KR20130059534A - Lithium ion batteries having an anode containing aqueous binder - Google Patents

Lithium ion batteries having an anode containing aqueous binder Download PDF

Info

Publication number
KR20130059534A
KR20130059534A KR1020110125564A KR20110125564A KR20130059534A KR 20130059534 A KR20130059534 A KR 20130059534A KR 1020110125564 A KR1020110125564 A KR 1020110125564A KR 20110125564 A KR20110125564 A KR 20110125564A KR 20130059534 A KR20130059534 A KR 20130059534A
Authority
KR
South Korea
Prior art keywords
negative electrode
active material
composite
electrode active
cmc
Prior art date
Application number
KR1020110125564A
Other languages
Korean (ko)
Inventor
도칠훈
진봉수
하윤철
황민지
배상호
최시영
허민영
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020110125564A priority Critical patent/KR20130059534A/en
Publication of KR20130059534A publication Critical patent/KR20130059534A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: A manufacturing method of a negative electrode active material electrode is provided to minimize content of a binder while maximizing adhesion, by mixing an aqueous binder instead of an organic binder. CONSTITUTION: A manufacturing method of a negative electrode comprises a step of manufacturing zinc acetate, indium acetate, nickel acetate by a sol-gel chemical method, to manufacture a Zn-In-Ni composite; a step of heat-treating the Zn-In-Ni composite; a step of mixing an aqueous binder which includes styrene butadiene rubber and carboxy methyl cellulose, and a conducting agent, to manufacture negative electrode mixture slurry; and a step of spreading the slurry on a copper current collector, and drying the slurry for compression.

Description

아연계 음극활물질 전극 및 이의 제조방법 및 이를 구비한 리튬이차전지{Lithium ion batteries having an anode containing aqueous binder}Zinc-based negative electrode active material electrode, a method of manufacturing the same and a lithium secondary battery having the same {Lithium ion batteries having an anode containing aqueous binder}

본 발명은 아연계음극활물질 전극 및 그 제조방법 및 이를 구비한 리튬이차전지에 관한 것으로서, 아연계 화합물 복합체인 Zn-In-Ni 복합체 음극활물질에 결합제와 도전제를 혼합한 음극활물질 전극 및 그 제조방법, 그리고 상기 음극활물질 전극을 구비한 리튬이차전지에 관한 것이다.
The present invention relates to a zinc-based negative electrode active material electrode, a method for manufacturing the same, and a lithium secondary battery having the same, a negative electrode active material electrode in which a binder and a conductive agent are mixed in a zinc-based compound composite Zn-In-Ni composite negative electrode active material A method and a lithium secondary battery provided with the negative electrode active material electrode.

고에너지 밀도화를 필요로 하는 이차전지가 휴대폰, 노트북 PC, 전기자동차로 적용 분야가 확대되면서 이를 개발하기 위한 많은 연구가 진행되고 있다. 리튬이차전지는 이러한 요구를 가장 잘 충족시킬 수 있는 전지이다. As the field of application of secondary batteries requiring high energy density has been expanded to mobile phones, notebook PCs, and electric vehicles, many studies are being conducted to develop them. Lithium secondary batteries are the ones that best meet these needs.

휴대폰, 노트북 PC와 같은 mobile IT의 전원으로써 사용하고 있는 리튬이차전지의 용도가 최근에는 전력 저장장치로 그 적용을 넓혀 나가고 있다. 그 중 지구온난화를 막기 위한 수단으로서 전기자동차 등 무공해 수송수단의 개발이 활발히 진행되고 있다. 기존 전기자동차의 성능을 보다 향상시키기 위해서는 고에너지를 가지는 전지와 이를 구성하는 전극물질의 개발이 필요하다. Lithium secondary batteries, which are being used as a power source for mobile IT such as mobile phones and notebook PCs, have recently been widely applied to power storage devices. Among them, the development of pollution-free transportation means such as electric vehicles is actively being promoted as means for preventing global warming. In order to further improve the performance of existing electric vehicles, it is necessary to develop a battery having high energy and an electrode material constituting the same.

리튬 이차 전지는 리튬금속을 이용한 이차전지뿐만 아니라 리튬이온 이차전지를 포함하는 광의의 개념으로서, 높은 전압과 높은 에너지 밀도를 가지고 있어 가장 주목받고 있는 전지이며 전해질에 따라서 액체를 쓰는 액체형 전지, 액체와 고분자를 혼용해서 쓰는 겔형 폴리머 전지와 순수하게 고분자만을 사용하는 고체형 폴리머 전지로 구분하기도 한다. Lithium secondary batteries are not only a secondary battery using a lithium metal but also a lithium ion secondary battery. The battery has a high voltage and a high energy density. A gel type polymer battery in which a polymer is mixed and a solid type polymer battery in which a polymer is purely used.

리튬이차전지의 핵심 구성 요소는 양극, 음극, 전해질, 분리막이다.The key components of a lithium secondary battery are the positive electrode, the negative electrode, the electrolyte, and the separator.

본 발명자 중 도칠훈 등이 출원한 특허출원(대한민국특허, 출원번호 10-2009-0135084)은 순수 아연 분말 전극의 리튬이차전지 음극활물질 적용에 대한 특허를 출원하였으며, 60℃의 고온 작동 조건에서 300 mAh/g 수준의 비용량을 발현하고, 상온에서는 방전비용량이 20 mAh/g 이하를 나타낸다고 보고하였다.The patent application (Korea Patent, Application No. 10-2009-0135084) filed by Do Chil-Hun of the present inventors has applied for a patent on the application of lithium secondary battery negative electrode active material of pure zinc powder electrode, and 300 mAh at high temperature operating condition of 60 ℃ A specific amount of / g level was expressed, and the discharge specific amount was reported to be 20 mAh / g or less at room temperature.

또한, 본 발명자 중 1인인 도칠훈 등은 출원한 특허출원(대한민국특허, 10-2011-0060778)에 따르면 졸겔법으로 제조한 아연계 음극활물질에 유기계 결합제를 사용한 리튬이차전지의 1차 방전비용량은 503~909 mAh/g이였고, 65회 방전비용량은 273~635mAh/g을 나타낸 것을 보고 한 바 있다.In addition, according to a patent application (Korean Patent No. 10-2011-0060778), which is one of the inventors of the present invention, the primary discharge capacity of a lithium secondary battery using an organic binder in a zinc-based negative electrode active material prepared by the sol-gel method is It was 503 ~ 909 mAh / g, 65 times the discharge capacity was reported to represent 273 ~ 635 mAh / g.

칼라이셀비 등의 논문 보고에 따르면, 졸겔 방법과 500℃ 열처리를 통하여 아연계 합금을 개발하고, 리튬이차전지 음극활물질로 적용 한 바 제 1차 방전비용량이 450~650 mAh/g 수준이었으며, 25회 충방전의 방전비용량은 490 mAh/g을 나타낸 것을 보고 한 바 있다.According to a paper report by Carlisel et al., Zinc-based alloys were developed through the sol-gel method and heat treatment at 500 ° C, and applied as lithium secondary battery anode active materials, the primary discharge cost was 450 ~ 650 mAh / g. It has been reported that the discharge specific capacity of the charge and discharge represented 490 mAh / g.

손헌준 등의 논문에서는 아연 탄소 복합 재료 전극의 특성에 대하여 보고하였으며, 초기 비용량은 약 200 mAh/g을 나타내고, Li2ZnSi가 금속간 화합물로 형성됨을 보고하였다.Heon-Jun et al. Reported the characteristics of zinc carbon composite electrode, and the initial specific capacity was about 200 mAh / g and reported that Li 2 ZnSi was formed of intermetallic compound.

Hou 등은 Zn2SnO4 재료의 리튬이차전지 특성을 연구하였으며, 25회 충방전에서 850 mAh/g 나타낸다고 보고하였다.Hou et al Zn 2 SnO 4 The lithium secondary battery characteristics of the material were studied and reported to be 850 mAh / g at 25 charge / discharge cycles.

상기에서 언급한, 본 발명자 중 1인인 도칠훈 등은 출원한 특허출원(대한민국특허, 10-2011-0060778)은 아연계 음극활물질에 유기계 결합제인 PVDF를 사용하였으며, 유기계 결합제인 PVDF의 사용은 용량 및 에너지 밀도에 한계가 있었음으로, 이에 대한 개선책의 필요성이 대두되었다.
As mentioned above, one of the inventors, Chil Hoon et al., Filed a patent application (Korea Patent, 10-2011-0060778) used PVDF as an organic binder for zinc-based anode active material, the use of the organic binder PVDF can Due to the limited energy density, there is a need for improvement.

본 발명은 상기의 문제점을 해결하기 위해서 안출된 것으로서, 본 발명은 졸겔법을 이용하여 아연계 음극활물질을 합성하고, 기존의 흑연 재료의 비용량 및 용량밀도를 증가시킨, 음극활물질 전극 및 그 제조방법, 그리고 이를 이용한 리튬이차전지를 제공하는 것이다. The present invention has been made to solve the above problems, the present invention synthesized a zinc-based negative electrode active material using the sol-gel method, and increased the specific capacity and capacity density of the existing graphite material, the negative electrode active material electrode and its manufacture To provide a method, and a lithium secondary battery using the same.

또한, 본 발명의 목적은 종래의 유기계 결합제 대신에 수계 결합제(SBR-CMC)를 일정 비율로 혼합하여 결합제 함량을 최소화하면서도 결착능력을 극대화 한 음극활물질 전극을 제조하고, 이를 리튬이차전지 음극에 적용하여 전지의 수명특성을 개선할 수 있는 리튬이차전지를 제공하는 것을 목적으로 한다. In addition, the object of the present invention is to prepare a negative electrode active material electrode to maximize the binding capacity while minimizing the binder content by mixing a water-based binder (SBR-CMC) in a predetermined ratio instead of the conventional organic binder, and applied to the lithium secondary battery negative electrode It is an object of the present invention to provide a lithium secondary battery that can improve the life characteristics of the battery.

본 발명의 다른 목적은 저렴하면서도 친환경적인 수용액(증류수)을 용제로서 사용하는 아연계 음극활물질 전극 및 그 제조방법, 그리고 이를 이용한 리튬이차전지를 제공하는 것이다. Another object of the present invention is to provide a zinc-based negative electrode active material electrode using an inexpensive and environmentally friendly aqueous solution (distilled water) as a solvent, a manufacturing method thereof, and a lithium secondary battery using the same.

상기의 목적을 달성하기 위해서, 본 발명의 바람직한 실시예에 따른, 음극활물질 전극의 제조방법에 있어서, In order to achieve the above object, in the manufacturing method of the negative electrode active material electrode according to a preferred embodiment of the present invention,

(1) 아연 아세테이트, 인듐 아세트테이트, 니켈 아세테이트를 졸게의 화학적 방법으로 균일하게 혼합하여 Zn-In-Ni 복합체를 제조하는 단계; (1) preparing a Zn-In-Ni composite by uniformly mixing zinc acetate, indium acetate, and nickel acetate by a chemical method of solving;

(2) 제조된 Zn-In-Ni 복합체를 열처리하는 단계;(2) heat-treating the prepared Zn-In-Ni composite;

(3) 열처리된 Zn-In-Ni 복합체에 SBR(Styrene Butadiene Rubber)과 CMC(Carboxy Methyl Cellulose)를 포함하는 수계 결합제 및 도전제를 혼합하여 음극합제 슬러리를 제조하는 단계; 및 (3) preparing a negative electrode mixture slurry by mixing a heat-treated Zn-In-Ni composite with an aqueous binder and a conductive agent including SBR (Styrene Butadiene Rubber) and CMC (Carboxy Methyl Cellulose); And

(4) 상기 음극합제 슬러리를 구리 집전체에 도포한 후, 건조하여 압착시키는 단계;를 포함한다. And (4) applying the negative electrode mixture slurry to a copper current collector and then drying and compressing the negative electrode mixture slurry.

바람직한 실시예에 따르면, 상기 음극합제 슬러지를 제조하는 단계에서, 용제는 증류수가 사용된다. According to a preferred embodiment, in the step of preparing the negative electrode mixture sludge, the solvent is distilled water is used.

상기 음극합제 슬러지를 제조하는 단계에서, 상기 SBR과 CMC의 중량비율은 6:4이다. 상기 도전제는 카본 블랙(super p. black)가 사용된다. In the preparing of the negative electrode mixture sludge, the weight ratio of the SBR and CMC is 6: 4. The conductive agent is carbon black (super p. Black).

본 발명의 바람직한 실시예에 다른, 음극 활물질 전극은, Zn-In-Ni 복합체 음극활물질에 SBR(Styrene Butadiene Rubber)과 CMC(Carboxy Methyl Cellulose)를 포함하는 수계 결합제 및 도전제가 혼합된다.According to another preferred embodiment of the present invention, the negative electrode active material electrode is mixed with a water-based binder and a conductive agent including SBR (Styrene Butadiene Rubber) and CMC (Carboxy Methyl Cellulose) in a Zn-In-Ni composite anode active material.

바람직하게는 상기 SBR과 CMC의 중량비율은 6:4이며, 상기 도전제는 카본 블랙(super p. black)이다. Preferably, the weight ratio of SBR and CMC is 6: 4, and the conductive agent is carbon black (super p. Black).

이상에서 상술한 바와 같이, 본 발명은 수계 결합제를 사용한 음극활물질 전극을 제조함으로써, 유기계 결합제를 사용한 전지에 비해 수계 결합제를 사용한 전지는 우수한 충방전 싸이클 특성과 비용량 특성을 나타내어 리튬이차전지로 유용하게 사용 될 수 있다는 장점이 있다. As described above, according to the present invention, by manufacturing an anode active material electrode using an aqueous binder, a battery using an aqueous binder exhibits excellent charge / discharge cycle characteristics and a specific capacity characteristic compared to a battery using an organic binder, and thus is useful as a lithium secondary battery. It has the advantage that it can be used.

또한, 본 발명에 있어 수계 결합제를 사용함으로써 경제적이며, 친환경적으로 아연계 음극활물질 전극 및 이를 이용한 리튬이차전지를 제조할 수 있다는 장점이 있다.
In addition, there is an advantage in that the use of the aqueous binder in the present invention is economical and environmentally friendly to produce a zinc-based negative electrode active material electrode and a lithium secondary battery using the same.

도 1은 본 발명의 일실시예에 따른 Zn-In-Ni 화합물 복합체의 FE-SEM 사진
도 2는 본 발명의 일실시예에 Zn-In-Ni 화합물 복합체의 XRD 회절분석 결과도.
도 3은 본 발명의 일실시예에 따른 Zn-In-Ni 화합물 복합체에 수계 결합제를 사용한 리튬이차전지의 정전류/정전압 방전비용량 비교도
도 4은 본 발명의 일실시예에 따른 Zn-In-Ni 화합물 복합체에 수계 결합제와 유기계 결합제를 사용한 리튬이차전지의 정전류/정전압 방전비용량 비교도
1 is a FE-SEM photograph of a Zn-In-Ni compound composite according to an embodiment of the present invention
Figure 2 is an XRD diffraction analysis of the Zn-In-Ni compound composite in one embodiment of the present invention.
Figure 3 is a comparison of the constant current / constant voltage discharge capacity of a lithium secondary battery using an aqueous binder in the Zn-In-Ni compound composite according to an embodiment of the present invention
Figure 4 is a comparison of the constant current / constant voltage discharge capacity of a lithium secondary battery using an aqueous binder and an organic binder in a Zn-In-Ni compound composite according to an embodiment of the present invention

본 발명은 고용량 리튬이차전지용 음극 전극 및 이의 제조방법 및 리튬이차전지에 관한 것으로서, 상세하게는 졸겔법을 이용하여 Zn-In-Ni 복합체를 포함하는 음극활물질 전극, 그 제조방법 및 이를 구비한 리튬이차전지에 개시한다. The present invention relates to a negative electrode for a high capacity lithium secondary battery, a method for manufacturing the same, and a lithium secondary battery, and in detail, an anode active material electrode including a Zn-In-Ni composite, a method for manufacturing the same, and a lithium having the same by using a sol-gel method. Disclosed is a secondary battery.

특히, 비탄소계 음극활물질을 기반으로 하는 화합물을 이용하여 고용량 음극을 제조하였고, 용량 및 에너지 밀도를 극대화하기 위하여 기존의 탄소계 음극 및 비탄소계 음극에 사용한 유기계 결합제인 PVDF(poly vinylidene fluoride)결합제 대신에 수계 결합제인 SBR(styrene-butadiene rugger)와 CMC(carboxy methyl cellulose)를 사용하여 고용량 음극을 포함하여 이루어진 고효율, 고에너지의 리튬이차 전지를 개신한다. In particular, a high-capacity negative electrode was prepared using a compound based on a non-carbon negative electrode active material, and in place of PVDF (poly vinylidene fluoride) binder, which is an organic binder used for a conventional carbon-based negative electrode and a non-carbon negative electrode, in order to maximize capacity and energy density. Ethylene-butadiene rugger (styrene-butadiene rugger) and carboxy methyl cellulose (CMC) are used to reform the high-efficiency, high-energy lithium secondary battery including a high capacity negative electrode.

즉, 본 발명에서는 아연계 활물질 음극에 유기계 결합제인 PVDF(poly vinylidene fluoride)결합제 대신에 수계 결합제인 SBR(styrene-butadiene rugger, 스티렌-부타디엔 공중합고무)와 CMC(carboxy methyl cellulose, 카르복실 메틸 셀룰로오스)를 혼합하여 사용한다. That is, in the present invention, SBR (styrene-butadiene rugger, styrene-butadiene copolymer rubber) and CMC (carboxy methyl cellulose) and carboxy methyl cellulose (CMC), which are aqueous binders, are replaced with PVDF (poly vinylidene fluoride) binders, which are organic binders, on the zinc-based active material anode. Mix and use.

전극의 용량 및 에너지 밀도를 극대화하기 위해서는 전극활물질의 함량을 높이고, 결합제의 함량은 가능한 낮추는 것이 중요한데, 유기계인 PVDF계로는 결합제 함량을 줄이는데 한계가 있기 때문에 이를 대체할 결합제로 수계 결합제인 SBR(styrene-butadiene rugger, 스티렌-부타디엔 공중합고무)와 CMC(carboxy methyl cellulose, 카르복실 메틸 셀룰로오스)를 혼합하여 이를 결합제로 사용하였으며, 도전제로 카본블랙(SPB, super p. black)을 사용하였다. In order to maximize the capacity and energy density of the electrode, it is important to increase the content of the electrode active material and to reduce the content of the binder as much as possible.In the organic PVDF system, there is a limit in reducing the content of the binder. -butadiene rugger (styrene-butadiene copolymer rubber) and CMC (carboxy methyl cellulose, carboxy methyl cellulose) was mixed and used as a binder, carbon black (SPB, super p. black) was used as a conductive agent.

또한, 본 발명의 수계 결합제는 용제를 물(증류수)를 사용하는, 수용액에 분산되는 결합제임으로, 종래의 고가의 NMP(N-메틸피롤리돈, N-methylpyrrolidone)와 같은 유기용매를 사용하는 PVDF에 비해 훨씬 친환경적이다.In addition, the aqueous binder of the present invention is a binder dispersed in an aqueous solution using water (distilled water) as a solvent, PVDF using an organic solvent such as conventional expensive NMP (N-methylpyrrolidone, N-methylpyrrolidone) It is much more environmentally friendly.

또한, 본 발명의 수계 결합제는 유기계 결합제에 비하여 결착효과도 크므로 동일체적당 활물질의 비율을 높일 수 있어 고용량화가 가능하게 된다. In addition, the aqueous binder of the present invention has a larger binding effect than the organic binder, so that the ratio of the active material per body volume can be increased, thereby enabling high capacity.

이하에서는 아연계 음극활물질 전극의 제조방법에 대해 설명한다. Hereinafter, a method of manufacturing a zinc-based negative electrode active material electrode will be described.

먼저, 본 발명의 아연계 음극활물질 전극에 사용되는 아연계 음극활물질을 설명한다. First, the zinc-based negative electrode active material used in the zinc-based negative electrode active material electrode of the present invention will be described.

본 발명에 따른 음극활물질의 제조방법은 아연 아세테이트(Zn acetate), 인듐 아세테이트In acetate), 니켈 아세테이트(Ni acetate)를 졸겔법으로 혼합하여 Zn-In-Ni 복합체를 제조하는 단계, 제조된 Zn-In-Ni 복합체를 열처리하는 단계를 포함한다. 아연계 음극활물질 제조에 있어, 균질한 복합조성과 환원제를 적용하여 차별화된 제조 방법으로 발명을 실시하였다.The method for preparing a negative electrode active material according to the present invention comprises the steps of preparing a Zn-In-Ni composite by mixing zinc acetate (Zn acetate), indium acetate (In acetate), nickel acetate (Ni acetate) by the sol-gel method, Zn- Heat-treating the In-Ni composite. In the preparation of the zinc-based negative electrode active material, the invention was carried out by applying a homogeneous composite composition and a reducing agent to a differentiated manufacturing method.

졸겔법으로 제조한 복합체를 비활성기체 분위기에서 열처리하는 것이 좋으며, 상기 비활성기체는 아르곤(Ar)을 사용하였다. 열처리한 결과물을 분쇄하여 입도를 조절하는 것이 좋다. It is preferable to heat-treat the composite prepared by the sol-gel method in an inert gas atmosphere, and argon (Ar) was used as the inert gas. It is good to control the particle size by grinding the resultant heat treatment.

Zn-In-Ni이 포함된 아연계 복합체를 제조하는 방법은 졸겔(sol-gel)의 화학 방법으로 균일하게 혼합한다. 상기 졸겔법은 아연 아세테이트(Zn acetate), 인듐 아세테이트(In acetate), 니켈 아세테이트(Ni acetate)는 몰 비율 조성 90:7.5:2.5으로 혼합한 후, 아크릴 아마이드(acryl amide), 메틸렌 비스 아크릴 아마이드(N,N-methylene-bis-acryl amide)를 80℃에서 교반 혼합하여 100℃에서 12시간 건조하는 것이 좋다.The method for preparing a zinc-based composite including Zn-In-Ni is homogeneously mixed by a chemical method of sol-gel. In the sol-gel method, zinc acetate (Zn acetate), indium acetate (In acetate), and nickel acetate (Ni acetate) are mixed in a molar ratio composition of 90: 7.5: 2.5, followed by acryl amide and methylene bis acrylamide ( N, N-methylene-bis-acryl amide) is preferably stirred at 80 ° C. and dried at 100 ° C. for 12 hours.

다음, 졸겔법으로 혼합된 아연 복합체를 안정화시키기 위하여 열처리를 하는 것이 바람직하다. 열처리는 서서히 승온하여 300℃에서 5시간 동안 1차 열처리하는 것이 좋다. 다음, 1차 열처리 후 수급된 Zn-In-Ni 재료를 승온 속도 1℃/min으로 550℃에서 3시간 동안 2차 열처리하는 것이 좋다. 상기 단계 이후에, 얻어진 재료를 미세하게 분쇄하고 분급하는 것이 좋다. Zn-In-Ni 복합체의 평균 입도는 15~17 ㎛이며, 2차 열처리 후 입자의 크기는 3 ㎛ 정도이다. Next, heat treatment is preferably performed to stabilize the zinc composite mixed by the sol-gel method. The heat treatment is gradually heated to a first heat treatment for 5 hours at 300 ℃. Next, after the first heat treatment, the supplied Zn-In-Ni material may be secondly heat treated at 550 ° C. for 3 hours at a temperature increase rate of 1 ° C./min. After this step, it is preferable to finely grind and classify the obtained material. The average particle size of the Zn-In-Ni composite is 15 ~ 17 ㎛, the size of the particles after the secondary heat treatment is about 3 ㎛.

상기의 과정을 통해 제조된 본 발명의 아연계 음극활물질에 대한 물리적 특성을 측정하였다.Physical properties of the zinc-based negative electrode active material of the present invention prepared through the above process were measured.

이하에서는, 본 발명에 따른 음극활물질을 구비한 리튬이차전지를 상세히 설명한다.Hereinafter, a lithium secondary battery having a negative electrode active material according to the present invention will be described in detail.

먼저, 상기의 방법으로 제조된 아연계 복합체 Zn-In-Ni에 결합제와 도전제를 혼합하여, 음극합제 슬러리를 제조한다. First, a binder and a conductive agent are mixed with the zinc-based composite Zn-In-Ni prepared by the above method to prepare a negative electrode mixture slurry.

본 발명에 있어 결합제는 PVDF 와 같은 유기계 결합제가 아닌 스티렌-부타디엔 공중합고무(SBR : styrene-butadiene copolymer rugger)와 카복시메틸셀루로오즈(CMC : carboxy methyl cellulose)를 사용한다. 바람직하게는 SBR 와 CMC 의 중량비는 6:4이다. 도전제는 카본블랙(SPB, super p. black)을 사용한다. In the present invention, the binder is styrene-butadiene copolymer rubber (SBR: styrene-butadiene copolymer rugger) and carboxy methyl cellulose (CMC), not an organic binder such as PVDF. Preferably the weight ratio of SBR and CMC is 6: 4. The conductive agent uses carbon black (SPB, super p. Black).

음극합제 슬러리는 바람직하게는 구리 집전체(Cu 호일)에 도포하여, 약 100℃에서 약 5시간 건조후 압착하여 음극활물질 전극(음극)을 제조한다. The negative electrode mixture slurry is preferably coated on a copper current collector (Cu foil), dried at about 100 ° C. for about 5 hours, and compressed to prepare a negative electrode active material electrode (negative electrode).

상기에서 제조된 음극과, 양극, 분리막, 전해액을 구성하여 리튬이차전지를 완성한다. The lithium secondary battery is completed by configuring the negative electrode, the positive electrode, the separator, and the electrolyte solution prepared above.

리튬 전극과 상대 전극의 내부 단락 방지를 위하여, 다공성 유리섬유 부직포(Glass Microfiber Filter, GMF) 분리막이 사용된다. 분리막은 비전자전도성 다공성 재질로서 전해액의 원활한 이동이 가능한 재료이며, 본 실시예에서 제시한 GMF에 한정되지 않는다.In order to prevent internal short circuit of the lithium electrode and the counter electrode, a porous glass fiber filter (GMF) separator is used. The separator is a non-electroconductive porous material and is a material capable of smoothly moving the electrolyte, and is not limited to the GMF presented in this embodiment.

또한, 상기 이온전도체는 LiPF6가 용해된 비수계 전해액으로서, 보다 바람직하게는 상기 비수계 전해액은 EC, EMC, VC가 포함되어 이루어진다.
In addition, the ion conductor is a non-aqueous electrolyte in which LiPF 6 is dissolved, and more preferably, the non-aqueous electrolyte includes EC, EMC, and VC.

이하 본 발명의 바람직한 실시예 및 실험예를 기재한다. 그러나 하기의 실시예는 본 발명의 바람직한 일 실시예일 뿐 본 발명이 하기의 실시예에 한정되는 것은 아니다.
Hereinafter, preferred examples and experimental examples of the present invention are described. However, the following examples are only preferred embodiments of the present invention and the present invention is not limited to the following examples.

실시예Example 1 One

가. end. Zn90In7Zn90In7 .5.5 Ni2Ni2 .5 .5 음극활물질Anode active material 제조 Produce

아연 아세테이트(Zn acetate), 인듐 아세테이트(In acetate), 니켈 아세테이트(Ni acetate)분말 (98+% pure, Sigma Aldrich)을 90 : 7.5 : 2.5의 몰비율 조성으로 각각 3.95 g, 0.43 g, 0.12 g을 중탕한 증류수 20 g을 80℃에서 중탕 하에 재료를 충분히 혼합한 후, 촉매제인 아크릴 아마이드(acryl amide), 엔엔 엠비에이(N,N-methylene-bis-acryl amide)를 1.42 g, 0.061 g을 넣어 혼합하였다.Zinc acetate (Zn acetate), Indium acetate (Ni acetate) powder (98 +% pure, Sigma Aldrich) was 3.95 g, 0.43 g, 0.12 g with a molar ratio of 90: 7.5: 2.5, respectively. After 20 g of distilled water was sufficiently mixed in a water bath at 80 ° C., 1.42 g and 0.061 g of acryl amide and N, N-methylene-bis-acryl amide were used as catalysts. Was added and mixed.

졸-겔법을 이용하여 제조한 복합체를 100℃에서 12시간 동안 건조하였고, 32 g의 Zn-In-Ni 화합물 복합체를 얻었다.The composite prepared using the sol-gel method was dried at 100 ° C. for 12 hours to obtain 32 g of Zn-In-Ni compound composite.

졸겔법으로 제조한 Zn-In-Ni 화합물 복합체를 알루미늄 도가니에 넣고 아르곤 분위기의 300℃ 전기로에서 5시간 소결하였다. 1차 열처리한 재료를 분쇄 후, Zn-In-Ni 재료를 분쇄한 후, 복합체를 550℃에서 2차 소결하였다. 전기로의 승온 속도는 1℃/min이고, 3시간 유지하였다. 2차 열처리한 재료를 분쇄하고, 분급하여 재료의 입도를 조절하여 평균 입경 16 ㎛이하의 Zn-In-Ni 복합체 음극활물질을 얻었다.The Zn-In-Ni compound composite prepared by the sol-gel method was placed in an aluminum crucible and sintered for 5 hours in an argon atmosphere at 300 ° C. After the first heat-treated material was pulverized, the Zn-In-Ni material was pulverized, and the composite was secondly sintered at 550 ° C. The temperature increase rate of an electric furnace was 1 degree-C / min, and it hold | maintained for 3 hours. The secondary heat-treated material was ground and classified to adjust the particle size of the material to obtain a Zn-In-Ni composite anode active material having an average particle diameter of 16 μm or less.

나. I. ZnZn -- InIn -- NiNi 복합체  Complex 음극활물질과Cathode active material 수계 결합제를 이용한  With water-based binder 리튬이차전지Lithium secondary battery 조립 Assembly

리튬이차전지를 조립하기 위하여 음극합제 슬러리를 제조하였다. 상기 에서 제조된 Zn-In-Ni 복합체, 도전재로 카본 블랙(Super P Black), 결합제로 스티렌-부타디엔 공중합고무(SBR)와 카복시 메틸렌 셀룰로오스(CMC)를 94:2:2.4:1.6:의 중량비율 조성으로 음극합제 슬러리를 제조하였다. In order to assemble a lithium secondary battery, a negative electrode mixture slurry was prepared. The Zn-In-Ni composite prepared above, carbon black (Super P Black) as the conductive material, styrene-butadiene copolymer rubber (SBR) and carboxy methylene cellulose (CMC) as a binder of 94: 2: 2.4: 1.6: A negative electrode mixture slurry was prepared in a proportional composition.

먼저 1.2 g의 카복시 메틸렌 셀룰로오스(CMC)을 100 ml의 증류수에 넣고 500 rpm으로 30분, 1000 rpm으로 30분, 2000 rpm으로 4시간 동안 어트리션 밀링으로 수계 결합제를 만들었다. First, 1.2 g of carboxy methylene cellulose (CMC) was added to 100 ml of distilled water to make an aqueous binder by attrition milling for 30 minutes at 500 rpm, 30 minutes at 1000 rpm, and 4 hours at 2000 rpm.

0.04 g의 SPB(super p. black)와 1.2% CMC 2.667g을 싱키볼(thinky bowl)에 넣고, 5분 동안 싱키혼합기(thinky mixer, Kurabo AR-250)로 교반하였다. 0.04 g of super p. Black (SPB) and 2.667 g of 1.2% CMC were placed in a thinky bowl and stirred for 5 minutes with a thinky mixer (Kurabo AR-250).

그리고, 여기에, 1.88 g의 Zn-In-Ni 복합체를 넣고, 5분 동안 싱키혼합기로 교반 후, 0.12 g의 스티렌-부타디엔 공중합고무(SBR)을 넣고 20분 동안 싱키혼합기로 교반하였다. Then, 1.88 g of Zn-In-Ni composite was added thereto, stirred with a syncy mixer for 5 minutes, 0.12 g of styrene-butadiene copolymer rubber (SBR), and stirred with a syncy mixer for 20 minutes.

제조한 슬러리를 구리 집전체에 약 100 ㎛로 도포하고, 100℃에서 5시간 건조 후, 압착하여 음극활물질 전극을 제조하였다. The prepared slurry was applied to a copper current collector at about 100 μm, dried at 100 ° C. for 5 hours, and then compressed to prepare a negative electrode active material electrode.

상대 전극(양극)으로 리튬 금속을 사용하였고, 양극과 음극 사이에 다공성 유리섬유 부직포(glass microfiber filter) 분리막을 넣고, 1.2M LiPF6에 에틸렌 카보네이트(EC)와 에틸-메틸 카보네이트(EMC)가 1:1의 부피비로 녹아있는 용질에 비닐렌 카보네이드(VC)가 2% 첨가된 전해액을 사용하여 2032 단추형 전지를 조립하였다.Lithium metal was used as the counter electrode (anode), a porous glass microfiber filter separator was placed between the anode and the cathode, and ethylene carbonate (EC) and ethyl-methyl carbonate (EMC) were added to 1.2 M LiPF 6 . A 2032 button cell was assembled using an electrolyte solution in which 2% of vinylene carbonate (VC) was added to a dissolved solute at a volume ratio of 1: 1.

실시예Example 2 2

가. end. Zn90In7Zn90In7 .5.5 Ni2Ni2 .5 .5 음극활물질Anode active material 제조 Produce

실시예 1-가에서 나타낸 바와 같다. As shown in Example 1-A.

나. I. ZnZn -- InIn -- NiNi 복합체  Complex 음극활물질과Cathode active material 수계 결합제를 이용한  With water-based binder 리튬이차전지Lithium secondary battery 조립Assembly

실시예 1-나에서, 전극 조성 즉 Zn-In-Ni 복합체: 도전재 : SBR : CMC 의 조정을 94:2:2.4;1.6에서 90:5:3:2로 바꾼 것 이외에는 동일하게 제조하였다.In Example 1-B, the electrode composition, i.e., Zn-In-Ni composite: conductive material: SBR: CMC was prepared in the same manner except changing from 94: 2: 2.4; 1.6 to 90: 5: 3: 2.

실시예Example 3 3

가. end. Zn90In7Zn90In7 .5.5 Ni2Ni2 .5 .5 음극활물질Anode active material 제조 Produce

실시예 1-가에서 나타낸 바와 같다.  As shown in Example 1-A.

나. I. ZnZn -- InIn -- NiNi 복합체  Complex 음극활물질과Cathode active material 수계 결합제를 이용한  With water-based binder 리튬이차전지Lithium secondary battery 조립 Assembly

실시예 1-나에서 전극 조성 즉 Zn-In-Ni 복합체: 도전재 : SBR : CMC 의 조정을 94:2:2.4:1.6에서 80:10:6:4로 바꾼 것과 1.2 mol의 CMC를 3 mol의 CMC로 바꾼 것 이외에는 동일하게 제조하였다. Example 1-B changed the composition of the electrode composition Zn-In-Ni composite: conductive material: SBR: CMC from 94: 2: 2.4: 1.6 to 80: 10: 6: 4 and 3 mol of 1.2 mol CMC Except for changing to CMC was prepared the same.

실시예Example 4 4

가. end. Zn90In7Zn90In7 .5.5 Ni2Ni2 .5 .5 음극활물질Anode active material 제조 Produce

실시예 1-가에서 나타낸 바와 같다. As shown in Example 1-A.

나. I. ZnZn -- InIn -- NiNi 복합체  Complex 음극활물질과Cathode active material 수계 결합제를 이용한  With water-based binder 리튬이차전지Lithium secondary battery 조립Assembly

실시예 1-나에서 전극 조성 즉 Zn-In-Ni 복합체: 도전재 : SBR : CMC 의 조정을 94:2:2.4:1.6에서 90:5:3:2로 바꾼 것과 1.2 mol의 CMC를 3 mol의 CMC로 바꾼 것 이외에는 동일하게 제조하였다.
Example 1-B changed the composition of the electrode, namely Zn-In-Ni composite: conductive material: SBR: CMC from 94: 2: 2.4: 1.6 to 90: 5: 3: 2 and 3 mol of 1.2 mol CMC Except for changing to CMC was prepared the same.

제조한 음극합제 슬러리의 밀도는 실시예 1(아연계복합체:도전제:결합제=94:02:04), 실시예 2(아연계복합체:도전제:결합제=90:05:05), 실시예 3(아연계복합체:도전제:결합제=80:10:15), 실시예 4(아연계복합체:도전제:결합제=70:15:15)의 전극 조성 별로 각 1.681 g/ml, 1.981 g/ml, 0.121 g/ml, 0.0899 g/ml였다.
The density of the negative electrode mixture slurry prepared was Example 1 (zinc-based composite: conductive agent: binder = 94:02:04), Example 2 (zinc-based composite: conductive agent: binder = 90:05:05), Example 1.681 g / ml, 1.981 g / for each electrode composition of 3 (zinc-based composite: conductive agent: binder = 80: 10: 15) and Example 4 (zinc-based composite: conductive agent: binder: 70:15:15) ml, 0.121 g / ml, 0.0899 g / ml.

실험예Experimental Example 1 One

가. end. ZnZn -- InIn -- NiNi 복합체 재료의 물성 분석 Physical property analysis of composite material

재료의 결정 구조 특성은 X-pert PRO MPD Philips의 X-선 회절분석기(X-ray diffractometer)를 사용하였으며, Cu Kradiation (λ = 1.5406 Å)을 사용하고 주사속도는 0.04/sec였으며 측정한 2θ 범위는 25~75였다.  The crystal structure of the material was measured by X-ray diffractometer from X-pert PRO MPD Philips, using Cu Kradiation (λ = 1.5406 Å), scanning speed was 0.04 / sec and measured 2θ range. Was 25-75.

재료의 표면 형상은 SEM(Scanning Electron Microscope, Jeol S-300H)을 사용하였다. 입도분석은 Malvern Hydro 2000MU을 사용하였다.
Surface shape of the material was used SEM (Scanning Electron Microscope, Jeol S-300H). Particle size analysis was performed using Malvern Hydro 2000MU.

실험예Experimental Example 2 2

가. 전지의 전기화학적 특성 분석end. Electrochemical Characterization of Batteries

각 실시예에 따라 제조된 전지를 24시간 동안 안정화 시킨 후 Toyo사의 TOSCAT 3100을 사용하여 충방전 특성과 율 특성을 평가하였다. After stabilizing the battery prepared according to each Example for 24 hours to evaluate the charge and discharge characteristics and rate characteristics using Toyo's TOSCAT 3100.

구체적으로는 상온에서 0.2C의 전류밀도로 0.005V까지 정전류 모드 충전 후, 정전압 모드로 일정하게 전류밀도가 0.02C가 되도록 충전하였고, 0.2C의 전류밀도로 1.5V까지 정전류 모드 방전을 완료하였다. 같은 조건으로 정전류/정전압 충방전을 25회 반복하였고, 0.5C, 1C, 2C, 3C, 5C, 10C, 0.2C의 율로 각 5회씩 충방전하여 율 특성 시험을 완료하였다. Specifically, after charging the constant current mode to 0.005V at a current density of 0.2C at room temperature, the battery was charged in a constant voltage mode so that the current density was 0.02C, and the constant current mode discharge was completed to 1.5V at a current density of 0.2C. Constant current / constant voltage charging / discharging was repeated 25 times under the same conditions, and the rate characteristic test was completed by charging and discharging five times at a rate of 0.5C, 1C, 2C, 3C, 5C, 10C, and 0.2C.

실험결과는 다음과 같다.The experimental results are as follows.

도 1은 졸겔법을 통하여 제조한 Zn-In-Ni 복합체의 SEM 사진으로서 것 이다. 2차 입자의 크기는 3 ㎛ 크기가 많은 것을 알 수 있다.
1 is an SEM image of a Zn-In-Ni composite prepared by the sol-gel method. It can be seen that the size of the secondary particles is 3 μm in size.

도 2는 각각의 출발 물질과 550℃에서 합성한 아연계 복합체의 XRD 회절 패턴을 나타낸 것이다. 550℃에서 소성한 아연계 화합물 복합체는 ZnO로 확인 하였다. Figure 2 shows the XRD diffraction pattern of each of the starting materials and the zinc-based composite synthesized at 550 ℃. The zinc compound composite fired at 550 ° C. was identified as ZnO.

도 3은 전극 조성별 아연계 화합물 복합체를 이용하여 제조한 리튬이차전지의 충방전에 따른 방전비용량 변화를 나타낸 것이다. 3 shows a change in discharge capacity according to charge and discharge of a lithium secondary battery manufactured using a zinc-based compound composite for each electrode composition.

실시예 1 (94:2:2.4:1.6)은 516 mAh/g, 실시예 2 (90:5:3:2)는 559 mAh/g, 실시예 3 (80:10:6:4)은 483 mAh/g, 실시예 4 (70:15:9:6)는 730 mAh/g이었다. Example 1 (94: 2: 2.4: 1.6) is 516 mAh / g, Example 2 (90: 5: 3: 2) is 559 mAh / g, and Example 3 (80: 10: 6: 4) is 483 mAh / g, Example 4 (70: 15: 9: 6) were 730 mAh / g.

또한, 70:15:9:6의 조성으로 제조한 실시예 4의 전극의 초기 방전 비용량이 가장 높았고, 70:15:9:6의 조성으로 제조한 실시예 4의 전극은 싸이클 특성이 우수하였다. In addition, the initial discharge specific amount of the electrode of Example 4 prepared with the composition of 70: 15: 9: 6 was the highest, and the electrode of Example 4 prepared with the composition of 70: 15: 9: 6 had excellent cycle characteristics. .

도 4는 수계 결합제와 유기계 결합제를 사용하여 제조한 리튬이차전지의 충방전에 따른 방전비용량 변화를 나타낸 것이다. 4 illustrates a change in discharge capacity according to charge and discharge of a lithium secondary battery manufactured using an aqueous binder and an organic binder.

유기계 결합제를 사용하여 70:15:9:6의 조성으로 제조한 전지의 초기 방전비용량은 909mAh/g이였으나, 실시예 3 (70:15:15)은 730 mAh/g을 나타내었다. The initial discharge specific capacity of the battery prepared with the composition of 70: 15: 9: 6 using the organic-based binder was 909 mAh / g, but Example 3 (70:15:15) showed 730 mAh / g.

또한, 유기계 결합제를 사용한 리튬이차전지는 0.5C, 1C, 2C, 3C, 5C, 10C에 따라 292 mAh/g, 214 mAh/g, 147 mAh/g, 115 mAh/g, 83 mAh/g, 57 mAh/g의 방전 비용량을 나타내었으나, In addition, the lithium secondary battery using the organic binder is 292 mAh / g, 214 mAh / g, 147 mAh / g, 115 mAh / g, 83 mAh / g, 57, depending on 0.5C, 1C, 2C, 3C, 5C, 10C Although the discharge specific capacity of mAh / g is shown,

수계 결합제를 사용한 리튬이차전지는 400 mAh/g, 320 mAh/g, 224 mAh/g, 135 mAh/g, 71 mAh/g, 17 mAh/g의 방전 비용량을 나타내었다. The lithium secondary battery using the aqueous binder exhibited a discharge specific capacity of 400 mAh / g, 320 mAh / g, 224 mAh / g, 135 mAh / g, 71 mAh / g, and 17 mAh / g.

실시예 1에서 실시예 4에 따라 제조한(수계 결합제를 사용하여 제조된) 아연계 음극활물질의 리튬 이차전지 음극 특성을 표 1에 요약하여 나타내었다. 3C 율의 방전 용량률은 62회 0.2C 율 방전의 77~81%의 우수한 특성을 나타내었다.
The lithium secondary battery negative electrode characteristics of the zinc-based negative electrode active material prepared according to Example 4 in Example 1 (prepared using an aqueous binder) are summarized in Table 1. The discharge capacity ratio of 3C rate showed excellent characteristics of 77 ~ 81% of 62 times 0.2C rate discharge.

아연계 음극활물질의 전극 조성에 따른 리튬이차전지의 음극 특성Anode Characteristics of Lithium Secondary Battery According to Electrode Composition of Zinc-based Anode Active Material
전극 조성
(활물질:도전재:결합재)

Electrode composition
(Active material: conductive material: binder)
1회 방전비용량
(mAh/g)
One time discharge capacity
(mAh / g)
1회 Ah효율
(%)
Ah efficiency
(%)
62회 방전비용량
(mAh/g)
62 discharge capacity
(mAh / g)
62회 Ah효율
(%)
62 times Ah efficiency
(%)
66회 방전비용량
(mAh/g)
66 times discharge capacity
(mAh / g)
66회 Ah효율
(%)
66 times Ah efficiency
(%)
3C 방전용량
(mAh/g)
3C discharge capacity
(mAh / g)
3C 방전용량율*
(%)
3C discharge capacity rate *
(%)
94:02:0494:02:04 516516 4747 333333 199199 326326 9898 143143 8181 90:05:0590:05:05 559559 4747 361361 199199 353353 9898 155155 8181 80:10:1080:10:10 483483 4444 283283 199199 289289 9797 8989 7777 70:15:1570:15:15 730730 4444 429429 199199 438438 9797 135135 7777

*0.2C 율로 충방전 한 62회 방전비용량 대비
* Compared with 62 times discharge capacity charged and discharged at 0.2C rate

Claims (10)

음극활물질 전극의 제조방법에 있어서,
(1) 아연 아세테이트, 인듐 아세트테이트, 니켈 아세테이트를 졸게의 화학적 방법으로 균일하게 혼합하여 Zn-In-Ni 복합체를 제조하는 단계;
(2) 제조된 Zn-In-Ni 복합체를 열처리하는 단계;
(3) 열처리된 Zn-In-Ni 복합체에 SBR(Styrene Butadiene Rubber)과 CMC(Carboxy Methyl Cellulose)를 포함하는 수계 결합제 및 도전제를 혼합하여 음극합제 슬러리를 제조하는 단계; 및
(4) 상기 음극합제 슬러리를 구리 집전체에 도포한 후, 건조하여 압착시키는 단계;를 포함하는 것을 특징으로 하는 음극 활물질 전극 제조방법.
A method for manufacturing an anode active material electrode,
(1) preparing a Zn-In-Ni composite by uniformly mixing zinc acetate, indium acetate, and nickel acetate by a chemical method of solving;
(2) heat-treating the prepared Zn-In-Ni composite;
(3) preparing a negative electrode mixture slurry by mixing a heat-treated Zn-In-Ni composite with an aqueous binder and a conductive agent including SBR (Styrene Butadiene Rubber) and CMC (Carboxy Methyl Cellulose); And
(4) applying the negative electrode mixture slurry to a copper current collector, followed by drying and compressing the negative electrode mixture slurry.
제 1항에 있어서,
상기 음극합제 슬러지를 제조하는 단계에서, 용제는 증류수가 사용되는 것을 특징으로 하는 음극 활물질 전극 제조방법.
The method of claim 1,
In the preparing of the negative electrode mixture sludge, the solvent is a method of producing a negative electrode active material, characterized in that distilled water is used.
제 1항에 있어서,
상기 음극합제 슬러지를 제조하는 단계에서,
상기 SBR과 CMC의 중량비율은 6:4인 것을 특징으로 하는 음극 활물질 전극 제조방법.
The method of claim 1,
In the step of preparing the negative electrode mixture sludge,
Wherein the weight ratio of SBR to CMC is 6: 4.
제 1항에 있어서,
상기 도전제는 카본 블랙(super p. black)인 것을 특징으로 하는 음극 활물질 전극 제조방법.
The method of claim 1,
The conductive material is a negative electrode active material electrode, characterized in that the carbon black (super p. Black).
음극 활물질 전극에 있어서,
Zn-In-Ni 복합체 음극활물질에 SBR(Styrene Butadiene Rubber)과 CMC(Carboxy Methyl Cellulose)를 포함하는 수계 결합제 및 도전제가 혼합된 것을 특징으로 하는 음극 활물질 전극.
In the negative electrode active material electrode,
A negative electrode active material electrode characterized in that a Zn-In-Ni composite anode active material is mixed with an aqueous binder and a conductive agent including SBR (Styrene Butadiene Rubber) and CMC (Carboxy Methyl Cellulose).
제 5항에 있어서,
상기 SBR과 CMC의 중량비율은 6:4인 것을 특징으로 하는 음극 활물질 전극.
6. The method of claim 5,
The negative electrode active material electrode, characterized in that the weight ratio of the SBR and CMC is 6: 4.
제 5항에 있어서,
상기 도전제는 카본 블랙(super p. black)인 것을 특징으로 하는 음극 활물질 전극.
6. The method of claim 5,
The conductive material is a negative electrode active material, characterized in that the carbon black (super p. Black).
음극활물질을 포함하는 음극과, 양극활물질을 포함하는 양극 및 이온전도체를 구비한 리튬이차전지에 있어서,
상기 음극활물질을 포함하는 음극은 Zn-In-Ni 복합체 음극활물질에 SBR(Styrene Butadiene Rubber)과 CMC(Carboxy Methyl Cellulose)를 포함하는 수계 결합제 및 도전제가 혼합된 것을 특징으로 하는 리튬이차전지.
In a lithium secondary battery comprising a negative electrode including a negative electrode active material, a positive electrode and an ion conductor containing a positive electrode active material,
The negative electrode including the negative electrode active material is a lithium secondary battery, characterized in that the Zn-In-Ni composite negative electrode active material and a water-based binder and a conductive agent including SBR (Styrene Butadiene Rubber) and CMC (Carboxy Methyl Cellulose).
제 8항에 있어서,
상기 SBR과 CMC의 중량비율은 6:4인 것을 특징으로 하는 리튬이차전지.
The method of claim 8,
The weight ratio of the SBR and CMC is 6: 4 lithium secondary battery.
제 8항에 있어서,
상기 도전제는 카본 블랙(super p. black)인 것을 특징으로 하는 리튬이차전지.

The method of claim 8,
The conductive agent is a lithium secondary battery, characterized in that the carbon black (super p. Black).

KR1020110125564A 2011-11-29 2011-11-29 Lithium ion batteries having an anode containing aqueous binder KR20130059534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110125564A KR20130059534A (en) 2011-11-29 2011-11-29 Lithium ion batteries having an anode containing aqueous binder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110125564A KR20130059534A (en) 2011-11-29 2011-11-29 Lithium ion batteries having an anode containing aqueous binder

Publications (1)

Publication Number Publication Date
KR20130059534A true KR20130059534A (en) 2013-06-07

Family

ID=48858332

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110125564A KR20130059534A (en) 2011-11-29 2011-11-29 Lithium ion batteries having an anode containing aqueous binder

Country Status (1)

Country Link
KR (1) KR20130059534A (en)

Similar Documents

Publication Publication Date Title
JP5273931B2 (en) Negative electrode active material and method for producing the same
US10581072B2 (en) Anode active material and a lithium secondary battery including the same
JP4861120B2 (en) Negative electrode active material, production method thereof, and negative electrode and lithium battery employing the same
JP5642918B2 (en) Negative electrode active material containing metal nanocrystal composite, method for producing the same, and negative electrode and lithium battery employing the same
US9577246B2 (en) Negative electrode active material, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR20170137000A (en) Negative electrode active material, negative electrode comprising the negative electrode active material and lithium secondarty battery comprising the negative electrode
KR101383473B1 (en) New silicon based electrode formulations for lithium-ion batteries and method for obtaining it
JP7128290B2 (en) Negative electrode active material for lithium secondary battery and lithium secondary battery including the same
KR20170075596A (en) Positive electrode active material for rechargeable lithium battery, method for menufacturing the same, and rechargeable lithium battery including the same
KR20140140323A (en) Negative electrode active material for rechargeable lithium battery, method for preparing the same and rechargeable lithium battery including the same
CN107681147B (en) Preparation method and application of solid electrolyte coated modified lithium ion battery positive electrode material
KR102256479B1 (en) Negative electrode active material for lithium secondary battery, and preparing method therof
JPWO2012164834A1 (en) Lithium ion secondary battery
JP2016219410A (en) Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR102530678B1 (en) Anode Active Material for Lithium Secondary Battery, Anode Comprising the same, and Lithium Secondary Battery Comprising the Same
JP2022550820A (en) Spherical carbon-based negative electrode active material, manufacturing method thereof, negative electrode containing same, and lithium secondary battery
KR101591712B1 (en) Binders in anode materials of lithium secondary battery
JP2016219408A (en) Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR102176590B1 (en) Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery
JP5176317B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2003187798A (en) Lithium secondary battery
KR20140117013A (en) Binders bring good electrochemical performance and low volume expansion ratio in anode materials with high capacity in which Si, Si-C based composites and Si-alloys-C based composites, for lithium secondary ion battery
Lee et al. Degradation of all-solid-state lithium-sulfur batteries with PEO-based composite electrolyte
KR100824931B1 (en) Active material, manufacturing method thereof and lithium secondary battery comprising the same
KR101142533B1 (en) Metal based Zn Negative Active Material and Lithium Secondary Battery Comprising thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application