KR20130101100A - Magnesium-alloy member, compressor for use in air conditioner, and method for manufacturing magnesium-alloy member - Google Patents

Magnesium-alloy member, compressor for use in air conditioner, and method for manufacturing magnesium-alloy member Download PDF

Info

Publication number
KR20130101100A
KR20130101100A KR1020137013196A KR20137013196A KR20130101100A KR 20130101100 A KR20130101100 A KR 20130101100A KR 1020137013196 A KR1020137013196 A KR 1020137013196A KR 20137013196 A KR20137013196 A KR 20137013196A KR 20130101100 A KR20130101100 A KR 20130101100A
Authority
KR
South Korea
Prior art keywords
magnesium alloy
alloy member
magnesium
aluminum
calcium
Prior art date
Application number
KR1020137013196A
Other languages
Korean (ko)
Inventor
스에지 히라와타리
히데노리 호소이
츠요시 후쿠이
마코토 후쿠시마
시게하루 카마도
토모유키 혼마
Original Assignee
산덴 가부시키가이샤
고쿠리츠다이가쿠호진 나가오카기쥬츠가가쿠다이가쿠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 산덴 가부시키가이샤, 고쿠리츠다이가쿠호진 나가오카기쥬츠가가쿠다이가쿠 filed Critical 산덴 가부시키가이샤
Publication of KR20130101100A publication Critical patent/KR20130101100A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/122Cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/028Magnesium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Extrusion Of Metal (AREA)
  • Forging (AREA)

Abstract

본원 발명은, 자동차 에어컨용 압축기의 기구 부품에 적용가능한 기계적 강도 및 고온에서의 피로 강도를 출현가능한 마그네슘 합금부재 및 그 제조 방법을 제공하고, 더욱이, 필요한 기계적 강도 및 고온에서의 피로 강도를 구비한 마그네슘 합금을 기구 부품에 사용하며, 중량을 경감한 자동차 에어컨용 압축기를 제공한다.
구체적으로는, 질량%로, 칼슘(Ca)을 0.3~10%, 알루미늄(Al)을 0.2~15%, 망간(Mn)을 0.05~1.5% 함유하고, Ca/Al의 질량비가 0.6~1.7이며, 잔부가 마그네슘(Mg) 및 불가피 불순물로 이루어지는 마그네슘 합금의 주조 소재를, 250~500℃에서 소성가공(압출 가공)해서 마그네슘 합금부재를 형성한다. 이것에 의해, 마그네슘 합금부재에 있어서, 실온에 있어서의 0.2% 내력이 300MPa이상, 150℃에 있어서의 피로 강도가 100MPa이상을 출현가능하다.
The present invention provides a magnesium alloy member capable of exhibiting mechanical strength and fatigue strength at high temperatures applicable to a mechanical component of a compressor for an automobile air conditioner, and a method of manufacturing the same. Magnesium alloys are used for mechanical parts and provide a compressor for automobile air conditioners with reduced weight.
Specifically, in mass%, 0.3 to 10% of calcium (Ca), 0.2 to 15% of aluminum (Al), 0.05 to 1.5% of manganese (Mn), and the mass ratio of Ca / Aa are 0.6 to 1.7. The remainder is plastically processed (extruded) from a magnesium alloy cast material composed of magnesium (MG) and unavoidable impurities at 250 to 500 ° C to form a magnesium alloy member. Thereby, in a magnesium alloy member, the 0.2% yield strength in room temperature can be 300 Mpa or more, and the fatigue strength in 150 degreeC can be 100 Mpa or more.

Description

마그네슘 합금부재, 에어컨용 압축기 및 마그네슘 합금부재의 제조 방법{MAGNESIUM-ALLOY MEMBER, COMPRESSOR FOR USE IN AIR CONDITIONER, AND METHOD FOR MANUFACTURING MAGNESIUM-ALLOY MEMBER}MAGNESIUM-ALLOY MEMBER, COMPRESSOR FOR USE IN AIR CONDITIONER, AND METHOD FOR MANUFACTURING MAGNESIUM-ALLOY MEMBER}

본 발명은, 알루미늄, 칼슘, 망간을 함유하는 마그네슘 합금부재, 해당 마그네슘 합금부재를 기구 부품에 사용한 에어컨(air conditioners)용 압축기, 및, 상기 마그네슘 합금부재의 제조 방법에 관한 것이다.The present invention relates to a magnesium alloy member containing aluminum, calcium and manganese, a compressor for air conditioners using the magnesium alloy member as a mechanical component, and a method for producing the magnesium alloy member.

자동차 부품에 있어서, 경량화를 위해, 저(低)비중인 마그네슘 합금을 사용하는 경우가 있다. 종래, 마그네슘 합금의 적용 부품은, 고강도나 내열성이 요구되지 않는 케이싱이나 커버 등의 부품이 주된 것이었다. 그러나, 강도나 내열성을 향상시킨 마그네슘 합금이 개발되고 있다.In automobile parts, a low specific gravity magnesium alloy may be used for weight reduction. Conventionally, the application parts of a magnesium alloy were mainly components, such as a casing and a cover which do not require high strength and heat resistance. However, magnesium alloys with improved strength and heat resistance have been developed.

예컨대, 특허문헌 1~3에는, 주조성(castability) 및 내열성(heat resistance)을 향상시킨 마그네슘 합금이 개시되며, 특허문헌 4에는, 고온에서의 강도(strength) 및 단조성(forgeability)을 향상시킨 마그네슘 합금이 개시되어 있다. For example, Patent Documents 1 to 3 disclose magnesium alloys having improved castability and heat resistance, and Patent Document 4 discloses improved strength and forgeability at high temperatures. Magnesium alloys are disclosed.

일본 특허공개공보 제2004-232060호Japanese Patent Laid-Open No. 2004-232060 일본 특허공개공보 제2007-197796호Japanese Patent Publication No. 2007-197796 일본 특허공개공보 제2004-162090호Japanese Patent Laid-Open No. 2004-162090 일본 특허공개공보 제2000-104137호Japanese Patent Laid-Open No. 2000-104137 일본 특허공개공보 제2000-109963호Japanese Patent Laid-Open No. 2000-109963

그런데, 자동차 에어컨용 압축기는, 엔진 근방에 설치되어, 폭로 온도가 100~150℃ 정도가 된다. 이 때문에, 압축기의 부품소재에는 내열성이 요구되며, 더욱이, 압축기에 있어서의 압축을 담당하는 기구 부품에서는, 고온에서의 높은 피로 강도(fatigue strength)가 요구된다.By the way, the compressor for automobile air conditioners is installed in the vicinity of the engine, and the exposure temperature is about 100 to 150 ° C. For this reason, heat resistance is required for the component material of a compressor, and also high fatigue strength at high temperature is required for the mechanism component which handles the compression in a compressor.

그러나, 특허문헌 1~3에 개시되는 마그네슘 합금은 주조(casting)용이기 때문에, 기계적 강도가 불충분하여, 압축기와 같은 고온에서의 고강도가 요구되는 부품에는 적용할 수 없다.However, since the magnesium alloy disclosed in Patent Documents 1 to 3 is for casting, the mechanical strength is insufficient, and therefore, the magnesium alloy disclosed in Patent Documents 1 to 3 cannot be applied to parts requiring high strength at high temperatures such as compressors.

또한, 특허문헌 4, 5에 개시되는 마그네슘 합금은, 강도 및 단조성이 뛰어나다고 해도, 고온 피로 강도에 관한 검증이 없어, 압축기의 기구 부품에 대한 적용 가능성이 불확실했다.Moreover, even if the magnesium alloy disclosed in patent documents 4 and 5 was excellent in strength and forgeability, there was no verification about high temperature fatigue strength, and the applicability to the mechanical parts of a compressor was uncertain.

더욱이, 마그네슘 합금에 고가인 희소금속(rare metal)을 첨가하면, 마그네슘 합금의 강도를 올릴 수 있지만, 이 경우, 가격 상승으로 되어, 압축기의 기구 부품의 소재로서는 적합하지 않다.Moreover, the addition of an expensive rare metal to the magnesium alloy can raise the strength of the magnesium alloy, but in this case, the price rises, which is not suitable as a material for the mechanical parts of the compressor.

따라서, 본 발명은, 자동차 에어컨용 압축기의 기구 부품에 적용가능한 기계적 강도 및 고온에서의 피로 강도를 출현가능한, 마그네슘 합금부재 및 마그네슘 합금부재의 제조 방법을 제공하는 것, 및, 필요한 기계적 강도 및 고온에서의 피로 강도를 구비한 마그네슘 합금제의 기구 부품을 구비한 에어컨용 압축기를 제공하는 것을 목적으로 한다.Accordingly, the present invention provides a method for producing a magnesium alloy member and a magnesium alloy member capable of exhibiting mechanical strength applicable to a mechanical component of a compressor for an automotive air conditioner and fatigue strength at a high temperature, and the required mechanical strength and high temperature. An object of the present invention is to provide a compressor for an air conditioner having a mechanical component made of magnesium alloy having a fatigue strength in

상기 목적을 달성하기 위해서, 본 발명은, 질량%로, 칼슘을 0.3~10%, 알루미늄을 0.2~15%, 망간을 0.05~1.5% 함유하고, 칼슘/알루미늄의 질량비가 0.6~1.7이며, 잔부(殘部)가 마그네슘 및 불가피 불순물로 이루어지는 마그네슘 합금의 주조 소재를, 250~500℃로 소성가공(plastic working)하는 것을 특징으로 한다.In order to achieve the said objective, this invention contains 0.3-10% of calcium, 0.2-15% of aluminum, and 0.05-1.5% of manganese in mass%, the mass ratio of calcium / aluminum is 0.6-1.7, and remainder It is characterized by plastic working the cast material of the magnesium alloy which consists of magnesium and an unavoidable impurity at 250-500 degreeC.

칼슘(Ca)과 알루미늄(Al)의 쌍방을 첨가함으로써, Mg-Ca계 화합물과, Mg-Al-Ca계 화합물이 입계(grain boundaries)에 정출(晶出)되어, 실온에서의 기계적 강도 및 내열성이 향상한다.By adding both calcium and aluminum, the Mg-Ca compound and the Mg-Aa-Ca compound are crystallized out at grain boundaries, and the mechanical strength and heat resistance at room temperature This improves.

이들의 정출물은, Ca/Al의 질량비가 변함으로써 변화되고, 특히, Ca/Al의 질량비를 0.6~1.7로 한 경우, Mg-Ca계 화합물인 Mg2Ca과, Mg-Al-Ca계 화합물인 (Mg, Al)2Ca이 동시에 정출되어, 기계적 강도와 내열성의 향상에 큰 효과가 있다.These crystals are changed by changing the mass ratio of Ca / Ac, and in particular, when the mass ratio of Ca / Ac is 0.6 to 1.7, Mg 2 Ca and Mg-Aa-Ca compounds the crystallization is a (Mg, Al) 2 Ca at the same time, it is effective in improving the mechanical strength and heat resistance.

한편, Ca/Al의 질량비가 1.7보다도 커지면, Mg2Ca만, 혹은, 약간의 (Mg, Al)2Ca이 정출될 정도이며, 기계적 강도의 향상 효과는 기대할 수 없다. 또한, Ca/Al의 질량비가 0.6보다도 작아지면, Mg-Al계 화합물인 β-Mg17Al12이 정출되어, 내열성에 악영향을 미친다.On the other hand, when Ca / Aa mass ratio is larger than 1.7, only Mg 2 Ca or some (Mg, A2) 2 Ca are crystallized, and the improvement effect of mechanical strength cannot be expected. In addition, when smaller than the mass ratio of Ca / Al 0.6, the Mg-Al-based compound, β-Mg 17 Al 12 is crystallized, has an adverse effect on the heat resistance.

또한, 망간(Mn)을 소량 첨가함으로써, 결정 입자직경이 미세화하여, 기계적 강도가 향상한다. 망간(Mn)의 첨가량은, 0.05~1.5%의 범위가 적절하며, 이 범위를 벗어나면, 결정 입자직경의 미세화의 효과가 낮아져, 기계적 강도의 향상 효과는 기대할 수 없다.In addition, by adding a small amount of manganese (Mn), the crystal grain diameter becomes fine, and the mechanical strength is improved. The addition amount of manganese (Mn) is appropriately in the range of 0.05 to 1.5%. If it is out of this range, the effect of miniaturization of the crystal grain diameter becomes low, and the effect of improving mechanical strength cannot be expected.

그리고, 상기 조성의 마그네슘 합금으로 이루어지는 주조(鑄造) 소재에, 250~500℃로 소성가공을 실시하면, 고온에서의 높은 피로 강도를 출현가능하다. 그리고, 250~500℃에서의 소성가공 후의 마그네슘 합금부재는, 자동차 에어컨용 압축기의 기구 부품에 요구되는 기계적 강도 및 고온에서의 피로 강도인, 실온에 있어서의 0.2% 내력(耐力)이 300MPa이상, 150℃에 있어서의 피로 강도가 100MPa이상을 출현시킨다.In addition, when plastic processing is carried out at 250 to 500 ° C. to a cast material made of the magnesium alloy of the composition, high fatigue strength at high temperature can be exhibited. And the magnesium alloy member after plastic working at 250-500 degreeC has the mechanical strength required for the mechanical components of the compressor for automobile air conditioners, and the 0.2% yield strength at room temperature which is the fatigue strength at high temperature is 300 Mpa or more, Fatigue strength at 150 ° C results in 100 Mpa or more.

한편, 소성가공의 온도가 250℃를 하회(下回)하면, 충분한 왜곡량(strain amount)을 확보할 수 없기 때문에 성형이 불가능하며, 크랙(cracks) 등이 발생하고, 또한, 500℃를 상회하면, 고온 산화나 부분적인 용해가 발생하며, 피로 강도의 향상 효과는 기대할 수 없다.On the other hand, when the temperature of the plastic working is lower than 250 ° C., a sufficient strain amount cannot be secured, so that molding is impossible, cracks, etc. are generated, and more than 500 ° C. If it does, high temperature oxidation and partial dissolution generate | occur | produce, and the effect of improving fatigue strength cannot be expected.

여기서, 상기 소성가공 후에, 용체화 처리(solution heat treatment) 및 인공시효 처리(artificial aging treatment)를 실시할 수 있고, 바람직하게는, 소성가공 후에, 450~510℃의 처리 온도에 0.08시간 이상 유지하는 용체화 처리를 실시한 후, 150~250℃의 처리 온도에 0.3시간 이상 유지하는 인공시효 처리를 실시하는 것이 바람직하다.Here, after the plastic working, solution heat treatment and artificial aging treatment may be performed, and preferably, the plastic working is held at a processing temperature of 450 to 510 ° C. for 0.08 hours or more. After performing the solution treatment, it is preferable to perform an artificial aging treatment to be maintained at a processing temperature of 150 to 250 ° C. for 0.3 hours or more.

용체화 가열의 처리 온도가 450~510℃의 범위이면, 입계 및 입자 내부가 미세한 석출물에 의해 강화되어, 국소변형이 억제되며, 균일 변형 영역이 커지기 때문에, 고온에서의 가공 연화(軟化)가 일어나기 어려워져, 고온 피로 강도가 향상한다.When the treatment temperature of the solution heating is in the range of 450 to 510 ° C., grain boundaries and the inside of the particles are strengthened by fine precipitates, local deformation is suppressed, and the uniform deformation area is increased, so that work softening at high temperatures occurs. It becomes difficult, and high temperature fatigue strength improves.

용체화 가열의 처리 온도가 450℃를 하회하면, 고용체(solid solution)가 형성되기 어려워져, 입계 및 입자 내부의 석출물의 양이 저하하며, 적정한 상태로 되지 않아, 고온 피로 강도의 향상은 기대할 수 없다. 한편, 용체화 가열의 처리 온도가 510℃를 상회하면, 합금의 일부가 용융하는 버닝(burning)이 발생하여, 기공 결함(pore defects)이 생긴다.If the treatment temperature of the solution heating is lower than 450 ° C., a solid solution is less likely to be formed, the amount of precipitates in the grain boundaries and particles inside the particles decreases, and does not become an appropriate state. Thus, improvement in high temperature fatigue strength can be expected. none. On the other hand, when the treatment temperature of solution heating exceeds 510 degreeC, burning of a part of alloy melts and pore defects arise.

또한, 용체화 가열의 처리 시간은, 0.08시간을 하회하면, 충분한 용체화 처리를 할 수 없으므로, 유지시간은 0.08시간보다도 긴 것이 바람직하다.In addition, when the treatment time of solution heating is less than 0.08 hours, sufficient solution treatment cannot be performed, It is preferable that the holding time is longer than 0.08 hours.

또한, 담금질(hardening)에 사용하는 냉각은, 온수이어도 좋고, 얼마간의 첨가제를 가한 것이어도 좋으며, 공지의 담금질용의 냉각이면 다양한 것을 적용할 수 있다.Moreover, hot water may be sufficient as cooling used for hardening, and what kind of additive was added may be sufficient, and various things can be applied as long as it is cooling for well-known hardening.

인공시효 처리에 있어서의 처리 온도가 150℃를 하회하면, 적정한 경도(hardness)로 향상시키기 위해서 처리 시간이 길어지며, 처리 온도가 250℃를 상회하면, 경도 및 강도가 저하하므로, 인공시효 처리에 있어서의 처리 온도는, 150~250℃의 범위로 하는 것이 바람직하다.If the treatment temperature in the artificial aging treatment is lower than 150 ° C., the treatment time is long in order to improve to an appropriate hardness. If the treatment temperature is higher than 250 ° C., the hardness and strength are lowered. It is preferable to make the process temperature in the range of 150-250 degreeC.

또한, 인공시효 처리의 유지시간이 0.3시간을 하회하면, 충분한 시효 경화가 얻어지지 않으므로, 인공시효 처리에 있어서의 유지시간은, 0.3시간 이상으로 하는 것이 바람직하다.In addition, when the holding time of the artificial aging treatment is less than 0.3 hours, sufficient aging hardening cannot be obtained. Therefore, the holding time in the artificial aging treatment is preferably 0.3 hours or more.

상기 소성가공으로서, 압출 가공(extrusion processing)을 실시할 수 있고, 압출 가공을 250~500℃에서 행하면, 크랙이나 표면 산화를 억제하면서, 피로 강도를 향상시킬 수 있다.As the plastic working, extrusion processing can be performed. When the extrusion processing is performed at 250 to 500 ° C., fatigue strength can be improved while suppressing cracks and surface oxidation.

또한, 상기의 마그네슘 합금부재를, 에어컨용 압축기의 기구 부품에 사용할 수 있다.Moreover, the said magnesium alloy member can be used for the mechanism components of the compressor for air conditioners.

본 발명에 의하면, 자동차 에어컨용 압축기의 기구 부품에 적용가능한 기계적 강도 및 고온에서의 피로 강도, 구체적으로는, 실온의 0.2% 내력이 300MPa이상, 150℃의 피로 강도가 100MPa이상을 출현가능한 마그네슘 합금부재를 제공할 수 있다. 또한, 이러한 마그네슘 합금부재를 기구 부품에 사용한 에어컨용 압축기를 제공할 수 있다.According to the present invention, a magnesium alloy capable of exhibiting mechanical strength and fatigue strength at high temperature, specifically, 0.2 Mpa strength at room temperature of 300 Mpa or more and 150 ° C fatigue strength of 100 Mpa or more, which can be applied to a mechanical component of an automobile air conditioner compressor. The member can be provided. In addition, a compressor for an air conditioner using such a magnesium alloy member for a mechanical part can be provided.

그리고, 본 발명에 의하면, 고강도 알루미늄 합금과 거의 동등한 기계적 강도 및 고온 피로 강도를 마그네슘 합금부재에 있어서 출현가능하기 때문에, 고강도 알루미늄 합금에 비해서 저비중인 마그네슘 합금부재로의 치환이 가능하게 되어, 자동차 에어컨용 압축기의 대폭적인 중량 저감을 실현할 수 있다.In addition, according to the present invention, mechanical strength and high temperature fatigue strength substantially equivalent to those of high-strength aluminum alloy can be exhibited in the magnesium alloy member, so that it is possible to replace the magnesium alloy member with a lower ratio than the high-strength aluminum alloy. Significant weight reduction of the compressor for air conditioners can be realized.

이하, 본 발명의 실시 형태를 상세하게 설명한다.Hereinafter, embodiments of the present invention will be described in detail.

표 1은, 마그네슘 합금에 있어서의 알루미늄(Al), 칼슘(Ca), 망간(Mn)의 함유율(질량%)을 변경한 복수 종의 시료 각각에 있어서의 실온, 예컨대 10~35℃에서의 인장강도(MPa) 및 0.2% 내력(MPa)을 나타낸다.Table 1 shows the tensile strength at room temperature, for example, 10 to 35 ° C in each of a plurality of types of samples in which the content (mass%) of aluminum (Al), calcium (Ca), and manganese (Mn) in the magnesium alloy is changed. The strength MPa and the 0.2% yield strength MPa are shown.

표 1의 「판정」은, 0.2% 내력이, 자동차 에어컨용 압축기의 기구 부품에 요구되는 값인 300MPa이상인 것을 ○표시로 나타내고, 0.2% 내력이 300MPa미만인 것을 ×표시로 나타내는 것이다."Decision" of Table 1 shows that 0.2% yield strength is 300 Mpa or more which is the value calculated | required for the mechanical components of the compressor for automotive air conditioners by ○ mark, and shows that the 0.2% yield strength is less than 300 Mpa by x display.

0.2% 내력의 요구 값으로서의 300MPa은, 자동차 에어컨용 압축기의 기구 부품에 이용되고 있는, 용체화 처리 후에 인공시효 처리를 실시하는 T6처리가 실시된 알루미늄 합금 단조재의 0.2% 내력을 기준으로서 설정했다. 300 Mpa as a required value of 0.2% yield strength was set as a reference | standard by 0.2% yield strength of the aluminum alloy forging material to which T6 process which performs artificial aging treatment after solution treatment used for the mechanical components of the compressor for automobile air conditioners was performed.

표 1의 결과를 얻은 시료는, 표 중의 함유율로 한 마그네슘 합금의 주조품을 제작하고, 이 주조 소재에 소성가공, 구체적으로는, 열간 간접 압출 가공(hot indirect extrusion processing)을 실시한 것이며, 열처리(T6처리)를 실시하지 않은 것이다.The sample obtained in Table 1 was produced by casting a cast of magnesium alloy at the content in the table, and subjected to plastic working, specifically, hot indirect extrusion processing, and to heat treatment (T6). Processing).

보다 상세하게는, 합금 용제(alloy melting)는 전기 저항로(electric resistance furnace)를 이용하여 대기 중에서 행하고, 용탕(molten metal)의 산화 방지에는, SF6과 CO2의 혼합 가스를 이용했다. 그리고, 교반(攪拌) 후에, Ca첨가시의 산화물 제거를 위해 Ar가스를 흘려보내서 버블링(bubbling)을 행하며, 300℃로 가열한 빌렛용 금형(billet mold)에 주입(鑄入)하여, 주조 소재를 제작했다.More specifically, the alloy solvent (melting alloy) is used as the electric resistance (electric resistance furnace) is performed in air, in the anti-oxidation of the molten metal (molten metal), it was used a mixed gas of SF 6 and CO 2. Then, after stirring, Ar gas was flowed to bubble to remove the oxide during Ca addition, bubbling was performed, and the resultant was poured into a billet mold heated to 300 ° C, and cast. Made the material.

또한, 간접 압출 가공에는 유압 프레스기를 이용하여, 350℃로 가열한 금형 중에, 압출 가공용의 시료를 투입하고, 10분간 유지하고 나서, 압출비(比)를 20으로 한 압출 가공을 개시하였다. 한편, 압출비란, 소성가공 전의 단면적/소성가공 후의 단면적이다.In the indirect extrusion, a sample for extrusion processing was put into a mold heated at 350 ° C. using a hydraulic press and held for 10 minutes. Then, extrusion processing with an extrusion ratio of 20 was started. On the other hand, the extrusion ratio is the cross-sectional area before plastic working / cross-sectional area after plastic working.

또한, 압출재의 인장특성을 평가하기 위한 인장시험(tensile test)에 있어서는, 만능시험기(universal tester)를 이용하였다. 또한, 압출 방향과 하중 부하 방향(load applying direction)이 평행하게 되도록 시험편을 채취하고, 시험부 지름 4mm, 평점 거리(gauge length) 20mm의 JIS14A호 시험편을 제작했다. 더욱이, 시험 속도는, 초기 왜곡 속도(initial strain rate) 1×10-3s- 1으로 했다.In the tensile test for evaluating the tensile properties of the extruded material, a universal tester was used. Moreover, the test piece was extract | collected so that an extrusion direction and a load application direction might be parallel, and produced the test piece 14A No. 14A test piece diameter of 4 mm of test part diameter and 20 mm of gauge length. Furthermore, the speed of testing, the initial strain rate (initial strain rate) 1 × 10 -3 s - has a 1.

표 1의 최하단은, JIS규정 소재인 Al합금 단조재(A4032-T6)에서의 인장강도(MPa) 및 0.2% 내력(MPa)을 참고값으로서 나타내고 있다. 또한, 표 중의 「판정」은, 이 Al합금 단조재(A4032-T6)의 0.2% 내력인 300MPa이상인지 여부를 나타낸다.The lowermost part of Table 1 has shown the tensile strength (Mpa) and 0.2% yield strength (Mpa) in the A alloy alloy forging material A4032-T6 which is a WYS regulation material as a reference value. In addition, "determination" in a table | surface shows whether it is 300 Mpa or more which is 0.2% yield strength of this A alloy forging material (A4032-T6).

표 1에 있어서, 실시예 1~11의 시료는, 칼슘(Ca)을 0.3~10%, 알루미늄(Al)을 0.2~15%, 망간(Mn)을 0.05~1.5% 함유하고, 칼슘(Ca)/알루미늄(Al)의 질량비가 0.6~1.7이며, 잔부가 마그네슘(Mg) 및 불가피 불순물로 이루어지는 마그네슘 합금의 주조 소재에, 350℃의 소성가공(압출 가공)을 실시한 것이다.In Table 1, the sample of Examples 1-11 contains 0.3-10% of calcium (Ca), 0.2-15% of aluminum (Al), 0.05-1.5% of manganese (Mn), and calcium (Ca) The mass ratio of / aluminum is 0.6-1.7, and 350 degreeC plastic processing (extrusion process) is given to the casting material of the magnesium alloy which consists of magnesium (MG) and an unavoidable impurity.

한편, 비교예 1~7의 시료는, 칼슘(Ca)의 함유율, 알루미늄(Al)의 함유율, 망간(Mn)의 함유율, 칼슘(Ca)/알루미늄(Al)의 질량비의 중 적어도 하나가, 상기 범위에서 벗어나 있는 마그네슘 합금의 주조 소재에, 350℃의 소성가공(압출 가공)을 실시한 것이다.On the other hand, in the samples of Comparative Examples 1 to 7, at least one of the content ratio of calcium (Ca), the content of aluminum (Ac), the content of manganese (Mn), and the mass ratio of calcium (Ca) / aluminum (Ac) is described above. The cast material of magnesium alloy which is out of range is subjected to plastic working (extrusion) at 350 ° C.

한편, 표 1에 있어서의 「Ca+Al」은, 칼슘(Ca)과 알루미늄(Al)의 합계의 질량%을 나타낸다. In addition, "Ca + Aa" in Table 1 represents the mass% of the sum total of calcium (Ca) and aluminum (Aa).

표 1에 나타낸 바와 같이, 칼슘(Ca)의 함유율=0.3~10%, 알루미늄(Al)의 함유율=0.2~15%, 망간(Mn)의 함유율=0.05~1.5%, 칼슘(Ca)/알루미늄(Al)의 질량비 0.6~1.7을 충족시키는 실시예 1~7의 시료는, 모두 0.2% 내력이 요구 값인 300MPa이상이며, 자동차 에어컨용 압축기의 기구 부품에 요구되는 기계적 강도를 충족시키고 있어, 압축기의 기구 부품으로서 이용할 수 있는 것을 나타내고 있다.As shown in Table 1, the content of calcium (Ca) = 0.3 to 10%, the content of aluminum (Ac) = 0.2 to 15%, the content of manganese (Mn) = 0.05 to 1.5%, calcium (Ca) / aluminum ( All the samples of Examples 1 to 7 satisfying the mass ratio of 0.6 to 1.7 were 300 MPa or more whose 0.2% yield strength was a required value, and the mechanical strength required for the mechanical parts of the compressor for automobile air conditioners was satisfied. The thing which can be used as a component is shown.

이에 대하여, 칼슘(Ca)의 함유율이 0.3~10%의 범위를 벗어나는 비교예 1 및 비교예 4, 또한, 알루미늄(Al)의 함유율이 0.2~15%의 범위를 벗어나는 비교예 2 및 비교예 3에서는, 0.2% 내력이 요구 값인 300MPa을 하회하고, 압축기의 기구 부품으로서 이용할 수 없는 것을 나타내고 있다.On the other hand, Comparative Example 1 and Comparative Example 4 in which the content rate of calcium (Ca) is out of the range of 0.3 to 10%, and Comparative Example 2 and Comparative Example 3 in which the content rate of aluminum (Al) is out of the range of 0.2 to 15% Shows that the 0.2% yield strength is less than the required value of 300 MPa and cannot be used as a mechanical part of the compressor.

또한, 칼슘(Ca)의 함유율 및 알루미늄(Al)의 함유율이, 0.2~15%의 범위내이더라도, 비교예 5 및 비교예 6과 같이, 칼슘(Ca)/알루미늄(Al)의 질량비가 0.6~1.7의 범위를 벗어나면, 0.2% 내력이 요구 값인 300MPa을 하회하여, 압축기의 기구 부품으로서 이용할 수 없는 것을 나타내고 있다.In addition, even if the content rate of calcium (Ca) and the content rate of aluminum (Al) are in the range of 0.2-15%, like the comparative example 5 and the comparative example 6, the mass ratio of calcium (Ca) / aluminum (Al) is 0.6- If it is out of the range of 1.7, 0.2% yield strength is less than 300 Mpa which is a required value, and it shows that it cannot use as a mechanical component of a compressor.

더욱이, 칼슘(Ca)의 함유율 및 알루미늄(Al)의 함유율이 0.3~10%의 범위내이며, 또한, 칼슘(Ca)/알루미늄(Al)의 질량비가 0.6~1.7의 범위내이더라도, 망간(Mn)을 함유하지 않는 비교예 7에서는, 0.2% 내력이 요구 값인 300MPa을 하회하여, 압축기의 기구 부품으로서 이용할 수 없는 것을 나타내고 있다.Moreover, even if the content rate of calcium (Ca) and content of aluminum (Al) are in the range of 0.3 to 10%, and the mass ratio of calcium (Ca) / aluminum (Al) is in the range of 0.6 to 1.7, manganese (Mn) In Comparative Example 7, which does not contain), the 0.2% yield strength is less than 300 MPa, which is a required value, and indicates that it cannot be used as a mechanical part of the compressor.

즉, 상기 인장시험의 결과로부터, 칼슘(Ca)의 함유율=0.3~10%, 알루미늄(Al)의 함유율=0.2~15%, 망간(Mn)의 함유율=0.05~1.5%, 칼슘(Ca)/알루미늄(Al)의 질량비=0.6~1.7을 만족하는 마그네슘 합금인 것이, 자동차 에어컨용 압축기의 기구 부품에 요구되는 기계적 강도, 구체적으로는, 0.2% 내력이 300MPa이상을 얻기 위한 조건으로 되는 것을 알 수 있다.That is, from the results of the tensile test, the content of calcium (Ca) = 0.3 to 10%, the content of aluminum (Al) = 0.2 to 15%, the content of manganese (Mn) = 0.05 to 1.5%, calcium (Ca) / It is understood that the magnesium alloy satisfying the mass ratio of aluminum (0.6) = 0.6 to 1.7 is the mechanical strength required for the mechanical parts of the compressor for automobile air conditioners, specifically, 0.2% yield strength is a condition for obtaining 300 Mpa or more. have.

칼슘(Ca)과 알루미늄(Al)의 쌍방을 첨가함으로써, Mg-Ca계 화합물과, Mg-Al-Ca계 화합물이 입계에 정출되어, 실온에서의 기계적 강도 및 내열성이 향상한다. 실시예 1~11과 같이, 칼슘(Ca)/알루미늄(Al)의 질량비를 0.6~1.7로 한 경우, Mg-Ca계 화합물인 Mg2Ca과, Mg-Al-Ca계 화합물인 (Mg, Al)2Ca이 동시에 정출되어, 기계적 강도와 내열성이 향상한 것이라고 추정된다.By adding both calcium (Ca) and aluminum (Al), the Mg-Ca compound and the Mg-Aa-Ca compound are crystallized at grain boundaries, thereby improving mechanical strength and heat resistance at room temperature. As in Examples 1 to 11, when the mass ratio of calcium (Ca) / aluminum (Al) is 0.6 to 1.7, Mg 2 Ca, which is an Mg-Ca compound, and (MG, Aa, which is an Mg-Ac-Ca compound, are used. ) is estimated that a 2 Ca are crystallized at the same time, it improves the mechanical strength and heat resistance.

이에 대하여, 비교예 6과 같이 , 칼슘(Ca)/알루미늄(Al)의 질량비가 1.7보다도 커지면, Mg2Ca만, 혹은, 약간의 (Mg, Al)2Ca이 정출될 정도가 됨으로써, 기계적 강도를 충분히 향상시킬 수 없다. 또한, 비교예 5와 같이, 칼슘(Ca)/알루미늄(Al)의 질량비가 0.6보다도 작아지면, Mg-Al계 화합물인 β-Mg17Al12이 정출되어, 내열성에 악영향을 미친 것으로 추정된다.On the other hand, as in Comparative Example 6, when the mass ratio of calcium (Ca) / aluminum (Al) is larger than 1.7, only Mg 2 Ca or some Mg, A2 2 Ca are determined so that the mechanical strength is increased. Can't improve enough. In addition, as in Comparative Example 5, when the mass ratio of calcium (Ca) / aluminum (Al) is smaller than 0.6, β-Mg 17 Al 12 , which is an Mg-Ac based compound, is determined and adversely affects heat resistance.

또한, 비교예 7과 같이 , 칼슘(Ca)/알루미늄(Al)의 질량비를 0.6~1.7의 범위내로 하여도, 망간(Mn)을 첨가하지 않는 경우에는 기계적 강도가 부족하다. 이에 대하여, 실시예 1~11과 같이, 망간(Mn)을 소량 첨가함으로써, 0.2% 내력을 300MPa이상으로 할 수 있다. 이것은, 망간(Mn)을 소량 첨가함으로써, 결정 입자직경이 미세화하며, 기계적 강도가 향상한 것으로 추정된다. 망간(Mn)의 첨가량은, 0.05~1.5%의 범위가 적절하며, 이 범위를 벗어나면, 결정 입자직경의 미세화의 효과가 낮아지며, 기계적 강도의 향상 효과는 기대할 수 없다.In addition, similarly to Comparative Example 7, even if the mass ratio of calcium (Ca) / aluminum (Al) is within the range of 0.6 to 1.7, when manganese (Mn) is not added, mechanical strength is insufficient. On the other hand, like Example 1-11, 0.2% yield strength can be made 300 Mpa or more by adding a small amount of manganese (Mn). This is estimated by adding a small amount of manganese (Mn) to refine the crystal grain diameter and to improve the mechanical strength. The addition amount of manganese (Mn) is appropriately in the range of 0.05 to 1.5%. If it is out of this range, the effect of miniaturization of the crystal grain diameter is low, and the effect of improving the mechanical strength cannot be expected.

Figure pct00001
Figure pct00001

표 2는, 표 1에 나타낸 실시예 3의 함유율, 즉, 칼슘(Ca)을 3.3%, 알루미늄(Al)을 3.7%, 망간(Mn)을 0.33%, 칼슘(Ca)/알루미늄(Al)의 질량비가 0.89, 칼슘(Ca)과 알루미늄(Al)의 합계를 7%로 한 마그네슘 합금의 주조 소재를 시료로 한다. 그리고, 이 주조 소재에 실시한 압출 가공(소성가공)에 있어서의 압출비 및 압출 온도를 복수 종으로 다르게 하며, 압출 가공 후의 시료 각각에 있어서의 0.2% 내력을 구한 시험 결과를 나타낸다.Table 2 shows the content of Example 3 shown in Table 1, that is, 3.3% of calcium Ca, 3.7% of aluminum, 0.33% of manganese, and calcium / aluminum of Ca. The sample is a cast material of magnesium alloy whose mass ratio is 0.89 and the total of calcium (Ca) and aluminum (Al) is 7%. And the extrusion ratio and extrusion temperature in the extrusion process (baking process) performed on this casting material are made into multiple types, and the test result which calculated | required 0.2% yield strength in each sample after extrusion process is shown.

표 2에 나타내는 시험에서는, 압출비를 10,20,40,60의 4종류로 설정했지만, 각각의 압출비에 있어서의 압출 온도가, 250~500℃의 범위 내이면, 크랙이나 표면 산화가 발생하지 않고, 0.2% 내력이 요구 값인 300MPa을 상회했다.In the test shown in Table 2, the extrusion ratio was set to four types of 10, 20, 40, and 60, but cracks and surface oxidation occurred when the extrusion temperature in each extrusion ratio was in the range of 250 to 500 ° C. Without doing this, 0.2% yield strength exceeded 300 Mpa which is a required value.

이에 대하여, 압출비를 20으로 했을 때에, 압출 온도를 250~500℃의 범위를 하회하는 230℃로 하면 크랙이 발생해서 기계적 강도가 얻어지지 않고, 또한, 압출 온도를 250~500℃의 범위를 상회하는 517℃로 하면, 표면 산화가 발생하며, 0.2% 내력이 요구 값인 300MPa을 하회하였다.On the other hand, when the extrusion ratio is 20, when the extrusion temperature is set at 230 ° C below the range of 250 to 500 ° C, cracks are generated and mechanical strength is not obtained, and the extrusion temperature is set to be 250 to 500 ° C. When it was over 517 degreeC, surface oxidation will generate | occur | produce and 0.2% yield strength was less than 300 Mpa which is a required value.

즉, 소성가공(압출 가공)의 온도를, 250~500℃의 범위 내로 함으로써, 300MPa이상의 0.2% 내력을 출현가능한 것을 알 수 있다. 소성가공의 온도가 250℃를 하회할 경우에는, 충분한 왜곡량을 확보할 수 없기 때문에 성형이 불가능하며, 크랙 등이 발생한다. 또한, 소성가공의 온도가 500℃를 상회할 경우에는, 고온 산화나 부분적인 용해가 발생함으로써, 피로 강도의 향상 효과는 기대할 수 없다.That is, it turns out that 0.2% yield strength of 300 Mpa or more can be exhibited by making the temperature of plastic processing (extrusion process) into the range of 250-500 degreeC. When the temperature of plastic working is less than 250 degreeC, since sufficient distortion cannot be ensured, shaping | molding is impossible and a crack etc. generate | occur | produce. In addition, when the temperature of plastic processing exceeds 500 degreeC, high temperature oxidation and partial dissolution generate | occur | produce, and the improvement effect of fatigue strength cannot be expected.

Figure pct00002
Figure pct00002

표 3은, 250~500℃의 소성가공 후(압출 가공 후)에, 열처리(T6처리)를 실시한 경우와, 열처리(T6처리)를 실시하지 않은 경우에서, 각각 150℃ 피로 강도(고온 피로 강도)를 계측한 결과를 나타낸다.Table 3 shows the 150 ° C fatigue strength (high temperature fatigue strength) when the heat treatment (T6 treatment) and the heat treatment (T6 treatment) were not performed after the plastic working at 250 to 500 ° C (after the extrusion processing). ) Is measured.

한편, 시료로서는, 표 1에 나타낸 실시예 3의 함유율, 즉, 칼슘(Ca)을 3.3%, 알루미늄(Al)을 3.7%, 망간(Mn)을 0.33%, 칼슘(Ca)/알루미늄(Al)의 질량비가 0.89, 칼슘(Ca)과 알루미늄(Al)의 합계를 7%로 한 마그네슘 합금의 주조 소재를, 압출비를 20, 압출 온도를 350℃로 하여 압출 가공한 것을 이용하였다.In addition, as a sample, the content rate of Example 3 shown in Table 1, ie, calcium (Ca) 3.3%, aluminum (Al) 3.7%, manganese (Mn) 0.33%, calcium (Ca) / aluminum (Al) The extrusion material of the cast material of the magnesium alloy which made the mass ratio of 0.89 and the sum total of calcium (Ca) and aluminum (Al) 7% was 20 and the extrusion temperature was set to 350 degreeC, and the extrusion process was used.

더욱이, 표 3에는, 비교 대상으로서, JIS규정 소재인 Al합금 단조재(A4032-T6)에 있어서의 150℃ 피로 강도를 나타내고 있다. 상술한 바와 같이, Al합금 단조재(A4032-T6)는, 자동차 에어컨용 압축기에 이용되고 있기 때문에, 이 A4032-T6의 150℃ 피로 강도(100MPa)이상의 150℃ 피로 강도를 출현가능하다면, A4032-T6를 대신하는 부재로서 이용할 수 있게 된다.Moreover, Table 3 has shown the 150 degreeC fatigue strength in the AEL alloy forging material (A4032-T6) which is a JIS standard material. As described above, since the alloy A forging material A4032-T6 is used in a compressor for automobile air conditioners, if it is possible to exhibit 150 ° C fatigue strength of 150 ° C or higher (100Mpa) of A4032-T6, A4032-T6 can be used. It can be used as a member replacing T6.

표 3의 피로 강도를 얻은 피로 시험(회전 벤딩 시험, rotary bending test) 및 피로 강도의 산출은, 일본 기계학회편 「일본 기계학회기준 통계적 피로 시험 방법(개정판)JSME S-002-1994」에 준해서 행하고, 시험 온도 150℃, 회전수 3000rpm, 주파수 50Hz, 응력비 R=-1에서 행하였다. 표 3의 피로 강도는, 107회에서의 결과이다.Fatigue test (rotary bending test, rotary bending test) which obtained fatigue strength of Table 3 and calculation of fatigue strength conform to Japanese Society of Mechanical Engineers "Japanese Society of Mechanical Engineers standard statistical fatigue test method (revised edition) JSM S-002-1994" It carried out by the test temperature of 150 degreeC, rotation speed 3000rpm, frequency 50Hz, and stress ratio R = -1. Fatigue strength in Table 3 shows the results of 10 7 times.

피로 시험에 이용한 시험편은, 환봉형(rod-type) 시험편이며, 척부(chuck portion)의 지름을 8.5mm, 파단부(breaking portion)의 지름을 4mm로 하여, 압출 방향과 하중 부하 방향이 수직이 되도록 채취하고, 파단부는, 절삭에 의한 기다란 자국(streaks)의 영향을 없애기 위해서, 내수 연마지(waterproof abrasive paper)로 연마한 후, 마무리로 버프(buffing) 연마하였다.The test piece used for the fatigue test was a rod-type test piece. The diameter of the chuck portion was 8.5 mm and the diameter of the breaking portion was 4 mm, and the extrusion direction and the load load direction were perpendicular to each other. In order to remove the influence of the long streaks by cutting, the fractured part was polished with waterproof abrasive paper and then buffed to the finish.

또한, T6처리로서, 횡형 관상로(horizontal tubular furnace)를 이용해서 500℃의 Ar가스 기류 중에 30분(0.5시간) 유지하는 용체화 처리 후, 180℃의 오일배스(oil bath)를 이용해서 2시간의 인공시효 처리를 실시하였다. 한편, 열처리 시간(유지시간)은, 시료를 투입하고 나서의 시간이다.In addition, as a T6 treatment, after the solution treatment which hold | maintains 30 minutes (0.5 hours) in 500 degreeC Ar gas stream using a horizontal tubular furnace, it uses a 180 degreeC oil bath. Artificial aging treatment was performed. In addition, heat processing time (holding time) is time after the sample is input.

표 3에 나타낸 바와 같이, A4032-T6의 150℃ 피로 강도가 100MPa인 것에 대하여, 250~500℃의 온도로 소성가공, 구체적으로는, 350℃에서의 압출 가공을 행한 후, 열처리(T6처리)를 행하지 않은 마그네슘 합금부재의 150℃ 피로 강도는 117MPa인 것에 대하여, 동일한 소재로 동일한 소성가공을 실시한 후에, 더욱이 열처리(T6처리)를 실시한 마그네슘 합금부재의 150℃ 피로 강도는 132MPa이었다.As shown in Table 3, after 150 degreeC fatigue strength of A4032-T6 is 100 Mpa, it is baked at 250-500 degreeC, specifically, extrusion process at 350 degreeC, and is heat-processed (T6 process). The 150 ° C fatigue strength of the magnesium alloy member which had not been subjected to the heat treatment (T6 treatment) was 132Mpa after the same plastic working was performed with the same material, while the 150 ° C fatigue strength of the magnesium alloy member which was not performed was 117Mpa.

즉, 칼슘(Ca)의 함유율=0.3~10%, 알루미늄(Al)의 함유율=0.2~15%, 망간(Mn)의 함유율=0.05~1.5%, 칼슘(Ca)/알루미늄(Al)의 질량비=0.6~1.7인 마그네슘 합금의 주조 소재에 대하여, 250~500℃의 소성가공을 실시하면, 열처리(T6처리)를 실시하지 않아도 A4032-T6를 상회하는 150℃ 피로 강도를 출현가능하다. 그리고, 열처리(T6처리)를 실시하면, 열처리(T6처리)를 실시하지 않은 경우에 비해서 150℃ 피로 강도를 더욱 향상시킬 수 있다.That is, the content rate of calcium (Ca) = 0.3 to 10%, the content rate of aluminum (Ac) = 0.2 to 15%, the content rate of manganese (Mn) = 0.05 to 1.5%, the mass ratio of calcium (Ca) / aluminum (Ac) = When plastic working at 250-500 degreeC is performed with respect to the casting material of 0.6-1.7 magnesium alloy, 150 degreeC fatigue strength exceeding A4032-T6 can be appeared, even without heat processing (T6 treatment). When the heat treatment (T6 treatment) is performed, the fatigue strength at 150 ° C. can be further improved as compared with the case where the heat treatment (T6 treatment) is not performed.

환언하면, 칼슘(Ca)의 함유율=0.3~10%, 알루미늄(Al)의 함유율=0.2~15%, 망간(Mn)의 함유율=0.05~1.5%, 칼슘(Ca)/알루미늄(Al)의 질량비=0.6~1.7인 마그네슘 합금의 주조 소재에 대하여, 250~500℃의 소성가공을 실시하여 형성한 마그네슘 합금부재는, 열처리(T6처리)를 실시하지 않아도, 자동차 에어컨용 압축기의 기구 부품에 이용할 수 있는 실온에서의 0.2% 내력 및 고온에서의 피로 강도, 구체적으로는, 300MPa이상의 실온 0.2% 내력 및 100MPa이상의 150℃ 피로 강도를 출현가능하며, 더욱이, 열처리(T6처리)를 실시하면, 고온에서의 피로 강도가 보다 강해진다.In other words, the content ratio of calcium (Ca) = 0.3 to 10%, the content of aluminum (Ac) = 0.2 to 15%, the content of manganese (Mn) = 0.05 to 1.5%, the mass ratio of calcium (Ca) / aluminum (Ac) The magnesium alloy member formed by performing the plastic working process of 250-500 degreeC with respect to the casting material of magnesium alloy of = 0.6-1.7 can be used for the mechanical components of the compressor for automobile air conditioners, without performing heat processing (T6 treatment). 0.2% yield strength at room temperature and fatigue strength at high temperature, specifically, 0.2% yield strength at room temperature of 300 Mpa or more and 150 ° C. fatigue strength of 100 Mpa or more are possible, and furthermore, when heat treatment (T6 treatment) is performed, Fatigue strength becomes stronger.

따라서, 고강도 알루미늄 합금을 이용하고 있었던 자동차 에어컨용 압축기의 기구 부품을, 마그네슘 합금부재로 형성할 수 있고, 이것에 의해 압축기의 대폭적인 중량 저감을 실현할 수 있다.Therefore, the mechanical parts of the compressor for automobile air conditioners which used high-strength aluminum alloy can be formed by the magnesium alloy member, and this can realize a significant weight reduction of the compressor.

Figure pct00003
Figure pct00003

그런데, 열처리(T6처리)에서는, 소성가공(압출 가공) 후에 행하는 용체화 처리에 있어서, 450~510℃의 처리 온도로 0.08시간 이상 유지하는 것이 바람직하고, 또한, 담금질 처리 후에 행하는 인공시효 처리에 있어서, 150~250℃의 처리 온도로 0.3시간 이상 유지하는 것이 바람직하다.By the way, in the heat treatment (T6 treatment), in the solution treatment carried out after the plastic working (extrusion), it is preferable to hold the treatment temperature at 450 to 510 ° C for 0.08 hours or more, and to perform the artificial aging treatment performed after the quenching treatment. In addition, it is preferable to hold | maintain 0.3 hour or more at the process temperature of 150-250 degreeC.

용체화 가열의 처리 온도가 450~510℃의 범위이면, 입계 및 입자 내부가 미세한 석출물에 의해 강화되어, 국소변형이 억제되며, 균일 변형 영역이 커지기 때문에, 고온에서의 가공 연화가 일어나기 어려워져, 고온 피로 강도를 향상시킬 수 있다.When the treatment temperature of the solution heating is in the range of 450 to 510 ° C., grain boundaries and the inside of the particles are strengthened by fine precipitates, local deformation is suppressed, and the uniform deformation region becomes large, so that work softening at high temperatures is less likely to occur. High temperature fatigue strength can be improved.

이에 대하여, 용체화 가열의 처리 온도가 450℃를 하회하면, 고용체가 형성되기 어려워져, 입계 및 입자 내의 석출물이 저하하며, 적정한 상태로 되지 않아, 고온 피로 강도의 향상은 기대할 수 없다. 한편, 용체화 가열의 처리 온도가 510℃를 상회하면, 합금의 일부가 용융하는 버닝이 생겨, 기공 결함이 생겨버린다.On the other hand, when the treatment temperature of solution heating is less than 450 degreeC, a solid solution becomes difficult to form, the grain boundary and the precipitate in a particle fall, it does not become a suitable state, and the improvement of high temperature fatigue strength cannot be expected. On the other hand, when the process temperature of solution heating exceeds 510 degreeC, the burning of a part of alloy melts, and a pore defect arises.

또한, 용체화 가열의 처리 시간은, 0.08시간을 하회하면, 충분한 용체화 처리를 할 수 없으므로, 유지시간은 0.08시간보다도 긴 것이 바람직하다.In addition, when the treatment time of solution heating is less than 0.08 hours, sufficient solution treatment cannot be performed, It is preferable that the holding time is longer than 0.08 hours.

또, 인공시효 처리에 있어서의 처리 온도가 150℃를 하회하면, 적정한 경도로 향상시키기 위해서 처리 시간이 길어지며, 처리 온도가 250℃를 상회하면, 경도 및 강도가 저하해버리므로, 인공시효 처리에 있어서의 처리 온도는, 150~250℃의 범위로 하는 것이 바람직하다.In addition, when the treatment temperature in the artificial aging treatment is lower than 150 ° C., the treatment time is long in order to improve the proper hardness. When the treatment temperature is higher than 250 ° C., the hardness and strength are lowered. It is preferable to make the process temperature in the range of 150-250 degreeC.

또한, 인공시효 처리의 유지시간이 0.3시간을 하회하면, 충분한 시효 경화가 얻어지지 않으므로, 인공시효 처리에 있어서의 유지시간은, 0.3시간 이상으로 하는 것이 바람직하다.In addition, when the holding time of the artificial aging treatment is less than 0.3 hours, sufficient aging hardening cannot be obtained. Therefore, the holding time in the artificial aging treatment is preferably 0.3 hours or more.

표 3의 결과를 얻은 열처리(T6처리)에 있어서의 온도 및 유지시간은, 상술한 온도범위 및 시간범위를 만족하고 있다.The temperature and holding time in the heat treatment (T6 treatment) obtained in Table 3 satisfy the above-described temperature range and time range.

이상 설명한 바와 같이, 본 발명에 관한 마그네슘 합금부재 및 마그네슘 합금부재의 제조 방법에 의하면, 자동차 에어컨용 압축기의 기구 부품에 요구되는, 실온에 있어서의 0.2% 내력이 300MPa이상, 150℃에 있어서의 피로 강도가 100MPa이상을 출현가능하여, 종래 사용하고 있었던 Al합금 단조재 A4032와 치환하여 이용할 수 있다.As described above, according to the magnesium alloy member and the magnesium alloy member manufacturing method according to the present invention, the 0.2% yield strength at room temperature, which is required for the mechanical parts of the compressor for automobile air conditioners, is 300MPa or more and fatigue at 150 ° C. It is possible to exhibit a strength of 100 MPa or more, and can be used by substituting the alloy Al forging A4032 which has been used conventionally.

그리고, 마그네슘 합금부재의 비중은, Al합금 단조재 A4032보다도 작으므로, 자동차 에어컨용 압축기의 기구 부품을, 마그네슘 합금으로 형성하면, 압축기의 중량을 크게 저감할 수 있어, 차량의 경량화, 나아가서는 연비성능의 개선에 기여할 수 있다.Since the specific gravity of the magnesium alloy member is smaller than that of the alloy A forging A4032, if the mechanical parts of the compressor for automobile air conditioners are formed of magnesium alloy, the weight of the compressor can be greatly reduced, thereby reducing the weight of the vehicle and further fuel economy. It can contribute to the improvement of performance.

본 발명에 관한 마그네슘 합금부재 및 마그네슘 합금부재를 적용하는 자동차 에어컨용 압축기의 기구 부품으로서는, 사판식 압축기용 슈(shoes for swash plate compressors)나 피스톤, 및, 스크롤식 압축기용 나선체(spiral bodies for scroll type compressors) 등이 있다.As a mechanical part of the compressor for automobile air conditioners which apply the magnesium alloy member and magnesium alloy member which concern on this invention, shoes for swash plate compressors, a piston, and spiral bodies for scroll compressors scroll type compressors).

한편, 본 발명에 관한 마그네슘 합금부재 및 마그네슘 합금부재의 제조 방법은, 자동차 에어컨용 압축기의 기구 부품에 적용하는 것을 전제로 하여 개발된 것이지만, 적용 대상을 자동차 에어컨용 압축기의 기구 부품으로 한정하는 것이 아니고, 정치식 에어컨(stationary air conditioners)용 압축기의 기구 부품에 적용하는 것도 가능하다.On the other hand, although the magnesium alloy member and the manufacturing method of the magnesium alloy member which concern on this invention were developed on the premise of being applied to the mechanical components of the compressor for automobile air conditioners, it is limited to apply to the mechanical components of the compressor for automobile air conditioners. In addition, it is also possible to apply to the mechanism parts of the compressor for stationary air conditioners.

또한, 소성가공을 압출 가공으로 한정하는 것도 아니며, 단조 가공(forging), 압연 가공(rolling), 인발 가공(drawing processing) 등이어도 좋다.In addition, the plastic working is not limited to extrusion, and forging, rolling, drawing processing, or the like may be used.

Claims (10)

질량%로, 칼슘을 0.3~10%, 알루미늄을 0.2~15%, 망간을 0.05~1.5% 함유하고, 칼슘/알루미늄의 질량비가 0.6~1.7이며, 잔부(殘部)가 마그네슘 및 불가피 불순물로 이루어지는 마그네슘 합금의 주조 소재를, 250~500℃에서 소성가공해서 형성한 마그네슘 합금부재. Magnesium containing 0.3 to 10% of calcium, 0.2 to 15% of aluminum, 0.05 to 1.5% of manganese, a mass ratio of calcium to aluminum of 0.6 to 1.7, and a balance of magnesium and inevitable impurities. Magnesium alloy member formed by casting the alloy casting material at 250 to 500 ° C. 제1항에 있어서,
상기 소성가공 후에, 용체화 처리 및 인공시효 처리를 실시한 마그네슘 합금부재.
The method of claim 1,
Magnesium alloy member subjected to the solution treatment and artificial aging treatment after the plastic working.
제2항에 있어서,
상기 소성가공 후에, 450~510℃의 처리 온도로 0.08시간 이상 유지하는 용체화 처리를 실시한 후, 150~250℃의 처리 온도로 0.3시간 이상 유지하는 인공시효 처리를 실시한 마그네슘 합금부재.
The method of claim 2,
A magnesium alloy member subjected to an artificial aging treatment maintained at a treatment temperature of 150 to 250 ° C. for at least 0.3 hours after a solution treatment for maintaining at least 0.08 hours at a treatment temperature of 450 to 510 ° C. after the plastic working.
질량%로, 칼슘을 0.3~10%, 알루미늄을 0.2~15%, 망간을 0.05~1.5% 함유하고, 칼슘/알루미늄의 질량비가 0.6~1.7이며, 잔부가 마그네슘 및 불가피 불순물로 이루어지는 마그네슘 합금의 주조 소재를 소성가공해서 이루어지고, 실온에 있어서의 0.2% 내력이 300MPa이상, 150℃에 있어서의 피로 강도가 100MPa이상인 마그네슘 합금부재.Casting of magnesium alloy containing 0.3-10% of calcium, 0.2-15% of aluminum, 0.05-1.5% of manganese, the mass ratio of calcium / aluminum is 0.6-1.7, and the balance is magnesium and unavoidable impurities. Magnesium alloy member which plastically processes a raw material, and whose 0.2% yield strength in room temperature is 300 Mpa or more and the fatigue strength in 150 degreeC is 100 Mpa or more. 제1항에 있어서,
상기 소성가공이 압출 가공인 마그네슘 합금부재.
The method of claim 1,
Magnesium alloy member wherein the plastic working is extrusion.
제1항에 기재된 마그네슘 합금부재를 기구 부품에 사용한 에어컨용 압축기.The compressor for air conditioners which used the magnesium alloy member of Claim 1 for mechanical components. 질량%로, 칼슘을 0.3~10%, 알루미늄을 0.2~15%, 망간을 0.05~1.5% 함유하고, 칼슘/알루미늄의 질량비가 0.6~1.7이며, 잔부가 마그네슘 및 불가피 불순물로 이루어지는 마그네슘 합금의 주조 소재를, 250~500℃에서 소성가공을 행하는 마그네슘 합금부재의 제조 방법.Casting of magnesium alloy containing 0.3-10% of calcium, 0.2-15% of aluminum, 0.05-1.5% of manganese, the mass ratio of calcium / aluminum is 0.6-1.7, and the balance is magnesium and unavoidable impurities. The manufacturing method of the magnesium alloy member which plastic-processes a raw material at 250-500 degreeC. 제7항에 있어서,
상기 소성가공 후에, 용체화 처리 및 인공시효 처리를 행하는 마그네슘 합금부재의 제조 방법.
The method of claim 7, wherein
A method of producing a magnesium alloy member which is subjected to solution treatment and artificial aging treatment after the plastic working.
제8항에 있어서,
상기 소성가공 후에, 450~510℃의 처리 온도로 0.08시간 이상 유지하는 용체화 처리를 행한 후, 150~250℃의 처리 온도로 0.3시간 이상 유지하는 인공시효 처리를 행하는 마그네슘 합금부재의 제조 방법.
9. The method of claim 8,
A method of producing a magnesium alloy member, wherein after the plastic working, a solution treatment for holding at least 0.08 hours at a treatment temperature of 450 to 510 ° C. is performed, and then an artificial aging treatment is maintained at a processing temperature of 150 to 250 ° C. for 0.3 hours or more.
제7항에 있어서,
상기 소성가공이 압출 가공인 마그네슘 합금부재의 제조 방법.
The method of claim 7, wherein
A method for producing a magnesium alloy member, wherein the plastic working is extrusion.
KR1020137013196A 2010-10-29 2011-10-28 Magnesium-alloy member, compressor for use in air conditioner, and method for manufacturing magnesium-alloy member KR20130101100A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010244816A JP2012097309A (en) 2010-10-29 2010-10-29 Magnesium alloy member, compressor for air conditioner, and method for manufacturing magnesium alloy member
JPJP-P-2010-244816 2010-10-29
PCT/JP2011/074959 WO2012057329A1 (en) 2010-10-29 2011-10-28 Magnesium-alloy member, compressor for use in air conditioner, and method for manufacturing magnesium-alloy member

Publications (1)

Publication Number Publication Date
KR20130101100A true KR20130101100A (en) 2013-09-12

Family

ID=45994031

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137013196A KR20130101100A (en) 2010-10-29 2011-10-28 Magnesium-alloy member, compressor for use in air conditioner, and method for manufacturing magnesium-alloy member

Country Status (6)

Country Link
US (1) US20130213528A1 (en)
EP (1) EP2631312A4 (en)
JP (1) JP2012097309A (en)
KR (1) KR20130101100A (en)
CN (1) CN103180472A (en)
WO (1) WO2012057329A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6013755B2 (en) * 2012-04-10 2016-10-25 サンデンホールディングス株式会社 Compression function member and method of manufacturing the same
JP5700005B2 (en) * 2012-09-05 2015-04-15 株式会社豊田中央研究所 Composite magnesium alloy member and manufacturing method thereof
WO2015060459A1 (en) * 2013-10-23 2015-04-30 国立大学法人 熊本大学 Magnesium alloy and method for producing same
CN104046868B (en) * 2014-06-26 2017-01-25 宝山钢铁股份有限公司 Rare-earth-free low-cost high-strength heat-conducting magnesium alloy and preparation method thereof
CN104532093B (en) * 2015-01-14 2016-09-28 湖南大学 A kind of Mg-Ca-Al alloy and preparation method
JP6452042B2 (en) * 2015-03-13 2019-01-16 三協立山株式会社 Method for producing magnesium alloy
JP6493741B2 (en) * 2015-03-13 2019-04-03 国立研究開発法人物質・材料研究機構 Mg alloy and manufacturing method thereof
EP3299493B1 (en) * 2015-10-01 2019-12-25 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Coating structure, impeller, compressor, metal part manufacturing method, impeller manufacturing method, and compressor manufacturing method
CN105296831B (en) * 2015-11-05 2017-09-12 南阳师范学院 A kind of wrought magnesium alloy of high room temperature elongation percentage and preparation method thereof
JP7002711B2 (en) * 2016-09-13 2022-02-04 三協立山株式会社 Magnesium alloy
DE102016221902A1 (en) * 2016-11-08 2018-05-09 Volkswagen Aktiengesellschaft Sheet of a magnesium-based alloy and method for producing a sheet and sheet metal component therefrom
CN108570583B (en) * 2018-06-08 2020-06-09 哈尔滨工业大学 Rare earth-free low-alloy magnesium alloy with ultrahigh strength and toughness and preparation method thereof
JP2021063256A (en) * 2019-10-11 2021-04-22 三菱重工業株式会社 Production method of aircraft member
CN110983217B (en) * 2019-11-22 2021-04-02 中国兵器工业第五九研究所 Magnesium alloy die pressing aging composite process
JP7356116B2 (en) 2021-04-09 2023-10-04 三菱重工業株式会社 Method of manufacturing aircraft parts
CN113774298B (en) * 2021-09-10 2022-06-24 哈尔滨工程大学 Strong plasticizing processing method of brittleness-prone rare earth magnesium alloy

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2642439B2 (en) * 1988-02-26 1993-04-16 Pechiney Electrometallurgie
JP2676466B2 (en) * 1992-09-30 1997-11-17 マツダ株式会社 Magnesium alloy member and manufacturing method thereof
JPH0841576A (en) * 1994-07-28 1996-02-13 Honda Motor Co Ltd High strneght magnesium alloy and heat treatment for magnesium alloy casting
JP2000104137A (en) * 1998-09-30 2000-04-11 Mazda Motor Corp Magnesium alloy forging stock, forged member and production of the forged member
JP3030338B1 (en) * 1998-10-05 2000-04-10 工業技術院長 Method for producing high-strength flame-retardant magnesium alloy
JP2004162090A (en) * 2002-11-11 2004-06-10 Toyota Industries Corp Heat resistant magnesium alloy
JP4575645B2 (en) * 2003-01-31 2010-11-04 株式会社豊田自動織機 Heat-resistant magnesium alloy for casting and heat-resistant magnesium alloy casting
JP4415098B2 (en) * 2005-03-16 2010-02-17 独立行政法人産業技術総合研究所 Method for producing flame retardant magnesium alloy extruded material and extruded material
JP4539572B2 (en) 2006-01-27 2010-09-08 株式会社豊田中央研究所 Magnesium alloys and castings for casting
CN101067178A (en) * 2007-06-13 2007-11-07 湖南大学 Alkaline-earth heat insulating magnesium alloy for vehicle use and producing method thereof
JP2010242146A (en) * 2009-04-03 2010-10-28 Toyota Central R&D Labs Inc Magnesium alloy and magnesium alloy member
JP5424391B2 (en) * 2009-09-30 2014-02-26 国立大学法人長岡技術科学大学 Magnesium alloy rolled material and method for producing the same

Also Published As

Publication number Publication date
EP2631312A1 (en) 2013-08-28
EP2631312A4 (en) 2014-06-18
WO2012057329A1 (en) 2012-05-03
CN103180472A (en) 2013-06-26
US20130213528A1 (en) 2013-08-22
JP2012097309A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
KR20130101100A (en) Magnesium-alloy member, compressor for use in air conditioner, and method for manufacturing magnesium-alloy member
CN111032897A (en) Method of forming cast aluminum alloy
KR101205169B1 (en) Aluminium alloy
JP6420553B2 (en) Aluminum alloy, aluminum alloy wire, aluminum alloy wire manufacturing method, aluminum alloy member manufacturing method, and aluminum alloy member
JP5830006B2 (en) Extruded aluminum alloy with excellent strength
JP6943968B2 (en) Aluminum alloy for die casting and functional parts using it
US20060011321A1 (en) Aluminum diecasting alloy
JPWO2017169962A1 (en) High strength aluminum alloy extruded material with excellent corrosion resistance and good hardenability, and method for producing the same
JP7113852B2 (en) aluminum alloy
JP7249321B2 (en) Method for manufacturing aluminum alloy member
WO2013115227A1 (en) High-strength aluminum alloy extrudate with excellent corrosion resistance, ductility, and hardenability and process for producing same
JP2012001756A (en) HIGH-TOUGHNESS Al ALLOY FORGING MATERIAL, AND METHOD FOR PRODUCING THE SAME
CN112626383A (en) Aluminum alloy plate
KR20170082604A (en) Multipurpose heat treatable aluminum alloys and related processes and uses
JP2020139228A (en) Method for producing aluminum alloy extrusion material
JP5111966B2 (en) Method for manufacturing aluminum alloy panel
JPH09209069A (en) Wear resistant al alloy for elongation, scroll made of this wear resistant al alloy for elongation, and their production
Vuksanovic et al. Effect of chemical composition and T6 heat treatment on the mechanical properties and fracture behaviour of Al-Si alloys for IC engine components
JP6587533B2 (en) Aluminum alloy extruded material for cutting with excellent fatigue strength characteristics and method for producing the same
RU2590403C1 (en) Aluminium-based alloy, and method for production of deformed semi-finished products thereof
JP2015010259A (en) Aluminum alloy sheet
JP2006161103A (en) Aluminum alloy member and manufacturing method therefor
JP6204298B2 (en) Aluminum alloy plate
JP7318284B2 (en) Aluminum alloys for compressor sliding parts and forgings for compressor sliding parts
JP7073068B2 (en) Al-Cu-Mg-based aluminum alloy and Al-Cu-Mg-based aluminum alloy material

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application