black is formed when raw materials of hydrocarbons are heated under an inert gas at a high temperature of 1000° C. or higher. Small primary particles with a size of several nanometers exposed to high temperatures are aggregated into larger aggregates and also grow into aggregates, which are connected aggregates. Since the crystallinity of carbon black increases as the exposure temperature increases, the crystallinity of the aggregates or aggregates varies depending on the exposure temperature and time, not only between the particles, but also between the particles and the crystallinity of the inside and the outside even in a single particle.
카본블랙의 표면적, 세공구조, 결정성을 조절 또는 개질하는 방법으로서 수증기 활성화법이 공지되며, 기본적인 원리는 고온에서 카본블랙과 수증기를 반응시키면 (활성화) 아래 식처럼 CO, CO 2 및 H 2를 발생하면서 카본블랙의 표면적, 세공구조, 결정성에 변화가 생기고, 구체적으로 활성화 온도, 시간, 공급 수분량에 따라 카본블랙의 표면적, 세공구조, 결정성이 달라지며, 원료로 사용하는 카본블랙의 무정형/결정성 혼합 비율에 따라 활성 정도가 달라진다. 공급 수분량과 반응하기 쉬운 무정형카본이 많이 포함될수록 활성도가 더 커진다고 알려져 있다.As a method of controlling or modifying the surface area, pore structure, and crystallinity of carbon black, the steam activation method is known, and the basic principle is that when carbon black and water vapor are reacted at a high temperature (activation), CO, CO 2 and H 2 are produced as shown in the following formula. The surface area, pore structure, and crystallinity of carbon black change during generation, and specifically, the surface area, pore structure, and crystallinity of carbon black vary depending on the activation temperature, time, and amount of moisture supplied. The degree of activity varies depending on the crystalline mixing ratio. It is known that the greater the amount of amorphous carbon, which is easy to react with the amount of supplied moisture, the greater the activity.
C (카본블랙) + H2O → CO + H 2 C (carbon black) + H2O → CO + H 2
C (카본블랙) + 2H 2O → CO 2 + 2H 2 C (carbon black) + 2H 2 O → CO 2 + 2H 2
종래 수증기 활성화 기술에 의하면, 예컨대 대한민국 특허공개번호 2015-0117706호에 개시된 바와 같이 유동식 활성화 방법 즉, 카본블랙 담체를 반응기 내부에 적층 후, 하단부에서 상단부로 수증기와 비활성기체를 분사하여 카본을 비산, 유동하면서 반응하는 공정이 개시된다.According to the conventional steam activation technology, for example, as disclosed in Korean Patent Publication No. 2015-0117706, a liquid activation method, that is, after laminating a carbon black carrier inside the reactor, spraying water vapor and inert gas from the lower end to the upper end to scatter carbon, A process of reacting while flowing is disclosed.
그러나, 상기 유동식 활성화 방식은 카본블랙의 밀도가 낮기 때문에 반응기 하단부로부터 유입된 수증기와 비활성 기체에 의해 카본블랙이 부유하게 되며 필연적으로 미반응의 카본블랙이 배출구로 동반되어 수율이 감소되고, 부유 카본블랙과 수증기의 접촉이 무작위적으로 이루어져 얻어진 활성화 담체의 물성 균일도가 저하된다. 무엇보다도 카본블랙은 집합체 또는 응집체 형태로 입수되고 이들은 무정형과 결정형 탄소가 혼재된 1차 입자가 뭉쳐지고 연결된 형태이기 때문에, 노출되지 못한 무정형 부위와 수증기의 접촉이 원활하지 못하여, 결국 결정성이 불균일한 활성화 담체가 형성된다는 문제점이 있었다.However, in the flow activation method, since the density of carbon black is low, carbon black is suspended by water vapor and inert gas introduced from the lower end of the reactor, and unreacted carbon black is inevitably accompanied by the outlet, thereby reducing the yield, and floating carbon. The contact between black and water vapor is random, so that the uniformity of physical properties of the obtained activated carrier is lowered. Above all, carbon black is obtained in the form of aggregates or aggregates, and since they are agglomerated and connected primary particles of amorphous and crystalline carbons, the contact between the unexposed amorphous parts and water vapor is not smooth, resulting in non-uniform crystallinity. There was a problem that an activated carrier was formed.
본 발명자들은 연료전지의 촉매 활성물질의 담체로 사용되는 카본블랙을 개질하는 과정에서, 구체적으로 카본블랙 활성화 단계 전에 카본블랙의 미립화 단계가 선행되고, 이후 카본블랙 활성화 단계에서 반응기 내부 상하, 좌우로 수증기와 비활성기체를 공급할 수 있는 헬리컬 리본 형태의 교반기가 장착되는 고정층 반응기를 적용하면, 카본블랙의 물성, 즉 반응기 내에서 물성 균일도, 표면적 및 결정성이 개선되고 수율이 향상된다는 것을 확인하였다. In the process of reforming carbon black used as a carrier of a catalytically active material of a fuel cell, the present inventors have found that, in the process of reforming carbon black used as a carrier for a catalytically active material of a fuel cell, the atomization step of carbon black precedes the carbon black activation step, and then, in the carbon black activation step, the inside of the reactor is moved vertically and horizontally. It was confirmed that when a fixed bed reactor equipped with a helical ribbon-type stirrer capable of supplying water vapor and inert gas was applied, the physical properties of carbon black, i.e., the uniformity, surface area, and crystallinity of the physical properties within the reactor, were improved, and the yield was improved.
본 발명자들은 입수된 카본 원료를 미립화하여 (dispersion) 카본블랙 집합체 또는 응집체에서 1차 입자화한 후 활성화를 수행하면 카본블랙 내부까지 활성화가 가능하여 비표면적이 크게 향상된다는 것을 알았다. 본원에서 1차 입자화라는 용어는 집합체 또는 응집체 형태로 입수된 카본블랙을 고압균질기에서 덩어리를 미분화 또는 미립화 처리하여 집합체 또는 응집체와 비교하여 직경이 훨씬 작은 1차 입자 또는 입자들의 덩어리를 형성하는 것을 의미하고, 반드시 1차 입자로만 분쇄된다는 의미는 아니다. The present inventors found that when the obtained carbon raw material is atomized (dispersion) and the carbon black aggregate or aggregate is formed into primary particles and then activated, the carbon black interior can be activated and the specific surface area is greatly improved. As used herein, the term "primary particleization" refers to the process of pulverizing or micronizing carbon black obtained in the form of aggregates or aggregates in a high-pressure homogenizer to form primary particles or agglomerates of particles having a much smaller diameter compared to aggregates or aggregates. means, and does not necessarily mean that only primary particles are pulverized.
본 발명자들은 활성화 단계에서 카본블랙이 비산되지 않고 정적인 상태에서 수증기와 접촉되어 반응할 수 있는 고정층 반응기를 적용하였으며, 상기 반응기에는 헬리컬 리본 형태의 주교반기가 설치되되, 상기 주교반기는 중공형 주회전축, 상기 주회전축의 길이방향으로 일정 간격으로 연결되며 주회전축과 수직하게 연통되는 다수의 리브 (rib), 상기 각각의 리브에 장착되는 헬리컬 리본 형태의 교반판으로 구성되고, 상기 각각의 리브에는 일정 간격으로 다수의 분사구가 구비된다. 상기 헬리컬 리본 형태의 주교반기에는 보조 교반기가 연결될 수 있고, 상기 보조교반기는 중공형 보조회전축, 상기 보조회전축의 길이방향으로 일정 간격으로 연결되며 보조회전축과 수직하게 연통되는 다수의 보조리브, 상기 보조리브 말단에 연결되는 지지축, 및 상기 지지축과 보조회전축 간에 보조회전축 기준으로 경사를 이루며 장착되는 장반형 교반판으로 구성되고, 상기 각각의 보조리브에는 일정 간격으로 다수의 분사구가 구비된다.The present inventors applied a fixed-bed reactor capable of reacting by contact with water vapor in a static state without scattering carbon black in the activation step, and a helical ribbon-type main stirrer is installed in the reactor, and the main stirrer is a hollow main stirrer. It consists of a rotating shaft, a plurality of ribs connected at regular intervals in the longitudinal direction of the main rotating shaft and in vertical communication with the main rotating shaft, and a helical ribbon-shaped stirring plate mounted on each of the ribs, and each of the ribs has A plurality of injection ports are provided at regular intervals. An auxiliary stirrer may be connected to the helical ribbon-type main stirrer, and the auxiliary stirrer is a hollow auxiliary rotary shaft, a plurality of auxiliary ribs connected at regular intervals in the longitudinal direction of the auxiliary rotary shaft and in vertical communication with the auxiliary rotary shaft, the auxiliary It consists of a support shaft connected to the end of the rib, and a long plate-type stirring plate mounted at an inclination relative to the auxiliary rotation axis between the support shaft and the auxiliary rotation shaft, and each of the auxiliary ribs is provided with a plurality of injection holes at regular intervals.
본 발명에 따른 반응기 내부에서 회전하는 주교반기 및/또는 보조교반기의 길이방향 기준으로 상중하, 및 주회전축 및/또는 보조회전축 기준으로 좌우에 연결된 리브의 분사구를 통해 수분과 비활성기체가 공급되어 반응기 내부에서 카본블랙과 수증기가 동시에 반응함으로써 카본블랙의 물성 균일도가 증가된다. 동시에 교반기들은 최저속도로 교반하면서 반응함으로써 동반부유에 의한 수율 감소를 최소화한다. 또한 다수의 1차 입자로 구성된 카본블랙 집합체 또는 응집체를 고압균질기를 이용하여 작은 입자로 먼저 액상에서 분쇄하고 건조하는 미분화 단계를 거쳐 상기와 같이 활성화시키면 결정성이 크게 향상되며, 수분에 의한 반응 효율 또한 크게 향상되어 종래 반응온도보다 낮은 온도에서 진행하여도 우수한 개질 효과를 달성할 수 있다.Moisture and inert gas are supplied through the nozzles of the ribs connected to the left and right based on the longitudinal direction of the main and/or auxiliary stirrers rotating in the reactor according to the present invention, and the main and/or auxiliary rotation axes are supplied to the inside of the reactor. The uniformity of physical properties of carbon black is increased by the simultaneous reaction of carbon black and water vapor. At the same time, the stirrers react while stirring at the lowest speed to minimize the reduction in yield due to entrainment. In addition, when the carbon black aggregate or aggregate composed of a plurality of primary particles is first pulverized in a liquid phase into small particles using a high-pressure homogenizer and dried as described above, and activated as described above, crystallinity is greatly improved, and reaction efficiency by moisture In addition, it is greatly improved, and it is possible to achieve an excellent reforming effect even if it proceeds at a temperature lower than the conventional reaction temperature.
본 발명에 의하면 활성화 카본블랙의 최종 수율, 결정성, 표면적, 및 세공구조를 용이하게 조절 또는 향상시킬 수 있다. 교반속도를 최소로 유지하면서 좌우, 상중하 리브들로부터 공급된 수분 및 비활성기체는 교반기에 의해 교반되는 카본블랙과 균일하게 반응하며, 동반부유에 의해 손실되는 카본블랙은 전체 3% 이내로 수율이 크게 향상된다. 반응 후 반응기 내부 상중하, 좌우 위치에서 얻어진 샘플 간 표면적 및 결정성 편차 또한 3% 이내로 물성 균일도가 크게 증진된다. 더불어, 고압분산기로 카본블랙 입자를 작게 조절한 후, 즉 미분화 후 수증기와 반응시키면 동일 온도에서 15% 이상 표면적 및 결정성이 증가한다.According to the present invention, it is possible to easily control or improve the final yield, crystallinity, surface area, and pore structure of activated carbon black. While keeping the stirring speed to a minimum, moisture and inert gas supplied from the left, right, upper, middle and lower ribs react uniformly with the carbon black stirred by the stirrer, and the yield of carbon black lost by entrainment is within 3% of the total, greatly improving the yield. do. After the reaction, the surface area and crystallinity deviation between samples obtained at the upper, middle, lower, left and right positions inside the reactor is also significantly improved to within 3%. In addition, when the carbon black particles are adjusted to a small size with a high-pressure disperser, that is, after pulverization, react with water vapor to increase the surface area and crystallinity by 15% or more at the same temperature.
이하 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various different forms, and only these embodiments allow the disclosure of the present invention to be complete, and the scope of the invention to those of ordinary skill in the art will be completely It is provided to inform you.
도 1은 본 발명의 활성화 단계에서 적용되는 고정식 반응기 내부에 장착되는 교반기의 개략적인 사시도, 평면도 및 측면도를 도시한 것이다. 좌측 상단에는 평면도, 좌측 하단에는 측면도가 도시되고, 우측에는 사시도가 개시된다.1 shows a schematic perspective view, a top view and a side view of a stirrer mounted inside a stationary reactor applied in the activation step of the present invention. A top view is shown in the upper left, a side view is shown in the lower left, and a perspective view is disclosed in the right.
도 2는 본 발명의 교반기 중 주교반기의 개략적인 사시도, 평면도 및 측면도를 도시한 것이다.Figure 2 shows a schematic perspective view, a plan view and a side view of the main stirrer among the stirrers of the present invention.
도 3은 본 발명의 교반기 중 보조교반기의 개략적인 사시도, 평면도 및 측면도를 도시한 것이다.Figure 3 shows a schematic perspective view, a plan view and a side view of an auxiliary stirrer among the stirrers of the present invention.
도 4 내지 7 각각은 실시예에서 획득된 활성화 카본블랙의 XRD 패턴, 열 중량 분석 결과, 입도분석도, 및 세공분포를 각각 도시한 것이다.4 to 7 each show an XRD pattern, a thermogravimetric analysis result, a particle size analysis diagram, and a pore distribution of the activated carbon black obtained in Examples.
도 8a는 입수된 카본블랙 원재료에 대한 TEM 사진이고, 도 8b는 미분화 후의 카본블랙에 대한 TEM 사진이다.8A is a TEM photograph of the obtained carbon black raw material, and FIG. 8B is a TEM photograph of carbon black after pulverization.
본 발명은 연료전지의 백금 활성물질 담체 또는 지지체로 사용되는 카본블랙 개질 방법에 관한 것이고, 카본블랙 원재료는 직경이 15 내지 20 마이크로미터이며, 카본블랙 원재료는 1차 입자의 집합체 또는 응집체 형태로 입수된다. 카본블랙은 카본, 탄소 또는 활성탄으로 지칭될 수도 있고, 통상 카본블랙의 집합체는 직경이 수십 nm 수준이고, 응집체는 직경이 μm 수준으로 이해된다.The present invention relates to a carbon black reforming method used as a platinum active material carrier or support for a fuel cell, the carbon black raw material has a diameter of 15 to 20 micrometers, and the carbon black raw material is obtained in the form of aggregates or aggregates of primary particles do. Carbon black may also be referred to as carbon, carbon, or activated carbon, and it is generally understood that aggregates of carbon black have a diameter of several tens of nm, and aggregates have a diameter of μm.
본 발명인 개질방법은 카본블랙 원재료를 미분화하는 단계 및 미분 카본블랙을 활성화하는 단계로 구성된다. 미분화 단계를 거치면 원재료 카본블랙보다 크기가 작아진 일차 입자 또는 입자들의 덩어리로 분산 또는 분쇄된다. 도 8a는 입수된 카본블랙 원재료에 대한 TEM 사진이고, 도 8b는 미분화 후의 카본블랙에 대한 TEM 사진이다.The reforming method of the present invention consists of a step of pulverizing a carbon black raw material and a step of activating the pulverized carbon black. After the pulverization step, it is dispersed or pulverized into primary particles or agglomerates of particles smaller in size than the raw material carbon black. 8A is a TEM photograph of the obtained carbon black raw material, and FIG. 8B is a TEM photograph of carbon black after pulverization.
먼저, 미분화 단계는 직경이 15~20μm인 카본블랙 원재료를 더욱 작은 직경을 가지는 일차입자 또는 입자들의 덩어리로 미립화하는 단계이고 고압균질기를 이용하여 카본블랙 원재료를 액상에서 분쇄하고 건조하는 단계로 이루어진다. 특정 이론에 구속되지는 않지만, 미분화 또는 미립화 단계를 통해 응집체 형태로 입수된 카본블랙 원재료는 집합체 또는 그 이하의 1차 입자들로 분산 또는 분쇄되고, 이후 활성화 단계에서 높은 효율로 개질될 수 있다. 미분화 단계 이후 활성화 단계에서, 약 1000℃ 조건에서 수분으로 수증기 활성화가 수행되어 수증기의 산화력으로 미분화 카본블랙에 세공이 형성된다. 활성화 단계에서 적용되는 온도/반응시간/수량 등의 변수들은 카본블랙의 비표면적 및 세공구조를 결정하는 주요한 인자로 이해된다. First, the pulverization step is a step of atomizing the carbon black raw material having a diameter of 15 to 20 μm into a mass of primary particles or particles having a smaller diameter. Without being bound by a specific theory, the carbon black raw material obtained in the form of aggregates through the pulverization or atomization step may be dispersed or pulverized into aggregates or smaller primary particles, and then reformed with high efficiency in the activation step. In the activation step after the pulverization step, steam activation is performed with water at about 1000° C., and pores are formed in the pulverized carbon black due to the oxidizing power of water vapor. Variables such as temperature/reaction time/amount applied in the activation step are understood as major factors determining the specific surface area and pore structure of carbon black.
미분화 단계에서 카본블랙과 에틸렌글리콜 혼합된 용액을 300~1,000bar의 압력을 가하여 직경이 약 75μm인 미세 오리피스 모듈을 통과시키면 충격, 전단, 공동화 현상 등으로 입자미립화가 진행된다. 더욱 상세하게는 미세 오리피스 모듈의 관으로 유입된 카본 혼합액은 벽면과 입자들간의 충격으로 1차적으로 분쇄되고, 고압에 의해 초음속으로 관로를 통과하는 혼합액은 속도차 및 마찰과 같은 저항에 의해 내 전단력이 작용하여, 2차 분쇄가 이루어진다. 마지막으로 카본 혼합액은 고압에 의해 발생된 압력 차이로 공동화 현상(cavitation)이 발생하며, 이로 인해 카본 혼합액 내의 카본 입자간의 미립화가 진행되고, 이후 80~150도에서 건조하여, 카본 표면 및 세공 내에 존재하는 용액을 제거한다.In the pulverization step, when a pressure of 300 to 1,000 bar is applied to a mixed solution of carbon black and ethylene glycol and passed through a micro orifice module with a diameter of about 75 μm, particle atomization proceeds due to impact, shear, cavitation, etc. In more detail, the carbon mixture flowing into the pipe of the micro orifice module is primarily crushed by impact between the wall and particles, and the mixed solution passing through the pipe at supersonic speed by high pressure is subjected to shear resistance due to resistance such as speed difference and friction. This action results in secondary pulverization. Finally, in the carbon mixture, cavitation occurs due to the pressure difference generated by the high pressure, which leads to atomization between the carbon particles in the carbon mixture, and is then dried at 80 to 150 degrees to exist on the carbon surface and in the pores. remove the solution.
활성화 단계에서는 고온의 조건, 800도 내지 1200도, 900도 내지 1100도 내지, 바람직하게는 950도 내지 1050도 내에서 미분화 카본블랙을 비활성기체, N 2 또는 Ar, 바람직하게는 N 2와 함께 수증기와 교반시키고 카본블랙 개질이 진행된다. Active phase, the high-temperature conditions, of 800 to 1200, 900 to 1100 [deg.] To, preferably, 950 degrees to 1050 also inert gas for pulverized carbon black in, N 2 or Ar, preferably water vapor with N 2 and agitation, and carbon black reforming proceeds.
본 발명은 연료전지용 카본 담체의 수증기 활성화에 있어서, 반응기 내부에서 카본블랙의 유동을 최소한으로 유지하면서 반응을 촉진시키기 위한 고정식 반응기를 제공한다. 유동식 반응기와 대비하여, 유발 가능한 불균일도를 보완할 목적으로 반응기 내에서 카본블랙의 유동을 최소화하기 위하여, 반응기 내에서 적층된 카본블랙 사이로 헬리컬 리본 타입의 임펠러를 이용하여 카본블랙을 교반하여 반응기 상하좌우 온도 구배가 없도록 반응기가 구성된다. 헬리컬 리본 형태의 임펠러는 밀도가 낮은 카본을 상중하, 좌우를 고루 섞일 수 있도록 리본의 넓이는 크고, 상하 간격은 좁게 설계되며, 수분과의 반응이 균일하게 일어날 수 있도록 헬리컬 리본 임펠러의 상중하, 좌우 리브들에 구비된 다수의 분사구를 통해 수분과 비활성 기체를 공급하여 접촉효율을 증가시킨다. 또한 본 발명에서는 미분화 단계를 활성화 단계이전에 선행하여, 무정형이 포함된 카본블랙을 최대한 단일 입자화하여 수분과의 접촉을 극대화한다. 미립화 카본이 반응기 내부에서 비산 또는 부유하지 않는 최대 RPM으로 임펠러를 회전시키며, 목적하는 표면적과 세공크기 분포 및 결정성을 조절하기 위해 정해진 온도에서 수분과 비활성기체를 동시에 공급하여 일정시간 카본블랙을 활성화할 수 있다.The present invention provides a stationary reactor for accelerating the reaction while maintaining the flow of carbon black in the reactor to a minimum in the steam activation of a carbon carrier for a fuel cell. In contrast to the flow-type reactor, in order to minimize the flow of carbon black in the reactor for the purpose of compensating for possible non-uniformity, a helical ribbon-type impeller is used between the carbon blacks stacked in the reactor to stir the carbon black to the top and bottom of the reactor. The reactor is configured such that there is no left-right temperature gradient. The helical ribbon-type impeller has a large ribbon width and a narrow top-to-bottom spacing so that low-density carbon can be mixed evenly between the upper, lower, and left and right sides. The contact efficiency is increased by supplying moisture and inert gas through a plurality of nozzles provided in the fields. In addition, in the present invention, the pulverization step is preceded before the activation step to maximize the contact with moisture by making carbon black containing amorphous particles into single particles as much as possible. The impeller rotates at the maximum RPM in which the atomized carbon does not scatter or float inside the reactor, and water and inert gas are simultaneously supplied at a predetermined temperature to control the desired surface area, pore size distribution and crystallinity to activate carbon black for a certain period of time. can do.
이하 본 발명의 활성화 단계에서 적용되는 고정식 반응기를 설명한다. 본 발명에 의한 고정식 반응기는 종래 유동식 반응기에 상대되는 개념이다. 종래 수증기 활성화에 적용되는 반응기는 카본블랙 담체를 반응기 내부에 적층 후, 하단부에서 상단부로 수증기와 비활성기체를 분사하여 카본블랙이 비산, 부유되면서 반응하는 방식이나, 수율 손실, 물성 불균질화 등의 문제가 지적되었다. 본 발명자들은 이러한 문제점을 해결하고자 카본블랙이 부유되지 않고 교반기에 의해 거의 정적으로 유동되는 고정식 반응기를 제시한다. 본 발명에서 고정식 반응기는 고정층 반응기라고도 칭한다. 도 1은 고정층 반응기 내부에 장착되는 예시적인 교반기 (100)의 사시도이다. 교반기는 반응기 내부에 설치되며, 교반기는 도 2에 개략적으로 도시되는 주교반기 (110) 및 도 3에 도시되는 보조교반기 (120)로 구성된다. 주교반기는 중공형 연결축 (130)을 통하여 반응기 외부에 설치되며 유체 공급부 (미도시)와 연통되는 구동부 (미도시)와 결합된다. 구동부에 의해 그리고 유체 공급부를 통해 반응기 내부에서 연결축 (130)이 회전되면서 동시에 고온의 수증기 및 비활성기체가 연결축의 중공에 제공된다. 본 발명에 의한 헬리컬 리본 형태의 주교반기(110)는 반응기 내부 상단에 배치되며 하단에 배치 가능한 보조교반기 (120)와 결합되어 교반기 (100)를 완성하지만, 보조교반기 없이도 활성화 단계에서 구현될 수 있다. 이러한 측면에서 필요하다면 보조교반기는 제거 가능하다는 점에 주목하여야 한다. 주교반기 (110)는 중공형 주회전축 (111), 상기 주회전축의 길이방향으로 일정 간격으로 연결되며 주회전축과 수직방향으로 연통되는 다수의 리브 (115), 상기 각각의 리브에 장착되는 헬리컬 리본 형태의 교반판 (118)으로 구성되고, 상기 각각의 리브에는 리브 길이방향으로 일정 간격으로 다수의 분사구 (1151)가 구비된다. 교반판의 직경 및 리브 길이는 반응기 내부에서 회전 가능하도록 설계된다. 상기된 바와 같이, 헬리컬 리본 형태의 주교반기에는 보조 교반기 (120)가 연결될 수 있고, 상기 보조교반기는 중공형 보조회전축 (121), 상기 보조회전축의 길이방향으로 일정 간격으로 연결되며 보조회전축과 수직방향으로 연통되는 다수의 보조리브 (125), 상기 보조리브 단부들 간에 연결되는 지지축 (126), 및 상기 지지축과 보조회전축 간에 보조회전축 기준으로 경사를 이루며 장착되는 장반형 교반판(128)으로 구성되고, 상기 각각의 보조리브에는 일정 간격으로 다수의 분사구 (1251)가 구비된다. 보조리브 길이는 반응기 내부에서 작동 가능하도록 설계된다. 장반형 교반판은 보조회전축에 대하여 약 30도 내지 40도로 경사지도록 구비되어 반응기 하부에 담기는 카본블랙을 유동시켜 상부 주교반기 (110)로 상승시킨다. 도면에는 두 개의 경사 교반판이 반대방향으로 배치되지만 하나의 교반판이 설치될 수 있음은 물론이다. 주교반기 (110)의 중공형 주회전축 (111) 하단은 보조교반기의 중공형 보조회전축 (121)과 연통되도록 결합된다. 회전축들 (111, 121)은 유체 연통 가능하게 리브들 (115, 125)과 결합되므로 회전축을 통해 제공되는 수증기 및 비활성기체는 리브들에 형성되는 다수의 분사구들 (1151, 1251)을 통해 반응기 내부로 분출되어, 교반판들 (118, 128)에 의해 유동되는 카본블랙과 혼합되어 수증기 활성화가 진행된다.Hereinafter, a stationary reactor applied in the activation step of the present invention will be described. The stationary reactor according to the present invention is a concept relative to the conventional fluidized reactor. In the conventional reactor applied to steam activation, a carbon black carrier is laminated inside the reactor, and then water vapor and inert gas are sprayed from the lower end to the upper end to cause carbon black to react while scattering and floating, but problems such as yield loss and inhomogeneity of properties has been pointed out In order to solve this problem, the present inventors propose a stationary reactor in which carbon black is not suspended but flows almost statically by a stirrer. In the present invention, the fixed reactor is also referred to as a fixed bed reactor. 1 is a perspective view of an exemplary stirrer 100 mounted inside a fixed bed reactor. The stirrer is installed inside the reactor, and the stirrer is composed of a main stirrer 110 schematically shown in FIG. 2 and an auxiliary stirrer 120 shown in FIG. 3 . The main stirrer is installed outside the reactor through the hollow connecting shaft 130 and is coupled to a driving unit (not shown) that communicates with the fluid supply unit (not shown). While the connecting shaft 130 is rotated inside the reactor by the driving unit and through the fluid supply unit, hot water vapor and inert gas are provided to the hollow of the connecting shaft at the same time. The main stirrer 110 in the form of a helical ribbon according to the present invention is disposed at the top inside the reactor and is combined with the auxiliary stirrer 120 that can be disposed at the bottom to complete the stirrer 100, but it can be implemented in the activation step without an auxiliary stirrer. . In this respect, it should be noted that the auxiliary stirrer is removable if necessary. The main stirrer 110 includes a hollow main rotating shaft 111, a plurality of ribs 115 connected at regular intervals in the longitudinal direction of the main rotating shaft and communicating in a vertical direction with the main rotating shaft, and a helical ribbon mounted on each of the ribs. It is composed of a stirring plate 118 in the form of, and each of the ribs is provided with a plurality of injection holes 1151 at regular intervals in the rib longitudinal direction. The diameter and rib length of the stirring plate are designed to be rotatable inside the reactor. As described above, the auxiliary stirrer 120 may be connected to the helical ribbon-shaped main stirrer, and the auxiliary stirrer is connected at regular intervals in the longitudinal direction of the hollow auxiliary rotary shaft 121 and the auxiliary rotary shaft, and is perpendicular to the auxiliary rotary shaft. A plurality of auxiliary ribs 125 communicating in the direction, a support shaft 126 connected between the ends of the auxiliary ribs, and a long plate-type stirring plate 128 mounted with an inclination relative to the auxiliary rotation axis between the support shaft and the auxiliary rotation shaft. A plurality of injection holes 1251 are provided at regular intervals in each of the auxiliary ribs. The auxiliary rib length is designed to be operable inside the reactor. The long plate-type stirring plate is provided to be inclined at about 30 to 40 degrees with respect to the auxiliary rotation shaft, and the carbon black contained in the lower part of the reactor flows and rises to the upper main stirrer 110 . Although the two inclined stirring plates are arranged in opposite directions in the drawings, it goes without saying that one stirring plate may be installed. The lower end of the hollow main rotary shaft 111 of the main stirrer 110 is coupled to communicate with the hollow auxiliary rotary shaft 121 of the auxiliary stirrer. Since the rotation shafts 111 and 121 are coupled to the ribs 115 and 125 in a fluid communication manner, water vapor and inert gas provided through the rotation shaft are formed in the ribs through a plurality of injection holes 1151 and 1251 inside the reactor. It is ejected into the furnace and mixed with carbon black flowing by the stirring plates 118 and 128, and steam activation proceeds.
본 발명에 의한 고정층 반응기 작동 과정을 설명한다. 미분화 카본블랙 담체를 반응기 내부에 투입한다. 투입량은 제한되지 않지만, 헬리컬 리본 형태의 교반판과 접촉할 수 있는 수준으로 투입되는 것이 바람직하다. 공급부 (미도시)를 통해 질소 가스 및 고온의 수증기가 제공되고, 구동부 (미도시)를 통해 연결축 회전을 개시한다. 투입된 카본블랙의 유동을 최소화하면서 수증기 접촉이 최대화시킬 수 있도록 30rpm으로 연결축을 회전시킨다. 공급부를 통해 제공된 질소가스 및 수증기는 연결축, 회전축 및 리브 분산구들을 통해 반응기 내부로 방출되어 교반판에 의해 나선방향으로 서행되는 카본블랙과 접촉되어 카본블랙을 산화시킴으로써 표면적 및 세공구조가 개질된다. 보조교반판은 반응기 바닥에 담긴 카본블랙을 상향시키도록 경사 장반형으로 설계되고, 상부의 헬리컬 리본 형태의 교반판은 균일하고도 전반적인 카본블랙 유동을 가능하게 한다. 종래 유동식 반응기와는 달리 카본블랙의 비산이 억제되어 수율이 향상되고 균질도가 개선된다.The operation process of the fixed bed reactor according to the present invention will be described. A pulverized carbon black carrier is introduced into the reactor. The amount of the input is not limited, but it is preferably input at a level that can contact the stirring plate in the form of a helical ribbon. Nitrogen gas and high-temperature steam are provided through a supply unit (not shown), and rotation of the connecting shaft is started through a driving unit (not shown). The connecting shaft is rotated at 30 rpm to maximize the water vapor contact while minimizing the flow of the injected carbon black. Nitrogen gas and water vapor provided through the supply part are discharged into the reactor through the connecting shaft, the rotating shaft and the rib dispersion holes, and come into contact with the carbon black which is slowly moved in the spiral direction by the stirring plate to oxidize the carbon black, thereby modifying the surface area and the pore structure. . The auxiliary stirrer is designed in an inclined long way to raise the carbon black contained in the bottom of the reactor, and the upper stirring plate in the form of a helical ribbon enables a uniform and overall carbon black flow. Unlike the conventional fluidized reactor, scattering of carbon black is suppressed, thereby improving the yield and improving the homogeneity.
이하 본 발명을 구체적인 실시예들을 통하여 설명한다.Hereinafter, the present invention will be described with reference to specific examples.
실시예 1Example 1
카본블랙 (제품명: 덴카 블랙, 비표면적 64 m 2/g, 1g) 및 에틸렌 글리콜(460g)을 고압분산기에 투입하고 300~1,000 bar 압력을 가하여 미립화를 진행하였다. 얻어진 미립자 샘플을 고정식 반응기에 70g 투입하고, 질소 유량을 0.2L/분, 1000℃ 반응 온도, 수증기/카본블랙의 몰비가 1.96인 조건으로 6시간 동안 활성화하였다. 반응기 작동 정지 후 80℃ 이하까지 질소 가스로 퍼징하고, 활성화 카본블랙을 회수하여 입도, 결정크기 등을 분석하였다. Carbon black (product name: Denka Black, specific surface area 64 m 2 /g, 1 g) and ethylene glycol (460 g) were put into a high pressure disperser, and atomization was performed by applying a pressure of 300 to 1,000 bar. 70 g of the obtained particulate sample was put into a stationary reactor, and the nitrogen flow rate was 0.2 L/min, a reaction temperature of 1000° C., and a molar ratio of water vapor/carbon black was 1.96 for 6 hours. After the reactor was stopped, it was purged with nitrogen gas to 80° C. or less, and the activated carbon black was recovered and analyzed for particle size, crystal size, and the like.
실시예 2Example 2
실시예 1과 동일하게 수행하되, 반응 온도는 950℃, H 2O/카본블랙 몰비가 1.75인 조건에서 활성화하였다.It was carried out in the same manner as in Example 1, except that the reaction temperature was 950° C. and the H 2 O/carbon black molar ratio was 1.75.
비교예 1Comparative Example 1
카본블랙을 미분화하지 않고 원재료 상태로 실시예 1과 동일하게 활성화 단계를 진행하였다.The activation step was performed in the same manner as in Example 1 in the raw material state without pulverizing carbon black.
실시예 3-4 각각은 실시예 1-2 각각과 동일하게, 비교예 2는 비교예 1과 동일하게 수행하되, 덴카 블랙이 아닌 다른 아세틸렌 블랙 원재료를 사용하여 시험하였다.Each of Examples 3-4 was carried out in the same manner as in each of Examples 1-2, and Comparative Example 2 was performed in the same manner as in Comparative Example 1, except that an acetylene black raw material other than Denka black was used.
카본블랙 활성화 조건 및 활성화 전, 후 특성을 표 1에 요약한다.Table 1 summarizes carbon black activation conditions and properties before and after activation.
구분division 비교예 1Comparative Example 1 실시예 1Example 1 실시예 2Example 2 비교예 2Comparative Example 2 실시예 3Example 3 실시예 4Example 4
원재료비표면적 (m 2/g)Raw material specific surface area (m 2 /g) 6464 6464 6464 125125 125125 125125
활성화 전 결정 크기 (nm)Crystal size before activation (nm) 3.723.72 3.883.88 3.903.90 2.532.53 2.612.61 2.632.63
활성화 전입도 D90 (μm)Active penetration D90 (μm) 18.218.2 4.24.2 4.84.8 23.023.0 8.08.0 7.97.9
활성화 온도
(˚C)
activation temperature
(˚C)
10001000 10001000 950950 10001000 10001000 950950
H 2O/Carbon
(mol/mol)
H 2 O/Carbon
(mol/mol)
1.961.96 1.961.96 1.751.75 1.961.96 1.961.96 1.751.75
수율 (%)transference number (%) 5454 5050 5858 5151 4444 5959
활성화 후 결정 크기 (nm)Crystal size after activation (nm) 3.463.46 3.253.25 3.483.48 2.722.72 2.842.84 2.962.96
활성화 후 입도 D90 (μm)Particle size D90 after activation (μm) 15.115.1 9.89.8 11.411.4 17.617.6 11.211.2 14.514.5
평가 1비교예 1 및 실시예 1을 비교하면, 실시예 1은 고압분산기를 통한 입자 단일화가 진행되었기에, 비교예 1의 활성화 전 카본블랙의 입도는 18.2μm인데 비해 실시예 1의 활성화 전 카본블랙의 입도는 4.2μm로 감소하였음을 알 수 있다. 비교예 1과 실시예 1의 활성화 조건은 동일함에도 불구하고, 실시예 1의 카본 결과물의 결정크기는 더 작아졌지만, 입도가 작아지고, 비표면적은 전체적으로 증가하였다. 또한 카본과 수증기와의 접촉이 더욱 활발해짐에 따라 카본 수율이 감소하는 경향을 확인할 수 있다. Evaluation 1 Comparing Comparative Example 1 and Example 1, since particle unification was performed in Example 1 through a high-pressure disperser, the particle size of the carbon black before activation of Comparative Example 1 was 18.2 μm, whereas the carbon black before activation of Example 1 was 18.2 μm. It can be seen that the particle size was reduced to 4.2 μm. Although the activation conditions of Comparative Example 1 and Example 1 were the same, the crystal size of the carbon product of Example 1 was smaller, but the particle size became smaller and the specific surface area was increased as a whole. In addition, it can be seen that the carbon yield tends to decrease as the contact between carbon and water vapor becomes more active.
실시예 2의 경우, 실시예 1에서 카본블랙의 결정크기가 감소하여 내구성이 약화되는 것을 보완하기 위하여, 반응기 내부 온도를 1000℃에서 950℃로 낮추고, H 2O/Carbon 몰비를 1.96에서 1.75로 낮추어 활성화를 진행한 것이다. 표 1을 참고하면, 결정크기는 비교예 1과 동일한 수준으로 유지할 수 있었다. 또한 저온 반응 및 낮은 H 2O/Carbon 몰비로 인해 수율이 크게 증가하여, 보다 경제적인 공정이라고 할 수 있다. 그러나, 활성화에 의해 결정 크기가 감소하는 것은 일부 카본블랙에 국한된 것이며, 카본을 활성화하였을 때, 결정크기가 증가하는 카본블랙도 다수 존재한다 (비교예 2, 실시예 3, 실시예 4의 표 1 결과 참고).In the case of Example 2, in order to compensate for the weakening of durability due to the decrease in the crystal size of carbon black in Example 1, the temperature inside the reactor was lowered from 1000° C. to 950° C., and the H 2 O/Carbon molar ratio was changed from 1.96 to 1.75. It was lowered and activated. Referring to Table 1, the crystal size could be maintained at the same level as that of Comparative Example 1. In addition, the yield is greatly increased due to the low temperature reaction and the low H 2 O/Carbon molar ratio, which can be said to be a more economical process. However, the reduction in crystal size by activation is limited to some carbon blacks, and there are also many carbon blacks whose crystal size increases when carbon is activated (Table 1 of Comparative Examples 2, 3, and 4). See results).
평가 2 evaluation 2
도 4는 활성화 카본블랙들에 대한 XRD 분석 결과를 도시한 것이다. 카본 원재료가 덴카블랙의 경우 무정형이 많이 포함되어 있는 카본으로, 2-Theta 27.5degree의 graphite 피크가 낮으며, 이를 활성화 할 경우 해당 피크는 감소하는 경향을 확인할 수 있다. 그러나 본 발명에서와 같이 원재료의 입자 단일화를 거치게 되면, 입자들 간의 결정면 부분이 전체적으로 늘어나게 되어, graphite 피크가 증가하게 되며, 이를 활성화하게 되면, 이전과 다르게 graphite 피크가 많이 감소하지 않는 것을 확인할 수 있다.4 shows the results of XRD analysis of activated carbon blacks. Denka Black, a carbon raw material, is carbon containing a lot of amorphous content, and the graphite peak of 2-Theta 27.5 degree is low, and when it is activated, the corresponding peak tends to decrease. However, as in the present invention, when the raw material is subjected to particle unification, the crystal plane portion between the particles is increased as a whole, and the graphite peak increases. .
도 5는 열 중량 분석 결과를 나타낸 것이다. 카본 원재료를 1000℃ 조건에서 활성화 하는 경우, 열 중량 분석에서 카본이 산화하는 온도가 약 40℃ 감소하는 것을 확인할 수 있다. 이 결과는 카본 내구성과 연결되는 데이터로써, 산화온도가 낮아질수록 카본의 내구성은 감소할 가능성이 있다. 그러나 카본을 입자 단일화 후, 950℃ 조건에서 활성화 하는 경우, 산화 온도가 감소하는 폭이 약 15℃ 정도로 감소됨을 확인할 수 있다. 산화온도가 낮아질수록 카본의 내구성은 감소할 가능성이 있으므로, 950℃ 활성화 조건으로 카본 내구성은 유지하면서 1000℃ 활성화 조건에 의한 결정성 및 미립화 및 1000℃ 활성화 조건에 의한 비표면적 결과를 얻을 수 있다.5 shows the results of thermogravimetric analysis. When the carbon raw material is activated at 1000°C, it can be confirmed that the temperature at which carbon is oxidized decreases by about 40°C in thermogravimetric analysis. This result is data related to carbon durability, and as the oxidation temperature decreases, there is a possibility that the durability of carbon decreases. However, it can be seen that when carbon is activated at 950° C. after particle unification, the decrease in oxidation temperature is reduced to about 15° C. Since there is a possibility that the durability of carbon decreases as the oxidation temperature decreases, it is possible to obtain crystallinity and atomization by the 1000°C activation condition and specific surface area results by the 1000°C activation condition while maintaining the carbon durability under the 950°C activation condition.
도 6은 입도 분석 결과이다. 카본블랙 원재료의 경우 약 0.5~32μm 수준의 입도 분포를 보이며, 고압분산기를 이용하여 단일 입자화하게 되면 약 0.25~10μm 수준의 입도 분포를 보이고, 얻어진 미립자를 고정식 반응기에서 활성화하면 약 0.5~16μm 수준의 입도 분포를 얻는다. 마지막으로 도 7은 세공 분포 분석 결과를 도시한 것이다. 카본블랙 원재료와 비교하여, 입자 단일화 및 활성화 후 30~40Å의 메조 세공이 증가하는 것을 확인할 수 있다.6 is a particle size analysis result. In the case of carbon black raw material, it shows a particle size distribution of about 0.5~32μm, and when it is made into single particles using a high-pressure disperser, it shows a particle size distribution of about 0.25~10μm, and when the obtained fine particles are activated in a stationary reactor, it is about 0.5~16μm to obtain a particle size distribution of Finally, Figure 7 shows the pore distribution analysis results. Compared with the carbon black raw material, it can be seen that the mesopores of 30 to 40 Å increase after particle unification and activation.

Claims (12)

  1. 연료전지용 촉매 담체로 사용되는 카본블랙의 개질방법에 있어서, 카본블랙의 미립화 단계 및 이후 미립화된 카본블랙의 활성화 단계를 포함하는, 개질방법.A method for reforming carbon black used as a catalyst carrier for a fuel cell, comprising the step of atomizing the carbon black and the step of activating the atomized carbon black thereafter.
  2. 제1항에 있어서, 상기 미립화 단계는 카본블랙 원재료를 더 작은 크기의 카본블랙으로 미분화하기 위하여 고압균질기를 이용하는, 방법.The method according to claim 1, wherein the atomizing step uses a high-pressure homogenizer to pulverize the carbon black raw material into smaller-sized carbon black.
  3. 제2항에 있어서, 상기 카본블랙 원재료를 에틸렌 글리콜과 혼합하여 액상에서 고압균질기를 이용하는, 방법.The method according to claim 2, wherein the carbon black raw material is mixed with ethylene glycol and a high-pressure homogenizer is used in the liquid phase.
  4. 제1항에 있어서, 상기 활성화 단계는 고온 조건에서 미립화된 카본블랙을 비활성기체와 함께 수증기와 교반하기 위하여 고정식 반응기를 이용하는, 방법. The method according to claim 1, wherein the activating step uses a stationary reactor to stir the atomized carbon black with water vapor together with an inert gas under high temperature conditions.
  5. 제4항에 있어서, 상기 고정식 반응기는 미립화된 카본블랙 비산을 최소화하기 위한 헬리컬 리본 형태의 주교반기를 포함하는, 방법.5. The method of claim 4, wherein the stationary reactor includes a main stirrer in the form of a helical ribbon to minimize scattering of atomized carbon black.
  6. 제5항에 있어서, 상기 주교반기에는 보조교반기가 연결될 수 있는, 방법.The method according to claim 5, wherein an auxiliary stirrer can be connected to the main stirrer.
  7. 제6항에 있어서, 상기 보조교반기는 반응기 바닥에 투입된 미립화된 카본블랙을 상기 주교반기로 상승시키기 위한 경사 교반판을 포함하는, 방법.The method according to claim 6, wherein the auxiliary stirrer includes an inclined stirrer plate for raising the atomized carbon black charged to the bottom of the reactor to the main stirrer.
  8. 제1항 내지 제7항 중 어느 하나의 항에 의한 방법으로 제조되는 활성화 카본블랙.An activated carbon black prepared by the method according to any one of claims 1 to 7.
  9. 제8항에 있어서, 상기 카본블랙의 활성화 후 입도 D90는 9.8 내지 14.5μm인 것을 특징으로 하는, 활성화 카본블랙.The activated carbon black according to claim 8, wherein the particle size D90 after activation of the carbon black is 9.8 to 14.5 μm.
  10. 연료전지용 촉매 담체로 사용되는 카본블랙의 활성화 공정에 적용되는 고정식 반응기로서, 카본블랙 비산을 최소화하기 위한 헬리컬 리본 형태의 주교반기 (110)를 포함하고, 상기 주교반기는 중공형 주회전축 (111), 상기 주회전축의 길이방향으로 일정 간격으로 연결되며 주회전축과 연통되는 다수의 리브 (115), 상기 각각의 리브에 장착되는 헬리컬 리본 형태의 교반판 (118)으로 구성되고, 상기 각각의 리브에는 리브 길이방향으로 일정 간격으로 다수의 분사구 (1151)가 구비되는, 고정식 반응기.A stationary reactor applied to the activation process of carbon black used as a catalyst carrier for a fuel cell, comprising a helical ribbon-type main stirrer 110 to minimize carbon black scattering, and the main stirrer is a hollow main rotating shaft 111 , a plurality of ribs 115 connected at regular intervals in the longitudinal direction of the main axis of rotation and communicating with the main axis of rotation, and a stirring plate 118 in the form of a helical ribbon mounted on each of the ribs, and each of the ribs has A stationary reactor provided with a plurality of injection ports 1151 at regular intervals in the rib longitudinal direction.
  11. 제10항에 있어서, 상기 주교반기와 연결되는 보조교반기 (120)를 포함하고, 상기 보조교반기는 중공형 보조회전축 (121), 상기 보조회전축의 길이방향으로 일정 간격으로 연결되며 보조회전축과 연통되는 다수의 보조리브 (125), 상기 보조리브 단부들 간에 연결되는 지지축 (126), 및 상기 지지축과 보조회전축 간에 보조회전축 기준으로 경사를 이루며 장착되는 장반형 교반판(128)으로 구성되고, 상기 각각의 보조리브에는 일정 간격으로 다수의 분사구 (1251)가 구비되는, 고정식 반응기.11. The method of claim 10, comprising an auxiliary stirrer (120) connected to the main stirrer, the auxiliary stirrer is a hollow auxiliary rotary shaft (121), connected at regular intervals in the longitudinal direction of the auxiliary rotary shaft and communicated with the auxiliary rotary shaft It is composed of a plurality of auxiliary ribs 125, a support shaft 126 connected between the ends of the auxiliary ribs, and a long board-type stirring plate 128 mounted at an inclination with respect to the auxiliary rotation axis between the support shaft and the auxiliary rotation shaft, A fixed type reactor provided with a plurality of injection holes 1251 at regular intervals in each of the auxiliary ribs.
  12. 제11항에 있어서, 상기 장반형 교반판들은 보조회전축 기준으로 서로 반대 방향으로 경사를 이루며 장착되는, 고정식 반응기.[Claim 12] The fixed reactor according to claim 11, wherein the long plate-type stirring plates are mounted to form an inclination in opposite directions with respect to the auxiliary rotation axis.
PCT/KR2021/003749 2020-04-10 2021-03-26 Method for preparing carbon black support for fuel cell WO2021206331A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200043742A KR102350266B1 (en) 2020-04-10 2020-04-10 A method for preparing carbon black supports used for fuel cell
KR10-2020-0043742 2020-04-10

Publications (1)

Publication Number Publication Date
WO2021206331A1 true WO2021206331A1 (en) 2021-10-14

Family

ID=78023784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/003749 WO2021206331A1 (en) 2020-04-10 2021-03-26 Method for preparing carbon black support for fuel cell

Country Status (2)

Country Link
KR (2) KR102350266B1 (en)
WO (1) WO2021206331A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100770166B1 (en) * 2006-11-30 2007-10-26 지에스칼텍스 주식회사 Apparatus for manufacturing source particles of separator for fuel cell and method of manufacturing source particles of separator for fuel cell by using the same
JP2008265269A (en) * 2007-03-22 2008-11-06 Ube Ind Ltd Application method of hydraulic mortar (slurry)
KR20090033301A (en) * 2007-09-29 2009-04-02 한국전력공사 Lubricating oil with high thermal efficiency and method for manufacturing the same
KR20100110719A (en) * 2007-02-14 2010-10-13 유니버시티 오브 켄터키 리서치 파운데이션 Methods of forming activated carbons
KR20140067414A (en) * 2012-11-26 2014-06-05 오덱(주) Pre-treatment method of synthesis for electrode catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100770166B1 (en) * 2006-11-30 2007-10-26 지에스칼텍스 주식회사 Apparatus for manufacturing source particles of separator for fuel cell and method of manufacturing source particles of separator for fuel cell by using the same
KR20100110719A (en) * 2007-02-14 2010-10-13 유니버시티 오브 켄터키 리서치 파운데이션 Methods of forming activated carbons
JP2008265269A (en) * 2007-03-22 2008-11-06 Ube Ind Ltd Application method of hydraulic mortar (slurry)
KR20090033301A (en) * 2007-09-29 2009-04-02 한국전력공사 Lubricating oil with high thermal efficiency and method for manufacturing the same
KR20140067414A (en) * 2012-11-26 2014-06-05 오덱(주) Pre-treatment method of synthesis for electrode catalyst

Also Published As

Publication number Publication date
KR102350266B1 (en) 2022-01-11
KR102314233B1 (en) 2021-10-18
KR20210126221A (en) 2021-10-20

Similar Documents

Publication Publication Date Title
CN100438160C (en) Pt/Ru alloy catalyst for fuel cell
KR101568442B1 (en) High surface area graphitized carbon and processes for making same
US7759019B2 (en) Liquid fuel cell, membrane electrode assembly and cathode
CN101044647B (en) Electrode catalyst for fuel cell
JP4502276B2 (en) Hydrogen ion conductive inorganic material and method for producing the same, polymer nanocomposite membrane including the same, and fuel cell employing the same
EP1320140A1 (en) Fuel cell
CN106252675B (en) A kind of CuO-NiO/rGO composite material having efficient electric catalytic oxidation-reduction performance
EP1799342B1 (en) Platinum/ruthenium catalyst for direct methanol fuel cells
CN105431230A (en) Method for forming noble metal nanoparticles on a support
EP1509961A2 (en) Proton conductive carbon material
SK1902003A3 (en) Hydrogen permeable membrane for use in fuel cells and partial reformate fuel cell system having reforming catalysts in the anode fuel cell compartment
EP2173476A1 (en) Compositions of nanometal particles
CN103227333A (en) Composite, catalyst including the same, fuel cell and lithium air battery including the same
CN106663819A (en) Fuel cell electrode catalyst layer, production method therefor, membrane electrode assembly, and solid polymer fuel cell
CN100438185C (en) High polymer electrolyte type fuel cell and manufacturing method therefor
WO2021206331A1 (en) Method for preparing carbon black support for fuel cell
CN101517791B (en) Catalyst structure body for fuel cell, manufacture method therefor, membrane-electrode assembly, and fuel cell
Bhullar et al. Effect of water frustration on water oxidation catalysis in the nanoconfined interlayers of layered manganese oxides birnessite and buserite
JP5373363B2 (en) Electrolyte membrane for polymer electrolyte fuel cell, method for producing electrolyte membrane for polymer electrolyte fuel cell, polymer electrolyte fuel cell and fuel cell system
CN104205458A (en) Fuel cell
JP2007161511A (en) Surface-modified carbon material and method for producing the same
JP3558021B2 (en) MEMBRANE ELECTRODE ASSEMBLY FOR FUEL CELL, PROCESS FOR PRODUCING THE SAME, AND FUEL CELL USING THE SAME
CN1321475C (en) Fuel cell
KR20230083147A (en) Catalyst carrier manufacturing method and catalyst carrier manufacturing apparatus
US20040009388A1 (en) Electrocatalyst-containing layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21784200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21784200

Country of ref document: EP

Kind code of ref document: A1