KR20110000388A - Cooling method for inverted angle - Google Patents

Cooling method for inverted angle Download PDF

Info

Publication number
KR20110000388A
KR20110000388A KR1020090057855A KR20090057855A KR20110000388A KR 20110000388 A KR20110000388 A KR 20110000388A KR 1020090057855 A KR1020090057855 A KR 1020090057855A KR 20090057855 A KR20090057855 A KR 20090057855A KR 20110000388 A KR20110000388 A KR 20110000388A
Authority
KR
South Korea
Prior art keywords
cooling
angle
trapezoid
water
short side
Prior art date
Application number
KR1020090057855A
Other languages
Korean (ko)
Other versions
KR101140965B1 (en
Inventor
황병일
박규협
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to KR1020090057855A priority Critical patent/KR101140965B1/en
Publication of KR20110000388A publication Critical patent/KR20110000388A/en
Application granted granted Critical
Publication of KR101140965B1 publication Critical patent/KR101140965B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/09L-sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B2045/0221Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for structural sections, e.g. H-beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2263/00Shape of product
    • B21B2263/04Flatness

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Abstract

PURPOSE: A cooling method for an inverted angle is provided to prevent excessive bending of an inverted angle during cooling in the atmosphere by reducing the cooling rate difference of parts. CONSTITUTION: A cooling method for an inverted angle is as follows. An inverted angle comprising flanges of a long side(12) and a short side(14) having different lengths and thickness is subject to finish rolling. The inverted angle(10) is cooled with a water cooling facility(C). The short side is concentrically cooled so that the inverted angle is cooled to the set temperature below Ar3 temperature. The right angle accuracy and flatness of a corner where the long side and the short side of the inverted angle meet together are corrected.

Description

부등변 부등후 앵글의 냉각방법{Cooling method for inverted angle}Cooling method for inverted angle

본 발명은 부등변 부등후 앵글의 냉각방법에 관한 것으로, 특히 길이가 다른 장변과 단변을 갖는 부등변 부등후 앵글을 사상 압연한 후, 수냉설비를 이용하여 단변을 집중 냉각함으로써 최종 압연 단계에 도달하는 시간을 저감할 수 있는 부등변 부등후 앵글의 냉각방법에 관한 것이다.The present invention relates to a method for cooling an inequality angle after an inequality, and more particularly, a time for reaching the final rolling step by intensively cooling the short side by using a water cooling system after finishing rolling an inequality angle after having an elongated side and a short side having different lengths. It relates to a method for cooling the trapezoid angle after the trapezoid which can be reduced.

일반적으로, 부등변 부등후 앵글(inverted angle)은 대형 선박의 갑판, 선체 주요 부분의 용접구조에 사용되는 형강제품으로 용접성이 좋아 선체구조에 적합할 뿐만 아니라, 선박이 대형화되면서 선박의 실톤수를 줄이고, 운항중 충격을 분산하거나 최소화하기 위한 선박부재로 사용하고 있다.In general, the inverted angle is an inverted angle that is used for the welding structure of decks and main parts of large ships. It is suitable for the hull structure because of its good weldability. In addition, it is used as a ship member to disperse or minimize impact during operation.

종래 부등변 부등후 앵글은 형상이 장변(長邊)과 단변(短邊)의 플랜지를 갖는 'ㄱ'자 형태로 형성되고, 각 변의 길이와 두께가 서로 다르게 형성된다.Conventional trapezoidal angles after the inequality are formed in the shape of the letter 'b' having a long side and a short side flange, and the length and thickness of each side are formed differently.

이러한 부등변 부등후 앵글은 가열로를 거쳐 가열된 후에 다수의 압연롤러를 갖는 압연기를 통과하면서 앵글 형태로 형성하고, 이후에 냉각상에서 냉각하고 교정하는 작업을 거친 후에 사용자가 원하는 길이로 절단하는 과정을 갖는다.After the trapezoidal angle, the angle is formed in an angle shape while being heated through a heating furnace and passed through a rolling mill having a plurality of rolling rollers, which is then cooled and cooled on a cooling bed, and then cut into lengths desired by the user. Have

그런데, 기존의 부등변 부등후 앵글은 장변과 단변의 길이 및 두께가 서로 다른 구조적 특성상 동일한 냉각수량이 균일하게 공급되더라도, 장단변 부위의 대기중 냉각속도 차에 의해 변형이 발생하게 된다. 특히, 20m이상의 긴 제품일 경우에는 그 변형량이 더 심해지게 된다.However, in the conventional trapezoidal angle after inequality, even if the same amount of cooling water is uniformly supplied due to the different length and thickness of the long side and the short side, the deformation occurs due to the difference in the cooling rate of the long side. In particular, in the case of a product longer than 20m, the amount of deformation becomes more severe.

이러한 휨이 과다하게 변형된 제품의 경우에는 교정기 치입이 불가능하게 되고, 교정기 치입이 가능하더라도 물결무늬가 형성되는 제품 불량을 야기시키게 된다. In the case of a product that is excessively deformed such a warpage, the insertion of the braces is impossible, and even if the insertion of the braces is possible, a product defect in which a wavy pattern is formed is caused.

또한, 기존의 부등변 부등후 앵글은 이와 같은 장변과 단변의 길이 및 두께가 서로 다른 구조적 특성을 고려하지 않고 사상 압연 후에 바로 최종 압연을 수행하였기 때문에 부등변 부등후 앵글에 과다한 휨이 발생하는 문제가 있고, 이를 방지하기 위해 사상 압연 후 공냉과 같은 냉각공정을 거친 후에 최종 압연을 수행하게 되면, 최종 압연 단계에 도달하는 시간이 증대하여, 그로 인해 오히려 생산성이 저하되는 문제점이 있다. In addition, the conventional post trapezoid angle has a problem that excessive warpage occurs after the trapezoid angle because the final rolling is performed immediately after finishing rolling without considering the structural characteristics having different lengths and thicknesses. In order to prevent this, when the final rolling is performed after a cooling process such as air cooling after finishing rolling, the time to reach the final rolling step is increased, and thus there is a problem in that productivity is lowered.

본 발명은 상기한 제반문제점을 감안하여 이를 해결하고자 제안된 것으로, 그 목적은 길이가 다른 장변과 단변을 갖는 부등변 부등후 앵글을 사상 압연한 후, 수냉설비를 이용하여 단변을 집중 냉각함으로써 최종 압연 단계에 도달하는 시간을 저감할 수 있는 부등변 부등후 앵글의 냉각방법을 제공하는 데 있다.The present invention has been proposed to solve this problem in view of the above-mentioned problems, the object of which is to finish rolling by lateral cooling by using a water-cooling equipment after finishing rolling an inequilateral angle having a long side and a short side having different lengths It is to provide a method for cooling the trapezoid angle after the trapezoid which can reduce the time to reach the step.

상기한 목적을 달성하기 위한 본 발명은 서로 길이와 두께가 다른 단변과 장변의 플랜지를 갖는 부등변 부등후 앵글을 사상 압연하는 단계, 수냉설비를 이용하여 사상 압연된 부등변 부등후 앵글을 수냉하되, 상기 단변을 집중 냉각하여 상기 부등변 부등후 앵글을 Ar3 온도 이하의 소정온도까지 냉각하는 단계 및 냉각된 부등변 부등후 앵글의 장변과 단변이 만나는 모서리의 직각도 및 플랜지의 평탄도를 교정하는 최종 압연 단계를 포함한다. The present invention for achieving the above object is the step of finishing the trapezoidal angle after the trapezoid having a flange of the short side and the long side different in length and thickness from each other, water-cooled the trapezoid isotropic angle after rolling by using a water cooling equipment, Cooling the short sides to cool the trapezoidal angle to a predetermined temperature below Ar 3 temperature, and the final rolling step of correcting the squareness and the flatness of the flange where the long sides and short sides of the cooled trapezoidal angle meet. It includes.

또한, 사상 압연된 부등변 부등후 앵글의 온도는 900℃ 내지 1000℃일 수 있다. In addition, the temperature of the ever-rolled trapezoid angle may be 900 ° C to 1000 ° C.

또한, 상기 부등변 부등후 앵글을 Ar3 온도 이하의 소정온도까지 냉각하는 단계에서는, 상기 부등변 부등후 앵글의 냉각 전 온도 및 냉각 후 온도를 측정하여 수냉설비의 냉각능력을 평가하고, 평가된 수냉설비의 냉각능력에 근거하여 상기 부등변 부등후 앵글을 냉각할 수 있다. In addition, in the step of cooling the trapezoidal angle after the trapezoid to a predetermined temperature below the Ar 3 temperature, the cooling capacity of the water cooling system is evaluated by measuring the temperature before and after the cooling of the trapezoidal angle after the trapezoidal angle, and the evaluated water cooling system The angle after the trapezoid can be cooled based on the cooling capacity of the trapezoid.

또한, 평가된 수냉설비의 냉각능력과 목표로 하는 냉각능력을 비교하여, 상기 수냉설비의 냉각 수량 또는 상기 부등변 부등후 앵글의 상기 수냉설비 내 이송속도를 제어할 수 있다. In addition, by comparing the cooling capacity of the water cooling system and the target cooling capacity, it is possible to control the amount of cooling of the water cooling system or the feed rate in the water cooling system of the angle after the inequality.

본 발명은 부등변 부등후 앵글의 최종 압연 전에 장변과 단변의 온도차 범위를 최소화할 수 있는 냉각속도를 갖도록 온도를 제어한 후에 최종 압연한 것인 바, 이에 따르면 본 발명은 부등변 부등후 앵글의 부위별 냉각 속도 편차를 줄여 냉각상에서 부등변 부등후 앵글의 대기 냉각중 과다하게 휘는 것을 예방할 수 있으므로, 부등변 부등후 앵글의 양단부 휨 발생을 억제시켜 제품 회수율을 향상시키고 대형 사이즈의 부등변 부등후 앵글을 제조할 수 있는 유용한 효과를 갖는다.The present invention is the final rolling after controlling the temperature to have a cooling rate to minimize the temperature difference range between the long side and the short side before the final rolling of the angle after the trapezoidal angle, according to the present invention according to the parts of the angle after the trapezoid By reducing the variation in the cooling rate, it is possible to prevent excessive bending during the atmospheric cooling of the angle after trapezoid inequality in the cooling phase. That has a useful effect.

또한, 본 발명은 부등변 부등후 앵글의 최종 압연 전에 수냉설비를 이용하여 단변을 집중 냉각함으로써 최종 압연 단계에 도달하는 시간을 저감하고, 그로 인해 생산성이 현저히 증대되는 효과가 있다. In addition, the present invention has the effect of reducing the time to reach the final rolling step by intensive cooling of the short side by using the water cooling equipment before the final rolling of the trapezoid angle after the trapezoid, thereby increasing the productivity significantly.

이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하면 다음과 같다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 연주설비에서 이송된 철강 반제품인 압연소재를 가열로측으로 통과시키면서 가열한 후에, 가열된 압연소재를 조압연, 중간압연, 사상압연을 구성하는 다수개의 압연기 측으로 통과시켜 압연하는 제조공정을 갖는다. The present invention is a manufacturing process for rolling the rolled material, which is a semi-finished steel product transferred from the performance equipment to the furnace side, while heating it, and then passing the heated rolled material to the side of the plurality of rolling mills consisting of rough rolling, intermediate rolling and finishing rolling. Have

보다 상세하게는 장변(長邊)과 단변(短邊)의 플랜지를 갖는 'ㄱ'자 형상을 갖는 부등변 부등후 앵글을 제조하기 위해, 다수개의 압연기로 2단식 상, 하 압연롤을 가지는 2단 압연기를 사용한다. More specifically, in order to produce an isosceles angled post-angular angle having a '-' shape having a long side and a short side flange, two stages having a two-stage up and down rolling roll with a plurality of rolling mills. Use a rolling mill.

사용되는 압연 방식으로 탠덤 밀(Tandem Mill)을 이용할 수 있는데, 탠덤 밀은 소재가 나란히 배열된 압연기를 연속해서 통과하는 조압연 중간압연 사상압연을 통해 제작하는 설비로써, 상기한 탠덤 밀 방식을 통해 부등변 부등후 앵글을 제조할 경우, 사상압연 후 제품의 온도는 900℃ 내지 1000℃ 이 되고, 사상압연 후 제품의 온도가 상기와 같이 너무 높은 경우에는 최종 압연을 수행하기에 앞서 부등변 부등후 앵글의 온도를 Ar3 온도 이하로 냉각할 필요가 있다. Tandem mill can be used as a rolling method used, a tandem mill is a facility that is produced by rough rolling medium rolling filament rolling continuously passing through rolling mills in which materials are arranged side by side, the tandem mill method In the case of manufacturing the trapezoid after the trapezoid, the temperature of the product after finishing rolling becomes 900 ° C to 1000 ° C, and if the temperature of the product after the stripping is too high as described above, before the final rolling, It is necessary to cool the temperature below the Ar 3 temperature.

왜냐하면, 사상압연 후 제품의 온도가 상기와 같이 너무 높은 경우에는 냉각상에서 냉각할 경우 과도한 휨이 발생할 수 있고, 또한 후술하는 바와 같이 부등변 부등후 앵글의 휨 발생의 주요 원인은 장변과 단변의 서로 다른 두께에 의한 냉각속도 차이에 기인한 오스테나이트-페라이트 변태 온도(이하, Ar3 온도) 도달 시간 차이에 있기 때문이다. Because, after finishing rolling, if the temperature of the product is too high as described above, excessive cooling may occur when cooling on the cooling bed, and as described below, the main cause of the bending of the angle after inequality is different from the long side and the short side. This is because the austenite-ferrite transformation temperature (hereinafter referred to as Ar 3 temperature) is due to the difference in time of arrival due to the difference in cooling rate by thickness.

도 1은 일반적인 탄소강의 연속냉각과정을 나타낸 그래프, 도 2는 부등변 부등후 앵글의 장/단변 두께차에 따른 냉각 과정중 온도 강하 차를 나타낸 그래프, 도 3은 부등변 부등후 앵글의 경과시간에 따른 냉각 휨 과정의 연속 변화를 나타낸 구성도, 도 4는 도 3의 냉각과정중 변형량의 변화 과정을 나타낸 그래프이다. 1 is a graph illustrating a continuous cooling process of a typical carbon steel, FIG. 2 is a graph showing a temperature drop difference during cooling according to a long / short side thickness difference of an isosceles inequality angle, and FIG. 3 is an elapsed time of an isosceles inequality angle. 4 is a diagram illustrating a change process of the deformation amount during the cooling process of FIG. 3.

부등변 부등후 앵글(10)은 장변(12)과 단변(14)의 길이 및 두께가 다른 형상 의 구조적 특성상 공냉 중에 서로 다른 냉각속도를 가지게 되어 변형된다.After the inequality, the inequality angle 10 is deformed to have different cooling rates during air cooling due to structural features of different lengths and thicknesses of the long side 12 and the short side 14.

도 1에 도시된 바와 같이, 사상압연 후 공냉을 통한 탄소강의 연속냉각과정 중 장변(12)과 단변(14)의 냉각속도 차이와 연속냉각과정에서 (-)선 팽창계수에 의해 변형이 발생하게 되고, 이러한 상변태에 의한 (-)선 팽창계수는 이러한 변형을 더 크게 하는 원인이 된다.As shown in FIG. 1, the cooling rate difference between the long side 12 and the short side 14 during continuous cooling of the carbon steel through air cooling after finishing rolling and the deformation caused by the negative expansion coefficient in the continuous cooling process. The negative expansion coefficient due to this phase transformation causes the deformation to be larger.

즉 탄소강의 연속냉각과정중 Ar3→Ar1 사이에서 선 팽창계수가 (-)가 되는 영역이 존재하게 되고, 도 2에 도시된 바와 같이 사상 압연직후(a) 일정 시간이 경과함(b-c)에 따라 장단변의 온도 차이가 점차 커지다가 완전 냉각된 후(d)에는 온도차가 0가 되는 구간이 발생하게 된다.That is, a region having a linear expansion coefficient (-) exists between Ar 3 → Ar 1 during the continuous cooling process of carbon steel, and as shown in FIG. 2, immediately after finishing rolling (a), a predetermined time has elapsed (bc) As a result, the temperature difference between the long and short sides gradually increases, and after completely cooling (d), a section in which the temperature difference becomes zero occurs.

이에 따른 휨량의 변화는 도 3 및 도 4에 도시된 바와 같이, 사상압연이 완료된 후(a)에 60초 경과후(b) 장변(12)측이 변태점 부근에서 팽창하여 (+)휨량이 발생하게 되고, 300초 경과후(c) 단변(14)측이 변태점 부근에서 팽창하여 (+)휨량이 (-)휨량으로 변화되며, 이후 단변(14)측의 변태 종료시 장변(12)에 비하여 고온을 갖는 단변(14)의 냉각속도가 장변(12)의 냉각속도보다 상대적으로 빠르기 때문에 다시 (+)측으로 휘게 되고 3000초 경과후(d) 완전 냉각되어 h 만큼의 휨이 발생한다. 3 and 4, the change in the amount of warpage results in (a) after 60 seconds have passed after finishing rolling (b) and the long side 12 side expands near the transformation point to generate a positive amount of warpage. After 300 seconds, (c) the short side 14 side expands in the vicinity of the transformation point so that the positive deflection amount changes to the negative deflection amount, and then the high temperature of the short side 14 at the end of the transformation on the short side 14 is higher than that of the long side 12. Since the cooling speed of the short side 14 having a relatively faster than the cooling speed of the long side 12, it is bent to the (+) side again, after 3000 seconds have elapsed (d) completely cooled to h bend occurs.

특히, 길이가 20m이상의 긴 제품의 경우에는 양 끝단부 냉각속도가 중앙부위보다 빠르게 냉각되어 양 끝단부 물성치가 저하되므로, 양 끝단부의 일부(1.0~2.5m)정도를 절단하고, 절단된 부위는 버리고 있는 실정이다.Particularly, in case of long product over 20m in length, the cooling speed of both ends is cooled faster than the central part, so the property of both ends is lowered. Therefore, part (1.0 ~ 2.5m) of both ends is cut and the cut part is I'm throwing it away.

이에 따라 제품 회수율이 저하되어 생산성이 저하되는 문제점이 있을 뿐만 아니라, 길이가 긴 대형 제품의 경우에는 휨량이 과다하게 발생하여 제조상의 제약이 있는 문제점이 있다. Accordingly, there is a problem that the product recovery rate is lowered and the productivity is lowered, and in the case of a large product having a long length, an excessive amount of warpage occurs and there is a problem in manufacturing.

또한, 부등변 부등후 앵글(10)의 최종 압연 전에 상기와 같은 공냉을 통해 부등변 부등후 앵글(10)을 냉각하게 되면 최종 압연 단계에 도달하는 시간이 지연되어 생산성이 저하된다. In addition, when the trapezoid angle 10 is cooled through the air cooling as described above before the final rolling of the trapezoid angle 10, the time to reach the final rolling step is delayed, thereby decreasing productivity.

따라서, 본 발명에 따른 부등변 부등후 앵글(10)의 냉각방법은, 전술한 바와 같이 서로 길이와 두께가 다른 단변(14)과 장변(12)의 플랜지를 갖는 부등변 부등후 앵글(10)을 사상 압연하는 단계 후에, 수냉설비(C)를 이용하여 사상 압연된 부등변 부등후 앵글(10)을 Ar3 온도 이하로 냉각한다. Therefore, in the method of cooling the trapezoidal angle 10 after the trapezoid according to the present invention, as described above, the trapezoidal angle 10 having the flanges of the short side 14 and the long side 12 different in length and thickness from each other is mapped. After the rolling step, by using the water-cooling device (C), the ever-rolled trapezoidal angle after inequality angle 10 is cooled to below Ar 3 temperature.

전술한 바와 같이, 부등변 부등후 앵글의 휨 발생의 주요 원인은 장변과 단변의 서로 다른 두께에 의한 냉각속도 차이에 기인한 오스테나이트-페라이트 변태 온도(이하, Ar3 온도) 도달 시간 차이에 있기 때문이다. As mentioned above, the main cause of the warpage of the angle after the trapezoid is due to the difference in arrival time of the austenite-ferrite transformation temperature (hereinafter referred to as Ar 3 temperature) due to the difference in cooling rates due to the different thicknesses of the long side and the short side. to be.

도 5는 본 발명에 따른 부등변 부등후 앵글의 냉각수 공급구조를 나타낸 구성도, 도 6은 본 발명에 따른 부등변 부등후 앵글의 최종 압연 공정을 도시한 구성도이다. Figure 5 is a configuration diagram showing the cooling water supply structure of the trapezoid angle angle trap according to the present invention, Figure 6 is a block diagram showing the final rolling process of the trapezoid angle angle trap in accordance with the present invention.

사상 압연된 부등변 부등후 앵글(10)을 도 5에 도시된 냉각설비(C)의 내부로 이송하면서 부등변 부등후 앵글(10)의 단변(14)과 장변(12) 부위에 냉각수를 공급하여 급속 냉각시킨다. Rapidly-rolled trapezoidal angle after inequality angle (10) is transferred to the inside of the cooling facility (C) shown in FIG. 5 while supplying coolant to the short side (14) and long side (12) of the trapezoidal side inequality angle (10) Cool.

이 때, 도 1 내지 도 4를 통해 살펴본 바와 같은, 부등변 부등후 앵글(10)의 장변(12)과 단변(14)의 냉각속도 차이로 인한 변형을 고려하여, 단변(14)에 대한 냉각 수량을 장변(12)보다 많게 하여 단변(14)을 집중 냉각한다. At this time, considering the deformation caused by the difference in the cooling rate of the long side 12 and the short side 14 of the inequality side 10 after the inequality side as shown through FIGS. 1 to 4, the cooling amount for the short side 14 The length of the short side 14 is increased by making more than the long side 12.

장변(12)보다 상대적으로 단변(14)을 집중 냉각하기 위하여, 도 5에 도시된 냉각수 공급 노즐(C1,C2,C3) 중 단변(14)의 양면을 향해 2개의 노즐 즉, C1과 C2를 이용하고, 장변(12)의 일면을 향해 1개의 노즐 즉, C3를 이용한다. In order to cool the short side 14 relatively than the long side 12, two nozzles C1 and C2 are directed toward both sides of the short side 14 of the cooling water supply nozzles C1, C2, and C3 shown in FIG. 5. 1 nozzle, that is, C3, is used toward one surface of the long side 12.

전술한 바와 같이, 단변(14)을 집중 냉각하는 방식으로 부등변 부등후 앵글(10)을 Ar3 온도 이하의 소정온도까지 냉각한다. As described above, the inequality-side inequality angle 10 is cooled to a predetermined temperature equal to or lower than the Ar 3 temperature in a manner of intensive cooling of the short side 14.

이와 같이, 수냉설비(C)를 이용하여 사상 압연된 부등변 부등후 앵글(10)을 수냉하여 부등변 부등후 앵글(10)을 Ar3 온도 이하의 소정온도까지 냉각하는 데 소요되는 시간은 공냉을 이용할 때 소요되는 시간보다 훨씬 감소되고, 그로 인해 생산성이 현저히 증대된다. 여기서, 상기 Ar3 온도 이하의 소정온도는, 최종 압연을 수행하기에 적합한 온도로 각 공정의 세부조건, 부등변 부등후 앵글를 구성하는 원소의 함유량 등을 고려하여 당업자에 의해 선택 가능한 온도이다. As such, the time required for cooling the trapezoidal angled inequality angle 10 rolled by using the water cooling system C to cool the trapezoidal angle 10 after the trapezoidal inequality to a predetermined temperature equal to or lower than the Ar 3 temperature is used for air cooling. It is much less than the time required, which leads to a marked increase in productivity. Here, the predetermined temperature below the Ar 3 temperature is a temperature suitable for performing the final rolling, and is a temperature that can be selected by a person skilled in the art in consideration of the detailed conditions of each process, the content of the elements constituting the post-equivalent angle, and the like.

한편, 수냉설비(C)를 이용하여 부등변 부등후 앵글(10)을 수냉하는 단계에서는, 열화상 카메라 또는 적외선 카메라 등을 이용하여 부등변 부등후 앵글(10)의 냉각 전 온도 및 냉각 후 온도를 측정하여 수냉설비(C)의 냉각능력을 평가한다. On the other hand, in the step of water-cooling the trapezoid angle 10 after the trapezoid using the water cooling equipment (C), the temperature before and after the cooling of the trapezoid angle 10 is measured using a thermal imaging camera or an infrared camera. To evaluate the cooling capacity of the water cooling system (C).

목표로 하는 부등변 부등후 앵글(10)의 냉각 전, 후의 온도에 관한 데이터를 이용하여 목표로 하는 냉각능력을 설정하고, 실제 측정된 부등변 부등후 앵 글(10)의 냉각 전 온도 및 냉각 후 온도로부터 현재의 냉각능력을 평가한다.  The target cooling capacity is set by using data on the temperature before and after cooling of the target trapezoidal angle after inequality 10, and the actual measured temperature before and after cooling of the trapezoidal angle 10 after measurement Evaluate the current cooling capacity from

구체적으로, 수냉설비(C)를 이용한 냉각을 수행하는 경우 부등변 부등후 앵글(10)의 냉각 전 온도 및 냉각 후 온도로부터 현재의 냉각능력을 평가할 수 있다. Specifically, when performing the cooling using the water cooling system (C) it is possible to evaluate the current cooling capacity from the pre-cooling temperature and the post-cooling temperature of the post trapezoid angle 10.

이 경우, 평가된 현재의 수냉설비(C)의 냉각능력이 목표로 하는 냉각능력보다 큰 경우에는 수냉설비(C)에서의 냉각수량을 감소시키거나 부등변 부등후 앵글(10)의 수냉설비(C) 내 이송속도를 증가시켜 목표 온도에 도달하게 한다. In this case, when the cooling capacity of the current water cooling equipment C evaluated is larger than the target cooling capacity, the amount of cooling water in the water cooling equipment C is reduced or the water cooling equipment C of the angle 10 after the inequality is inclined. Increase feed speed in the cylinder to reach the target temperature.

반대로 평가된 현재의 수냉설비(C)의 냉각능력이 목표로 하는 냉각능력보다 작은 경우에는 수냉설비(C)에서의 냉각수량을 증가시키거나 부등변 부등후 앵글(10)의 수냉설비(C) 내 이송속도를 감소시켜 목표 온도에 도달하게 한다. On the contrary, if the current cooling capacity of the water cooling system C is smaller than the target cooling capacity, increase the amount of cooling water in the water cooling system C or increase the amount of cooling water in the water cooling system C of the angle 10 after inequality. Reduce feed rate to reach target temperature.

이처럼, 수냉설비(C)의 냉각능력을 평가하여 수냉설비(C)의 냉각수량 또는 부등변 부등후 앵글(10)의 수냉설비(C) 내 이송속도를 제어함으로써 목표로 하는 수냉설비(C)의 냉각능력을 일정하게 유지할 수 있는 이점이 있다. Thus, by evaluating the cooling capacity of the water cooling equipment (C) by controlling the amount of cooling water of the water cooling equipment (C) or the feed rate in the water cooling equipment (C) of the angle 10 after the trapezoidal inequality of the target water cooling equipment (C) There is an advantage that can maintain a constant cooling capacity.

평가된 수냉설비(C)의 냉각능력에 근거하여 사상 압연된 부등변 부등후 앵글(10)을 냉각하고, 냉각된 부등변 부등후 앵글(10)은 최종 압연 단계를 거친다. Based on the cooling capacity of the water-cooling facility (C) evaluated, the ever-rolled trapezoidal angle after inequality 10 is cooled, and the cooled trapezoidal angle 10 is subjected to a final rolling step.

최종 압연 단계는 스킨패스(skin pass)압연이라고도 하며, 사상 압연 후 냉각된 부등변 부등후 앵글(10)의 형상을 좋게 하기 위한 압연이다. The final rolling step is also referred to as skin pass rolling, and is a rolling for improving the shape of the post-equivalent angle 10 cooled after finishing rolling.

최종 압연 단계는 냉각된 부등변 부등후 앵글(10)의 장변(12)와 단변(14)가 만나는 모서리(13)의 직각도 및 플랜지(12a, 14a)의 평탄도를 교정하는 것으로, 이를 통해 등변 부등후 앵글(10)에 발생한 형상결함을 제거할 수 있다. The final rolling step is to correct the squareness of the edge 13 and the flatness of the flanges 12a and 14a where the long side 12 and the short side 14 of the cooled isosceles after an inequality angle 10 meet. After the inequality, a shape defect occurring in the angle 10 can be removed.

이 경우, 모서리(13)의 직각도를 높이기 위해 부등변 부등후 앵글(10)에 대 해 압하를 부여하지 않고, 플랜지(12a, 14a)의 단부를 눌러 절곡된 모서리(13) 부분을 직각상태로 교정한다. 또한 플랜지(12a, 14a)의 평탄도를 교정하기 위해서 플랜지(12a, 14a) 단부에 경압하를 부여하여 플랜지(12a, 14a)를 평평하게 펼 수 있다. In this case, in order to increase the squareness of the edge 13, the bent edge 13 portion is pressed at right angles by pressing the ends of the flanges 12a and 14a without imparting a pressure reduction to the angle 10 after an inequality. Correct. In addition, in order to correct the flatness of the flanges 12a and 14a, the flanges 12a and 14a can be flattened by giving a light pressure to the ends of the flanges 12a and 14a.

본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

도 1은 일반적인 탄소강의 연속냉각과정을 나타낸 그래프, 1 is a graph showing a continuous cooling process of a typical carbon steel,

도 2는 부등변 부등후 앵글의 장/단변 두께차에 따른 냉각 과정중 온도 강하 차를 나타낸 그래프, 2 is a graph showing the temperature drop difference during the cooling process according to the long / short side thickness difference of the angle after the trapezoid,

도 3은 부등변 부등후 앵글의 경과시간에 따른 냉각 휨 과정의 연속 변화를 나타낸 구성도, 3 is a configuration diagram showing a continuous change in the cooling bending process according to the elapsed time of the angle after the trapezoid

도 4는 도 3의 냉각과정중 변형량의 변화 과정을 나타낸 그래프,4 is a graph showing a change process of the deformation amount during the cooling process of FIG.

도 5는 본 발명에 따른 부등변 부등후 앵글의 냉각수 공급구조를 나타낸 구성도이다. Figure 5 is a block diagram showing a cooling water supply structure of the trapezoid angle after the trapezoid according to the present invention.

<도면의 주요 부분에 관한 부호의 간단한 설명>BRIEF DESCRIPTION OF THE DRAWINGS Fig.

10 : 부등변 부등후 앵글 12 : 장변10: inequilateral angle after inequality 12: long side

14 : 단변 C : 수냉설비14: short side C: water cooling system

C1,C2,C3 : 냉각수 공급노즐 C1, C2, C3: Cooling water supply nozzle

Claims (4)

서로 길이와 두께가 다른 단변과 장변의 플랜지를 갖는 부등변 부등후 앵글을 사상 압연하는 단계;Finishing rolling an isosceles angled post-angular angle having flanges of short and long sides different in length and thickness from each other; 수냉설비를 이용하여 사상 압연된 부등변 부등후 앵글을 수냉하되, 상기 단변을 집중 냉각하여 상기 부등변 부등후 앵글을 Ar3 온도 이하의 소정온도까지 냉각하는 단계; 및Cooling water after the trapezoidal trapezoidal angle after rolling by using a water cooling system, and cooling the short side to the predetermined temperature below an Ar 3 temperature by intensive cooling of the short side; And 냉각된 부등변 부등후 앵글의 장변과 단변이 만나는 모서리의 직각도 및 플랜지의 평탄도를 교정하는 최종 압연 단계를 포함하는 것을 특징으로 하는 부등변 부등후 앵글의 냉각방법.And a final rolling step of correcting the squareness of the corner where the long side and the short side of the cooled trapezoidal angle meet and the flatness of the flange. 청구항 1에 있어서,The method according to claim 1, 사상 압연된 부등변 부등후 앵글의 온도는 900℃ 내지 1000℃인 것을 특징으로 하는 것을 특징으로 하는 부등변 부등후 앵글의 냉각방법.Cooling method of the trapezoid angle after the trapezoid is characterized in that 900 ° C to 1000 ° C. 청구항 1에 있어서,The method according to claim 1, 상기 부등변 부등후 앵글을 Ar3 온도 이하의 소정온도까지 냉각하는 단계에서는, In the step of cooling the trapezoid after an inequality to a predetermined temperature below the Ar 3 temperature, 상기 부등변 부등후 앵글의 냉각 전 온도 및 냉각 후 온도를 측정하여 수냉 설비의 냉각능력을 평가하고, 평가된 수냉설비의 냉각능력에 근거하여 상기 부등변 부등후 앵글을 냉각하는 것을 특징으로 하는 부등변 부등후 앵글의 냉각방법.After measuring the temperature before and after cooling of the trapezoidal angle, the cooling capacity of the water-cooling plant is evaluated, and the trapezoid isosceles after the trapezoid is cooled based on the cooling capacity of the water-cooling plant. Cooling method of angle. 청구항 3에 있어서,The method according to claim 3, 평가된 수냉설비의 냉각능력과 목표로 하는 냉각능력을 비교하여, 상기 수냉설비의 냉각수량 또는 상기 부등변 부등후 앵글의 상기 수냉설비 내 이송속도를 제어하는 것을 특징으로 하는 부등변 부등후 앵글의 냉각방법.By comparing the cooling capacity of the water cooling system and the target cooling capacity of the evaluated water cooling system, the cooling method of the water cooling system or the feed rate of the trapezoidal angle after the trapezoidal inequality angle is controlled. .
KR1020090057855A 2009-06-26 2009-06-26 Cooling method for inverted angle KR101140965B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090057855A KR101140965B1 (en) 2009-06-26 2009-06-26 Cooling method for inverted angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090057855A KR101140965B1 (en) 2009-06-26 2009-06-26 Cooling method for inverted angle

Publications (2)

Publication Number Publication Date
KR20110000388A true KR20110000388A (en) 2011-01-03
KR101140965B1 KR101140965B1 (en) 2012-05-03

Family

ID=43609252

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090057855A KR101140965B1 (en) 2009-06-26 2009-06-26 Cooling method for inverted angle

Country Status (1)

Country Link
KR (1) KR101140965B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11779153B2 (en) 2019-12-11 2023-10-10 The Cashmere Caveman Co, Wild Kitchens Limited Heating table with adjustable-height grill
US11821635B2 (en) 2020-09-18 2023-11-21 The Cashmere Caveman Co, Wild Kitchens Limited Table having a heating appliance
US11896159B2 (en) 2019-12-11 2024-02-13 The Cashmere Caveman Co, Wild Kitchens Limited Heating table with adjustable-height grill

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100854895B1 (en) 2007-10-23 2008-08-28 현대제철 주식회사 Apparatus for producing inverted angle and method thereof
JP2009119512A (en) * 2007-11-16 2009-06-04 Sumitomo Metal Ind Ltd Method and apparatus for cooling flange of t-shape

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11779153B2 (en) 2019-12-11 2023-10-10 The Cashmere Caveman Co, Wild Kitchens Limited Heating table with adjustable-height grill
US11896159B2 (en) 2019-12-11 2024-02-13 The Cashmere Caveman Co, Wild Kitchens Limited Heating table with adjustable-height grill
US11937738B2 (en) 2019-12-11 2024-03-26 The Cashmere Caveman Co, Wild Kitchens Limited Heating table with adjustable-height grill
US11821635B2 (en) 2020-09-18 2023-11-21 The Cashmere Caveman Co, Wild Kitchens Limited Table having a heating appliance

Also Published As

Publication number Publication date
KR101140965B1 (en) 2012-05-03

Similar Documents

Publication Publication Date Title
US4785646A (en) Method of cooling hot-rolled steel plate
TWI433736B (en) Method and equipment for flatness control in cooling a stainless steel strip
EP2412455A1 (en) Steel plate manufacturing equipment and method of manufacturing
WO2001036122A1 (en) Metal plate flatness controlling method and device
KR101140965B1 (en) Cooling method for inverted angle
JP6327208B2 (en) Heating furnace extraction temperature prediction method and heating furnace extraction temperature prediction apparatus for billets
US9566625B2 (en) Apparatus for cooling hot-rolled steel sheet
EP2929949B1 (en) Device for cooling hot-rolled steel sheet
WO2011042934A1 (en) Cooling apparatus and cooling method for hot rolling
JP2006281300A (en) Cooling control method, device, and computer program
JP6897609B2 (en) Hot rolling equipment and hot-rolled steel sheet manufacturing method
JP6699688B2 (en) Hot rolled steel sheet manufacturing method
JP6295932B2 (en) Metal strip shape control method and shape control apparatus
JP3551129B2 (en) Manufacturing method and manufacturing equipment for hot rolled steel strip
KR101140901B1 (en) Colling method for inverted angle
JP5482365B2 (en) Steel sheet cooling method, manufacturing method and manufacturing equipment
JP2018047483A (en) Shape control method of metal strip and shape control device
JP2003277833A (en) Method and device for manufacturing metal plate
KR101003243B1 (en) Control colling method for inverted angle
JP4714628B2 (en) Thick steel plate cooling equipment row and cooling method
JPH10202301A (en) Manufacture of t-shape steel
KR20120033022A (en) Method for manufacturing shape steel comprising pre-cooling process and shape steel rolling mill using the same
WO2022176366A1 (en) Method for predicting shape of steel sheet, shape control method, manufacturing method, method for generating shape prediction model, and manufacturing equipment
JP7424554B1 (en) Metal strip manufacturing equipment, metal strip pass/fail judgment method, and metal strip manufacturing method
JP2005074480A (en) Facility for producing hot-rolled steel plate, and its production method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160330

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170410

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180405

Year of fee payment: 7