KR20120010533A - manufacturing method non-sintered TiO2 electrode using TiO2 nano-wire and the TiO2 electrode thereby - Google Patents

manufacturing method non-sintered TiO2 electrode using TiO2 nano-wire and the TiO2 electrode thereby Download PDF

Info

Publication number
KR20120010533A
KR20120010533A KR1020100072128A KR20100072128A KR20120010533A KR 20120010533 A KR20120010533 A KR 20120010533A KR 1020100072128 A KR1020100072128 A KR 1020100072128A KR 20100072128 A KR20100072128 A KR 20100072128A KR 20120010533 A KR20120010533 A KR 20120010533A
Authority
KR
South Korea
Prior art keywords
tio
electrode
tio2
sintered
nanofiber
Prior art date
Application number
KR1020100072128A
Other languages
Korean (ko)
Other versions
KR101215546B1 (en
Inventor
차승일
서선희
이동윤
황규현
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020100072128A priority Critical patent/KR101215546B1/en
Publication of KR20120010533A publication Critical patent/KR20120010533A/en
Application granted granted Critical
Publication of KR101215546B1 publication Critical patent/KR101215546B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: A manufacturing method of a non-sintered TiO2 electrode is provided to improve the physical strength of an electrode, and to prevent the crack phenomenon of a substrate, by inserting TiO2 nanofibrous paper between TiO2 electrode layers. CONSTITUTION: A manufacturing method of a non-sintered TiO2 electrode comprises: a step of manufacturing TiO2 particles; a step of manufacturing TiO2 dispersion by dispersing the TiO2 particles and solvent; a step of manufacturing a TiO2 sol gel paste by adding a binder into the TiO2 dispersion; a step of forming a first electrode layer by spreading the TiO2 sol gel paste; a step of positioning the nanofibrous paper by spreading the TiO2 sol gel paste on the substrate; a step of forming a second electrode layer on the TiO2 nanofibrous paper by re-coating the TiO2 sol gel paste; and a step of compressing the outcome.

Description

TiO₂ 나노섬유가 포함된 무소결 TiO₂ 전극의 제조방법 및 이에 의해 제조된 TiO₂{manufacturing method non-sintered TiO2 electrode using TiO2 nano-wire and the TiO2 electrode thereby}Manufacturing method of sintered TiO₂ electrode containing TiO₂ nanofibers and TiO₂ manufactured by TiO₂ electrode

본 발명은 무소결 TiO2 전극의 제조방법 및 TiO2 전극에 관한 것으로서, TiO2 전극층 사이에 TiO2 나노섬유 종이를 삽입하여 무소결 과정으로 TiO2 전극을 제조함으로써, 전극의 기계적 강도를 향상시켜 기판의 갈라짐 현상을 방지하여 효율이 향상된 TiO2 나노섬유가 포함된 무소결 TiO2 전극의 제조방법 및 이에 의해 제조된 TiO2 전극에 관한 것이다.The present invention by preparing the, TiO 2 electrode as offices connection process by inserting a TiO 2 nanofiber paper between the TiO 2 electrode layer relates to a production method and a TiO 2 electrode of the offices Results TiO 2 electrode, for increasing the mechanical strength of the electrode The present invention relates to a method for preparing an sintered TiO 2 electrode including TiO 2 nanofibers having improved efficiency by preventing a cracking of a substrate and a TiO 2 electrode produced thereby.

일반적으로 전기화학소자는 양극, 음극 사이에 전해액을 충전시키고, 그 사이에 세퍼레이터를 구성하여 이온의 삽입 및 탈리에 의한 화학반응에 의해 전기를 발생시키는 것으로, 이에 대한 연구는 전극재료의 단위 중량당 고용량, 비표면적 증대연구 등이 주를 이루고 있다.In general, an electrochemical device charges an electrolyte between an anode and a cathode, and forms a separator therebetween to generate electricity by chemical reaction by insertion and desorption of ions. High doses and specific surface area research are the main focus.

이러한 전기화학소자의 일례로는 리튬이차전지, 염료감응형태양전지(DSSC), 전기이중층커패시터 등이 있으며, 전극재료로는 고용량, 높은 비표면적을 갖는 것으로서 탄소재료, 금속산화물 또는 이들을 복합한 복합재료 등의 전극재료가 사용되고 있다.Examples of such electrochemical devices include lithium secondary batteries, dye-sensitized positive cells (DSSCs), and electric double layer capacitors. The electrode materials have a high capacity and a high specific surface area, and are carbon materials, metal oxides, or composites thereof. Electrode materials such as materials are used.

상기 전극재료는 기본적으로 기공을 많이 포함하여 넓은 비표면적을 가져야 하고, 전도성이 우수하여 전극을 제작하였을 때 전극저항이 적어야 하며, 기공의 크기가 충분히 크고 또한 기공들의 연결성이 우수하여 전해질 용액이 쉽게 기공표면을 적셔서 넓은 전기이중층을 형성하고, 전해질 이온의 이동이 용이하여 충전과 방전이 빨리 진행되어야 한다.The electrode material should basically have a large specific surface area including a lot of pores, and when the electrode is manufactured to have excellent conductivity, the electrode resistance should be small, the pore size is large enough and the connectivity of the pores is excellent, so that the electrolyte solution is easy. Wet the surface of the pore to form a wide electric double layer, the electrolyte ions are easy to move, so the charge and discharge should proceed quickly.

상기의 종래 기술에 의한 TiO2 전극은 일반적으로 소결 과정을 거치게 되며, 그 소결온도가 통상 400℃ 이상으로 유연기판에의 사용은 적합하지 못할 뿐만 아니라, 소결 과정을 위한 장치 및 비용 시간이 많이 들게 된다.TiO 2 electrode according to the prior art is generally subjected to a sintering process, the use of a flexible substrate with a sintering temperature of more than 400 ℃ is not suitable, as well as a device and costly time for the sintering process do.

상기 소결 과정은 TiO2 나노입자 사이의 소결에 의한 necking을 형성시킴으로써, TiO2 입자 사이의 전자의 이동을 원활하게 하며 동시에 TiO2 입자가 기판 혹은 막내에서 박리하는 것을 방지하는 역할을 수행한다. 따라서 유연소자의 제조를 위하여 소결 공정이 없는 전극을 제조하기 위해서는 기계적으로 TiO2 입자 혹은 전극막의 박리를 효율적으로 방지해야 하며, 동시에 전기화학 반응을 최적화해야한다.The sintering process serves to prevent detachment by forming a necking due to the sintering between the nanoparticles TiO 2, TiO 2 facilitate the transfer of electrons between the particles and at the same time, the TiO 2 particles or the substrate film. Therefore, in order to manufacture an electrode without a sintering process for manufacturing a flexible device, it is necessary to efficiently prevent peeling of TiO 2 particles or an electrode film, and at the same time, optimize an electrochemical reaction.

최근에는 이러한 다공성 전극을 소결 공정없이 제조하기 위하여 산화물 나노입자 중 TiO2에 대한 연구가 활발하며, 종래의 TiO2를 이용한 TiO2 겔필름(gel film) 및 TiO2 Film transfer 과정에 살펴보고자 한다.Recently, researches on TiO 2 in oxide nanoparticles have been actively conducted in order to manufacture such a porous electrode without a sintering process, and will be described in a TiO 2 gel film and a TiO 2 film transfer process using conventional TiO 2 .

먼저, TiO2 겔필름은 TiO2 나노입자와 TTIP(titanium isopropoxide, 티탄이소프로프산화물)을 적정량 혼합하고, 이를 기판 상면에 코팅하고, 400℃ 이상에서 열처리를 시켜 TiO2 전극이 완성된다.First, the TiO 2 gel film is mixed with TiO 2 nanoparticles and TTIP (titanium isopropoxide, titanium isoprop oxide) in an appropriate amount, and coated on the upper surface of the substrate, heat treatment at 400 ℃ or more to complete the TiO 2 electrode.

그리고, TiO2 Film transfer 과정은 Au 박막이 코팅된 유리 기판 위에 TiO2 페이스트를 이용하여 스크린 프린팅하고, 450℃에서 소결과정을 거쳐 TiO2 다공성층을 형성시킨 후, I-/I3-를 이용하여 Au 박막을 용해시켜, 상기 TiO2 다공성층을 기판으로부터 분리하여 이동(transfer)시킨다. 그리고, 분리된 상기 TiO2 다공성층은 얇은 접착층이 형성된 TCO 투명 기판 상으로 이동되어 접착되게 된다. 그 후, 높은 압력과 온도 조건 하에서 프레스 가압하여 TiO2 전극을 완성하게 된다.In the TiO 2 film transfer process, a TiO 2 paste is screen printed on a glass substrate coated with Au thin film, and a TiO 2 porous layer is formed by sintering at 450 ° C., and then I- / I 3 -is used. By dissolving the Au thin film, the TiO 2 porous layer is separated from the substrate and transferred. Then, the separated TiO 2 porous layer is moved onto the TCO transparent substrate on which the thin adhesive layer is formed to be bonded. Thereafter, pressurization is performed under high pressure and temperature conditions to complete the TiO 2 electrode.

상기의 종래 기술에 의한 TiO2 전극은 일반적으로 소결 과정을 거치게 되며, 그 소결온도가 통상 400℃ 이상으로 유연기판에의 사용은 적합하지 못할 뿐만 아니라, 소결 과정을 위한 장치 및 비용 시간이 많이 들게 된다.TiO 2 electrode according to the prior art is generally subjected to a sintering process, the use of a flexible substrate with a sintering temperature of more than 400 ℃ is not suitable, as well as a device and costly time for the sintering process do.

또한, 상기 종래의 TiO2 전극은 기판에서 박리가 잘 일어나 내구성이 떨어지며 효율이 그다지 높지 않은 단점이 있다. 또한, 고점도의 전해질의 경우 TiO2 나노입자 사이로 침투가 어려워 효율을 떨어뜨리며, 특히, TiO2 Film Transfer 과정에 의한 전극은 대면적 구현이 어려운 단점이 있다.In addition, the conventional TiO 2 The electrode has a disadvantage in that peeling off of the substrate is poor and durability is not so high. In addition, in the case of a high viscosity electrolyte, it is difficult to penetrate between TiO 2 nanoparticles, thereby decreasing efficiency. In particular, an electrode by a TiO 2 film transfer process has a disadvantage in that a large area is difficult to implement.

본 발명은 상기 문제점을 해결하기 위한 것으로, TiO2 전극층 사이에 TiO2 나노섬유 종이를 삽입하여 무소결 과정으로 TiO2 전극을 제조함으로써, 전극의 기계적 강도를 향상시켜 기판의 갈라짐 현상을 방지하고 효율이 향상된 TiO2 나노섬유가 포함된 무소결 TiO2 전극의 제조방법 및 이에 의해 제조된 TiO2 전극의 제공을 그 목적으로 한다.The present invention is to solve the above problems, by inserting the TiO 2 nanofiber paper between the TiO 2 electrode layer to produce a TiO 2 electrode in the sintering process, to improve the mechanical strength of the electrode to prevent the phenomenon of substrate cracking and efficiency It is an object of the present invention to provide a method for producing an sintered TiO 2 electrode including the improved TiO 2 nanofibers and a TiO 2 electrode produced thereby.

상기 목적 달성을 위해 본 발명은, TiO2 입자를 준비하는 제1단계와; 상기 TiO2 입자와 용매를 혼합 분산시켜 TiO2 분산액을 제조하는 제2단계와; 상기 TiO2 분산액에 바인더를 첨가하여 TiO2 졸겔 페이스트를 제조하는 제3단계와; 상기 TiO2 졸겔 페이스트를 기판 상에 도포하여 제1전극층을 형성하는 제4단계와; 상기 제1전극층 상층에 TiO2 나노섬유 종이를 위치시키는 제5단계와; 상기 TiO2 나노섬유 상층에 상기 TiO2 졸겔 페이스트를 재도포하여 제2전극층을 형성하고 압착하는 제6단계;를 포함하여 이루어지는 것을 특징으로 하는 TiO2 나노섬유가 포함된 무소결 TiO2 전극의 제조방법 및 이에 의해 제조된 TiO2 전극을 기술적 요지로 한다.The present invention to achieve the above object, the first step of preparing TiO 2 particles; Mixing and dispersing the TiO 2 particles and the solvent to prepare a TiO 2 dispersion; A third step of preparing a TiO 2 sol gel paste by adding a binder to the TiO 2 dispersion; A fourth step of forming the first electrode layer by applying the TiO 2 sol-gel paste on a substrate; A fifth step of placing TiO 2 nanofiber paper on the first electrode layer; Preparation of the sintered TiO 2 electrode containing TiO 2 nanofibers, characterized in that it comprises a; and the sixth step of forming a second electrode layer by re-coating the TiO 2 sol gel paste on the TiO 2 nanofiber layer; The method and the TiO 2 electrode produced thereby are the technical subject matter.

또한, 상기 TiO2 입자는, TiO2 나노입자 또는 TiO2 나노입자를 이용한 마이크로볼을 사용하는 것이 바람직하다.Further, the TiO 2 particles, it is preferred to use a micro-ball with TiO 2 nanoparticles or TiO 2 nanoparticles.

또한, 상기 TiO2 나노섬유 종이는, TiO2 나노섬유를 용매에 분산시키고 필터링 후 건조, 열처리하여 제작하는 것이 바람직하며, 또한, 상기 TiO2 나노섬유는, 전기방사법, 알칼리 수열합성법 및 기상증착법 중에 어느 하나의 방법에 의해 제조하는 것이 바람직하다.The TiO 2 nanofiber paper is preferably produced by dispersing TiO 2 nanofibers in a solvent, filtering, drying, and heat treating the TiO 2 nanofibers. In addition, the TiO 2 nanofibers are subjected to electrospinning, alkali hydrothermal synthesis, and vapor deposition. It is preferable to manufacture by either method.

또한, 상기 용매는, 물, 알코올, 벤젠, 톨루엔, 피리딘, 아세톤, THF 및 DMF 중 어느 하나 또는 둘 이상을 혼합한 혼합물을 사용하며, 또한 상기 바인더는, TTIP, TTIB, CMC, PVA, PEO, EC, HBA 및 PVB 중에 어느 하나를 사용하는 것이 바람직하다.In addition, the solvent, water, alcohol, benzene, toluene, pyridine, acetone, THF and a mixture of two or more of the DMF is used, and the binder is TTIP, TTIB, CMC, PVA, PEO, Preference is given to using any of EC, HBA and PVB.

상기 과제의 해결 수단에 의해 본 발명은, 전극 제조 공정에서 소결 과정이 포함되지 않아 비용적, 시간적으로 경제적이고, 유연 기판의 적용에도 문제가 없으며, 또한, 전극 제조시 TiO2 나노섬유 종이를 중간에 삽입함으로써 복합 재료 효과를 나타내어, 전자 이동 통로를 제공함과 동시에 기계적 강도를 증가시켜 전극의 갈라짐 현상을 방지하여 효율을 더욱 향상시키는 효과가 있다.Present invention by the solving means of the above-mentioned problem is the electrode in the manufacturing process, the sintering process and cost, in time economy is not included, not even a problem with application of the flexible substrate and the electrodes intermediate the TiO 2 nanofiber paper manufacture By inserting in the composite material, the composite material effect is exhibited, and the electron transfer path is provided, and the mechanical strength is increased, thereby preventing the electrode from being cracked, thereby further improving the efficiency.

도 1 - 본 발명의 실시예에 따른 TiO2 전극의 제조방법에 대한 모식도.
도 2 - 본 발명의 실시예에 의해 제조된 TiO2 나노섬유 종이의 실제 모습(위) 및 표면(아래) 사진을 나타낸 도.
도 3 - 기존의 TiO2 입자로만 구성된 무소결 TiO2 전극의 표면 및 단면(a)과, 본 발명의 실시예에 의해 제조된 TiO2 나노섬유가 포함된 무소결 TiO2 전극의 표면 및 단면(b)을 나타낸 도.
도 4 - 도 3의 기존의 TiO2 전극과 본 발명의 실시예에 의해 제조된 TiO2 전극에 대한 효율을 나타낸 도.
1-Schematic diagram of a method for manufacturing a TiO 2 electrode according to an embodiment of the present invention.
Figure 2-Figure showing the actual (top) and surface (bottom) photographs of the TiO 2 nanofiber paper made by the embodiment of the present invention.
FIG. 3-Surface and cross section (a) of an sintered TiO 2 electrode composed only of conventional TiO 2 particles, and the surface and cross section of an sintered TiO 2 electrode including TiO 2 nanofibers prepared according to an embodiment of the present invention ( Figure b.
4 to 3 show the efficiency of the TiO 2 electrode prepared according to the embodiment of the present invention and the existing TiO 2 electrode.

본 발명은 전극 제작 과정 중에 소결 처리 과정이 없는 무소결 TiO2 전극의 제조방법에 관한 것으로서, TiO2 입자를 준비하고 이를 용매에 혼합 분산시켜 TiO2 분산액을 제조한 후, 상기 TiO2 분산액에 바인더를 첨가하여 TiO2 졸겔 페이스트를 제조하여, 기판 상에 도포하여 제1전극층을 형성한다. 그리고, 상기 제1전극층 상층에 TiO2 나노섬유 종이를 위치시키고, 상기 TiO2 나노섬유 상층에 상기 TiO2 졸겔 페이스트를 재도포하여 제2전극층을 형성하고 압착하여 무소결 TiO2 전극을 완성하게 된다.The present invention relates to a process for the preparation of offices Results TiO 2 electrode without a sintering process in the electrode manufacturing process, after preparing the TiO 2 particles were mixed and dispersed in a solvent to prepare a TiO 2 dispersion, the binder in the TiO 2 dispersion TiO 2 sol-gel paste was added to the mixture, and then coated on a substrate to form a first electrode layer. Then, TiO 2 nanofiber paper is placed on the first electrode layer, and the TiO 2 sol-gel paste is re-coated on the TiO 2 nanofiber layer to form a second electrode layer and pressed to complete the sintered TiO 2 electrode. .

여기에서, 상기 TiO2 입자는 TiO2 나노입자를 사용하거나 TiO2 나노입자를 이용하여 제작된 마이크로볼을 사용할 수도 있다. 여기에서 상기 TiO2 나노입자 마이크로볼은 TiO2 나노입자 분산액을 분무 건조하고, 전소결(pre-sintering)시켜 제조하는 것이다. 상기 TiO2 나노입자 마이크로볼의 직경은 대략 0.5㎛에서 100㎛ 범위로, 구형 또는 입자 형상을 띈다.Here, the TiO 2 particles may also be a micro-ball produced using TiO 2 nanoparticles, or by using the TiO 2 nanoparticles. Here, the TiO 2 nanoparticle microballs are prepared by spray drying and pre-sintering the TiO 2 nanoparticle dispersion. The diameter of the TiO 2 nanoparticle microballs ranged from approximately 0.5 μm to 100 μm, taking the form of spheres or particles.

또한, 상기 TiO2 나노섬유 종이는 TiO2 나노섬유를 용매에 분산시키고 필터링 후 건조, 열처리하여 제작하며, 여기에서, 상기 TiO2 나노섬유는 상기 TiO2 졸겔 페이스트를 점도 조절 후 전기방사법으로 제조하거나, 알칼리 수열합성법 및 기상증착법 등에 의해 제조된다. 특히 전기방사법에 의한 경우 TiO2 나노섬유의 길이가 무한대에 가까운 섬유의 제조가 가능하다.In addition, the TiO 2 nanofiber paper is produced by dispersing the TiO 2 nanofibers in a solvent, filtered, dried and heat treated, wherein the TiO 2 nanofibers are prepared by electrospinning after adjusting the viscosity of the TiO 2 sol gel paste And alkali hydrothermal synthesis method and vapor deposition method. In particular, in the case of the electrospinning method, it is possible to manufacture fibers in which the length of the TiO 2 nanofibers is almost infinite.

상기 TiO2 나노섬유 종이는 제1전극층과 제2전극층 사이에 형성되어 복합 재료 효과를 나타내어, 전자 이동 통로를 제공하고 전극의 기계적 강도를 향상시켜 기판의 갈라짐 현상을 방지할 수 있어 전극의 효율을 향상시키게 된다. 여기에서 필요에 의해 상기 전극층의 형성을 반복적으로 수행하고 그 사이에 TiO2 나노섬유 종이를 위치시켜 전극의 두께 및 전기적 특성 요구에 따라서 다층으로 형성할 수도 있다.The TiO 2 nanofiber paper is formed between the first electrode layer and the second electrode layer to exhibit a composite material effect, thereby providing an electron transfer path and improving the mechanical strength of the electrode to prevent substrate cracking, thereby improving the efficiency of the electrode. Will be improved. Here, if necessary, the electrode layer may be repeatedly formed, and TiO 2 nanofiber paper may be positioned therebetween, thereby forming a multilayer in accordance with the thickness and electrical properties of the electrode.

또한, 상기 용매는, 물, 알코올, 벤젠, 톨루엔, 피리딘, 아세톤, THF 및 DMF 중 어느 하나 또는 둘 이상을 혼합한 혼합물을 사용하며, 상기 바인더는, TTIP, TTIB, CMC, PVA, PEO, EC, HBA 및 PVB 중에 어느 하나를 사용한다.In addition, the solvent, water, alcohol, benzene, toluene, pyridine, acetone, THF and a mixture of any two or more of DMF is used, the binder is TTIP, TTIB, CMC, PVA, PEO, EC Any one of HBA and PVB.

이와 같이 상기의 전극 제조 공정에서 소결 과정이 포함되지 않아 비용적, 시간적으로 경제적이고, 유연 기판의 적용에도 문제가 없으며, 소결 과정이 포함되지 않음에도 불구하고 전극의 효율 및 기판과의 접착성에 전혀 문제가 없으며 오히려 그 특성이 향상됨을 확인할 수 있었다. 또한, 전극 제조시 TiO2 나노섬유 종이를 중간에 삽입함으로써 복합 재료 효과를 나타내어, 전자 이동 통로를 제공함과 동시에 기계적 강도를 증가시켜 전극의 갈라짐 현상을 방지하여 효율을 더욱 향상시킬 수 있게 된다.
As such, the electrode manufacturing process does not include a sintering process and thus is economical in terms of cost and time, and there is no problem in the application of the flexible substrate, and even though the sintering process is not included, the electrode efficiency and adhesion to the substrate are not at all. There was no problem, rather it improved the characteristics. In addition, by inserting the TiO 2 nanofiber paper in the middle of the electrode manufacturing in order to exhibit a composite material effect, while providing an electron transfer path and at the same time increase the mechanical strength to prevent the splitting of the electrode can be further improved efficiency.

이하에서는 본 발명의 실시예에 대해 설명하고자 한다.Hereinafter will be described for the embodiment of the present invention.

본 발명의 실시예에서는 TiO2 나노입자 마이크로볼을 이용하여 TiO2 졸겔 페이스트를 제조하며, 이는 본 발명자가 출원한 "산화물 나노입자를 이용하여 분무 건조법으로 제조된 산화물 나노입자 마이크로볼의 제조방법"(출원번호 10-2009-0101590호)의 실시예에 의해 제조된 것으로 상세한 설명은 생략하기로 한다.In an embodiment of the present invention, TiO 2 sol gel paste is prepared using TiO 2 nanoparticle microballs, which is a method for preparing oxide nanoparticle microballs prepared by spray drying using oxide nanoparticles. (Application No. 10-2009-0101590) was prepared by the embodiment of the detailed description thereof will be omitted.

상기 TiO2 나노입자 마이크로볼 1g을 준비하고, 용매로 에탄올(EtOH) 3.41g을 혼합하여 초음파를 이용하여 분산시켜 TiO2 분산액을 제조하였다. 그리고, 상기 TiO2 분산액에 바인더로 TTIP(titanium isopropoxide)를 TiO2 나노입자 마이크로볼 1g에 대해 0.0635g~0.6g 정도, 본 실시예에서는 0.127g을 첨가하여 진공상태에서 증발시켜 TiO2 분산액의 점도를 조절하여 TiO2 졸겔 페이스트를 제조하였다.1g of the TiO 2 nanoparticle microball was prepared, and 3.41 g of ethanol (EtOH) was mixed as a solvent and dispersed using ultrasonic waves to prepare a TiO 2 dispersion. In addition, the TiO 2 dispersion in a TTIP (titanium isopropoxide) as a binder to about 1g TiO 2 nanoparticles microballs 0.0635g ~ 0.6g degree, in the present embodiment, by the addition of 0.127g was evaporated in vacuo to TiO 2 dispersion viscosity TiO 2 sol-gel paste was prepared by adjusting the.

이렇게 제작된 TiO2 졸겔 페이스트는 기판 상에 바로 닥터 블레이드 또는 스크린 프린팅 방법을 이용하여 도포하여 TiO2 제1전극층을 완성하여 70℃ 에서 건조하였다. 그리고, 상기 제1전극층 상층에 TiO2 나노섬유 종이를 위치시키고, 그 상층에 상기 TiO2 졸겔 페이스트를 재도포하여 제2전극층을 형성하여 압착하여 제조하였다. The TiO 2 sol-gel paste thus prepared was directly coated on a substrate using a doctor blade or a screen printing method to complete the TiO 2 first electrode layer and dried at 70 ° C. Then, TiO 2 nanofiber paper was placed on the first electrode layer, and the TiO 2 sol-gel paste was recoated on the upper layer to form a second electrode layer, which was then compressed.

여기에서, 상기 TiO2 나노섬유 종이는 전기방사법으로 제조된 TiO2 나노섬유 15mg을 에탄올 80g에 용해시켜 2시간~24시간, 여기에서는 5시간 정도 교반하고, 0.6㎛의 필터를 이용하여 진공 필터링한 후, 480℃~1000℃, 여기에서는 500℃의 온도에서 1시간 정도 열처리하여 제조하였다. 도 1은 상기 실시예에 의해 제조된 TiO2 나노섬유 종이의 실제 모습(위) 및 표면(아래) 사진을 나타낸 것이다.Here, the TiO 2 nanofiber paper was dissolved 15 mg TiO 2 nanofibers prepared by electrospinning in 80g of ethanol for 2 hours to 24 hours, and then stirred for about 5 hours, vacuum filtered using a 0.6 ㎛ filter After that, it was manufactured by heat treatment at a temperature of 480 ° C. to 1000 ° C. and at 500 ° C. for about 1 hour. Figure 1 shows the actual appearance (top) and the surface (bottom) of the TiO 2 nanofiber paper prepared by the above example.

도 2는 기존의 TiO2 입자로만 구성된 무소결 TiO2 전극의 표면 및 단면(a)과, 본 발명의 실시예에 의해 제조된 TiO2 나노섬유가 포함된 무소결 TiO2 전극의 표면 및 단면(b)을 나타낸 것이다. 도시된 바와 같이 전극의 갈라짐 현상이 없음을 확인할 수 있었으며, 이는 제1전극층 및 제2전극층 사이에 TiO2 나노섬유 종이를 삽입함으로써, 마치 진흙 벽돌에 짚을 넣어 갈라지지 않게 하는 것처럼 복합 재료 효과를 나타내게 되는 것이다. 이에 의해 전극의 기계적 강도를 향상시키고 수명을 연장시켜 그 효율을 향상시키게 된다.2 is a surface and a cross section (a) of a sintered TiO 2 electrode composed only of conventional TiO 2 particles, and a surface and a cross section of a sintered TiO 2 electrode including TiO 2 nanofibers prepared according to an embodiment of the present invention. b) is shown. As shown, it was confirmed that there was no splitting of the electrodes, which was made by inserting TiO 2 nanofiber paper between the first electrode layer and the second electrode layer, so that the composite material effect was as if straw was not put in the mud bricks. Will be. This improves the mechanical strength of the electrode and extends its life to improve its efficiency.

도 3은 도 2의 기존의 TiO2 전극과 본 발명의 실시예에 의해 제조된 TiO2 전극에 대한 효율을 나타낸 것이다. TiO2 나노섬유 종이가 포함된 TiO2 전극에 대한 효율 실험을 3번에 걸쳐서 측정하였으며, 같은 무소결 TiO2 전극이라도 TiO2 나노섬유 종이가 포함된 전극이 기존의 전극에 비해 효율이 향상되었음을 관찰할 수 있었다.Figure 3 is a shows the efficiency of the TiO 2 electrode prepared by the embodiments of conventional TiO 2 electrodes and 2 of the present invention. Was the efficiency experiments on TiO 2 electrodes containing the TiO 2 nanofiber paper measured over three times, observing that even the same offices Results TiO 2 electrode is an electrode containing the TiO 2 nanofiber paper efficiency is improved compared with the conventional electrode Could.

따라서, 본 발명은 무소결 TiO2 전극이 제조가 가능하여 고온에 취약한 폴리머 기판에의 적용도 가능하며, 소결 과정이 포함되지 않음에도 불구하고 전극 특성 변화에 영향을 미치지 않을 뿐만 아니라, 전극 제조시 TiO2 나노섬유 종이를 중간에 삽입함으로써 복합 재료 효과를 나타내어, 전자 이동 통로를 제공함과 동시에 기계적 강도를 증가시켜 전극의 갈라짐 현상을 방지하여 효율을 더욱 향상시킬 수 있게 되는 것이다.Therefore, the present invention can be applied to a polymer substrate vulnerable to high temperature because the sintered TiO 2 electrode can be manufactured, and does not affect the change of electrode properties in spite of not including the sintering process, By inserting the TiO 2 nanofiber paper in the middle, the composite material effect is exhibited, thereby providing an electron transfer path and increasing mechanical strength to prevent the electrode from cracking, thereby further improving efficiency.

Claims (7)

TiO2 입자를 준비하는 제1단계와;
상기 TiO2 입자와 용매를 혼합 분산시켜 TiO2 분산액을 제조하는 제2단계와;
상기 TiO2 분산액에 바인더를 첨가하여 TiO2 졸겔 페이스트를 제조하는 제3단계와;
상기 TiO2 졸겔 페이스트를 기판 상에 도포하여 제1전극층을 형성하는 제4단계와;
상기 제1전극층 상층에 TiO2 나노섬유 종이를 위치시키는 제5단계와;
상기 TiO2 나노섬유 상층에 상기 TiO2 졸겔 페이스트를 재도포하여 제2전극층을 형성하고 압착하는 제6단계;를 포함하여 이루어지는 것을 특징으로 하는 TiO2 나노섬유가 포함된 무소결 TiO2 전극의 제조방법.
A first step of preparing TiO 2 particles;
Mixing and dispersing the TiO 2 particles and the solvent to prepare a TiO 2 dispersion;
A third step of preparing a TiO 2 sol gel paste by adding a binder to the TiO 2 dispersion;
A fourth step of forming the first electrode layer by applying the TiO 2 sol-gel paste on a substrate;
A fifth step of placing TiO 2 nanofiber paper on the first electrode layer;
Preparation of the sintered TiO 2 electrode containing TiO 2 nanofibers, characterized in that it comprises a; and the sixth step of forming a second electrode layer by re-coating the TiO 2 sol gel paste on the TiO 2 nanofiber layer; Way.
제 1항에 있어서, 상기 TiO2 입자는,
TiO2 나노입자 또는 TiO2 나노입자를 이용한 마이크로볼인 것을 특징으로 하는 TiO2 나노섬유가 포함된 무소결 TiO2 전극의 제조방법.
The method of claim 1, wherein the TiO 2 particles,
TiO 2 or TiO 2 nanoparticles with offices method of producing a grain TiO 2 electrode include nanoparticles of TiO 2 nano-fibers, it characterized in that the microballs used.
제 1항에 있어서, 상기 TiO2 나노섬유 종이는,
TiO2 나노섬유를 용매에 분산시키고 필터링 후 건조, 열처리하여 제작하는 것을 특징으로 하는 TiO2 나노섬유가 포함된 무소결 TiO2 전극의 제조방법.
The method of claim 1, wherein the TiO 2 nanofiber paper,
After dispersing the TiO 2 nanofiber the solvent was filtered dried, heat-treated by a method of producing a grain offices TiO 2 electrode include a TiO 2 nanofiber, characterized in that to produce.
제 3항에 있어서, 상기 TiO2 나노섬유는,
전기방사법, 알칼리 수열합성법 및 기상증착법 중에 어느 하나의 방법에 의해 제조하는 것을 특징으로 하는 TiO2 나노섬유가 포함된 무소결 TiO2 전극의 제조방법.
The method of claim 3, wherein the TiO 2 nanofibers,
A method for producing an sintered TiO 2 electrode containing TiO 2 nanofibers, characterized in that it is produced by any one of electrospinning, alkali hydrothermal synthesis and vapor deposition.
제 1항에 있어서, 상기 용매는, 물, 알코올, 벤젠, 톨루엔, 피리딘, 아세톤, THF 및 DMF 중 어느 하나 또는 둘 이상을 혼합한 혼합물인 것을 특징으로 하는 무소결 TiO2 전극의 제조방법.In the solvent, water, alcohol, benzene, toluene, pyridine, acetone, and method for producing a grain offices TiO 2 electrode, characterized in that the mixture is a mixture of THF and DMF any one or two or more of claim 1. 제 1항에 있어서, 상기 바인더는, TTIP, TTIB, CMC, PVA, PEO, EC, HBA 및 PVB 중에 어느 하나인 것을 특징으로 하는 무소결 TiO2 전극의 제조방법.The method of claim 1, wherein the binder, TTIP, TTIB, CMC, PVA, PEO, EC, method for producing a grain offices TiO 2 electrode, characterized in that any one of the HBA and PVB. 제 1항 내지 제 6항 중의 어느 한 항의 제조방법에 의해 제조된 무소결 TiO2 전극.An sintered TiO 2 electrode prepared by the method of any one of claims 1 to 6.
KR1020100072128A 2010-07-26 2010-07-26 manufacturing method non-sintered TiO2 electrode using TiO2 nano-wire and the TiO2 electrode thereby KR101215546B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100072128A KR101215546B1 (en) 2010-07-26 2010-07-26 manufacturing method non-sintered TiO2 electrode using TiO2 nano-wire and the TiO2 electrode thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100072128A KR101215546B1 (en) 2010-07-26 2010-07-26 manufacturing method non-sintered TiO2 electrode using TiO2 nano-wire and the TiO2 electrode thereby

Publications (2)

Publication Number Publication Date
KR20120010533A true KR20120010533A (en) 2012-02-03
KR101215546B1 KR101215546B1 (en) 2012-12-26

Family

ID=45835013

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100072128A KR101215546B1 (en) 2010-07-26 2010-07-26 manufacturing method non-sintered TiO2 electrode using TiO2 nano-wire and the TiO2 electrode thereby

Country Status (1)

Country Link
KR (1) KR101215546B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206062A (en) * 2016-08-10 2016-12-07 哈尔滨工业大学 A kind of method utilizing hydro-thermal method to prepare titanium oxide nanotubes/carbon/nickel oxide composite material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4471409B2 (en) 1998-10-16 2010-06-02 日本製紙株式会社 Titanium oxide coating composition, method for producing the same, and titanium oxide-carrying sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106206062A (en) * 2016-08-10 2016-12-07 哈尔滨工业大学 A kind of method utilizing hydro-thermal method to prepare titanium oxide nanotubes/carbon/nickel oxide composite material
CN106206062B (en) * 2016-08-10 2018-10-02 哈尔滨工业大学 A method of preparing titanium oxide nanotubes/carbon/nickel oxide composite material using hydro-thermal method

Also Published As

Publication number Publication date
KR101215546B1 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
US20220139635A1 (en) Method for manufacturing dye-sensitized solar cells and solar cells so produced
US10249445B2 (en) Dye-sensitized solar cell including a porous insulation substrate and a method for producing the porous insulation substrate
Kokubo et al. Multi-core cable-like TiO2 nanofibrous membranes for dye-sensitized solar cells
CN107078268A (en) Electrochemical cell with protected negative electrode
US10121607B2 (en) Ceramic separator for ultracapacitors
KR101381705B1 (en) Dye-sensitized solar cell comprising hybrid nano fibers by electrospinning and sprayng as a polymer electrolyte, and the fabrication method thereof
KR20110129373A (en) Dye-sensitized solar cell and method for manufacturing same
KR101406427B1 (en) Conductive polymer-carbon composite electrode for dye sensitized solar cell having catalytic activity and electrical conductivity and dye sensitized solar cell using the same and method for manufacturing thereof
KR101215546B1 (en) manufacturing method non-sintered TiO2 electrode using TiO2 nano-wire and the TiO2 electrode thereby
KR101386148B1 (en) manufacturing method non-sintered TiO2 electrode and the TiO2 electrode thereby
JP2015069824A (en) Laminate, anode electrode for dye-sensitized solar cell, dye-sensitized solar cell, and method of manufacturing laminate
KR20110139432A (en) Photo electrode of wire-mesh coated nano-sized ball and method for manufacturing the same and dye-sensitized photovoltaic cell having the photo electron and method for manufacturing the same
Xu One-step fabrication of carbon fiber derived from waste paper and its application for catalyzing tri-iodide reduction
KR101098018B1 (en) manufacturing mathod of oxide nano particle micro-ball, the oxide nano particle micro-ball thereby and electrode using the oxide nano particle micro-ball
KR101686970B1 (en) Flexible photoelectrode, preparation method thereof and dye-sensitized solar cell comprising the same
JP2011018592A (en) Manufacturing method of electrode for dye-sensitized solar cell, electrode for dye-sensitized solar cell, and dye-sensitized solar cell
BR122017005957B1 (en) DYE SENSITIZED SOLAR CELL INCLUDING AN INSULATING POROUS SUBSTRATE AND METHOD FOR PRODUCTION OF THE INSULATING POROUS SUBSTRATE

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151207

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161219

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181218

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191216

Year of fee payment: 8