JP2012097309A - Magnesium alloy member, compressor for air conditioner, and method for manufacturing magnesium alloy member - Google Patents

Magnesium alloy member, compressor for air conditioner, and method for manufacturing magnesium alloy member Download PDF

Info

Publication number
JP2012097309A
JP2012097309A JP2010244816A JP2010244816A JP2012097309A JP 2012097309 A JP2012097309 A JP 2012097309A JP 2010244816 A JP2010244816 A JP 2010244816A JP 2010244816 A JP2010244816 A JP 2010244816A JP 2012097309 A JP2012097309 A JP 2012097309A
Authority
JP
Japan
Prior art keywords
magnesium alloy
alloy member
calcium
aluminum
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010244816A
Other languages
Japanese (ja)
Inventor
Matsuji Hirawatari
末二 平渡
Hidenori Hosoi
秀紀 細井
Takeshi Fukui
毅 福井
Makoto Fukushima
誠 福島
Shigeharu Kamatsuchi
重晴 鎌土
Tomoyuki Honma
智之 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagaoka University of Technology NUC
Sanden Corp
Original Assignee
Nagaoka University of Technology NUC
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagaoka University of Technology NUC, Sanden Corp filed Critical Nagaoka University of Technology NUC
Priority to JP2010244816A priority Critical patent/JP2012097309A/en
Priority to CN2011800520477A priority patent/CN103180472A/en
Priority to KR1020137013196A priority patent/KR20130101100A/en
Priority to EP11836462.9A priority patent/EP2631312A4/en
Priority to US13/882,470 priority patent/US20130213528A1/en
Priority to PCT/JP2011/074959 priority patent/WO2012057329A1/en
Publication of JP2012097309A publication Critical patent/JP2012097309A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/122Cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/028Magnesium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Extrusion Of Metal (AREA)
  • Forging (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnesium alloy member capable of exhibiting mechanical strength and high-temperature fatigue strength which can be applied to a mechanism component in a compressor for an automobile air conditioner, and a method for manufacturing the magnesium alloy member, and to further provide the compressor for an air conditioner, which uses, in the mechanism component, a magnesium alloy having the necessary mechanical strength and high-temperature fatigue strength.SOLUTION: The magnesium alloy member is formed by plastically working (extruding), at 250-500°C, a magnesium alloy casting raw material containing, by mass%, 0.3-10% calcium Ca, 0.2-15% aluminum Al, and 0.05-1.5% manganese Mn, with the mass ratio of calcium Ca to aluminum Al being between 0.6 and 1.7, and the remainder comprising magnesium Mg and unavoidable impurities. Thus, the magnesium alloy member exhibits 0.2% proof stress at room temperature of 300 MPa or more and a fatigue strength at 150°C of 100 MPa or more. The mechanism component of the compressor for an automobile air conditioner is formed by the magnesium alloy member, so that the weight of the compressor is reduced.

Description

本発明は、アルミニウム、カルシウム、マンガンを含有するマグネシウム合金部材、当該マグネシウム合金部材を機構部品に使用したエアコン用圧縮機、及び、前記マグネシウム合金部材の製造方法に関する。   The present invention relates to a magnesium alloy member containing aluminum, calcium and manganese, a compressor for an air conditioner using the magnesium alloy member as a mechanical component, and a method for producing the magnesium alloy member.

自動車部品において、軽量化のために、低比重であるマグネシウム合金を用いる場合があり、従来、マグネシウム合金の適用部品は、高強度や耐熱性が要求されないケーシングやカバーなどの部品が主であったが、強度や耐熱性を向上させたマグネシウム合金が開発されている。
例えば、特許文献1〜3には、鋳造性及び耐熱性を向上させたマグネシウム合金が開示され、特許文献4には、高温での強度及び鍛造性を向上させたマグネシウム合金が開示されている。
In order to reduce the weight of automobile parts, magnesium alloys with low specific gravity may be used. Conventionally, magnesium alloy parts have been mainly casings and covers that do not require high strength and heat resistance. However, magnesium alloys with improved strength and heat resistance have been developed.
For example, Patent Documents 1 to 3 disclose a magnesium alloy with improved castability and heat resistance, and Patent Document 4 discloses a magnesium alloy with improved strength and forgeability at high temperatures.

特開2004−232060号公報JP 2004-232060 A 特開2007−197796号公報JP 2007-197796 A 特開2004−162090号公報JP 2004-162090 A 特開2000−104137号公報JP 2000-104137 A 特開2000−109963号公報Japanese Unexamined Patent Publication No. 2000-109963

ところで、自動車部品の中でも、自動車エアコン用圧縮機は、エンジン近傍に設置され、暴露温度が100〜150℃程度になるため、圧縮機の部品素材には耐熱性が求められ、更に、圧縮機における圧縮を担う機構部品では、高温での高い疲労強度が求められる。
しかし、特許文献1〜3に開示されるマグネシウム合金は鋳造用であるため、機械的強度が不十分であり、圧縮機のような高温での高強度が要求される部品には適用できないという問題があった。
By the way, among automotive parts, a compressor for an automotive air conditioner is installed in the vicinity of the engine, and the exposure temperature is about 100 to 150 ° C. Therefore, heat resistance is required for the component material of the compressor. A mechanical component responsible for compression is required to have high fatigue strength at high temperatures.
However, since the magnesium alloys disclosed in Patent Documents 1 to 3 are for casting, the mechanical strength is insufficient, and the problem that the magnesium alloy cannot be applied to a component requiring high strength at a high temperature such as a compressor. was there.

また、特許文献4,5に開示されるマグネシウム合金は、強度及び鍛造性に優れているとしても、高温疲労強度に関する検証がなく、圧縮機の機構部品への適用可能性が不確かであった。
更に、マグネシウム合金に高価な希少金属を添加すれば、マグネシウム合金の強度を上げることができるが、この場合、コスト高となってしまい、圧縮機の機構部品の素材としては不向きである。
そこで、本発明は、自動車エアコン用圧縮機の機構部品に適用可能な機械的強度及び高温での疲労強度を出現できる、マグネシウム合金部材及びマグネシウム合金部材の製造方法を提供し、更に、必要な機械的強度及び高温での疲労強度を備えたマグネシウム合金製の機構部品を備えたエアコン用圧縮機を提供することを目的とする。
Moreover, even if the magnesium alloys disclosed in Patent Documents 4 and 5 are excellent in strength and forgeability, there is no verification regarding high-temperature fatigue strength, and applicability to mechanical parts of compressors is uncertain.
Furthermore, if an expensive rare metal is added to the magnesium alloy, the strength of the magnesium alloy can be increased. However, in this case, the cost is increased, and it is not suitable as a material for mechanical parts of the compressor.
Accordingly, the present invention provides a magnesium alloy member and a method for manufacturing the magnesium alloy member that can exhibit mechanical strength applicable to mechanical parts of a compressor for an automotive air conditioner and fatigue strength at high temperature, and further, a necessary machine An object of the present invention is to provide a compressor for an air conditioner including a mechanical component made of a magnesium alloy having a mechanical strength and fatigue strength at a high temperature.

上記目的を達成するために、本発明は、質量%で、カルシウムを0.3〜10%、アルミニウムを0.2〜15%、マンガンを0.05〜1.5%含有し、カルシウム/アルミニウムの質量比が0.6〜1.7であり、残部がマグネシウム及び不可避不純物からなるマグネシウム合金の鋳造素材を、250〜500℃で塑性加工することを特徴とする。   In order to achieve the above object, the present invention contains, by mass%, 0.3 to 10% calcium, 0.2 to 15% aluminum, 0.05 to 1.5% manganese, and calcium / aluminum. The mass ratio is 0.6 to 1.7, and a cast material of a magnesium alloy consisting of magnesium and inevitable impurities is plastically processed at 250 to 500 ° C.

カルシウムCaとアルミニウムAlとの双方を添加することで、Mg‐Ca系化合物と、Mg‐Al‐Ca系化合物が粒界に晶出し、室温での機械的強度及び耐熱性が向上する。
これらの晶出物は、Ca/Alの質量比が変わることで変化し、特に、Ca/Alの質量比を0.6〜1.7とした場合、Mg‐Ca系化合物であるMg2Caと、Mg‐Al‐Ca系化合物である(Mg,Al)2Caとが同時に晶出し、機械的強度と耐熱性の向上に大きな効果がある。
By adding both calcium Ca and aluminum Al, the Mg—Ca compound and the Mg—Al—Ca compound crystallize at the grain boundary, and the mechanical strength and heat resistance at room temperature are improved.
These crystallized substances change when the mass ratio of Ca / Al is changed. In particular, when the mass ratio of Ca / Al is 0.6 to 1.7, Mg 2 Ca which is an Mg—Ca compound is used. And (Mg, Al) 2 Ca, which is an Mg—Al—Ca-based compound, crystallize at the same time, which has a great effect on improving mechanical strength and heat resistance.

一方、Ca/Alの質量比が1.7よりも大きくなると、Mg2Caのみ、若しくは、僅かな(Mg,Al)2Caが晶出する程度で、機械的強度の向上効果は期待できず、Ca/Alの質量比が0.6よりも小さくなると、Mg‐Al系化合物であるβ‐Mg17Al12が晶出し、耐熱性に悪影響を及ぼす。
また、マンガンMnを少量添加することで、結晶粒径が微細化し、機械的強度が向上する。マンガンMnの添加量は、0.05〜1.5%の範囲が適切であり、この範囲を外れると、結晶粒径の微細化の効果が低くなって、機械的強度の向上効果は期待できない。
On the other hand, when the Ca / Al mass ratio is larger than 1.7, only Mg 2 Ca or a slight amount of (Mg, Al) 2 Ca is crystallized, and the improvement effect of mechanical strength cannot be expected. When the Ca / Al mass ratio is smaller than 0.6, β-Mg 17 Al 12 , which is an Mg—Al compound, crystallizes and adversely affects heat resistance.
Further, by adding a small amount of manganese Mn, the crystal grain size is refined and the mechanical strength is improved. The amount of manganese Mn added is suitably in the range of 0.05 to 1.5%, and if it is outside this range, the effect of refining the crystal grain size is reduced, and the improvement effect of mechanical strength cannot be expected. .

そして、上記組成のマグネシウム合金からなる鋳造素材に、250〜500℃で塑性加工を施すと、高温での高い疲労強度を出現でき、250〜500℃での塑性加工後のマグネシウム合金部材は、自動車エアコン用圧縮機の機構部品に要求される機械的強度及び高温での疲労強度である、室温における0.2%耐力が300MPa以上、150℃における疲労強度が100MPa以上を出現する。
尚、塑性加工の温度が250℃を下回ると、充分な歪み量を確保できないために成形ができず、割れなどが発生し、また、500℃を上回ると、高温酸化や部分的な溶解が発生し、疲労強度の向上効果は期待できない。
And if the casting material which consists of a magnesium alloy of the said composition is plastically processed at 250-500 degreeC, the high fatigue strength in high temperature can appear, and the magnesium alloy member after plastic working at 250-500 degreeC is an automobile. The mechanical strength required for the mechanical parts of the compressor for an air conditioner and the fatigue strength at high temperature appear as 0.2% proof stress at room temperature of 300 MPa or more, and fatigue strength at 150 ° C. of 100 MPa or more.
If the plastic working temperature is below 250 ° C., a sufficient amount of strain cannot be secured, so that molding cannot be performed and cracking occurs, and if it exceeds 500 ° C., high temperature oxidation or partial melting occurs. However, the improvement effect of fatigue strength cannot be expected.

ここで、前記塑性加工後に、溶体化処理及び人工時効処理を施すことができ、好ましくは、塑性加工後に、450〜510℃の処理温度に0.08時間以上保持する溶体化処理を施した後、150〜250℃の処理温度に0.3時間以上保持する人工時効処理を施すことが好ましい。
溶体化加熱の処理温度が450〜510℃の範囲であると、粒界及び粒内が微細な析出物によって強化され、局所変形が抑えられ、均一変形領域が大きくなるために、高温での加工軟化が起こり難くなり、高温疲労強度が向上する。
Here, after the plastic working, a solution treatment and an artificial aging treatment can be performed. Preferably, after the plastic working, a solution treatment for holding at a processing temperature of 450 to 510 ° C. for 0.08 hours or more is performed. It is preferable to perform an artificial aging treatment in which a treatment temperature of 150 to 250 ° C. is maintained for 0.3 hours or more.
When the treatment temperature for solution heating is in the range of 450 to 510 ° C., the grain boundaries and the inside of the grains are strengthened by fine precipitates, local deformation is suppressed, and the uniform deformation region becomes large. Softening hardly occurs and high temperature fatigue strength is improved.

溶体化加熱の処理温度が450℃を下回ると、固溶体が形成し難くなり、粒界及び粒内の析出物の量が低下し、適正な状態とならず、高温疲労強度の向上は期待できない。一方、溶体化加熱の処理温度が510℃を上回ると、合金の一部が溶融するバーニングが生じ、気孔欠陥が生じる。
また、溶体化加熱の処理時間は、0.08時間を下回ると、十分な溶体化処理ができないので、保持時間は0.08時間よりも長いことが好ましい。
When the treatment temperature for solution heating is lower than 450 ° C., it is difficult to form a solid solution, the amount of precipitates in the grain boundaries and grains is reduced, and an appropriate state cannot be obtained, and improvement in high temperature fatigue strength cannot be expected. On the other hand, when the treatment temperature for solution heating exceeds 510 ° C., burning occurs in which a part of the alloy melts, resulting in pore defects.
Further, if the solution heat treatment time is less than 0.08 hours, sufficient solution treatment cannot be performed, and therefore, the holding time is preferably longer than 0.08 hours.

また、焼入れに使用する冷却は、温水であってもよいし、なんらかの添加剤を加えたものでもよく、公知の焼入れ用の冷却であれば様々なものを適用できる。
人工時効処理における処理温度が150℃を下回ると、適正な硬さに向上させるために処理時間が長くなり、処理温度が250℃を上回ると、硬さ及び強度が低下してしまうので、人工時効処理における処理温度は、150〜250℃の範囲とすることが好ましい。
The cooling used for quenching may be warm water or may be added with any additive, and various types of cooling can be applied as long as they are known quenching cooling.
When the treatment temperature in the artificial aging treatment is lower than 150 ° C, the treatment time becomes longer in order to improve to an appropriate hardness, and when the treatment temperature exceeds 250 ° C, the hardness and strength are reduced. The treatment temperature in the treatment is preferably in the range of 150 to 250 ° C.

また、人工時効処理の保持時間が0.3時間を下回ると、十分な時効硬化が得られないので、人工時効処理における保持時間は、0.3時間以上とすることが好ましい。
前記塑性加工として、押出し加工を施すことができ、押出し加工を250〜500℃で行えば、割れや表面酸化を抑制しつつ、疲労強度を向上させることができる。
また、上記のマグネシウム合金部材を、エアコン用圧縮機の機構部品に使用することができる。
Further, if the retention time of the artificial aging treatment is less than 0.3 hours, sufficient age hardening cannot be obtained. Therefore, the retention time in the artificial aging treatment is preferably 0.3 hours or more.
Extrusion can be performed as the plastic processing, and if the extrusion is performed at 250 to 500 ° C., fatigue strength can be improved while suppressing cracking and surface oxidation.
Moreover, said magnesium alloy member can be used for the mechanism components of the compressor for air conditioners.

本発明によると、自動車エアコン用圧縮機の機構部品に適用可能な機械的強度及び高温での疲労強度、具体的には、室温の0.2%耐力が300MPa以上、150℃の疲労強度が100MPa以上を出現できるマグネシウム合金部材を提供でき、更に、係るマグネシウム合金部材を機構部品に使用したエアコン用圧縮機を提供できる。
従来、自動車エアコン用圧縮機の機構部品には、高強度アルミニウム合金が用いられているが、本発明によると、高強度アルミニウム合金と略同等の機械的強度(引張強度)及び高温疲労強度をマグネシウム合金部材において出現できるから、高強度アルミニウム合金に比べて低比重であるマグネシウム合金部材への置き換えが可能となり、自動車エアコン用圧縮機の大幅な重量低減を実現できる。
According to the present invention, mechanical strength applicable to mechanical parts of compressors for automobile air conditioners and fatigue strength at high temperature, specifically, 0.2% proof stress at room temperature is 300 MPa or more, and fatigue strength at 150 ° C. is 100 MPa. The magnesium alloy member which can appear the above can be provided, and furthermore, the compressor for an air conditioner which uses the magnesium alloy member for the mechanical part can be provided.
Conventionally, high-strength aluminum alloys have been used for mechanical parts of compressors for automobile air conditioners. According to the present invention, however, mechanical strength (tensile strength) and high-temperature fatigue strength substantially the same as high-strength aluminum alloys are achieved with magnesium. Since it can appear in an alloy member, it can be replaced with a magnesium alloy member having a specific gravity lower than that of a high-strength aluminum alloy, and a significant weight reduction of a compressor for an automotive air conditioner can be realized.

以下、本発明の実施形態を詳細に説明する。
表1は、マグネシウム合金におけるアルミニウムAl、カルシウムCa、マンガンMnの含有率(質量%)を変更した複数種の試料それぞれにおける室温(例えば10〜35℃)での引張強度(MPa)及び0.2%耐力(MPa)を示す。
表1の「判定」は、0.2%耐力が、自動車エアコン用圧縮機の機構部品に要求される値である300MPa以上であることを○印で示し、0.2%耐力が300MPa未満であることを×印で示すものである。
Hereinafter, embodiments of the present invention will be described in detail.
Table 1 shows tensile strength (MPa) at room temperature (for example, 10 to 35 ° C.) and 0.2 for each of a plurality of types of samples in which the contents (mass%) of aluminum Al, calcium Ca, and manganese Mn in the magnesium alloy are changed. % Yield strength (MPa).
“Decision” in Table 1 indicates that the 0.2% proof stress is 300 MPa or more, which is a value required for a mechanical part of a compressor for an automobile air conditioner, and the 0.2% proof stress is less than 300 MPa. This is indicated by a cross.

0.2%耐力の要求値としての300MPaは、自動車エアコン用圧縮機の機構部品に用いられているアルミニウム合金鍛造材(T6処理:溶体化処理後、人工時効処理)の0.2%耐力を基準として設定した。
表1の結果を得た試料は、表中の含有率としたマグネシウム合金の鋳造品を作成し、この鋳造素材に塑性加工(熱間間接押出加工)を施したものであり、熱処理(T6処理)を施していないものである。
300MPa as a required value of 0.2% proof stress is 0.2% proof stress of aluminum alloy forging material (T6 treatment: solution heat treatment, artificial aging treatment) used for mechanical parts of compressors for automotive air conditioners. Set as a reference.
Samples obtained from the results in Table 1 were prepared by casting a magnesium alloy having the contents shown in the table, and subjecting the cast material to plastic working (hot indirect extrusion), and heat treatment (T6 treatment). ) Is not given.

より詳細には、合金溶製は電気抵抗炉を用いて大気中で行い、溶湯の酸化防止には、SF6とCO2の混合ガスを用いた。そして、攪拌後に、Ca添加時の酸化物除去のためArガスを流してバブリングを行い、300℃に加熱したビレット用金型に鋳込んで、鋳造素材を作製した。
また、間接押出加工には油圧プレス機を用い、350℃に加熱した金型の中に、押出し加工用の試料を投入し、10分間保持してから、押出し比を20とした押出し加工を開始した。尚、押出し比とは、塑性加工前の断面積/塑性加工後の断面積である。
More specifically, alloy melting was performed in the air using an electric resistance furnace, and a mixed gas of SF 6 and CO 2 was used to prevent oxidation of the molten metal. Then, after stirring, Ar gas was flowed for bubbling to remove oxide when Ca was added, and cast into a billet mold heated to 300 ° C. to prepare a casting material.
For indirect extrusion, use a hydraulic press machine and put the sample for extrusion into a mold heated to 350 ° C, hold it for 10 minutes, then start extrusion with an extrusion ratio of 20. did. The extrusion ratio is the cross-sectional area before plastic working / the cross-sectional area after plastic working.

また、押出し材の引張特性を評価するための引張試験においては、万能試験機を用いる一方、押出し方向と荷重負荷方向とが平行になるように試験片を採取し、試験部直径4mm、評点距離20mmのJIS14A号試験片を作製し、試験速度は、初期ひずみ速度1×10−3−1の条件で行った。
表1の最下段は、JIS規定素材であるAl合金鍛造材(A4032−T6)での引張強度(MPa)及び0.2%耐力(MPa)を参考値として示してあり、表中の「判定」は、このAl合金鍛造材(A4032−T6)の0.2%耐力である300MPa以上であるか否かを示す。
In the tensile test to evaluate the tensile properties of the extruded material, a universal testing machine is used, while a test piece is taken so that the extrusion direction and the load loading direction are parallel, and the test part diameter is 4 mm and the rating distance is A 20 mm JIS14A test piece was prepared, and the test speed was the initial strain rate of 1 × 10 −3 s −1 .
The bottom row of Table 1 shows the tensile strength (MPa) and 0.2% proof stress (MPa) of the JIS prescribed material Al alloy forging (A4032-T6) as reference values. "" Indicates whether the Al alloy forging material (A4032-T6) has a 0.2% proof stress of 300 MPa or more.

表1において、実施例1〜11の試料は、カルシウムCaを0.3〜10%、アルミニウムAlを0.2〜15%、マンガンMnを0.05〜1.5%含有し、カルシウムCa/アルミニウムAlの質量比が0.6〜1.7であり、残部がマグネシウムMg及び不可避不純物からなるマグネシウム合金の鋳造素材に、350℃の塑性加工(押出し加工)を施したものである。
一方、比較例1〜7の試料は、カルシウムCaの含有率、アルミニウムAlの含有率、マンガンMnの含有率、カルシウムCa/アルミニウムAlの質量比のうちの少なくとも1つが、前記範囲から外れているマグネシウム合金の鋳造素材に、350℃の塑性加工(押出し加工)を施したものである。
In Table 1, the samples of Examples 1 to 11 contain calcium Ca 0.3 to 10%, aluminum Al 0.2 to 15%, manganese Mn 0.05 to 1.5%, and calcium Ca / A mass ratio of aluminum Al is 0.6 to 1.7, and a cast material of a magnesium alloy consisting of magnesium Mg and inevitable impurities is subjected to plastic processing (extrusion processing) at 350 ° C.
On the other hand, in the samples of Comparative Examples 1 to 7, at least one of the content ratio of calcium Ca, the content ratio of aluminum Al, the content ratio of manganese Mn, and the mass ratio of calcium Ca / aluminum Al is out of the above range. A magnesium alloy casting material is subjected to plastic processing (extrusion processing) at 350 ° C.

尚、表1における「Ca+Al」は、カルシウムCaとアルミニウムAlとの合計の質量%を示す。
表1に示すように、カルシウムCaの含有率=0.3〜10%、アルミニウムAlの含有率=0.2〜15%、マンガンMnの含有率=0.05〜1.5%、カルシウムCa/アルミニウムAlの質量比0.6〜1.7を満たす実施例1〜7の試料は、いずれも0.2%耐力が要求値である300MPa以上であり、自動車エアコン用圧縮機の機構部品に要求される機械的強度を満たしており、圧縮機の機構部品として用いることができることを示している。
Note that “Ca + Al” in Table 1 represents the total mass% of calcium Ca and aluminum Al.
As shown in Table 1, calcium Ca content = 0.3-10%, aluminum Al content = 0.2-15%, manganese Mn content = 0.05-1.5%, calcium Ca The samples of Examples 1 to 7 satisfying the mass ratio of aluminum / aluminum Al of 0.6 to 1.7 all have a 0.2% proof stress of 300 MPa or more, which is a required value. It indicates that it meets the required mechanical strength and can be used as a mechanical component of a compressor.

これに対し、カルシウムCaの含有率が0.3〜10%の範囲を外れる比較例1及び比較例4、また、アルミニウムAlの含有率が0.2〜15%の範囲を外れる比較例2及び比較例3では、0.2%耐力が要求値である300MPaを下回り、圧縮機の機構部品として用いることができないことを示している。
また、カルシウムCaの含有率及びアルミニウムAlの含有率が、0.2〜15%の範囲内であっても、比較例5及び比較例6のように、カルシウムCa/アルミニウムAlの質量比が0.6〜1.7の範囲を外れると、0.2%耐力が要求値である300MPaを下回り、圧縮機の機構部品として用いることができないことを示している。
On the other hand, Comparative Example 1 and Comparative Example 4 in which the Ca Ca content is outside the range of 0.3 to 10%, and Comparative Example 2 in which the Al content is outside the range of 0.2 to 15% and In Comparative Example 3, the 0.2% proof stress is lower than the required value of 300 MPa, indicating that it cannot be used as a mechanical part of the compressor.
Moreover, even if the content rate of calcium Ca and the content rate of aluminum Al are in the range of 0.2 to 15%, the mass ratio of calcium Ca / aluminum Al is 0 as in Comparative Example 5 and Comparative Example 6. Outside the range of .6 to 1.7, the 0.2% proof stress is below the required value of 300 MPa, indicating that it cannot be used as a mechanical part of the compressor.

更に、カルシウムCaの含有率及びアルミニウムAlの含有率が0.3〜10%の範囲内であり、かつ、カルシウムCa/アルミニウムAlの質量比が0.6〜1.7の範囲内であっても、マンガンMnを含有しない比較例7では、0.2%耐力が要求値である300MPaを下回り、圧縮機の機構部品として用いることができないことを示している。
即ち、上記引張試験の結果から、カルシウムCaの含有率=0.3〜10%、アルミニウムAlの含有率=0.2〜15%、マンガンMnの含有率=0.05〜1.5%、カルシウムCa/アルミニウムAlの質量比=0.6〜1.7を満足するマグネシウム合金であることが、自動車エアコン用圧縮機の機構部品に要求される機械的強度(0.2%耐力が300MPa以上)を得るための条件となることが分かる。
Furthermore, the calcium Ca content and the aluminum Al content are in the range of 0.3 to 10%, and the calcium Ca / aluminum Al mass ratio is in the range of 0.6 to 1.7. However, in Comparative Example 7 containing no manganese Mn, the 0.2% proof stress is lower than the required value of 300 MPa, indicating that it cannot be used as a mechanical part of the compressor.
That is, from the results of the tensile test, the content ratio of calcium Ca = 0.3 to 10%, the content ratio of aluminum Al = 0.2 to 15%, the content ratio of manganese Mn = 0.05 to 1.5%, It is a magnesium alloy satisfying the mass ratio of calcium Ca / aluminum Al = 0.6 to 1.7. Mechanical strength required for mechanical parts of a compressor for an automotive air conditioner (0.2% proof stress is 300 MPa or more) It turns out that it becomes the conditions for obtaining.

カルシウムCaとアルミニウムAlとの双方を添加することで、Mg‐Ca系化合物と、Mg‐Al‐Ca系化合物が粒界に晶出し、室温での機械的強度及び耐熱性が向上するが、実施例1〜11のように、カルシウムCa/アルミニウムAlの質量比を0.6〜1.7とした場合、Mg‐Ca系化合物であるMg2Caと、Mg‐Al‐Ca系化合物である(Mg,Al)2Caとが同時に晶出し、機械的強度と耐熱性とが向上したものと推察される。
これに対し、比較例6のように、カルシウムCa/アルミニウムAlの質量比が1.7よりも大きくなると、Mg2Caのみ、若しくは、僅かな(Mg,Al)2Caが晶出する程度となることで、機械的強度を十分に向上させることができず、また、比較例5のように、カルシウムCa/アルミニウムAlの質量比が0.6よりも小さくなると、Mg‐Al系化合物であるβ‐Mg17Al12が晶出し、耐熱性に悪影響を及ぼしたものと推察される。
By adding both calcium Ca and aluminum Al, the Mg-Ca compound and Mg-Al-Ca compound crystallize at the grain boundary, improving the mechanical strength and heat resistance at room temperature. As in Examples 1 to 11, when the mass ratio of calcium Ca / aluminum Al is 0.6 to 1.7, Mg 2 Ca which is an Mg—Ca compound and Mg—Al—Ca compound ( It is presumed that Mg, Al) 2 Ca was crystallized at the same time, and mechanical strength and heat resistance were improved.
On the other hand, as in Comparative Example 6, when the mass ratio of calcium Ca / aluminum Al is greater than 1.7, only Mg 2 Ca or a slight amount of (Mg, Al) 2 Ca is crystallized. Thus, the mechanical strength cannot be sufficiently improved, and when the mass ratio of calcium Ca / aluminum Al is smaller than 0.6 as in Comparative Example 5, the Mg-Al compound is obtained. It is inferred that β-Mg 17 Al 12 crystallized and adversely affected the heat resistance.

また、比較例7のように、カルシウムCa/アルミニウムAlの質量比を0.6〜1.7の範囲内としても、マンガンMnを添加しない場合には機械的強度が不足するのに対し、実施例1〜11のように、マンガンMnを少量添加することで、0.2%耐力を300MPa以上とすることができる。これは、マンガンMnを少量添加することで、結晶粒径が微細化し、機械的強度が向上したものと推定される。マンガンMnの添加量は、0.05〜1.5%の範囲が適切であり、この範囲を外れると、結晶粒径の微細化の効果が低くなって、機械的強度の向上効果は期待できない。   Further, as in Comparative Example 7, even when the mass ratio of calcium Ca / aluminum Al is in the range of 0.6 to 1.7, the mechanical strength is insufficient when manganese Mn is not added. Like Examples 1-11, 0.2% yield strength can be 300 Mpa or more by adding a small amount of manganese Mn. This is presumed that the crystal grain size was refined and the mechanical strength was improved by adding a small amount of manganese Mn. The amount of manganese Mn added is suitably in the range of 0.05 to 1.5%, and if it is outside this range, the effect of refining the crystal grain size is reduced, and the improvement effect of mechanical strength cannot be expected. .

表2は、表1に示した実施例3の含有率、即ち、カルシウムCaを3.3%、アルミニウムAlを3.7%、マンガンMnを0.33%、カルシウムCa/アルミニウムAlの質量比が0.89、カルシウムCaとアルミニウムAlとの合計を7%としたマグネシウム合金の鋳造素材を試料とし、この鋳造素材に施す押出し加工(塑性加工)における押出比及び押出温度を複数種に異ならせ、押出し加工後の試料それぞれにおける0.2%耐力を求めた試験結果を示す。
表2に示す試験では、押出し比を10,20,40,60の4種類に設定したが、それぞれの押出し比における押出し温度が、250〜500℃の範囲内であれば、割れや表面酸化が発生することなく、0.2%耐力が要求値である300MPaを上回った。
Table 2 shows the content of Example 3 shown in Table 1, that is, calcium Ca 3.3%, aluminum Al 3.7%, manganese Mn 0.33%, calcium Ca / aluminum Al mass ratio. A magnesium alloy casting material having a total of 7% of calcium Ca and aluminum Al is used as a sample, and the extrusion ratio and extrusion temperature in the extrusion processing (plastic processing) applied to this casting material are varied among several types. The test result which calculated | required 0.2% yield strength in each sample after an extrusion process is shown.
In the tests shown in Table 2, the extrusion ratios were set to four types of 10, 20, 40, and 60. If the extrusion temperatures at the respective extrusion ratios were in the range of 250 to 500 ° C., cracks and surface oxidation occurred. Without generating, the 0.2% proof stress exceeded the required value of 300 MPa.

これに対し、押出し比を20としたときに、押出し温度を250〜500℃の範囲を下回る230℃とすると割れが発生して機械的強度が得られず、また、押出し温度を250〜500℃の範囲を上回る517℃とすると、表面酸化が発生して、0.2%耐力が要求値である300MPaを下回った。
即ち、塑性加工(押出し加工)の温度を、250〜500℃の範囲内とすることで、300MPa以上の0.2%耐力を出現できることが分かる。塑性加工の温度が250℃を下回る場合には、充分な歪み量を確保できないために成形ができず、割れなどが発生し、また、500℃を上回る場合には、高温酸化や部分的な溶解が発生することで、疲労強度の向上効果は期待できない。
On the other hand, when the extrusion ratio is set to 20, if the extrusion temperature is 230 ° C. below the range of 250 to 500 ° C., cracking occurs and mechanical strength cannot be obtained, and the extrusion temperature is 250 to 500 ° C. When the temperature was 517 ° C. exceeding the range, surface oxidation occurred, and the 0.2% proof stress was lower than the required value of 300 MPa.
That is, it can be seen that 0.2% proof stress of 300 MPa or more can appear when the temperature of plastic working (extrusion processing) is in the range of 250 to 500 ° C. When the temperature of plastic working is below 250 ° C, a sufficient amount of strain cannot be secured, so molding cannot be performed and cracks occur. When the temperature is above 500 ° C, high temperature oxidation or partial dissolution occurs. The occurrence of fatigue strength cannot be expected due to the occurrence of.

表3は、250〜500℃の塑性加工後(押出し加工後)に、熱処理(T6処理)を施した場合と、熱処理(T6処理)を施さなかった場合とで、それぞれに150℃疲労強度(高温疲労強度)を計測した結果を示す。
尚、試料としては、表1に示した実施例3の含有率、即ち、カルシウムCaを3.3%、アルミニウムAlを3.7%、マンガンMnを0.33%、カルシウムCa/アルミニウムAlの質量比が0.89、カルシウムCaとアルミニウムAlとの合計を7%としたマグネシウム合金の鋳造素材を、押出し比20、押出し温度350℃で押出し加工したものを用いた。
Table 3 shows the fatigue strength of 150 ° C. (when the heat treatment (T6 treatment) is performed after the plastic working (after extrusion) at 250 to 500 ° C. and when the heat treatment (T6 treatment) is not performed. The results of measuring high temperature fatigue strength) are shown.
In addition, as a sample, the content rate of Example 3 shown in Table 1, that is, calcium Ca is 3.3%, aluminum Al is 3.7%, manganese Mn is 0.33%, calcium Ca / aluminum Al. A magnesium alloy casting material having a mass ratio of 0.89 and a total of calcium Ca and aluminum Al of 7% was extruded at an extrusion ratio of 20 and an extrusion temperature of 350 ° C.

更に、表3には、比較対象として、JIS規定素材であるAl合金鍛造材(A4032−T6)における150℃疲労強度を示してある。前述のように、Al合金鍛造材(A4032−T6)は、自動車エアコン用圧縮機に用いられているから、このA4032−T6の150℃疲労強度(100MPa)以上の150℃疲労強度を出現できれば、A4032−T6に代わる部材として用いることができることになる。
表3の疲労強度を得た疲労試験(回転曲げ試験)及び疲労強度の算出は、日本機械学会編「日本機械学会基準 統計的疲労試験方法(改訂版)JSME S−002−1994」に準じて行い、試験温度150℃、回転数3000rpm、周波数50Hz、応力比R=−1で行った。表3の疲労強度は、107回での結果である。
Further, Table 3 shows the 150 ° C. fatigue strength of an Al alloy forged material (A4032-T6), which is a JIS specified material, as a comparison object. As described above, since the Al alloy forging material (A4032-T6) is used in a compressor for an automobile air conditioner, if 150 ° C fatigue strength equal to or higher than 150 ° C fatigue strength (100 MPa) of this A4032-T6 can appear, It can be used as a member that replaces A4032-T6.
The fatigue test (rotary bending test) for obtaining the fatigue strengths shown in Table 3 and the calculation of the fatigue strength are in accordance with the Japan Society of Mechanical Engineers, “The Japan Society of Mechanical Engineers Standard Statistical Fatigue Test Method (Revised Version) JSME S-002-1994”. The test was performed at a test temperature of 150 ° C., a rotation speed of 3000 rpm, a frequency of 50 Hz, and a stress ratio R = −1. The fatigue strength in Table 3 is the result at 10 7 times.

疲労試験に用いた試験片は、丸棒型試験片であって、チャック部の径を8.5mm、破断部の径を4mmとし、押出し方向と荷重負荷方向とが垂直になるように採取し、破断部は、切削による条痕の影響を無くすため、耐水研磨紙にて研磨した後、仕上げにバフ研磨した。
また、T6処理として、横型管状炉を用いて500℃のArガス気流中に30分(0.5時間)保持する溶体化処理後、180℃のオイルバスを用いて2時間の人工時効処理を施した。尚、熱処理時間(保持時間)は、試料を投入してからの時間である。
The test piece used for the fatigue test is a round bar type test piece with a chuck part diameter of 8.5 mm and a fracture part diameter of 4 mm, which is taken so that the direction of extrusion and the direction of load loading are perpendicular. In order to eliminate the influence of the streak due to cutting, the fractured portion was polished with water-resistant abrasive paper and then buffed to finish.
In addition, as a T6 treatment, after a solution treatment for 30 minutes (0.5 hours) in a 500 ° C. Ar gas stream using a horizontal tubular furnace, an artificial aging treatment for 2 hours using a 180 ° C. oil bath is performed. gave. The heat treatment time (holding time) is the time after the sample is introduced.

表3に示したように、A4032−T6の150℃疲労強度が100MPaであるのに対し、250〜500℃の温度で塑性加工(350℃での押出し加工)を行った後、熱処理(T6処理)を施さなかったマグネシウム合金部材の150℃疲労強度は117MPaであるのに対し、同じ素材で同じ塑性加工を施した後に、更に熱処理(T6処理)を施したマグネシウム合金部材の150℃疲労強度は132MPaであった。   As shown in Table 3, the A4032-T6 has a fatigue strength of 100 MPa at 150 ° C., but after performing plastic working (extrusion at 350 ° C.) at a temperature of 250 to 500 ° C., heat treatment (T6 treatment) The 150 ° C. fatigue strength of the magnesium alloy member that was not subjected to () was 117 MPa, whereas the 150 ° C. fatigue strength of the magnesium alloy member that was further heat-treated (T6 treatment) after the same plastic working with the same material was It was 132 MPa.

即ち、カルシウムCaの含有率=0.3〜10%、アルミニウムAlの含有率=0.2〜15%、マンガンMnの含有率=0.05〜1.5%、カルシウムCa/アルミニウムAlの質量比=0.6〜1.7であるマグネシウム合金の鋳造素材に対し、250〜500℃の塑性加工を施せば、熱処理(T6処理)を施さなくてもA4032−T6を上回る150℃疲労強度を出現できる。そして、熱処理(T6処理)を施せば、熱処理(T6処理)を施さなかった場合に比べて更に150℃疲労強度を向上させることができる。   That is, calcium Ca content = 0.3-10%, aluminum Al content = 0.2-15%, manganese Mn content = 0.05-1.5%, calcium Ca / aluminum Al mass If a magnesium alloy casting material having a ratio of 0.6 to 1.7 is subjected to plastic working at 250 to 500 ° C., 150 ° C. fatigue strength exceeding A4032-T6 can be obtained even without heat treatment (T6 treatment). Can appear. And if heat processing (T6 process) is given, 150 degreeC fatigue strength can be improved further compared with the case where heat processing (T6 process) is not given.

換言すれば、カルシウムCaの含有率=0.3〜10%、アルミニウムAlの含有率=0.2〜15%、マンガンMnの含有率=0.05〜1.5%、カルシウムCa/アルミニウムAlの質量比=0.6〜1.7であるマグネシウム合金の鋳造素材に対し、250〜500℃の塑性加工を施して形成したマグネシウム合金部材は、熱処理(T6処理)を施さなくても、自動車エアコン用圧縮機の機構部品に用いることができる室温での0.2%耐力及び高温での疲労強度、具体的には、300MPa以上の室温0.2%耐力及び100MPa以上の150℃疲労強度を出現でき、更に、熱処理(T6処理)を施せば、高温での疲労強度がより強くなる。
従って、高強度アルミニウム合金を用いていた自動車エアコン用圧縮機の機構部品を、マグネシウム合金部材で形成することができ、これによって圧縮機の大幅な重量低減を実現できる。
In other words, calcium Ca content = 0.3-10%, aluminum Al content = 0.2-15%, manganese Mn content = 0.05-1.5%, calcium Ca / aluminum Al The magnesium alloy member formed by subjecting the magnesium alloy casting material having a mass ratio of 0.6 to 1.7 to plastic processing at 250 to 500 ° C. without subjecting to heat treatment (T6 treatment) can be used for automobiles. 0.2% proof stress at room temperature and fatigue strength at high temperatures that can be used for mechanical parts of air conditioner compressors, specifically, 0.2% proof stress at room temperature of 300 MPa or higher and 150 ° C. fatigue strength of 100 MPa or higher. In addition, if heat treatment (T6 treatment) is performed, the fatigue strength at high temperatures becomes stronger.
Therefore, the mechanical parts of the compressor for an automotive air conditioner that uses a high-strength aluminum alloy can be formed of a magnesium alloy member, thereby realizing a significant weight reduction of the compressor.

ところで、熱処理(T6処理)では、塑性加工(押出し加工)後に行う溶体化処理において、450〜510℃の処理温度に0.08時間以上保持することが好ましく、また、焼入れ処理後に行う人工時効処理において、150〜250℃の処理温度に0.3時間以上保持することが好ましい。
溶体化加熱の処理温度が450〜510℃の範囲であると、粒界及び粒内が微細な析出物によって強化され、局所変形が抑えられ、均一変形領域が大きくなるために、高温での加工軟化が起こり難くなり、高温疲労強度を向上させることができる。
By the way, in heat treatment (T6 treatment), it is preferable to hold at a treatment temperature of 450 to 510 ° C. for 0.08 hours or more in a solution treatment performed after plastic processing (extrusion processing), and an artificial aging treatment performed after quenching treatment. In this case, it is preferable to hold at a processing temperature of 150 to 250 ° C. for 0.3 hours or longer.
When the treatment temperature for solution heating is in the range of 450 to 510 ° C., the grain boundaries and the inside of the grains are strengthened by fine precipitates, local deformation is suppressed, and the uniform deformation region becomes large. Softening hardly occurs and high temperature fatigue strength can be improved.

これに対し、溶体化加熱の処理温度が450℃を下回ると、固溶体が形成し難くなり、粒界及び粒内の析出物が低下し、適正な状態とならず、高温疲労強度の向上は期待できない。一方、溶体化加熱の処理温度が510℃を上回ると、合金の一部が溶融するバーニングが生じ、気孔欠陥が生じてしまう。
また、溶体化加熱の処理時間は、0.08時間を下回ると、十分な溶体化処理ができないので、保持時間は0.08時間よりも長いことが好ましい。
On the other hand, when the treatment temperature for solution heating is lower than 450 ° C., it is difficult to form a solid solution, and the precipitates in the grain boundaries and grains are lowered and do not become an appropriate state, and an improvement in high temperature fatigue strength is expected. Can not. On the other hand, if the treatment temperature for solution heating exceeds 510 ° C., burning occurs in which a part of the alloy melts, resulting in pore defects.
Further, if the solution heat treatment time is less than 0.08 hours, sufficient solution treatment cannot be performed, and therefore, the holding time is preferably longer than 0.08 hours.

また、人工時効処理における処理温度が150℃を下回ると、適正な硬さに向上させるために処理時間が長くなり、処理温度が250℃を上回ると、硬さ及び強度が低下してしまうので、人工時効処理における処理温度は、150〜250℃の範囲とすることが好ましい。
また、人工時効処理の保持時間が0.3時間を下回ると、十分な時効硬化が得られないので、人工時効処理における保持時間は、0.3時間以上とすることが好ましい。
表3の結果を得た熱処理(T6処理)における温度及び保持時間は、前述の温度範囲及び時間範囲を満たしている。
In addition, when the processing temperature in the artificial aging treatment is lower than 150 ° C., the processing time is increased to improve the appropriate hardness, and when the processing temperature is higher than 250 ° C., the hardness and strength are reduced. The treatment temperature in the artificial aging treatment is preferably in the range of 150 to 250 ° C.
Further, if the retention time of the artificial aging treatment is less than 0.3 hours, sufficient age hardening cannot be obtained. Therefore, the retention time in the artificial aging treatment is preferably 0.3 hours or more.
The temperature and holding time in the heat treatment (T6 treatment) from which the results shown in Table 3 were obtained satisfy the above temperature range and time range.

以上説明したように、本発明に係るマグネシウム合金部材及びマグネシウム合金部材の製造方法によると、自動車エアコン用圧縮機の機構部品に要求される、室温における0.2%耐力が300MPa以上、150℃における疲労強度が100MPa以上を出現でき、従来使用していたAl合金鍛造材A4032に置き換えて用いることができる。
そして、マグネシウム合金部材の比重は、Al合金鍛造材A4032よりも小さいので、自動車エアコン用圧縮機の機構部品を、マグネシウム合金で形成すれば、圧縮機の重量を大きく低減でき、車両の軽量化、引いては燃費性能の改善に寄与できる。
As described above, according to the magnesium alloy member and the magnesium alloy member manufacturing method according to the present invention, the 0.2% proof stress at room temperature required for the mechanical parts of the compressor for an automotive air conditioner is 300 MPa or more, at 150 ° C. A fatigue strength of 100 MPa or more can appear, and it can be used in place of the conventionally used Al alloy forging material A4032.
And since the specific gravity of the magnesium alloy member is smaller than the Al alloy forging material A4032, if the mechanical parts of the compressor for an automotive air conditioner are formed of a magnesium alloy, the weight of the compressor can be greatly reduced, the weight of the vehicle can be reduced, It can contribute to improving fuel efficiency.

本発明に係るマグネシウム合金部材及びマグネシウム合金部材を適用する自動車エアコン用圧縮機の機構部品としては、斜板式圧縮機用シューやピストン、及び、スクロール式圧縮機用うず巻体などがある。
尚、本発明に係るマグネシウム合金部材及びマグネシウム合金部材の製造方法は、自動車エアコン用圧縮機の機構部品に適用することを前提として開発されたものであるが、適用対象を自動車エアコン用圧縮機の機構部品に限定するものではなく、定置式エアコン圧縮機の機構部品に適用することも可能である。
また、塑性加工を押出し加工に限定するものでもなく、鍛造加工、圧延加工、引き抜き加工などであってもよい。
Examples of the mechanical parts of the magnesium alloy member and the compressor for an automotive air conditioner to which the magnesium alloy member according to the present invention is applied include a swash plate compressor shoe and a piston, and a scroll compressor spiral.
The magnesium alloy member and the manufacturing method of the magnesium alloy member according to the present invention were developed on the premise that they are applied to mechanical parts of a compressor for an automobile air conditioner. The present invention is not limited to mechanical parts, but can be applied to mechanical parts of stationary air conditioner compressors.
Further, the plastic processing is not limited to extrusion processing, and may be forging processing, rolling processing, drawing processing, or the like.

Claims (10)

質量%で、カルシウムを0.3〜10%、アルミニウムを0.2〜15%、マンガンを0.05〜1.5%含有し、カルシウム/アルミニウムの質量比が0.6〜1.7であり、残部がマグネシウム及び不可避不純物からなるマグネシウム合金の鋳造素材を、250〜500℃で塑性加工して形成したマグネシウム合金部材。   It contains 0.3 to 10% calcium, 0.2 to 15% aluminum, 0.05 to 1.5% manganese, and a calcium / aluminum mass ratio of 0.6 to 1.7. A magnesium alloy member formed by plastic processing at 250 to 500 ° C., a casting material of a magnesium alloy having a balance of magnesium and inevitable impurities. 前記塑性加工後に、溶体化処理及び人工時効処理を施した請求項1記載のマグネシウム合金部材。   The magnesium alloy member according to claim 1, wherein a solution treatment and an artificial aging treatment are performed after the plastic working. 前記塑性加工後に、450〜510℃の処理温度に0.08時間以上保持する溶体化処理を施した後、150〜250℃の処理温度に0.3時間以上保持する人工時効処理を施した請求項2記載のマグネシウム合金部材。   After the plastic working, after performing a solution treatment for holding at a processing temperature of 450 to 510 ° C. for 0.08 hours or more, an artificial aging treatment for holding at a processing temperature of 150 to 250 ° C. for 0.3 hours or more is performed. Item 3. The magnesium alloy member according to Item 2. 質量%で、カルシウムを0.3〜10%、アルミニウムを0.2〜15%、マンガンを0.05〜1.5%含有し、カルシウム/アルミニウムの質量比が0.6〜1.7であり、残部がマグネシウム及び不可避不純物からなるマグネシウム合金の鋳造素材を塑性加工してなり、室温における0.2%耐力が300MPa以上、150℃における疲労強度が100MPa以上であるマグネシウム合金部材。   It contains 0.3 to 10% calcium, 0.2 to 15% aluminum, 0.05 to 1.5% manganese, and a calcium / aluminum mass ratio of 0.6 to 1.7. A magnesium alloy member having a balance of 0.2% proof stress of 300 MPa or more at room temperature and a fatigue strength of 100 MPa or more at 150 ° C., which is obtained by plastic processing of a magnesium alloy casting material consisting of magnesium and inevitable impurities. 前記塑性加工が押出し加工である請求項1〜4のいずれか1つに記載のマグネシウム合金部材。   The magnesium alloy member according to any one of claims 1 to 4, wherein the plastic processing is extrusion processing. 請求項1〜5のいずれか1つに記載のマグネシウム合金部材を機構部品に使用したエアコン用圧縮機。   A compressor for an air conditioner using the magnesium alloy member according to any one of claims 1 to 5 as a mechanical component. 質量%で、カルシウムを0.3〜10%、アルミニウムを0.2〜15%、マンガンを0.05〜1.5%含有し、カルシウム/アルミニウムの質量比が0.6〜1.7であり、残部がマグネシウム及び不可避不純物からなるマグネシウム合金の鋳造素材を、250〜500℃で塑性加工に付すマグネシウム合金部材の製造方法。   It contains 0.3 to 10% calcium, 0.2 to 15% aluminum, 0.05 to 1.5% manganese, and a calcium / aluminum mass ratio of 0.6 to 1.7. A method for producing a magnesium alloy member, in which a casting material of a magnesium alloy consisting of magnesium and inevitable impurities is subjected to plastic working at 250 to 500 ° C. 前記塑性加工後に、溶体化処理及び人工時効処理に付す請求項7記載のマグネシウム合金部材の製造方法。   The method for producing a magnesium alloy member according to claim 7, which is subjected to a solution treatment and an artificial aging treatment after the plastic working. 前記塑性加工後に、450〜510℃の処理温度に0.08時間以上保持する溶体化処理に付した後、150〜250℃の処理温度に0.3時間以上保持する人工時効処理に付す請求項8記載のマグネシウム合金部材の製造方法。   After the plastic working, it is subjected to a solution treatment for holding at a processing temperature of 450 to 510 ° C for 0.08 hours or more, and then to an artificial aging treatment for holding at a processing temperature of 150 to 250 ° C for 0.3 hours or more. The manufacturing method of the magnesium alloy member of Claim 8. 前記塑性加工が押出し加工である請求項7〜9のいずれか1つに記載のマグネシウム合金部材の製造方法。   The method for producing a magnesium alloy member according to any one of claims 7 to 9, wherein the plastic working is extrusion.
JP2010244816A 2010-10-29 2010-10-29 Magnesium alloy member, compressor for air conditioner, and method for manufacturing magnesium alloy member Pending JP2012097309A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010244816A JP2012097309A (en) 2010-10-29 2010-10-29 Magnesium alloy member, compressor for air conditioner, and method for manufacturing magnesium alloy member
CN2011800520477A CN103180472A (en) 2010-10-29 2011-10-28 Magnesium-alloy member, compressor for use in air conditioner, and method for manufacturing magnesium-alloy member
KR1020137013196A KR20130101100A (en) 2010-10-29 2011-10-28 Magnesium-alloy member, compressor for use in air conditioner, and method for manufacturing magnesium-alloy member
EP11836462.9A EP2631312A4 (en) 2010-10-29 2011-10-28 Magnesium-alloy member, compressor for use in air conditioner, and method for manufacturing magnesium-alloy member
US13/882,470 US20130213528A1 (en) 2010-10-29 2011-10-28 Magnesium-Alloy Member, Compressor for Use in Air Conditioner, and Method for Manufacturing Magnesium-Alloy Member
PCT/JP2011/074959 WO2012057329A1 (en) 2010-10-29 2011-10-28 Magnesium-alloy member, compressor for use in air conditioner, and method for manufacturing magnesium-alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010244816A JP2012097309A (en) 2010-10-29 2010-10-29 Magnesium alloy member, compressor for air conditioner, and method for manufacturing magnesium alloy member

Publications (1)

Publication Number Publication Date
JP2012097309A true JP2012097309A (en) 2012-05-24

Family

ID=45994031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010244816A Pending JP2012097309A (en) 2010-10-29 2010-10-29 Magnesium alloy member, compressor for air conditioner, and method for manufacturing magnesium alloy member

Country Status (6)

Country Link
US (1) US20130213528A1 (en)
EP (1) EP2631312A4 (en)
JP (1) JP2012097309A (en)
KR (1) KR20130101100A (en)
CN (1) CN103180472A (en)
WO (1) WO2012057329A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016169427A (en) * 2015-03-13 2016-09-23 国立研究開発法人物質・材料研究機構 Mg ALLOY AND PRODUCTION METHOD THEREFOR
JP2016169431A (en) * 2015-03-13 2016-09-23 三協立山株式会社 Magnesium alloy
JP2018044244A (en) * 2016-09-13 2018-03-22 三協立山株式会社 Magnesium alloy
CN110983217A (en) * 2019-11-22 2020-04-10 中国兵器工业第五九研究所 Magnesium alloy die pressing aging composite process
WO2021070905A1 (en) * 2019-10-11 2021-04-15 三菱重工業株式会社 Method for producing aircraft member
JP7356116B2 (en) 2021-04-09 2023-10-04 三菱重工業株式会社 Method of manufacturing aircraft parts

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6013755B2 (en) * 2012-04-10 2016-10-25 サンデンホールディングス株式会社 Compression function member and method of manufacturing the same
JP5700005B2 (en) * 2012-09-05 2015-04-15 株式会社豊田中央研究所 Composite magnesium alloy member and manufacturing method thereof
WO2015060459A1 (en) * 2013-10-23 2015-04-30 国立大学法人 熊本大学 Magnesium alloy and method for producing same
CN104046868B (en) * 2014-06-26 2017-01-25 宝山钢铁股份有限公司 Rare-earth-free low-cost high-strength heat-conducting magnesium alloy and preparation method thereof
CN104532093B (en) * 2015-01-14 2016-09-28 湖南大学 A kind of Mg-Ca-Al alloy and preparation method
CN107709616A (en) * 2015-10-01 2018-02-16 三菱重工业株式会社 Coating structure, impeller, compressor, the manufacture method of metal assembly, the manufacture method of the manufacture method of impeller and compressor
CN105296831B (en) * 2015-11-05 2017-09-12 南阳师范学院 A kind of wrought magnesium alloy of high room temperature elongation percentage and preparation method thereof
DE102016221902A1 (en) * 2016-11-08 2018-05-09 Volkswagen Aktiengesellschaft Sheet of a magnesium-based alloy and method for producing a sheet and sheet metal component therefrom
CN108570583B (en) * 2018-06-08 2020-06-09 哈尔滨工业大学 Rare earth-free low-alloy magnesium alloy with ultrahigh strength and toughness and preparation method thereof
CN113774298B (en) * 2021-09-10 2022-06-24 哈尔滨工程大学 Strong plasticizing processing method of brittleness-prone rare earth magnesium alloy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841576A (en) * 1994-07-28 1996-02-13 Honda Motor Co Ltd High strneght magnesium alloy and heat treatment for magnesium alloy casting
JP2000104137A (en) * 1998-09-30 2000-04-11 Mazda Motor Corp Magnesium alloy forging stock, forged member and production of the forged member
JP2004232060A (en) * 2003-01-31 2004-08-19 Toyota Industries Corp Heat resistant magnesium alloy for casting and heat resistant magnesium alloy casting
JP2006257478A (en) * 2005-03-16 2006-09-28 National Institute Of Advanced Industrial & Technology Flame-retardant magnesium alloy and its manufacturing method
JP2010242146A (en) * 2009-04-03 2010-10-28 Toyota Central R&D Labs Inc Magnesium alloy and magnesium alloy member
JP2011074461A (en) * 2009-09-30 2011-04-14 Nagaoka Univ Of Technology Rolled material of magnesium alloy and method for manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2642439B2 (en) * 1988-02-26 1993-04-16 Pechiney Electrometallurgie
JP2676466B2 (en) * 1992-09-30 1997-11-17 マツダ株式会社 Magnesium alloy member and manufacturing method thereof
JP3030338B1 (en) 1998-10-05 2000-04-10 工業技術院長 Method for producing high-strength flame-retardant magnesium alloy
JP2004162090A (en) 2002-11-11 2004-06-10 Toyota Industries Corp Heat resistant magnesium alloy
JP4539572B2 (en) 2006-01-27 2010-09-08 株式会社豊田中央研究所 Magnesium alloys and castings for casting
CN101067178A (en) * 2007-06-13 2007-11-07 湖南大学 Alkaline-earth heat insulating magnesium alloy for vehicle use and producing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841576A (en) * 1994-07-28 1996-02-13 Honda Motor Co Ltd High strneght magnesium alloy and heat treatment for magnesium alloy casting
JP2000104137A (en) * 1998-09-30 2000-04-11 Mazda Motor Corp Magnesium alloy forging stock, forged member and production of the forged member
JP2004232060A (en) * 2003-01-31 2004-08-19 Toyota Industries Corp Heat resistant magnesium alloy for casting and heat resistant magnesium alloy casting
JP2006257478A (en) * 2005-03-16 2006-09-28 National Institute Of Advanced Industrial & Technology Flame-retardant magnesium alloy and its manufacturing method
JP2010242146A (en) * 2009-04-03 2010-10-28 Toyota Central R&D Labs Inc Magnesium alloy and magnesium alloy member
JP2011074461A (en) * 2009-09-30 2011-04-14 Nagaoka Univ Of Technology Rolled material of magnesium alloy and method for manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016169427A (en) * 2015-03-13 2016-09-23 国立研究開発法人物質・材料研究機構 Mg ALLOY AND PRODUCTION METHOD THEREFOR
JP2016169431A (en) * 2015-03-13 2016-09-23 三協立山株式会社 Magnesium alloy
JP2018044244A (en) * 2016-09-13 2018-03-22 三協立山株式会社 Magnesium alloy
JP7002711B2 (en) 2016-09-13 2022-02-04 三協立山株式会社 Magnesium alloy
WO2021070905A1 (en) * 2019-10-11 2021-04-15 三菱重工業株式会社 Method for producing aircraft member
JP2021063256A (en) * 2019-10-11 2021-04-22 三菱重工業株式会社 Production method of aircraft member
CN110983217A (en) * 2019-11-22 2020-04-10 中国兵器工业第五九研究所 Magnesium alloy die pressing aging composite process
CN110983217B (en) * 2019-11-22 2021-04-02 中国兵器工业第五九研究所 Magnesium alloy die pressing aging composite process
JP7356116B2 (en) 2021-04-09 2023-10-04 三菱重工業株式会社 Method of manufacturing aircraft parts

Also Published As

Publication number Publication date
WO2012057329A1 (en) 2012-05-03
EP2631312A1 (en) 2013-08-28
EP2631312A4 (en) 2014-06-18
CN103180472A (en) 2013-06-26
US20130213528A1 (en) 2013-08-22
KR20130101100A (en) 2013-09-12

Similar Documents

Publication Publication Date Title
JP2012097309A (en) Magnesium alloy member, compressor for air conditioner, and method for manufacturing magnesium alloy member
JP5495183B2 (en) Aluminum alloy and high strength bolt made of aluminum alloy
CN111032897A (en) Method of forming cast aluminum alloy
JP4939093B2 (en) Method for producing 6000 series aluminum alloy plate for automobile panel having excellent hem bendability and bake hardness
JP5918158B2 (en) Aluminum alloy sheet with excellent properties after aging at room temperature
WO2017169962A1 (en) High strength extruded aluminum alloy material with excellent corrosion resistance and favorable quenching properties and manufacturing method therefor
JPWO2008123184A1 (en) 7000 series aluminum alloy extruded material and method for producing the same
RU2673593C1 (en) High-strength aluminium-based alloy
JP2013142168A (en) Aluminum alloy excellent in creep resistance
JP2015030856A (en) Aluminum alloy extruded material for cutting
JP2012197491A (en) High strength magnesium alloy and method of manufacturing the same
JP2021123798A (en) Method for producing high-strength aluminum alloy extruded material
JP2011122180A (en) Extruded material of heat-resistant aluminum alloy superior in high-temperature strength and high-temperature fatigue characteristic
JP2006257505A (en) Aluminum alloy sheet having excellent extension flange formability
JP4088546B2 (en) Manufacturing method of aluminum alloy forging with excellent high temperature characteristics
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP2007277660A (en) Magnesium alloy and die cast product
JP2012025976A (en) METHOD OF MANUFACTURING Al-Mg-Si BASED ALUMINUM ALLOY PLATE EXCELLENT IN COAT BAKING HARDENABILITY AND FORMABILITY, AND HAVING AGING SUPPRESSION EFFECT AT ROOM TEMPERATURE
JP2019019373A (en) Manufacturing method of aluminum alloy-made piston of compressor, and the aluminum alloy for piston
JP3769646B2 (en) Processing method of Al-Zn-Si alloy
RU2385358C1 (en) Cast alloy on aluminium base
US11827967B2 (en) Method for producing aluminum alloy extruded material
JPH09209069A (en) Wear resistant al alloy for elongation, scroll made of this wear resistant al alloy for elongation, and their production
JP2006161103A (en) Aluminum alloy member and manufacturing method therefor
JP2011117064A (en) Heat resistant magnesium alloy having excellent fatigue strength property, method for producing the heat resistant magnesium alloy, and heat resistant component for engine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141104