KR20120088313A - Conductive Ink Composition Having Bimodal Particle Distribution - Google Patents

Conductive Ink Composition Having Bimodal Particle Distribution Download PDF

Info

Publication number
KR20120088313A
KR20120088313A KR1020110009578A KR20110009578A KR20120088313A KR 20120088313 A KR20120088313 A KR 20120088313A KR 1020110009578 A KR1020110009578 A KR 1020110009578A KR 20110009578 A KR20110009578 A KR 20110009578A KR 20120088313 A KR20120088313 A KR 20120088313A
Authority
KR
South Korea
Prior art keywords
ink composition
conductive ink
nanoparticles
conductive
particles
Prior art date
Application number
KR1020110009578A
Other languages
Korean (ko)
Inventor
하손퉁
조호숙
김윤진
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Priority to KR1020110009578A priority Critical patent/KR20120088313A/en
Publication of KR20120088313A publication Critical patent/KR20120088313A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE: A conductive ink composition is provided to enhance conductivity and to form printing films which can be effectively used for wires for print circuit boards and antennas of the radio frequency system. CONSTITUTION: A conductive ink composition comprises a conductive material consisting of the bimodal particle distribution and a binder. The bimodal particle distribution is composed of particles having an average particle diameter of 50-800 nano meters and particles having the average particle diameter of 1-100 nano meters. 10-80 weight% of the conductive material is included based on the total weight of the composition. The conductive material is one or more selected from silver nano particle, copper nano particle, tin nano particle, gold nano particle, platinum nano particle, palladium nano particle, aluminum nano particle, carbon nano tubes and graphene.

Description

바이모달 입자분포로 이루어진 전도성 잉크 조성물{Conductive Ink Composition Having Bimodal Particle Distribution}Conductive Ink Composition Having Bimodal Particle Distribution

본 발명은 우수한 전도성을 갖는 전도성 잉크 조성물에 관한 것이다.The present invention relates to a conductive ink composition having excellent conductivity.

최근의 업계에서는 납 등의 유해 성분을 사용하지 않으며, 배선 형성 공정을 단순화할 수 있고, 두께가 얇으며 폭이 더 미세한 배선 형성을 지원하는 방식인 잉크젯 인쇄나 롤 인쇄를 주목하고 있다. 이러한 잉크젯 인쇄나 롤 인쇄를 이용하여 배선을 형성하기 위해서는 우수한 전도성을 갖는 전도성 잉크를 사용하여야 한다.The recent industry has focused on inkjet printing or roll printing, which does not use harmful components such as lead, can simplify the wiring forming process, and supports thinner, thinner wiring formation. In order to form wires using such inkjet printing or roll printing, conductive ink having excellent conductivity should be used.

이러한 전도성 잉크의 사용이 크게 늘어날 것으로 전망하고 있는 RFID 태그의 경우, 비저항이 1.7×10-5 Ω?cm 이하로 낮아야 하며, 이를 위하여 전도성 잉크에 전도성 충전재를 포함하여야 한다. 그러나, 이러한 전도성 충전재는 고가이므로 전도성 잉크의 제조 비용이 상승하여 우수한 전도성을 갖는 전도성 잉크를 대량으로 생산하기 곤란한 문제점이 있다.In the case of the RFID tag, which is expected to greatly increase the use of such conductive ink, the resistivity should be lower than 1.7 × 10 −5 Ω · cm or less, and for this purpose, a conductive filler should be included in the conductive ink. However, such a conductive filler is expensive, so the manufacturing cost of the conductive ink is increased, which makes it difficult to produce a large amount of conductive ink having excellent conductivity.

또한 전도성 잉크를 폴리에틸렌테레프탈레이트(PET) 등 유연성 있는 플라스틱 기판 소재에도 인쇄할 수 있으려면, 플라스틱의 낮은 유리 전이 온도(T g )를 고려할 때 전도성 잉크를 기판상에 도포한 다음 소성하는 온도가 충분히 낮아야 한다. 이러한 소성 온도는 전도성 잉크에 포함된 전도성 충전재(주로 금속 입자)와 나머지 성분의 특성에 따라 달라지지만, 금속 입자의 크기가 작아질수록 입자의 표면 에너지가 증가하므로 작은 금속 입자를 사용하여 전도성 잉크의 소성 온도를 낮출 수 있다.In addition, in order to be able to print on a flexible plastic substrate material such as polyethylene terephthalate (PET), the temperature at which the conductive ink is applied onto the substrate and then fired is sufficiently high considering the low glass transition temperature (T g ) of the plastic. Should be low. The firing temperature depends on the characteristics of the conductive filler (mainly metal particles) and the remaining components included in the conductive ink, but as the metal particles are smaller in size, the surface energy of the particles increases, so that small metal particles are used to The firing temperature can be lowered.

그런데, 금속 입자의 크기가 작아질수록 입자들끼리 서로 응집하려는 경향이 커져 잉크의 저장 안정성이 떨어지는 문제점이 발생하게 된다. 이러한 문제점을 해결하기 위하여 분산제, 안정제와 같은 첨가제를 부가하면 소성 온도가 상승하기 때문에 금속 입자를 소형화하여 소결 온도를 낮춘 취지가 무색해진다. However, the smaller the size of the metal particles, the greater the tendency for the particles to aggregate with each other, resulting in a problem of inferior storage stability of the ink. In order to solve this problem, when additives such as a dispersant and a stabilizer are added, the firing temperature increases, so that the effect of reducing the sintering temperature by miniaturizing the metal particles becomes colorless.

본 발명이 이루고자 하는 기술적 과제는 소성 온도가 낮고 높은 전도성을 갖는 전도성 잉크 조성물을 제공하는 것이다. An object of the present invention is to provide a conductive ink composition having a low firing temperature and high conductivity.

상기 기술적 과제를 달성하기 위한 본 발명은 바이모달(bimodal) 입자분포로 이루어진 전도성 재료 및 결합제를 포함하는 것을 특징으로 하는 전도성 잉크 조성물을 제공한다.The present invention for achieving the above technical problem provides a conductive ink composition comprising a conductive material and a binder made of a bimodal particle distribution.

본 발명은 상기 전도성 잉크 조성물에 의해 형성된 인쇄 필름은 전도성이 우수하여 인쇄 회로 기판용 배선, 라디오파 전파 식별(RFID) 태그 등에 유용하게 사용할 수 있다. The present invention is a printed film formed by the conductive ink composition is excellent in conductivity can be usefully used for printed circuit board wiring, radio wave radio frequency identification (RFID) tag and the like.

도 1은 본 발명의 전도성 재료의 큰 입자들과 작은 입자들로 이루어진 바이모달 입자분포 상태와, 소성에 의해 상기 큰 입자들과 작은 입자들이 서로 연결된 상태를 모식적으로 나타낸 것이다.
도 2는 본 발명의 실시예 1에 따른 잉크 조성물에 의해 형성된 인쇄 필름의 원자현미경(AFM) 사진이다.
도 3은 비교예 3에 따른 잉크 조성물에 의해 형성된 인쇄 필름의 원자현미경(AFM) 사진이다.
도 4는 본 발명의 실시예 1에 따른 잉크 조성물에 의해 프린트된 인쇄선의 광학 현미경 사진이다.
도 5는 본 발명의 실시예 1에 따른 잉크 조성물에 의해 프린트된 16-비트 RFID 패턴을 나타낸다.
FIG. 1 schematically shows a bimodal particle distribution state consisting of large particles and small particles of the conductive material of the present invention, and a state in which the large particles and the small particles are connected to each other by firing.
2 is an atomic force microscope (AFM) photograph of a printing film formed by the ink composition according to Example 1 of the present invention.
3 is an atomic force microscope (AFM) photograph of a printing film formed by the ink composition according to Comparative Example 3.
4 is an optical micrograph of a printed line printed by the ink composition according to Example 1 of the present invention.
5 shows a 16-bit RFID pattern printed by the ink composition according to Embodiment 1 of the present invention.

이하에서 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 바이모달(bimodal) 입자분포로 이루어진 전도성 재료 및 결합제를 포함하는 전도성 잉크 조성물을 제공한다.Provided is a conductive ink composition comprising a conductive material and a binder comprising a bimodal particle distribution of the present invention.

상기 전도성 재료는 2종의 입자크기 분포, 즉 바이모달(bimodal) 입자분포를 가지며, 그 중에 1 종은 평균 입자 직경이 1 내지 100 nm인 작은 입자이고, 나머지 1종은 평균 입자 직경이 50 내지 800 nm인 큰 입자이다. 상기 전도성 재료를 구성하는 작은 입자와 큰 입자의 혼합 비율은 바람직하게, 중량비로 1 : 99 내지 99 : 1이며, 상기 혼합 비율 또는 바이모달 입자분포는, 전도성 잉크 조성물의 소성 조건(소성 시간, 소성 온도 등) 또는 결과물인 인쇄 필름(printed film)의 도전성을 고려하여 조정될 수 있다.The conductive material has two particle size distributions, namely bimodal particle distributions, one of which is a small particle having an average particle diameter of 1 to 100 nm, and the other of which has an average particle diameter of 50 to It is a large particle that is 800 nm. The mixing ratio of the small particles and the large particles constituting the conductive material is preferably 1:99 to 99: 1 by weight, and the mixing ratio or bimodal particle distribution is based on the firing conditions (firing time, firing) of the conductive ink composition. Temperature, etc.) or the resulting conductivity of the printed film can be adjusted.

상기 전도성 재료를 구성하는, 큰 입자들이 작은 입자들에 둘러싸인 구조는 전도성 잉크 조성물의 소성 온도를 낮출 수 있으며, 본 발명의 전도성 잉크 조성물의 소성 온도는 약 80℃로 낮출 수 있다. 그리고 상기 큰 입자들 사이의 공간을 작은 입자들이 메움으로써 잉크 조성물 내에서 입자들이 고르게 분산될 수 있어서, 전도성 잉크 조성물에 의해 형성된 인쇄 필름은 높은 전도성을 갖는다.The structure surrounded by the small particles, which constitutes the conductive material, can lower the firing temperature of the conductive ink composition, and the firing temperature of the conductive ink composition of the present invention can be lowered to about 80 ° C. And by filling small spaces between the large particles, the particles can be evenly dispersed in the ink composition, so that the printing film formed by the conductive ink composition has high conductivity.

또한, 소성 시에 상기 작은 입자들은 큰 입자들이 서로 연결될 수 있도록 용접점(welding point) 역할을 하기 때문에, 전도성 잉크 조성물이 열적으로 경화되어 형성된 결과물인 인쇄 필름은 갈라짐 없이 표면이 매끄럽다. 본 발명의 상기 작은 입자들과 큰 입자들의 바이모달 입자분포 상태와, 소성에 의해 상기 입자들이 서로 연결된 상태를 모식적으로 도 1에 나타냈다.In addition, since the small particles serve as a welding point to allow the large particles to be connected to each other during firing, the print film, which is a result of the thermally hardening of the conductive ink composition, is smooth without cracking. The bimodal particle distribution state of the small particles and the large particles of the present invention and a state in which the particles are connected to each other by firing are schematically shown in FIG. 1.

상기 전도성 재료는 조성물 총 중량 대비 10 내지 80 중량%로 포함되며, 상기 함량과 관련하여 10 중량% 미만인 경우에는 전도성 재료들이 연속적으로 전기적 네트워크를 형성하기 어려우며, 80 중량%를 초과하는 경우에는 점도가 상승하여 그라비아 롤투롤(gravuir roll to roll) 인쇄가 어려우며, 분산성이 저하되는 문제가 있다.The conductive material is included in an amount of 10 to 80% by weight based on the total weight of the composition, and when the content is less than 10% by weight, it is difficult for the conductive materials to form an electrical network continuously, and when it exceeds 80% by weight, the viscosity is high. Gravure roll to roll (gravurer roll to roll) printing is difficult to rise, there is a problem that the dispersibility is reduced.

상기 전도성 재료로서 은 나노 입자, 구리 나노 입자, 주석 나노 입자, 금 나노 입자, 백금 나노 입자, 팔라듐 나노 입자, 알루미늄 나노 입자, 카본나노튜브, 그래핀(graphene) 등을 단독으로 사용하거나 2종 이상 혼합하여 사용할 수 있다.As the conductive material, silver nanoparticles, copper nanoparticles, tin nanoparticles, gold nanoparticles, platinum nanoparticles, palladium nanoparticles, aluminum nanoparticles, carbon nanotubes, graphene, etc. may be used alone or in combination of two or more. It can be mixed and used.

본 발명의 결합제는 수용성 폴리머, 즉, 폴리비닐알코올(PVA), 하이드록실 에틸 셀룰로오스(HEC), 폴리비닐 피롤리돈(PVP)를 단독으로 사용하거나 2종 이상 혼합하여 사용할 수 있으며, 이러한 결합제는 전도성 잉크 조성물을 안정화하는 역할도 한다. 이러한 결합제의 평균 분자량은 바람직하게 5,000 내지 5,000 내지 200,000이다.The binder of the present invention may be a water-soluble polymer, that is, polyvinyl alcohol (PVA), hydroxyl ethyl cellulose (HEC), polyvinyl pyrrolidone (PVP) may be used alone or in combination of two or more thereof. It also serves to stabilize the conductive ink composition. The average molecular weight of such binder is preferably from 5,000 to 5,000 to 200,000.

상기 결합제는 조성물 총 중량 대비 1 내지 15 중량%로 포함될 수 있으며, 상기 함량과 관련하여 1 중량% 미만인 경우에는 잉크 전이성 및 기판과의 부착력이 저하되며, 15 중량%를 초과하는 경우에는 전도성 재료 사이에 결합제가 위치하여 저항 상승을 유발하여 원하는 전기전도도를 얻기 어렵다.The binder may be included in an amount of 1 to 15% by weight based on the total weight of the composition, and when the content is less than 1% by weight, the ink transferability and adhesion to the substrate may be reduced, and when the amount exceeds 15% by weight, the conductive material may be interposed between the conductive materials. It is difficult to obtain the desired electrical conductivity because the binder is located in, causing an increase in resistance.

또한, 본 발명의 전도성 잉크 조성물은 물과 극성 용매가 혼합된 혼합 용매를 포함할 수 있으며, 상기 극성 용매로서 글리콜, 에틸렌 글리콜, 프로필렌 글리콜, 프로판올, 이소프로판올, 부탄올, 메틸피롤리돈 등을 단독으로 사용하거나 2종 이상 혼합하여 사용할 수 있다. 이러한 혼합 용매는 조성물 총 중량 대비 19 내지 80 중량%로 포함될 수 있다.In addition, the conductive ink composition of the present invention may include a mixed solvent in which water and a polar solvent are mixed, and as the polar solvent, glycol, ethylene glycol, propylene glycol, propanol, isopropanol, butanol, methylpyrrolidone and the like alone It can be used or it can mix and use 2 or more types. Such a mixed solvent may be included in 19 to 80% by weight relative to the total weight of the composition.

본 발명은 상기 전도성 잉크 조성물은 상기 전도성 재료 및 결합제의 함량에 따라, 25℃에서 1 내지 10,000 cps의 점도를 가지며, 상기 혼합 용매의 함량에 따라 10 내지 72 dyn/cm의 표면장력을 가진다. 또한, 상기 전도성 잉크 조성물은 150℃ 미만의 온도, 구체적으로 60 내지 100℃의 온도에서 소결할 수 있어서 가공성이 우수하고, 폴리에틸렌테레프탈레이트(PET) 등 유연성 있는 플라스틱 기판 소재에 인쇄할 수 있다.According to the present invention, the conductive ink composition has a viscosity of 1 to 10,000 cps at 25 ° C., depending on the content of the conductive material and the binder, and has a surface tension of 10 to 72 dyn / cm according to the content of the mixed solvent. In addition, the conductive ink composition can be sintered at a temperature of less than 150 ℃, specifically 60 to 100 ℃ excels in workability, and can be printed on a flexible plastic substrate material such as polyethylene terephthalate (PET).

또한, 본 발명은 상기 전도성 잉크 조성물에 의해 형성된 인쇄 필름 및 상기 인쇄 필름을 갖는 디바이스를 제공한다. 상기 인쇄 필름은 전도성이 우수하여 인쇄 회로 기판용 배선, 라디오파 전파 식별(RFID) 태그 등의 디바이스에 유용하게 적용시킬 수 있다. 또한, 본 발명의 전도성 잉크 조성물은 독성 물질을 포함하지 않아 친환경적이다.
The present invention also provides a printing film formed by the conductive ink composition and a device having the printing film. The printed film is excellent in conductivity and can be usefully applied to devices such as wiring for printed circuit boards and radio wave radio frequency identification (RFID) tags. In addition, the conductive ink composition of the present invention is environmentally friendly because it does not contain a toxic substance.

[실시예][Example]

이하 실시예를 들어 본 발명을 더 구체적으로 설명한다. 본 발명이 속하는 분야의 평균적 기술자는 아래 실시예에 기재된 실시 태양 외에 여러 가지 다른 형태로 본 발명을 변경할 수 있으며, 이하 실시예는 본 발명을 예시할 따름이지 본 발명의 기술적 사상의 범위를 아래 실시예 범위로 한정하기 위한 의도라고 해석해서는 아니된다.
Hereinafter, the present invention will be described more specifically by way of examples. It will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims and their equivalents. It should not be construed as an intention to limit the scope to example.

<시험예 1> : 비저항 평가<Test Example 1>: resistivity evaluation

본 발명의 전도성 잉크 조성물의 성분에 따른 물성 변화를 살펴보기 위하여 아래 표 1에 나타낸 조성으로 실시예와 비교예의 잉크 조성물을 제조하였다. 이때 금속 나노 입자로서 은 나노 입자를 사용하였고, 결합제로서 폴리비닐 피롤리돈(PVP)을 사용하였으며, 상기 은 나노 입자 및 결합제는 혼합 용매(물과 에틸렌글리콜을 1:2의 중량비로 혼합)에 분산시켰다. 특히, 실시예 1에서 평균 입자 직경이 10 nm인 입자와 평균 입자 직경이 150 nm인 입자는 10 : 90의 중량비로 혼합하였으며, 실시예 2에서 평균 입자 직경이 15 nm인 입자와 평균 입자 직경이 300 nm인 입자는 10 : 90의 중량비로 혼합하였다.In order to examine the change in physical properties according to the components of the conductive ink composition of the present invention, the ink compositions of Examples and Comparative Examples were prepared with the compositions shown in Table 1 below. In this case, silver nanoparticles were used as metal nanoparticles, polyvinyl pyrrolidone (PVP) was used as a binder, and the silver nanoparticles and the binder were mixed in a mixed solvent (mixing water and ethylene glycol in a weight ratio of 1: 2). Dispersed. Particularly, in Example 1, particles having an average particle diameter of 10 nm and particles having an average particle diameter of 150 nm were mixed at a weight ratio of 10:90. In Example 2, particles having an average particle diameter of 15 nm and average particle diameter were 300 nm particles were mixed at a weight ratio of 10:90.


은 나노 입자Silver nanoparticles 결합제 함량
(중량%)
Binder content
(weight%)
표면장력
(dyn/cm)
Surface tension
(dyn / cm)
잉크 조성물의 점도(cps)Viscosity of ink composition (cps)
평균 입자 직경Average particle diameter 함량(중량%)Content (% by weight) 실시예 1Example 1 10 nm 및 150 nm10 nm and 150 nm 6060 44 6262 400400 실시예 2Example 2 15 nm 및 300 nm15 nm and 300 nm 5050 44 5858 320320 비교예 1Comparative Example 1 150 nm150 nm 6060 44 6060 420420 비교예 2Comparative Example 2 150 nm150 nm 6060 44 6060 420420 비교예 3Comparative Example 3 300 nm300 nm 5050 44 5858 330330 비교예 4Comparative Example 4 300 nm300 nm 5050 44 5858 330330

비저항 측정 및 평가Resistivity Measurement and Evaluation

상기 실시예(1~2) 및 비교예(1~4)에 따르는 잉크 조성물을 하기 표 2와 같은 온도 및 시간의 조건으로 소성하여 인쇄 필름을 형성하여, 형성된 인쇄 필름의 비저항을 측정하였다.The ink compositions according to Examples (1-2) and Comparative Examples (1-4) were fired under the conditions of the temperature and time as shown in Table 2 below to form a print film, and the specific resistance of the formed print film was measured.


소성Firing 비저항(Ω?cm)Resistivity (Ω? Cm)
온도(℃)Temperature (℃) 시간(분)Time (minutes) 실시예 1Example 1 8080 1One 8×10-6 8 × 10 -6 실시예 2Example 2 100100 1One 1×10-5 1 × 10 -5 비교예 1Comparative Example 1 8080 1One 3×10-2 3 × 10 -2 비교예 2Comparative Example 2 150150 33 5×10-5 5 × 10 -5 비교예 3Comparative Example 3 100100 1One 6×10-1 6 × 10 -1 비교예 4Comparative Example 4 150150 33 2×10-4 2 × 10 -4

상기 표 2에 정리한 바와 같이, 본 발명의 실시예 1 및 2의 바이모달(bimodal) 입자분포로 이루어진 은 나노 입자를 포함하는 잉크 조성물은 각각 80℃ 및 100℃의 낮은 온도에서 짧은 시간 동안 소성되어 인쇄 필름을 형성하였으며, 상기 인쇄 필름은 상당히 낮은 비저항 값을 나타냈다.As summarized in Table 2 above, the ink composition containing silver nanoparticles consisting of the bimodal particle distributions of Examples 1 and 2 of the present invention was fired for a short time at low temperatures of 80 ° C. and 100 ° C., respectively. To form a printing film, which exhibited a significantly lower resistivity value.

반면, 비교예 1 및 비교예 3의 비-바이모달(non-bimodal) 입자분포로 이루어진 은 나노 입자를 포함하는 잉크 조성물에 의해 형성된 인쇄 필름은 각각 80℃ 및 100℃의 낮은 온도에서 짧은 시간 동안 소성되어 인쇄 필름을 형성하였으나, 다소 높은 비저항 값을 나타냈다.On the other hand, the printing film formed by the ink composition containing silver nanoparticles composed of the non-bimodal particle distributions of Comparative Examples 1 and 3 was prepared for a short time at low temperatures of 80 ° C and 100 ° C, respectively. It was fired to form a printing film, but showed a somewhat higher specific resistance value.

또한, 비교예 2 및 비교예 4의 비-바이모달(non-bimodal) 입자분포로 이루어진 은 나노 입자를 포함하는 잉크 조성물에 의해 형성된 인쇄 필름은 다소 낮은 비저항 값을 나타냈으나 본 발명의 비저항 값보다 컸으며, 다소 높은 150℃의 온도에서 소성되었다.
In addition, the printing film formed by the ink composition containing the silver nanoparticles of the non-bimodal particle distribution of Comparative Example 2 and Comparative Example 4 showed a somewhat lower resistivity value, but the resistivity value of the present invention. Larger and fired at a somewhat higher temperature of 150 ° C.

<시험예 2> : 외관 평가Test Example 2 Appearance Evaluation

본 발명의 전도성 잉크 조성물의 성분에 따른 인쇄 필름의 외관을 살펴보기 위하여, 상기 실시예 1 및 비교예 3에 따른 잉크 조성물에 의해 형성된 인쇄 필름을 원자현미경(AFM) 사진을 찍어서 각각 도 2 및 도 3에 나타냈다.In order to examine the appearance of the printing film according to the components of the conductive ink composition of the present invention, by taking an atomic force microscope (AFM) photograph of the printing film formed by the ink composition according to Example 1 and Comparative Example 3, respectively, FIGS. 2 and FIG. 3 is shown.

도 3에서, 비교예 3의 비-바이모달(non-bimodal) 입자분포로 이루어진 은 나노 입자를 포함하는 잉크 조성물에 의해 형성된 인쇄 필름은 거친 표면을 보였다. 반면, 도 2에서, 본 발명의 실시예 1의 바이모달(non-bimodal) 입자분포로 이루어진 은 나노 입자를 포함하는 잉크 조성물에 의해 형성된 인쇄 필름은 매끈한 표면을 보였으며, 이러한 결과로부터 본 발명의 잉크 조성물은 인쇄시에 고해상도로 프린트될 수 있음을 알 수 있다.
In FIG. 3, the print film formed by the ink composition including silver nanoparticles consisting of the non-bimodal particle distribution of Comparative Example 3 showed a rough surface. On the other hand, in Figure 2, the print film formed by the ink composition comprising silver nanoparticles made of the non-bimodal particle distribution of Example 1 of the present invention showed a smooth surface, from the results of the present invention It can be seen that the ink composition can be printed at high resolution upon printing.

<시험예 3> : 인쇄선 평가<Test Example 3>: Printed line evaluation

RFID 태그 또는 전자회로에 유용하게 적용될 수 있으려면 인쇄선의 선폭은 통상적으로 100 ㎛이하여야 하며 고해상도의 선폭에 대한 수요가 지속적으로 증가하고 있다. 고해상도 기술은 디바이스의 사이즈를 획기적으로 줄일 수 있고 이것은 제조 원가 절감을 유발하여 시장 경쟁력을 높이게 한다.In order to be usefully applied to RFID tags or electronic circuits, the line width of a printed line should typically be 100 μm or less, and the demand for high resolution line width is continuously increasing. High resolution technology can dramatically reduce the size of the device, which leads to cost savings and increases market competitiveness.

따라서, 본 발명의 실시예 1에 따른 잉크 조성물에 의해 프린트된 인쇄선의 선폭을 살펴보기 위하여 상기 인쇄선에 대해 현미경 사진을 찍어서 도 4에 나타냈다. 도 4에서 본 발명의 인쇄선은 약 20 ㎛의 선폭을 나타냈으며, 따라서 RFID 태그 또는 전자회로에 유용하게 적용될 수 있음을 알 수 있다.
Therefore, in order to examine the line width of the printed line printed by the ink composition according to Example 1 of the present invention, a photomicrograph of the printed line was taken and shown in FIG. 4. In Figure 4, the printed line of the present invention showed a line width of about 20 ㎛, it can be seen that it can be usefully applied to RFID tags or electronic circuits.

<시험예 4> : RFID 패턴 평가<Test Example 4>: RFID pattern evaluation

본 발명의 실시예 1에 따른 잉크 조성물에 의해 프린트된 16-비트 RFID 패턴을 도 5에 나타냈으며, 이러한 도면으로부터 본 발명의 잉크 조성물은, 실제로 100% 인쇄형의 RFID 태그에 적용가능하다는 것을 알 수 있다.
A 16-bit RFID pattern printed by the ink composition according to Example 1 of the present invention is shown in FIG. 5, which shows that the ink composition of the present invention is actually applicable to 100% printed RFID tags. Can be.

Claims (8)

바이모달(bimodal) 입자분포로 이루어진 전도성 재료 및
결합제를 포함하는 것을 특징으로 하는 전도성 잉크 조성물.
Conductive material consisting of bimodal particle distribution and
A conductive ink composition comprising a binder.
제 1항에 있어서,
상기 바이모달(bimodal) 입자분포는 평균 입자 직경이 1 내지 100 nm인 입자와 평균 입자 직경이 50 내지 800 nm인 입자로 이루어진 것을 특징으로 하는 전도성 잉크 조성물.
The method of claim 1,
The bimodal particle distribution is conductive ink composition, characterized in that consisting of particles having an average particle diameter of 1 to 100 nm and particles having an average particle diameter of 50 to 800 nm.
제 1항에 있어서,
상기 전도성 재료는 조성물 총 중량 대비 10 내지 80 중량%로 포함되는 것을 특징으로 하는 전도성 잉크 조성물.
The method of claim 1,
The conductive material is a conductive ink composition, characterized in that contained in 10 to 80% by weight relative to the total weight of the composition.
제 1항에 있어서,
상기 전도성 재료는 은 나노 입자, 구리 나노 입자, 주석 나노 입자, 금 나노 입자, 백금 나노 입자, 팔라듐 나노 입자, 알루미늄 나노 입자, 카본나노튜브 및 그래핀으로 구성된 군으로부터 선택된 1종 이상인 것을 특징으로 하는 전도성 잉크 조성물.
The method of claim 1,
The conductive material is at least one member selected from the group consisting of silver nanoparticles, copper nanoparticles, tin nanoparticles, gold nanoparticles, platinum nanoparticles, palladium nanoparticles, aluminum nanoparticles, carbon nanotubes, and graphene. Conductive ink composition.
제 1항에 있어서,
상기 결합제는 폴리비닐알코올(PVA), 하이드록실 에틸 셀룰로오스(HEC) 및 폴리비닐 피롤리돈(PVP)으로 구성된 군으로부터 선택된 1종 이상인 것을 특징으로 하는 전도성 잉크 조성물.
The method of claim 1,
The binder is one or more selected from the group consisting of polyvinyl alcohol (PVA), hydroxyl ethyl cellulose (HEC) and polyvinyl pyrrolidone (PVP).
제 1항에 있어서,
상기 결합제의 평균 분자량은 1,000 내지 300,000인 것을 특징으로 하는 전도성 잉크 조성물.
The method of claim 1,
The conductive ink composition, characterized in that the average molecular weight of the binder is 1,000 to 300,000.
제 1항 내지 제 6항 중 어느 한 항의 전도성 잉크 조성물에 의해 형성된 인쇄 필름.A printing film formed by the conductive ink composition of any one of claims 1 to 6. 제 1항 내지 제 6항 중 어느 한 항의 전도성 잉크 조성물에 의해 형성된 인쇄 필름을 갖는 디바이스.A device having a printing film formed by the conductive ink composition of any one of claims 1 to 6.
KR1020110009578A 2011-01-31 2011-01-31 Conductive Ink Composition Having Bimodal Particle Distribution KR20120088313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110009578A KR20120088313A (en) 2011-01-31 2011-01-31 Conductive Ink Composition Having Bimodal Particle Distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110009578A KR20120088313A (en) 2011-01-31 2011-01-31 Conductive Ink Composition Having Bimodal Particle Distribution

Publications (1)

Publication Number Publication Date
KR20120088313A true KR20120088313A (en) 2012-08-08

Family

ID=46873619

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110009578A KR20120088313A (en) 2011-01-31 2011-01-31 Conductive Ink Composition Having Bimodal Particle Distribution

Country Status (1)

Country Link
KR (1) KR20120088313A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103113786A (en) * 2013-03-07 2013-05-22 苏州牛剑新材料有限公司 Graphene conductive ink and preparation method thereof
KR101442681B1 (en) * 2012-11-09 2014-09-24 엔젯 주식회사 Conductive nano ink composition, electode line and transparent electrode using the conductive nano ink composition
CN104263082A (en) * 2014-08-29 2015-01-07 南京航空航天大学 Graphene organic silver conductive printing ink and preparation method thereof
KR20180011570A (en) * 2016-07-25 2018-02-02 전자부품연구원 Ink for Wiring of Three Dimension Electronic Circuit, Method of Formulating the Same and Electronic Device Fabricated Using the Same
CN108017957A (en) * 2016-11-03 2018-05-11 福建新峰二维材料科技有限公司 A kind of preparation method of Graphene conductive ink applied to flexible circuit
KR20190031222A (en) * 2019-03-15 2019-03-25 전자부품연구원 Ag nano ink, conductive substrate using the same and manufacturing method thereof
CN109844043A (en) * 2016-09-30 2019-06-04 南洋理工大学 Printing ink composition, the method and conductive equipment for forming conducting element
CN111028980A (en) * 2019-10-30 2020-04-17 上海润势科技有限公司 Conductive particle combination
CN114958074A (en) * 2022-05-18 2022-08-30 广东墨睿科技有限公司 Graphene conductive ink and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101442681B1 (en) * 2012-11-09 2014-09-24 엔젯 주식회사 Conductive nano ink composition, electode line and transparent electrode using the conductive nano ink composition
CN103113786A (en) * 2013-03-07 2013-05-22 苏州牛剑新材料有限公司 Graphene conductive ink and preparation method thereof
CN103113786B (en) * 2013-03-07 2015-04-08 苏州牛剑新材料有限公司 Graphene conductive ink and preparation method thereof
CN104263082A (en) * 2014-08-29 2015-01-07 南京航空航天大学 Graphene organic silver conductive printing ink and preparation method thereof
KR20180011570A (en) * 2016-07-25 2018-02-02 전자부품연구원 Ink for Wiring of Three Dimension Electronic Circuit, Method of Formulating the Same and Electronic Device Fabricated Using the Same
CN109844043A (en) * 2016-09-30 2019-06-04 南洋理工大学 Printing ink composition, the method and conductive equipment for forming conducting element
US11274224B2 (en) * 2016-09-30 2022-03-15 Kuprion Inc. Ink composition, method for forming a conductive member, and conductive device
CN108017957A (en) * 2016-11-03 2018-05-11 福建新峰二维材料科技有限公司 A kind of preparation method of Graphene conductive ink applied to flexible circuit
KR20190031222A (en) * 2019-03-15 2019-03-25 전자부품연구원 Ag nano ink, conductive substrate using the same and manufacturing method thereof
CN111028980A (en) * 2019-10-30 2020-04-17 上海润势科技有限公司 Conductive particle combination
CN111028980B (en) * 2019-10-30 2021-07-16 上海润势科技有限公司 Conductive particle combination
CN114958074A (en) * 2022-05-18 2022-08-30 广东墨睿科技有限公司 Graphene conductive ink and preparation method thereof

Similar Documents

Publication Publication Date Title
KR20120088313A (en) Conductive Ink Composition Having Bimodal Particle Distribution
KR101099237B1 (en) Conductive Paste and Conductive Circuit Board Produced Therewith
Lee et al. Effect of nano-sized silver particles on the resistivity of polymeric conductive adhesives
EP2681745B1 (en) Metallic nanofiber ink, substantially transparent conductor, and fabrication method
TWI518146B (en) Printable compositions containing silver nanoparticles, processes for producing electrically conductive coatings using the same, and coatings prepared thereby
KR102026594B1 (en) Mixtures, methods and compositions pertaining to conductive materials
KR102387043B1 (en) Molecular inks
KR101078079B1 (en) Conductive Paste Containing Silver-Decorated Carbon Nanotubes
KR101133466B1 (en) Low temperature dryable conductive paste composite for solar cell and printing method using the same
JP4635888B2 (en) Conductive paste and conductive circuit manufacturing method
JPWO2013161966A1 (en) Conductive composition
CN103666363A (en) Conductive adhesive containing conductive macromolecules and preparation method thereof
US20220098738A1 (en) Metallic Nanofiber Ink, Substantially Transparent Conductor, and Fabrication Method
TW201840752A (en) Silver paste for flexible substrate
KR102568858B1 (en) Silver molecular ink with low viscosity and low processing temperature
CN108530994A (en) The good ink of electric conductivity and its application on rough surface
CN110922812A (en) Low-temperature high-conductivity nano-silver conductive ink and preparation method and application thereof
KR20190112803A (en) Molecular inks with improved thermal stability
KR102667053B1 (en) Conductive paste, substrate with conductive film, and method for producing substrate with conductive film
KR102210186B1 (en) Ag nano ink, conductive substrate using the same and manufacturing method thereof
KR102442606B1 (en) A conductive paste composition
JP5775438B2 (en) Silver fine particle dispersion
KR100978099B1 (en) Conductive paste composite for gravure printing
KR102495578B1 (en) Silver microparticle dispersion
KR20170113964A (en) Ag nano ink, conductive substrate using the same and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E601 Decision to refuse application