JP2006161103A - Aluminum alloy member and manufacturing method therefor - Google Patents

Aluminum alloy member and manufacturing method therefor Download PDF

Info

Publication number
JP2006161103A
JP2006161103A JP2004354319A JP2004354319A JP2006161103A JP 2006161103 A JP2006161103 A JP 2006161103A JP 2004354319 A JP2004354319 A JP 2004354319A JP 2004354319 A JP2004354319 A JP 2004354319A JP 2006161103 A JP2006161103 A JP 2006161103A
Authority
JP
Japan
Prior art keywords
aluminum alloy
casting
alloy member
aging treatment
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004354319A
Other languages
Japanese (ja)
Inventor
Toshio Horie
俊男 堀江
Munehisa Matsui
宗久 松井
Hiroaki Iwabori
弘昭 岩堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2004354319A priority Critical patent/JP2006161103A/en
Publication of JP2006161103A publication Critical patent/JP2006161103A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Forging (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for inexpensively manufacturing an aluminum alloy member with high strength and high toughness, and to provide the aluminum alloy member with high strength and high toughness. <P>SOLUTION: The method for manufacturing the aluminum alloy member comprises: a solution treatment step of solution-treating an age-hardenable aluminum alloy casting; an intermediate aging step of intermediate-aging the solution-treated aluminum alloy casting by holding it for a half period of time or shorter than a period required for causing the maximum age hardening effect, at a temperature in a range of a temperature in subsequent artificial aging treatment ±100°C; a plastic working step of plastic-working the intermediate-aged aluminum alloy casting; and an artificial aging step of artificial-aging a plastic-worked member to obtain the aluminum alloy member. The aluminum alloy member has a structure such that precipitates formed through age hardening have sizes of 50 nm or smaller. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高強度かつ高靱性のアルミニウム合金部材、およびその製造方法に関する。   The present invention relates to an aluminum alloy member having high strength and high toughness, and a method for producing the same.

近年、軽量化の要請から、各種製品がアルミニウム合金製へと移行しつつある。特に、自動車分野では、軽量化による燃費向上により、環境負荷の低減が図られる。自動車用部品には高強度、高靱性といった優れた機械的特性が要求される。例えば、展伸用アルミニウム合金を鍛造した鍛造品は、機械的特性に優れる。しかし、製造コストが高いため、鍛造品は一部の部品に適用されているに過ぎない。アルミニウム合金の自動車用部品への適用を拡大するためには、高強度かつ高靱性のアルミニウム合金部材を、低コストに製造する技術が必要となる。   In recent years, various products are shifting to aluminum alloys due to the demand for weight reduction. In particular, in the automobile field, the environmental load can be reduced by improving the fuel efficiency by reducing the weight. Automotive parts are required to have excellent mechanical properties such as high strength and high toughness. For example, a forged product obtained by forging a wrought aluminum alloy has excellent mechanical properties. However, due to the high manufacturing cost, forged products are only applied to some parts. In order to expand the application of aluminum alloys to automotive parts, a technique for producing high-strength and high-toughness aluminum alloy members at low cost is required.

その技術の一つとして、鍛造する素材に鋳物を使用する鋳造鍛造法が注目されている。例えば、特許文献1には、アルミニウム合金鋳物を溶体化処理した後、塑性加工し、その後に人工時効処理するというアルミニウム合金部材の製造方法が開示されている。また、非特許文献1には、アルミニウム合金鋳物を鍛造した後、熱処理(溶体化処理、人工時効処理)する方法が開示されている。
特開平8−246118号公報 神戸洋史、他5名、“鋳造鍛造プロセスによるアルミニウムロ ードホイールの実用化”、「軽金属」、1998年、第48巻、第2号、 p.103−108
As one of the techniques, attention is paid to a casting forging method in which a casting is used as a material to be forged. For example, Patent Document 1 discloses a method for manufacturing an aluminum alloy member in which an aluminum alloy casting is subjected to solution treatment, plastic processing, and then artificial aging treatment is performed. Non-Patent Document 1 discloses a method in which an aluminum alloy casting is forged and then heat-treated (solution treatment, artificial aging treatment).
JP-A-8-246118 Hiroshi Kobe, 5 others, “Practical application of aluminum load wheel by casting forging process”, “Light metal”, 1998, Vol. 48, No. 2, p. 103-108

しかし、上記特許文献1に記載されているように、単に鋳物に歪みを与えて人工時効処理を行うだけでは、充分な時効硬化が起こらない。つまり、溶体化処理→塑性加工→人工時効処理というプロセスでは、高強度と高靱性とを両立したアルミニウム合金部材を実現することはできない。また、非特許文献1に記載されているように、鍛造後に熱処理を行うと、鍛造で導入された歪みが熱処理で回復して無くなってしまう。よって、得られたアルミニウム合金部材の組織は、鋳造品とほとんど変わらない。また、得られるアルミニウム合金部材の0.2%耐力は220MPa程度であり、強度も充分ではない。   However, as described in Patent Document 1, sufficient age hardening does not occur if the casting is simply distorted and artificial aging treatment is performed. That is, in the process of solution treatment → plastic processing → artificial aging treatment, an aluminum alloy member having both high strength and high toughness cannot be realized. Further, as described in Non-Patent Document 1, when heat treatment is performed after forging, strain introduced by forging is recovered by heat treatment and disappears. Therefore, the structure of the obtained aluminum alloy member is almost the same as that of a cast product. Moreover, the 0.2% yield strength of the obtained aluminum alloy member is about 220 MPa, and the strength is not sufficient.

本発明は、このような実状を鑑みてなされたものであり、アルミニウム合金鋳物を塑性加工するプロセスを利用して、高強度かつ高靱性のアルミニウム合金部材を低コストに製造することのできる方法を提供することを課題とする。また、安価で高強度かつ高靱性のアルミニウム合金部材を提供することを課題とする。   The present invention has been made in view of such a situation, and a method capable of producing a high-strength and high-toughness aluminum alloy member at low cost by using a process of plastic processing an aluminum alloy casting. The issue is to provide. Another object of the present invention is to provide an inexpensive, high-strength and high-toughness aluminum alloy member.

(1)本発明のアルミニウム合金部材の製造方法は、時効性のアルミニウム合金鋳物を溶体化処理する溶体化処理工程と、該溶体化処理後のアルミニウム合金鋳物を、後に行う人工時効処理の温度の±100℃以内の温度で、時効硬化が最大となるのに要する時間の半分以下の時間保持して中間時効処理する中間時効処理工程と、該中間時効処理後のアルミニウム合金鋳物を塑性加工する塑性加工工程と、該塑性加工後の部材を人工時効処理してアルミニウム合金部材を得る人工時効処理工程と、を備えることを特徴とする(請求項1に対応)。   (1) The method for producing an aluminum alloy member of the present invention comprises a solution treatment step for solution treatment of an aging aluminum alloy casting, and a temperature of an artificial aging treatment to be performed later on the aluminum alloy casting after the solution treatment. An intermediate aging treatment step in which an intermediate aging treatment is carried out at a temperature within ± 100 ° C. for less than half of the time required for age hardening to be maximized, and a plasticity for plastic processing of the aluminum alloy casting after the intermediate aging treatment. A processing step and an artificial aging treatment step of obtaining an aluminum alloy member by subjecting the member after plastic working to an artificial aging treatment (corresponding to claim 1).

すなわち、本発明のアルミニウム合金部材の製造方法は、塑性加工工程の前に中間時効処理工程を備える。中間時効処理工程では、溶体化処理後のアルミニウム合金鋳物を、後の人工時効処理の温度の±100℃以内の温度で、人工時効処理の時間よりも短い時間保持する。これにより、人工時効処理で析出する成分とほぼ同じ成分の析出物を、少しだけ析出させる。つまり、中間時効処理は、予備的な人工時効処理と考えることができる。   That is, the method for producing an aluminum alloy member of the present invention includes an intermediate aging treatment step before the plastic working step. In the intermediate aging treatment step, the aluminum alloy casting after the solution treatment is held at a temperature within ± 100 ° C. of the temperature of the subsequent artificial aging treatment for a time shorter than the artificial aging treatment time. Thereby, the deposit of the almost same component as the component which precipitates by artificial aging treatment is deposited a little. That is, the intermediate aging process can be considered as a preliminary artificial aging process.

本発明のアルミニウム合金部材の製造方法では、中間時効処理工程を備えることで、従来実現できなかった高強度かつ高靱性のアルミニウム合金部材を製造することができる。これが可能となったメカニズムは必ずしも定かではないが、現状、次のように考えられる。   In the method for producing an aluminum alloy member of the present invention, by providing an intermediate aging treatment step, a high-strength and high-toughness aluminum alloy member that could not be realized conventionally can be produced. The mechanism that makes this possible is not always clear, but it can be considered as follows.

析出物が存在する状態で塑性加工を行うと、析出物の周りに歪み場が不均一に形成される。なお、従来のように析出物を析出させずに塑性加工を行うと、歪み場は結晶単位にほぼ均一に形成される。塑性加工で形成された歪み場は、後の人工時効処理における析出物の析出起点となる。本発明のアルミニウム合金部材の製造方法では、析出物単位に歪み場が不均一に形成されるため、析出起点が増加する。よって、析出物は微細化し、析出物間の距離は短くなる。つまり、析出物の数および分布という点で、従来とは異なる析出状態が創出される。これより、製造されるアルミニウム合金部材の強度および靱性は高くなる。また、人工時効処理工程では、析出物の析出の短時間化も図られる。このため、短時間の人工時効処理で、最大時効硬さを得ることができる。   When plastic working is performed in the state where the precipitate exists, a strain field is unevenly formed around the precipitate. Note that when plastic working is performed without depositing precipitates as in the prior art, the strain field is formed almost uniformly in crystal units. The strain field formed by the plastic working becomes a precipitation starting point of the precipitate in the later artificial aging treatment. In the method for producing an aluminum alloy member of the present invention, since the strain field is formed unevenly in the precipitate unit, the precipitation starting point increases. Therefore, the precipitates become finer and the distance between the precipitates becomes shorter. That is, a different precipitation state is created in terms of the number and distribution of precipitates. Thereby, the strength and toughness of the manufactured aluminum alloy member are increased. In the artificial aging treatment step, the precipitation time of the precipitate can be shortened. For this reason, the maximum aging hardness can be obtained by a short artificial aging treatment.

ここで、アルミニウム合金部材の「強度」は、室温下での引張強さ、0.2%耐力により評価すればよい。例えば、室温下での引張強さおよび0.2%耐力の少なくとも一方が250MPa以上であれば、高強度といえる。「靱性」は、室温における破断伸びにより評価すればよい。例えば、室温における破断伸びが8%以上であれば高靱性といえる。   Here, the “strength” of the aluminum alloy member may be evaluated by the tensile strength at room temperature and the 0.2% proof stress. For example, if at least one of the tensile strength at room temperature and the 0.2% yield strength is 250 MPa or more, it can be said that the strength is high. “Toughness” may be evaluated by the elongation at break at room temperature. For example, if the elongation at break at room temperature is 8% or more, it can be said to be high toughness.

(2)本発明のアルミニウム合金部材は、時効性のアルミニウム合金鋳物を塑性加工して得られたアルミニウム合金部材であって、時効硬化により析出した析出物の大きさが50nm以下の組織を有することを特徴とする(請求項7に対応)。   (2) The aluminum alloy member of the present invention is an aluminum alloy member obtained by plastic processing of an aging aluminum alloy casting, and has a structure in which the size of precipitates precipitated by age hardening is 50 nm or less. (Corresponding to claim 7).

後に詳しく説明するが、通常、時効性のアルミニウム合金鋳物を溶体化処理した後、人工時効処理すると(T6処理)、200〜300nm程度の大きさの析出物が析出する。これに対して、本発明のアルミニウム合金部材では、時効硬化により析出した析出物の大きさが50nm以下と小さい。微細な析出物が分散しているため、本発明のアルミニウム合金部材は、高強度かつ高靱性である。   As will be described in detail later, usually, when an aging aluminum alloy casting is subjected to a solution treatment and then an artificial aging treatment (T6 treatment), a precipitate having a size of about 200 to 300 nm is deposited. On the other hand, in the aluminum alloy member of the present invention, the size of the precipitate deposited by age hardening is as small as 50 nm or less. Since fine precipitates are dispersed, the aluminum alloy member of the present invention has high strength and high toughness.

以下、実施形態を挙げ、本発明のアルミニウム合金部材の製造方法、およびアルミニウム合金部材について詳細に説明する。   Hereinafter, an embodiment is mentioned and the manufacturing method of the aluminum alloy member of the present invention, and an aluminum alloy member are explained in detail.

〈アルミニウム合金部材の製造方法〉
本発明のアルミニウム合金部材の製造方法は、溶体化処理工程と、中間時効処理工程と、塑性加工工程と、人工時効処理工程と、を備える。以下、各工程について説明する。
<Method for producing aluminum alloy member>
The method for producing an aluminum alloy member of the present invention includes a solution treatment step, an intermediate aging treatment step, a plastic working step, and an artificial aging treatment step. Hereinafter, each step will be described.

(1)溶体化処理工程
本工程は、時効性のアルミニウム合金鋳物を溶体化処理する工程である。「時効性のアルミニウム合金」とは、過飽和固溶体から過飽和に固溶した成分を析出して硬化する合金をいう。例えば、Al−Si−Mg系合金、Al−Si−Cu−Mg系合金、Si過剰側のAl−Mg2Si合金、Al−Cu系合金、Al−Zn−Mg系合金等が挙げられる。なかでも、鋳造性の良好なAl−Si−Mg系合金、Al−Si−Cu−Mg系合金、Si過剰側のAl−Mg2Si合金が好適である。
(1) Solution Treatment Process This process is a process for solution treatment of an aging aluminum alloy casting. "Aging aluminum alloy" refers to an alloy that precipitates and hardens a supersaturated solid solution component from a supersaturated solid solution. For example, an Al—Si—Mg alloy, an Al—Si—Cu—Mg alloy, an Al—Mg 2 Si alloy on the Si excess side, an Al—Cu alloy, an Al—Zn—Mg alloy, and the like can be given. Among them, the casting of good Al-Si-Mg based alloy, Al-Si-Cu-Mg alloy, Al-Mg 2 Si alloy Si excess side are preferred.

アルミニウム合金鋳物として、例えば、Al−Si−Mg系合金鋳物、またはAl−Si−Cu−Mg系合金鋳物を採用する場合には、各々の全体を100質量%(以下、単に「%」と表記する。)としたときに、Siを1〜7%、Mgを0.1〜1%含むことが望ましい。なお、本明細書中「〜」を用いて記載された数値範囲には、その下限値および上限値が含まれる。例えば、「1〜7%」は、「1%以上7%以下」を意味する。   For example, when an Al-Si-Mg-based alloy casting or an Al-Si-Cu-Mg-based alloy casting is adopted as the aluminum alloy casting, the whole of each is 100% by mass (hereinafter simply referred to as "%"). It is preferable that Si is contained in 1 to 7% and Mg is contained in 0.1 to 1%. In addition, the numerical value range described using "-" in this specification includes the lower limit value and the upper limit value. For example, “1-7%” means “1% or more and 7% or less”.

Si量が1%未満では、鋳造性が悪くなり、鋳物中に鋳造欠陥を生じ易い。また、鋳物の熱膨張係数が大きくなる。一方、Si量が7%を超えると、脆いSi粒子が増加して、鋳物の延性や靭性が低下する。この場合、塑性加工により割れ等の欠陥を生じるおそれがある。好適なSi量は、2〜6%である。Si量がこの範囲内であると、安定した鋳造性が得られ、塑性加工による欠陥もない。   If the amount of Si is less than 1%, the castability deteriorates and casting defects are likely to occur in the casting. In addition, the thermal expansion coefficient of the casting is increased. On the other hand, when the amount of Si exceeds 7%, brittle Si particles increase and the ductility and toughness of the casting deteriorate. In this case, there is a possibility that defects such as cracks may occur due to plastic working. A suitable amount of Si is 2 to 6%. When the amount of Si is within this range, stable castability is obtained, and there are no defects due to plastic working.

Mg量が0.1%未満では、鋳物の強度が低くなる。一方、Mg量が1%を超えると鋳物の延性や靱性が低下する。好適なMg量は、0.2〜0.7%である。Mg量がこの範囲内であると、強度と靱性とのバランスが最適になる。   If the amount of Mg is less than 0.1%, the strength of the casting becomes low. On the other hand, if the amount of Mg exceeds 1%, the ductility and toughness of the casting deteriorate. A suitable amount of Mg is 0.2 to 0.7%. When the amount of Mg is within this range, the balance between strength and toughness is optimal.

また、Al−Si−Mg系合金鋳物は、Cuを含んでいてもよい。Cuを含むAl−Si−Mg系合金鋳物や、Al−Si−Cu−Mg系合金鋳物のCu量は、0.1〜1%であることが望ましい。Cu量が0.1%未満では、鋳物の硬さ、強度が低下する。一方、Cu量が1%を超えると、熱的に不安定な析出物が生成され易く、鋳物の延性や靭性の低下を招き、耐食性も低下する。好適なCu量は、0.3〜0.7%である。Cu量がこの範囲内であると、強度と靱性とのバランスが最適になり、耐食性の低下も少ない。   Moreover, the Al—Si—Mg alloy casting may contain Cu. The amount of Cu in an Al—Si—Mg based alloy casting containing Cu or an Al—Si—Cu—Mg based alloy casting is preferably 0.1 to 1%. If the amount of Cu is less than 0.1%, the hardness and strength of the casting are lowered. On the other hand, if the amount of Cu exceeds 1%, a thermally unstable precipitate is likely to be generated, resulting in a decrease in ductility and toughness of the casting, and a decrease in corrosion resistance. A suitable amount of Cu is 0.3 to 0.7%. When the amount of Cu is within this range, the balance between strength and toughness is optimal, and the corrosion resistance is not significantly reduced.

上記Al−Si−Mg系合金鋳物、Al−Si−Cu−Mg系合金鋳物、およびSi過剰側のAl−Mg2Si合金鋳物は、さらに、Ti、Cr、Mn、Fe、Vから選ばれる一種以上を含む態様が好適である。これらの元素は、鋳造性や強度、靱性の向上に有効な元素である。但し、これらの元素の含有量が過少であると、添加効果が発揮されない。一方、これらの元素の含有量が過多となると、鋳物の延性や靭性の低下を招く。 The Al-Si-Mg based alloy castings, Al-Si-Cu-Mg alloy castings, and Si-rich side Al-Mg 2 Si alloy casting further one selected Ti, Cr, Mn, Fe, from V A mode including the above is preferable. These elements are effective elements for improving castability, strength, and toughness. However, if the content of these elements is too small, the effect of addition cannot be exhibited. On the other hand, if the content of these elements is excessive, the ductility and toughness of the casting are reduced.

例えば、Tiを含む場合には、Ti量を0.15〜0.3%とすることが望ましい。Ti量が0.15%未満では、基地相の強化効果が充分発揮されない。Tiが0.3%を超えると、基地相に固溶するTiが増加して、基地相が硬くなりすぎ、鋳物がせん断破壊を生じるおそれがある。また、基地相中に粗大なTi化合物を生成するようになり、鋳物の延性や靭性を低下させるおそれもある。好適なTi量は、0.2〜0.3%である。   For example, when Ti is contained, the Ti content is preferably 0.15 to 0.3%. If the amount of Ti is less than 0.15%, the effect of strengthening the base phase is not sufficiently exhibited. If Ti exceeds 0.3%, Ti dissolved in the matrix phase increases, the matrix phase becomes too hard, and the casting may cause shear fracture. In addition, a coarse Ti compound is generated in the matrix phase, which may reduce the ductility and toughness of the casting. A suitable amount of Ti is 0.2 to 0.3%.

Crを含む場合には、Cr量を0.05〜0.7%とすることが望ましい。Cr量が0.05%未満では、基地相の強化効果が充分発揮されない。Crが0.7%を超えると、粗大晶出物が晶出して、鋳物の延性の低下を招く。好適なCr量は、0.1〜0.5%である。   When Cr is contained, it is desirable that the Cr content be 0.05 to 0.7%. If the amount of Cr is less than 0.05%, the reinforcing effect of the base phase is not sufficiently exhibited. When Cr exceeds 0.7%, a coarse crystallized product is crystallized, resulting in a decrease in ductility of the casting. A suitable Cr amount is 0.1 to 0.5%.

Mnを含む場合には、Mn量を0.1〜0.7%とすることが望ましい。Mn量が0.1%未満では、基地相の強化効果が充分発揮されない。Mnが0.7%を超えると、粗大晶出物が晶出して、鋳物の延性の低下を招く。好適なMn量は、0.2〜0.5%である。   When Mn is contained, the Mn content is preferably 0.1 to 0.7%. If the amount of Mn is less than 0.1%, the reinforcing effect of the base phase is not sufficiently exhibited. When Mn exceeds 0.7%, a coarse crystallized product is crystallized, resulting in a decrease in ductility of the casting. A suitable amount of Mn is 0.2 to 0.5%.

Feを含む場合には、Fe量を0.1〜0.7%とすることが望ましい。Fe量が0.1%未満では、基地相の強化効果が充分発揮されない。Fe量が0.7%を超えると、粗大なFe化合物が生成し易くなり、鋳物の延性や靭性が低下するおそれがある。好適なFe量は0.2〜0.6%である。   When Fe is contained, the Fe content is desirably 0.1 to 0.7%. If the amount of Fe is less than 0.1%, the effect of strengthening the base phase is not sufficiently exhibited. If the Fe content exceeds 0.7%, a coarse Fe compound is likely to be generated, and the ductility and toughness of the casting may be reduced. A suitable amount of Fe is 0.2 to 0.6%.

Vを含む場合には、V量を0.02〜0.5%とすることが望ましい。Fe量が0.02%未満では、基地相の強化効果が充分発揮されない。V量が0.5%を超えると、粗大な初晶化合物が生成して、鋳物の延性や靭性が低下するおそれがある。好適なV量は0.02〜0.15%である。   When V is included, the V amount is preferably 0.02 to 0.5%. If the Fe content is less than 0.02%, the reinforcing effect of the base phase is not sufficiently exhibited. When the amount of V exceeds 0.5%, a coarse primary crystal compound is generated, and the ductility and toughness of the casting may be reduced. A preferable amount of V is 0.02 to 0.15%.

なお、アルミニウム合金鋳物の鋳造方法は特に限定されない。砂型鋳造でも金型鋳造でもよいし、重力鋳造、低圧鋳造または高圧鋳造でもよい。鋳物の量産性を考慮すれば、ダイキャスト鋳造、低圧鋳造が好適である。   In addition, the casting method of an aluminum alloy casting is not specifically limited. Sand casting or die casting may be used, and gravity casting, low pressure casting or high pressure casting may be used. In consideration of mass production of castings, die casting and low pressure casting are suitable.

溶体化処理は、アルミニウム合金鋳物を高温で保持した後に水冷等によって急冷し、時効硬化を示す元素をα相中に固溶させて過飽和固溶体を形成する処理である。溶体化処理の条件は、アルミニウム合金鋳物の組成や所望特性に応じて適宜選択すればよい。一例を挙げると、Al−Si−Cu−Mg系合金鋳物では、500〜550℃で1〜10時間保持した後に急冷すればよい。   The solution treatment is a treatment in which an aluminum alloy casting is held at a high temperature and then rapidly cooled by water cooling or the like, and an element showing age hardening is dissolved in the α phase to form a supersaturated solid solution. The solution treatment conditions may be appropriately selected according to the composition and desired characteristics of the aluminum alloy casting. For example, in an Al—Si—Cu—Mg alloy casting, it may be rapidly cooled after being held at 500 to 550 ° C. for 1 to 10 hours.

(2)中間時効処理工程
本工程は、溶体化処理工程を経たアルミニウム合金鋳物を、後に行う人工時効処理の温度の±100℃以内の温度で、時効硬化が最大となるのに要する時間の半分以下の時間保持して中間時効処理する工程である。
(2) Intermediate aging treatment step This step is a half of the time required for aging hardening to become maximum at a temperature within ± 100 ° C of the temperature of the artificial aging treatment to be performed later on the aluminum alloy casting that has undergone the solution treatment step. This is a process for holding the following time and performing an intermediate aging treatment.

中間時効処理は、後の人工時効処理で析出する成分とほぼ同じ成分の析出物を、少しだけ析出させる処理である。したがって、中間時効処理の温度は、人工時効処理の温度を基準にして決定される。すなわち、中間時効処理の温度は、人工時効処理の温度の±100℃以内の温度とする。人工時効処理で析出する成分と同じ成分を析出させるという観点から、中間時効処理の温度は、人工時効処理の温度と近い方が望ましい。よって、中間時効処理の温度を、人工時効処理の温度の±50℃以内の温度とするとよい。±10℃以内の温度とするとより好適である。さらには、人工時効処理の温度と同じ温度としてもよい。   The intermediate aging treatment is a treatment for precipitating a slight amount of precipitates having substantially the same components as those precipitated in the subsequent artificial aging treatment. Therefore, the temperature of the intermediate aging treatment is determined based on the temperature of the artificial aging treatment. That is, the temperature of the intermediate aging treatment is a temperature within ± 100 ° C. of the temperature of the artificial aging treatment. From the viewpoint of precipitating the same components as those precipitated by the artificial aging treatment, the temperature of the intermediate aging treatment is preferably close to the temperature of the artificial aging treatment. Therefore, the temperature of the intermediate aging treatment may be a temperature within ± 50 ° C. of the temperature of the artificial aging treatment. A temperature within ± 10 ° C. is more suitable. Furthermore, the temperature may be the same as the temperature of the artificial aging treatment.

また、上記温度で保持する時間(処理時間)は、溶体化処理したアルミニウム合金鋳物を、人工時効処理した場合に、時効硬化が最大となるのに要する時間の半分以下の時間とする。1/4以下の時間とすると好適である。例えば、100時間で時効硬化が最大となる場合には、処理時間を50時間以下とすればよい。25時間以下とすると好適である。本工程では、人工時効処理による析出物の一部を析出させればよい。また、処理時間が短いほど、コストを低減することができ、生産性も向上する。よって、処理時間は短い方が望ましい。例えば、比較的高温で保持する場合には、処理時間は1〜2時間程度で充分である。   In addition, the time (treatment time) maintained at the above temperature is set to a time that is half or less of the time required for aging hardening to be maximized when the solution-treated aluminum alloy casting is subjected to artificial aging treatment. It is preferable that the time is 1/4 or less. For example, when age hardening is maximized in 100 hours, the treatment time may be 50 hours or less. It is preferable that the time is 25 hours or less. In this step, a part of the precipitate by artificial aging treatment may be precipitated. In addition, the shorter the processing time, the lower the cost and the higher the productivity. Therefore, it is desirable that the processing time is short. For example, in the case of holding at a relatively high temperature, a processing time of about 1 to 2 hours is sufficient.

(3)塑性加工工程
本工程は、中間時効処理工程を経たアルミニウム合金鋳物を塑性加工する工程である。塑性加工により、アルミニウム合金鋳物を所望の形状の部材とするとともに、中間時効処理で析出した析出物の周りに歪み場を形成する。塑性加工の種類は、特に限定されるものではなく、例えば、鍛造、圧延、押出等を行えばよい。なかでも、鍛造は、高強度の多様な部品を容易に製造できることから好適である。この場合、アルミニウム合金製鋳物を、液圧プレス、ハンマー等により特定形状に鍛造すればよい。
(3) Plastic working step This step is a step of plastic working the aluminum alloy casting that has undergone the intermediate aging treatment step. By plastic working, the aluminum alloy casting is formed into a member having a desired shape, and a strain field is formed around the precipitate deposited by the intermediate aging treatment. The type of plastic working is not particularly limited, and for example, forging, rolling, extrusion, or the like may be performed. Among these, forging is preferable because various parts with high strength can be easily manufactured. In this case, an aluminum alloy casting may be forged into a specific shape by a hydraulic press, a hammer or the like.

鍛造法には、熱間鍛造、温間鍛造、冷間鍛造、恒温鍛造がある。析出物の周りに析出起点となる歪み場を形成するという観点から、冷間鍛造を採用するとよい。塑性加工の際の加工率は、アルミニウム合金鋳物を塑性変形させることができれば、特に限定されるものではない。例えば、加工率を2%以上とすればよい。また、加工率を10%を超え、さらには30%以上とすると好適である。   Forging methods include hot forging, warm forging, cold forging, and isothermal forging. From the viewpoint of forming a strain field as a precipitation starting point around the precipitate, cold forging may be employed. The processing rate at the time of plastic working is not particularly limited as long as the aluminum alloy casting can be plastically deformed. For example, the processing rate may be 2% or more. Further, it is preferable that the processing rate exceeds 10%, and further 30% or more.

(4)人工時効処理工程
本工程は、塑性加工工程を経て得られた部材を人工時効処理してアルミニウム合金部材を得る工程である。人工時効処理は、比較的低温で加熱保持し、過飽和に固溶していた成分を歪み場に析出させて、硬化させる処理である。人工時効処理の条件は、アルミニウム合金鋳物の組成や所望特性に応じて適宜選択すればよい。一例を挙げると、Al−Si−Cu−Mg系合金鋳物では、140〜200℃で1〜20時間保持すればよい。
(4) Artificial aging treatment step This step is a step of obtaining an aluminum alloy member by subjecting a member obtained through the plastic working step to an artificial aging treatment. The artificial aging treatment is a treatment of heating and holding at a relatively low temperature, and precipitating a component that has been dissolved in supersaturation into a strain field and curing it. The conditions for the artificial aging treatment may be appropriately selected according to the composition and desired characteristics of the aluminum alloy casting. As an example, in an Al—Si—Cu—Mg alloy casting, it may be held at 140 to 200 ° C. for 1 to 20 hours.

以上、溶体化処理→中間時効処理→塑性加工→人工時効処理という一連の工程により得られるアルミニウム合金部材は、50nm以下の微細な析出物が分散した組織を有し、高強度かつ高靱性である。次に、このような組織を有する本発明のアルミニウム合金部材について説明する。   As described above, the aluminum alloy member obtained by a series of steps of solution treatment → intermediate aging treatment → plastic working → artificial aging treatment has a structure in which fine precipitates of 50 nm or less are dispersed, and has high strength and high toughness. . Next, the aluminum alloy member of the present invention having such a structure will be described.

〈アルミニウム合金部材〉
本発明のアルミニウム合金部材は、時効性のアルミニウム合金鋳物を塑性加工して得られたアルミニウム合金部材であって、時効硬化により析出した析出物の大きさが50nm以下の組織を有する。組織観察は、例えば、透過型電子顕微鏡(TEM)等で行えばよい。なお、「析出物の大きさ」は析出物の長軸径、つまり、析出物を2本の平行線で挟んだ場合の最大長さとする。
<Aluminum alloy members>
The aluminum alloy member of the present invention is an aluminum alloy member obtained by plastic working an aging aluminum alloy casting, and has a structure in which the size of precipitates precipitated by age hardening is 50 nm or less. The tissue observation may be performed with, for example, a transmission electron microscope (TEM). The “size of the precipitate” is the major axis diameter of the precipitate, that is, the maximum length when the precipitate is sandwiched between two parallel lines.

本発明のアルミニウム合金部材は、上述した本発明のアルミニウム合金部材の製造方法により製造することができる。よって、本発明のアルミニウム合金部材を、「時効性のアルミニウム合金鋳物を溶体化処理した後、後に行う人工時効処理の温度の±100℃以内の温度で、時効硬化が最大となるのに要する時間の半分以下の時間保持する中間時効処理を行い、該中間時効処理後のアルミニウム合金鋳物を塑性加工し、さらに人工時効処理することにより得られたアルミニウム合金部材であって、該人工時効処理により析出した析出物の大きさが50nm以下の組織を有するアルミニウム合金部材」と把握することができる。なお、本発明のアルミニウム合金部材においても、前述した好適な態様を適宜採用すればよい。   The aluminum alloy member of this invention can be manufactured with the manufacturing method of the aluminum alloy member of this invention mentioned above. Therefore, the aluminum alloy member of the present invention is “a time required for aging hardening to be maximized at a temperature within ± 100 ° C. of the temperature of an artificial aging treatment to be performed later after solution treatment of an aging aluminum alloy casting. Is an aluminum alloy member obtained by plastic processing the aluminum alloy casting after the intermediate aging treatment, and further subjecting it to artificial aging treatment, and precipitation by the artificial aging treatment. It can be understood that the aluminum alloy member has a structure in which the size of the deposited precipitate is 50 nm or less. In addition, what is necessary is just to employ | adopt suitably the suitable aspect mentioned above also in the aluminum alloy member of this invention.

本発明のアルミニウム合金部材は、そのサイズ、形状、使用環境等が特に限定されるものではないが、強度および靱性が同時に要求される部材に好適である。例えば、エンジン用部材、モータ用部材、放熱用部材等がある。例えば、エンジン用部材には、シリンダヘッド、ターボロータ等がある。また、自動車分野に限らず、それ以外の分野であっても、高強度、高靱性が要求される部材に本発明のアルミニウム合金部材を適用すれば、それらの軽量化および性能向上を図ることができる。   The aluminum alloy member of the present invention is not particularly limited in size, shape, use environment, etc., but is suitable for a member that requires strength and toughness at the same time. For example, there are engine members, motor members, heat radiating members, and the like. For example, the engine member includes a cylinder head, a turbo rotor, and the like. In addition, not only in the automobile field but also in other fields, if the aluminum alloy member of the present invention is applied to a member that requires high strength and high toughness, it is possible to reduce the weight and improve the performance thereof. it can.

次に、実施例を挙げて、本発明をより具体的に説明する。   Next, an Example is given and this invention is demonstrated more concretely.

〈アルミニウム合金部材の製造〉
(1)Al−3%Si−0.4%Cu−0.25%Mg−0.25%Ti−0.1%Crの組成のアルミニウム合金部材を、鋳造鍛造法により製造した。まず、添加元素を含む種々の母合金(アルミニウム合金)を、木ぶし粘度とアルミナとの混合物でライニングした黒鉛るつぼ中で溶解した。溶湯温度は750〜760℃とした。この溶湯中に、溶湯量の0.3%のフラックス(NaCl+25%AlF3)を添加して脱滓した。その後、溶湯量の0.3%のC2Clを添加して脱ガスした。次に、この溶湯を、t=12の銅鋳型に注湯し、放冷して凝固させた。得られたアルミニウム合金鋳物に、540℃で8時間保持した後、水冷する溶体化処理を施した。続いて、145℃で1時間保持する中間時効処理を施した。このアルミニウム合金鋳物を、ナックルプレス(AIDA製、型番PK−25)により冷間据え込み鍛造した。据え込み率は30%とした。鍛造により得られた部材に、150℃で10時間保持する人工時効処理を施し、アルミニウム合金部材を得た。これら一連の製造工程を図1に示す。また、得られたアルミニウム合金部材を、以下、実施例のアルミニウム合金部材と称す。
<Manufacture of aluminum alloy members>
(1) An aluminum alloy member having a composition of Al-3% Si-0.4% Cu-0.25% Mg-0.25% Ti-0.1% Cr was produced by a casting forging method. First, various mother alloys (aluminum alloys) containing an additive element were dissolved in a graphite crucible lined with a mixture of a viscosity of wood and an alumina. The molten metal temperature was 750 to 760 ° C. In this molten metal, flux (NaCl + 25% AlF 3 ) of 0.3% of the molten metal was added and degassed. Thereafter, 0.3% of the molten metal C 2 Cl was added to degas. Next, this molten metal was poured into a copper mold of t = 12, allowed to cool and solidified. The obtained aluminum alloy casting was held at 540 ° C. for 8 hours, and then subjected to a solution treatment by water cooling. Subsequently, an intermediate aging treatment was performed by holding at 145 ° C. for 1 hour. This aluminum alloy casting was cold upset forged with a knuckle press (AIDA, model number PK-25). The upsetting rate was 30%. The member obtained by forging was subjected to artificial aging treatment that was held at 150 ° C. for 10 hours to obtain an aluminum alloy member. A series of these manufacturing steps is shown in FIG. The obtained aluminum alloy member is hereinafter referred to as an aluminum alloy member of an example.

〈組織観察〉
実施例のアルミニウム合金部材の組織をTEMで観察した。図2に、同アルミニウム合金部材のTEM写真を示す。また、比較のため、上記製造過程で得られたアルミニウム合金鋳物をT6処理し(溶体化処理:540℃×8時間→人工時効処理:150℃×24時間)、その組織をTEMで観察した。図3に、同アルミニウム合金鋳物のTEM写真を示す。図3に示すように、アルミニウム合金鋳物では、短辺50〜100nm程度、長辺200〜600nmの針状の析出物が認められる。これに対して、図2では、歪み場が黒っぽく見えており、析出物を判別することはできない。しかし、実施例のアルミニウム合金部材の人工時効処理の際には、時間の経過とともに硬化が進んだため、析出物が析出していることは確かである。したがって、本TEM写真では判別できないが、実施例のアルミニウム合金部材では、50nm以下の非常に微細な析出物が析出していると推測される。
<Tissue observation>
The structure of the aluminum alloy member of the example was observed with TEM. FIG. 2 shows a TEM photograph of the aluminum alloy member. For comparison, the aluminum alloy casting obtained in the above production process was treated with T6 (solution treatment: 540 ° C. × 8 hours → artificial aging treatment: 150 ° C. × 24 hours), and the structure was observed with TEM. FIG. 3 shows a TEM photograph of the aluminum alloy casting. As shown in FIG. 3, in the aluminum alloy casting, acicular precipitates having a short side of about 50 to 100 nm and a long side of 200 to 600 nm are observed. On the other hand, in FIG. 2, the strain field looks blackish, and precipitates cannot be discriminated. However, during the artificial aging treatment of the aluminum alloy member of the example, since the hardening progressed with the passage of time, it is certain that precipitates are deposited. Therefore, although it cannot discriminate | determine with this TEM photograph, in the aluminum alloy member of an Example, it is estimated that the very fine deposit of 50 nm or less has precipitated.

〈引張試験および評価〉
実施例のアルミニウム合金部材から、試験片(直径6mm、平行部長さ34mm)を切り出して、引張試験を行った。引張試験の方法は、JIS Z 2241に従った。図4に、本試験片の室温における0.2%耐力、および破断伸びの値を示す。なお、比較例として、図4には、従来の鋳造鍛造法で製造された種々のアルミニウム合金部材についての各値も示す。これら比較例のアルミニウム合金部材の組成は、Al−2.7〜3.3%Si−0.4〜0.5%Mg−0.4〜0.5%Cuである。また、製造工程は、鋳造→冷間鍛造→溶体化処理(530〜540℃、3〜10時間)→人工時効処理(140〜160℃、4〜8時間)である。
<Tensile test and evaluation>
A test piece (diameter 6 mm, parallel part length 34 mm) was cut out from the aluminum alloy member of the example, and a tensile test was performed. The tensile test method was in accordance with JIS Z 2241. In FIG. 4, the 0.2% yield strength in room temperature of this test piece and the value of breaking elongation are shown. As a comparative example, FIG. 4 also shows values for various aluminum alloy members manufactured by a conventional casting and forging method. The compositions of the aluminum alloy members of these comparative examples are Al-2.7 to 3.3% Si-0.4 to 0.5% Mg-0.4 to 0.5% Cu. Moreover, a manufacturing process is casting-> cold forging-> solution treatment (530-540 degreeC, 3-10 hours)-> artificial aging treatment (140-160 degreeC, 4-8 hours).

図4に示すように、実施例のアルミニウム合金部材の0.2%耐力は350MPaを超え、破断伸びは10%となった。また、引張強さは約380MPa、ビッカース硬さはHv120であった。このように、実施例のアルミニウム合金部材では、高強度、高靱性が両立されている。一方、比較例のアルミニウム合金部材では、破断伸びは10%以上であるが、0.2%耐力は200〜250MPaと低くなった。   As shown in FIG. 4, the 0.2% yield strength of the aluminum alloy member of the example exceeded 350 MPa, and the elongation at break became 10%. Moreover, tensile strength was about 380 MPa and Vickers hardness was Hv120. Thus, the aluminum alloy member of the example has both high strength and high toughness. On the other hand, in the aluminum alloy member of the comparative example, the elongation at break was 10% or more, but the 0.2% proof stress was as low as 200 to 250 MPa.

以上より、中間時効処理工程を備えた本発明の製造方法によれば、高強度かつ高靱性のアルミニウム合金部材を製造できることが確認された。   As mentioned above, according to the manufacturing method of this invention provided with the intermediate aging treatment process, it was confirmed that a high strength and toughness aluminum alloy member can be manufactured.

アルミニウム合金部材の製造工程の一例を示す図である。It is a figure which shows an example of the manufacturing process of an aluminum alloy member. 実施例のアルミニウム合金部材の組織を示すTEM写真である。It is a TEM photograph which shows the structure | tissue of the aluminum alloy member of an Example. T6処理したアルミニウム合金鋳物の組織を示すTEM写真である。It is a TEM photograph which shows the structure | tissue of the aluminum alloy casting processed by T6. 実施例および比較例のアルミニウム合金部材の0.2%耐力および破断伸びの値を示すグラフである。It is a graph which shows the value of 0.2% yield strength and breaking elongation of the aluminum alloy member of an Example and a comparative example.

Claims (7)

時効性のアルミニウム合金鋳物を溶体化処理する溶体化処理工程と、
該溶体化処理後のアルミニウム合金鋳物を、後に行う人工時効処理の温度の±100℃以内の温度で、時効硬化が最大となるのに要する時間の半分以下の時間保持して中間時効処理する中間時効処理工程と、
該中間時効処理後のアルミニウム合金鋳物を塑性加工する塑性加工工程と、
該塑性加工後の部材を人工時効処理してアルミニウム合金部材を得る人工時効処理工程と、
を備えることを特徴とするアルミニウム合金部材の製造方法。
A solution treatment step for solution treatment of an aging aluminum alloy casting,
An intermediate aging treatment in which the aluminum alloy casting after the solution treatment is held at a temperature within ± 100 ° C. of the temperature of the artificial aging treatment to be performed later and held for half the time required for maximum age hardening. An aging treatment process;
A plastic working step of plastic working the aluminum alloy casting after the intermediate aging treatment;
An artificial aging treatment step of obtaining an aluminum alloy member by artificially aging the member after the plastic working;
The manufacturing method of the aluminum alloy member characterized by the above-mentioned.
前記アルミニウム合金鋳物は、Al−Si−Mg系合金、Al−Si−Cu−Mg系合金、およびSi過剰側のAl−Mg2Si合金のいずれかからなる請求項1に記載のアルミニウム合金部材の製造方法。 2. The aluminum alloy member according to claim 1, wherein the aluminum alloy casting is made of any one of an Al—Si—Mg alloy, an Al—Si—Cu—Mg alloy, and an Al-Mg 2 Si alloy on the Si excess side. Production method. 前記Al−Si−Mg系合金および前記Al−Si−Cu−Mg系合金は、全体を100質量%(以下、単に「%」と表記する。)としたときに、Siを1〜7%、Mgを0.1〜1%含む請求項2に記載のアルミニウム合金部材の製造方法。   The Al—Si—Mg-based alloy and the Al—Si—Cu—Mg-based alloy have a Si content of 1 to 7% when the whole is 100% by mass (hereinafter simply referred to as “%”). The manufacturing method of the aluminum alloy member of Claim 2 containing 0.1 to 1% of Mg. 前記Al−Si−Mg系合金、前記Al−Si−Cu−Mg系合金、および前記Si過剰側のAl−Mg2Si合金は、さらに、Ti、Cr、Mn、Fe、Vから選ばれる一種以上を含む請求項2に記載のアルミニウム合金部材の製造方法。 The Al-Si-Mg based alloy, Al-Mg 2 Si alloy of the Al-Si-Cu-Mg alloy, and the Si-rich side further, Ti, Cr, Mn, Fe, one or more selected from V The manufacturing method of the aluminum alloy member of Claim 2 containing this. 前記中間時効処理は、前記人工時効処理の温度の±50℃以内の温度で行う請求項1に記載のアルミニウム合金部材の製造方法。   The method for producing an aluminum alloy member according to claim 1, wherein the intermediate aging treatment is performed at a temperature within ± 50 ° C of the temperature of the artificial aging treatment. 前記アルミニウム合金部材は、時効硬化により析出した析出物の大きさが50nm以下の組織を有する請求項1に記載のアルミニウム合金部材の製造方法。   The said aluminum alloy member is a manufacturing method of the aluminum alloy member of Claim 1 which has the structure | tissue whose magnitude | size of the deposit precipitated by age hardening is 50 nm or less. 時効性のアルミニウム合金鋳物を塑性加工して得られたアルミニウム合金部材であって、
時効硬化により析出した析出物の大きさが50nm以下の組織を有することを特徴とするアルミニウム合金部材。
An aluminum alloy member obtained by plastic working an aging aluminum alloy casting,
An aluminum alloy member having a structure in which the size of a precipitate deposited by age hardening is 50 nm or less.
JP2004354319A 2004-12-07 2004-12-07 Aluminum alloy member and manufacturing method therefor Pending JP2006161103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004354319A JP2006161103A (en) 2004-12-07 2004-12-07 Aluminum alloy member and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004354319A JP2006161103A (en) 2004-12-07 2004-12-07 Aluminum alloy member and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2006161103A true JP2006161103A (en) 2006-06-22

Family

ID=36663452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004354319A Pending JP2006161103A (en) 2004-12-07 2004-12-07 Aluminum alloy member and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2006161103A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015074823A (en) * 2013-10-11 2015-04-20 ケイエスエム キャスティングズ グループ ゲゼルシャフト ミット ベシュレンクテル ハフツングKSM Castings Group GmbH Aluminum alloy for casting
US9797031B2 (en) 2012-08-23 2017-10-24 Ksm Castings Group Gmbh Aluminum casting alloy
JP2018075624A (en) * 2016-11-11 2018-05-17 株式会社ミクニ Aluminum alloy component and manufacturing method thereof
US9982329B2 (en) 2013-02-06 2018-05-29 Ksm Castings Group Gmbh Aluminum casting alloy
CN110016593A (en) * 2018-01-10 2019-07-16 通用汽车环球科技运作有限责任公司 Aluminium alloy and preparation method thereof
CN112251654A (en) * 2020-10-30 2021-01-22 辽宁忠旺集团有限公司 High-strength aluminum material for screw and preparation method
CN112342442A (en) * 2020-11-23 2021-02-09 超捷紧固***(上海)股份有限公司 Method for manufacturing and preparing materials by using aluminum functional connecting piece and fastening piece
CN117548551A (en) * 2024-01-11 2024-02-13 湘潭大学 Forming method of aluminum alloy

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9797031B2 (en) 2012-08-23 2017-10-24 Ksm Castings Group Gmbh Aluminum casting alloy
US9982329B2 (en) 2013-02-06 2018-05-29 Ksm Castings Group Gmbh Aluminum casting alloy
JP2015074823A (en) * 2013-10-11 2015-04-20 ケイエスエム キャスティングズ グループ ゲゼルシャフト ミット ベシュレンクテル ハフツングKSM Castings Group GmbH Aluminum alloy for casting
JP2018075624A (en) * 2016-11-11 2018-05-17 株式会社ミクニ Aluminum alloy component and manufacturing method thereof
CN110016593A (en) * 2018-01-10 2019-07-16 通用汽车环球科技运作有限责任公司 Aluminium alloy and preparation method thereof
CN110016593B (en) * 2018-01-10 2021-08-31 通用汽车环球科技运作有限责任公司 Aluminum alloy and preparation method thereof
CN112251654A (en) * 2020-10-30 2021-01-22 辽宁忠旺集团有限公司 High-strength aluminum material for screw and preparation method
CN112342442A (en) * 2020-11-23 2021-02-09 超捷紧固***(上海)股份有限公司 Method for manufacturing and preparing materials by using aluminum functional connecting piece and fastening piece
CN117548551A (en) * 2024-01-11 2024-02-13 湘潭大学 Forming method of aluminum alloy
CN117548551B (en) * 2024-01-11 2024-03-26 湘潭大学 Forming method of aluminum alloy

Similar Documents

Publication Publication Date Title
US9834828B2 (en) Cast aluminum alloy components
JP4970709B2 (en) Casting alloy
CN111032897A (en) Method of forming cast aluminum alloy
EP2369025B1 (en) Magnesium alloy and magnesium alloy casting
WO2010007484A1 (en) Aluminum alloy, method of casting aluminum alloy, and method of producing aluminum alloy product
JP5703881B2 (en) High strength magnesium alloy and method for producing the same
JP2005226161A (en) Casting of aluminum alloy
JP5758402B2 (en) Cast parts made of copper aluminum alloy with high mechanical strength and high heat-resistant creep resistance
JP2007169712A (en) Aluminum alloy for plastic working
JP2005220441A (en) Castable high temperature aluminum alloy
JP2011510174A (en) High strength aluminum casting alloy resistant to hot cracking
JP6229130B2 (en) Cast aluminum alloy and casting using the same
JP3332885B2 (en) Aluminum-based alloy for semi-solid processing and method for manufacturing the processed member
JPH1112674A (en) Aluminum alloy for internal combustion engine piston, and piston made of aluminum alloy
JP4433916B2 (en) Magnesium alloy and magnesium alloy member for plastic working
JP5356777B2 (en) Magnesium alloy forging method
JP3548709B2 (en) Method for producing semi-solid billet of Al alloy for transportation equipment
JP3346186B2 (en) Aluminum alloy material for casting and forging with excellent wear resistance, castability and forgeability, and its manufacturing method
JP3164587B2 (en) Alloys with excellent thermal fatigue resistance, aluminum alloys with excellent thermal fatigue resistance, and aluminum alloy members with excellent thermal fatigue resistance
JP2007070685A (en) Highly workable magnesium alloy, and method for producing the same
JP2001513145A (en) Cast alloy
JP2006161103A (en) Aluminum alloy member and manufacturing method therefor
JP6385683B2 (en) Al alloy casting and manufacturing method thereof
JP5575028B2 (en) High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method
JPH11286758A (en) Production of forged product using aluminum casting material