JP2018047483A - Shape control method of metal strip and shape control device - Google Patents

Shape control method of metal strip and shape control device Download PDF

Info

Publication number
JP2018047483A
JP2018047483A JP2016183667A JP2016183667A JP2018047483A JP 2018047483 A JP2018047483 A JP 2018047483A JP 2016183667 A JP2016183667 A JP 2016183667A JP 2016183667 A JP2016183667 A JP 2016183667A JP 2018047483 A JP2018047483 A JP 2018047483A
Authority
JP
Japan
Prior art keywords
shape
metal strip
cooling
metal
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016183667A
Other languages
Japanese (ja)
Inventor
北村 拓也
Takuya Kitamura
拓也 北村
舘野 純一
Junichi Tateno
純一 舘野
木島 秀夫
Hideo Kijima
秀夫 木島
慎也 山口
Shinya Yamaguchi
慎也 山口
裕史 津山
Yushi Tsuyama
裕史 津山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016183667A priority Critical patent/JP2018047483A/en
Publication of JP2018047483A publication Critical patent/JP2018047483A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a shape control method of a metal strip which can control a metal strip shape after cooled down to a normal temperature within a target range over the whole length when hot-rolling the metal strip, and a shape control device.SOLUTION: This shape control method of a metal strip includes: a prediction step for predicting a shape change which occurs in each position of the metal strip in a longitudinal direction when cooling the hot-rolled metal strip by a finish rolling mill to a normal temperature in a coil yard; and a control step for setting a target shape of the metal strip when cooled to the normal temperature so as to compensate for the shape change which is predicted in the prediction step according to the position of the metal strip in a longitudinal direction, and controlling a shape of the metal strip when cooled to the normal temperature to the target shape by controlling coil yard cooling equipment.SELECTED DRAWING: Figure 4

Description

本発明は、金属帯の形状制御方法及び形状制御装置に関する。   The present invention relates to a metal strip shape control method and a shape control device.

近年、形状が平坦な金属帯が需要家から求められており、図11(a),(b)に示すような金属帯Sにおける腹伸びや耳波等の形状に対しても許容限度が厳しくなり、金属帯形状に対する品質保証は重要な課題となっている。また、熱間圧延工程以後の工程においても、金属帯の形状不良は通板トラブルの原因になり得るため、最終製品以外でも平坦な金属帯形状が求められる。   In recent years, a metal strip having a flat shape has been demanded by customers, and the allowable limit is strict even for the shape of an abdominal stretch or an ear wave in the metal strip S as shown in FIGS. 11 (a) and 11 (b). Therefore, quality assurance for the metal strip shape is an important issue. Also, in the processes after the hot rolling process, a defective shape of the metal strip can cause a trouble in passing the plate, and therefore, a flat metal strip shape is required even for other than the final product.

このような背景から、金属帯の熱間圧延工程では、金属帯形状を目標範囲内に制御できるように、ロールベンダー、ロールクロス、ロールシフト等を備えたクラウン・形状制御能力の高い圧延機が導入されている。このような圧延機によれば、ロールベンダー量、クロス角、及びシフト量の操作によってロールプロファイルを適切に設定することにより、高精度の形状・クラウン制御を実現できる。   Against this background, in the hot rolling process for metal strips, a rolling mill with high crown and shape control capability equipped with a roll bender, roll cloth, roll shift, etc. is provided so that the metal strip shape can be controlled within the target range. Has been introduced. According to such a rolling mill, highly accurate shape / crown control can be realized by appropriately setting the roll profile by manipulating the roll bender amount, the cross angle, and the shift amount.

しかしながら、仕上圧延工程直後の金属帯形状が目標範囲内であっても、熱歪み、変態膨張、クリープ変形等の要因によって、その後のランアウトテーブル以後の工程で金属帯形状が変化する場合がある。この場合、仕上圧延工程直後では金属帯形状が目標範囲内であっても、常温まで冷却する過程において金属帯形状が変化して目標範囲外になる場合がある。金属帯形状が目標範囲内にない場合には、スキンパス圧延等による金属帯の形状矯正が行われるが、工程追加によるコスト増加や期間延長といった生産性の低下が生じる。   However, even if the metal strip shape immediately after the finish rolling step is within the target range, the metal strip shape may change in the subsequent steps after the run-out table due to factors such as thermal distortion, transformation expansion, and creep deformation. In this case, even if the metal band shape is within the target range immediately after the finish rolling step, the metal band shape may change in the process of cooling to room temperature and may be outside the target range. When the metal band shape is not within the target range, the metal band shape is corrected by skin pass rolling or the like. However, productivity decreases due to cost increase and period extension due to additional processes.

このような問題を解決するために、特許文献1には、仕上圧延機の出側における金属帯形状を初期値として、ランアウトテーブルでの冷却、コイラーによる巻取、及びコイルヤードでの冷却の各工程において金属帯の変形解析を行うことによって金属帯を常温まで冷却した後の金属帯形状を予測し、仕上圧延機のロールベンダーやロールクロス等を用いた圧延による形状制御手法によって予測した金属帯の形状変化を補償することにより、金属帯形状を目標範囲内に制御する方法が提案されている。   In order to solve such a problem, Patent Document 1 includes, as an initial value, the shape of the metal strip on the exit side of the finish rolling mill, cooling by a runout table, winding by a coiler, and cooling by a coil yard. Predict the metal band shape after cooling the metal band to room temperature by performing deformation analysis of the metal band in the process, and predict the metal band by the shape control method by rolling using the roll bender or roll cloth of the finishing mill There has been proposed a method of controlling the metal band shape within a target range by compensating for the shape change.

特開2007−216246号公報JP 2007-216246 A 特開2006−224177号公報JP 2006-224177 A

片田 中著「鋼材の強制冷却」日本鉄鋼協会編、1978年、p.16-19Katada Chu, "Forced Cooling of Steel", Japan Iron and Steel Institute, 1978, p.16-19

しかしながら、特許文献1に記載の仕上圧延機による金属帯の形状制御方法では、ロールベンダーやロールクロス等の性能が十分でなく、ロールベンダーやロールクロス等による形状制御量が必要とする形状修正量よりも小さい場合、十分な形状制御が行えず、常温まで冷却後の金属帯形状を全長にわたり目標範囲内に制御することができない。   However, in the shape control method of the metal strip by the finish rolling mill described in Patent Document 1, the performance of roll bender, roll cloth, etc. is not sufficient, and the shape correction amount required by the shape control amount by roll bender, roll cross, etc. If it is smaller than this, sufficient shape control cannot be performed, and the metal band shape after cooling to room temperature cannot be controlled within the target range over the entire length.

本発明は、上記課題に鑑みてなされたものであって、その目的は、金属帯の熱間圧延に際して、常温まで冷却後の金属帯形状を全長にわたり目標範囲内に制御可能な金属帯の形状制御方法及び形状制御装置を提供することにある。   The present invention has been made in view of the above problems, and the object thereof is to shape the metal strip that can be controlled within the target range over the entire length of the metal strip after cooling to room temperature during hot rolling of the metal strip. A control method and a shape control device are provided.

本発明に係る金属帯の形状制御方法は、仕上圧延機による熱間圧延後の金属帯をコイルヤードにおいて常温まで冷却した際に金属帯の長手方向の各位置において発生する形状変化を予測する予測ステップと、前記予測ステップにおいて予測された金属帯の形状変化を補償するように常温まで冷却した際の金属帯の目標形状を金属帯の長手方向位置に応じて設定し、コイルヤード冷却設備を制御することによって常温まで冷却した際の金属帯形状を前記目標形状に制御する制御ステップと、を含むことを特徴とする。   The metal strip shape control method according to the present invention predicts a shape change that occurs at each position in the longitudinal direction of the metal strip when the metal strip after hot rolling by a finishing mill is cooled to room temperature in a coil yard. And setting the target shape of the metal band when it is cooled to room temperature so as to compensate for the metal band shape change predicted in the prediction step, and controlling the coil yard cooling equipment And a control step for controlling the shape of the metal strip when cooled to room temperature to the target shape.

本発明に係る金属帯の形状制御方法は、上記発明において、前記制御ステップは、前記仕上圧延機の出側に設けられたランアウトテーブル上の冷却装置を制御することによって常温まで冷却した際の金属帯形状を前記目標形状に制御するステップを含むことを特徴とする。   The shape control method of the metal strip according to the present invention is the above-described invention, wherein the control step is performed when the metal is cooled to room temperature by controlling a cooling device on a run-out table provided on the exit side of the finishing mill. The step of controlling the band shape to the target shape is included.

本発明に係る金属帯の形状制御方法は、上記発明において、前記予測ステップは、前記仕上圧延機の出側における金属帯の温度及び平坦度を初期値として、ランアウトテーブルでの冷却、コイラー巻取、及びコイル冷却の各過程での金属帯の温度及び応力・歪み成分を相変態と共に解析することによって、金属帯の長手方向の各位置において発生する形状変化を予測するステップを含むことを特徴とする。   In the metal strip shape control method according to the present invention, in the above invention, the predicting step uses a temperature and flatness of the metal strip on the delivery side of the finish rolling mill as initial values, cooling on a runout table, and coiler winding. And a step of predicting a shape change occurring at each position in the longitudinal direction of the metal band by analyzing the temperature and stress / strain components of the metal band in each process of coil cooling together with the phase transformation. To do.

本発明に係る金属帯の形状制御装置は、仕上圧延機による熱間圧延後の金属帯をコイルヤードにおいて常温まで冷却した際に金属帯の長手方向の各位置において発生する形状変化を予測する予測手段と、前記予測手段によって予測された金属帯の形状変化を補償するように常温まで冷却した際の金属帯の目標形状を金属帯の長手方向位置に応じて設定し、コイルヤード冷却設備を制御することによって常温まで冷却した際の金属帯形状を前記目標形状に制御する制御手段と、を備えることを特徴とする。   The shape control device for a metal strip according to the present invention predicts a shape change that occurs at each position in the longitudinal direction of a metal strip when the metal strip after hot rolling by a finish rolling mill is cooled to room temperature in a coil yard. And the target shape of the metal band when it is cooled to room temperature so as to compensate for the shape change of the metal band predicted by the predicting means, according to the longitudinal position of the metal band, and control the coil yard cooling equipment And a control means for controlling the metal band shape when cooled to room temperature to the target shape.

本発明に係る金属帯の形状制御方法及び形状制御装置によれば、金属帯の熱間圧延に際して、常温まで冷却後の金属帯形状を全長にわたり目標範囲内に制御することができる。   According to the shape control method and shape control device for a metal strip according to the present invention, the metal strip shape after cooling to room temperature can be controlled within the target range over the entire length when hot rolling the metal strip.

図1は、本発明の一実施形態である金属帯の形状制御方法及び形状制御装置が適用される金属帯の製造ラインの構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of a metal band production line to which a metal band shape control method and a shape control apparatus according to an embodiment of the present invention are applied. 図2は、コイルヤードにおける金属帯の空冷時間と変形量との関係を示す図である。FIG. 2 is a diagram showing the relationship between the air cooling time of the metal strip in the coil yard and the amount of deformation. 図3は、本発明の一実施形態である形状変化予測処理の流れを示すフローチャートである。FIG. 3 is a flowchart showing the flow of the shape change prediction process according to the embodiment of the present invention. 図4は、本発明の一実施形態である金属帯の形状制御処理の流れを示すフローチャートである。FIG. 4 is a flowchart showing the flow of the metal strip shape control process according to the embodiment of the present invention. 図5は、ランアウトテーブル及びコイルヤードにおける幅方向冷却が均一である場合と不均一である場合とにおける金属帯の幅方向端部の温度差を示す図である。FIG. 5 is a diagram showing a temperature difference at the end in the width direction of the metal strip when the width-wise cooling in the run-out table and the coil yard is uniform and when it is not uniform. 図6は、ランアウトテーブル上の冷却装置を用いて幅方向不均一冷却を行う方法を説明するための図である。FIG. 6 is a diagram for explaining a method of performing non-uniform cooling in the width direction using the cooling device on the runout table. 図7は、ランアウトテーブル上の冷却装置を用いて幅方向不均一冷却を行う方法を説明するための図である。FIG. 7 is a diagram for explaining a method of performing non-uniform cooling in the width direction using the cooling device on the runout table. 図8は、コイルヤードにおける冷却設備を用いて幅方向不均一冷却を行う方法を説明するための図である。FIG. 8 is a diagram for explaining a method of performing non-uniform cooling in the width direction using a cooling facility in the coil yard. 図9は、従来例及び本発明例における金属帯形状の制御結果を示す図である。FIG. 9 is a diagram showing the control results of the metal strip shape in the conventional example and the example of the present invention. 図10は、従来例及び本発明例における金属帯形状の制御結果を示す図である。FIG. 10 is a diagram showing the control results of the metal strip shape in the conventional example and the example of the present invention. 図11は、金属帯の腹伸び形状や耳波形状を示す模式図である。FIG. 11 is a schematic diagram showing a belly stretch shape and an ear wave shape of a metal band.

以下、図面を参照して、本発明の一実施形態である金属帯の形状制御方法及び形状制御装置について説明する。   Hereinafter, a metal strip shape control method and shape control apparatus according to an embodiment of the present invention will be described with reference to the drawings.

〔製造ラインの構成〕
まず、図1を参照して、本発明の一実施形態である金属帯の形状制御方法及び形状制御装置が適用される金属帯の製造ラインの構成について説明する。
[Production line structure]
First, with reference to FIG. 1, the configuration of a metal strip manufacturing line to which a metal strip shape control method and shape control apparatus according to an embodiment of the present invention is applied will be described.

図1は、本発明の一実施形態である金属帯の形状制御方法及び形状制御装置が適用される金属帯の製造ラインの構成を示す模式図である。図1に示すように、この製造ラインでは、金属帯Sは、仕上圧延機1を経て所定の製造サイズに熱間圧延された後、ランアウトテーブルを通板している際に所定の材質に作り込むために冷却装置2によって所定の温度まで冷却される。そして、所定の温度まで冷却された金属帯Sは、コイラー3によってマンドレル4にコイル状に巻き取られ、コイルCは、コイルヤード6において常温まで冷却される間、必要に応じてコイルヤード6内の冷却設備7によって水冷却される。仕上圧延機1、冷却装置2、及び冷却設備7の動作は制御装置8により制御される。制御装置8は、本発明の一実施形態である金属帯の形状制御装置として機能する。   FIG. 1 is a schematic diagram showing a configuration of a metal band production line to which a metal band shape control method and a shape control apparatus according to an embodiment of the present invention are applied. As shown in FIG. 1, in this production line, the metal strip S is hot rolled to a predetermined production size via the finishing mill 1 and then made into a predetermined material when the runout table is passed through. Therefore, it is cooled to a predetermined temperature by the cooling device 2. Then, the metal strip S cooled to a predetermined temperature is wound around the mandrel 4 in a coil shape by the coiler 3, and the coil C is in the coil yard 6 as needed while being cooled to room temperature in the coil yard 6. The water is cooled by the cooling equipment 7. The operations of the finish rolling mill 1, the cooling device 2, and the cooling equipment 7 are controlled by the control device 8. The control device 8 functions as a metal strip shape control device according to an embodiment of the present invention.

〔金属帯形状を決定する要因〕
次に、図1に示す製造ラインにおける常温まで冷却後の金属帯形状を決定する要因について説明する。
[Factors determining metal strip shape]
Next, factors that determine the metal strip shape after cooling to room temperature in the production line shown in FIG. 1 will be described.

本発明の発明者らは、鋭意研究を重ねてきた結果、図1に示す製造ラインにおける常温まで冷却後の金属帯形状を決定する要因は以下のように分離されることを知見した。   As a result of intensive studies, the inventors of the present invention have found that the factors that determine the metal strip shape after cooling to room temperature in the production line shown in FIG. 1 are separated as follows.

(1)仕上圧延機1の出側における金属帯Sの形状
(2)ランアウトテーブル上の通板張力が作用することによって生じる金属帯Sの変形
(3)ランアウトテーブル上の冷却装置2における冷却ムラによって発生する熱収縮や相変態ムラによる金属帯Sの変形
(4)コイラー3での巻取時におけるコイルCのマンドレル4への巻き締まりによる金属帯Sの変形
(5)コイルヤード6においてコイルCを冷却している際に発生するコイルCの中心部と外周部との間の冷却速度差に起因する温度偏差によって生じる金属帯Sの変形
(1) Shape of the metal strip S on the exit side of the finish rolling mill 1 (2) Deformation of the metal strip S caused by the tension of the threading plate on the runout table (3) Cooling unevenness in the cooling device 2 on the runout table (4) Deformation of the metal strip S due to the winding of the coil C around the mandrel 4 during winding by the coiler 3 (5) Coil C in the coil yard 6 Deformation of the metal strip S caused by a temperature deviation caused by a difference in cooling rate between the central portion and the outer peripheral portion of the coil C generated when the metal is cooled

熱間圧延された金属帯Sの最終形状は上記の各要因が複雑に影響したものであり、全ての要因を考慮して熱間圧延での目標形状を決定する必要がある。   The final shape of the hot-rolled metal strip S is a complex effect of the above factors, and it is necessary to determine the target shape for hot rolling in consideration of all the factors.

仕上圧延機1の出側における金属帯Sの目標形状を平坦として、上記要因(1)の形状分布を補償しない場合、常温まで冷却後の金属帯Sの最終形状はコイルCの内周部から中心部までが耳波形状となり、コイルCの外周部が腹伸び形状となる傾向が多い。   When the target shape of the metal strip S on the exit side of the finishing mill 1 is made flat and the shape distribution of the above factor (1) is not compensated, the final shape of the metal strip S after cooling to room temperature is from the inner periphery of the coil C. There is a tendency that the center part is an ear wave shape and the outer peripheral part of the coil C is an abdominal stretch shape.

上記要因(2)による金属帯Sの形状変化では、金属帯Sに作用する通板張力が金属帯Sの降伏応力より大きい場合、塑性変形が生じる。   In the shape change of the metal band S due to the above factor (2), when the plate tension acting on the metal band S is larger than the yield stress of the metal band S, plastic deformation occurs.

上記要因(3)による形状変化では、金属帯Sの幅方向端部の熱収縮量が幅方向中央部の熱収縮量よりも大きい場合、金属帯Sの幅方向中央部によって金属帯Sの幅方向端部に引張変形が生じることにより、金属帯形状は耳波形状となる。一方、金属帯Sの幅方向中央部の熱収縮量が幅方向端部の熱収縮量よりも大きい場合には、金属帯Sの幅方向端部によって金属帯Sの幅方向中央部に引張変形が生じることにより、金属帯形状は腹伸び形状となる。   In the shape change due to the above factor (3), when the amount of heat shrinkage at the end in the width direction of the metal band S is larger than the amount of heat shrinkage at the center in the width direction, the width of the metal band S by the center in the width direction of the metal band S. When the tensile deformation occurs at the end of the direction, the metal band shape becomes an otowave shape. On the other hand, when the amount of heat shrinkage in the width direction center portion of the metal band S is larger than the amount of heat shrinkage in the width direction end portion, the width direction end portion of the metal band S causes tensile deformation to the width direction center portion of the metal band S. As a result, the metal band shape becomes an abdominal stretch shape.

上記要因(4)による形状変化では、巻取時のマンドレル4への巻き締まりによって金属帯Sの長手方向に引張変形が生じる。さらに、板クラウンによって金属帯Sの幅方向中央部に接触面圧が集中し、巻き締まりの強いコイルCの外周部において長手方向に引張の塑性変形が生じることによって、金属帯形状は腹伸び形状となる。   In the shape change due to the above factor (4), tensile deformation occurs in the longitudinal direction of the metal strip S due to tightening around the mandrel 4 during winding. Further, the contact surface pressure is concentrated on the center portion in the width direction of the metal band S by the plate crown, and the plastic band is stretched in the longitudinal direction at the outer peripheral portion of the coil C having strong tightening. It becomes.

上記要因(5)による形状変化では、コイル状に積層された金属帯S同士が接触する幅方向中央部において、温度低下の遅いコイルCの中心部に対して温度低下が速いコイルCの外周部が熱収縮量の違いによって巻き締まり、板クラウンによって、コイルCの中心部では長手方向に圧縮変形が生じて耳波形状となり、コイルCの外周部では長手方向に引張変形が生じて腹伸び形状となる。   In the shape change due to the above factor (5), the outer peripheral portion of the coil C whose temperature decrease is faster than the center portion of the coil C whose temperature decrease is slow in the central portion in the width direction where the metal strips S laminated in a coil shape contact each other. Is wound due to the difference in heat shrinkage, and the plate crown causes a compression deformation in the longitudinal direction in the central portion of the coil C, resulting in an otic wave shape, and in the outer peripheral portion of the coil C, a tensile deformation occurs in the longitudinal direction, resulting in an abdominal stretch shape. It becomes.

図2は、コイルヤード6における金属帯Sの空冷時間(hr)と変形量(%)との関係を示す図である。図2に示すように、金属帯Sがコイル状に巻き取られた時点での変形量は10%程度であるが、空冷時間が増えるにつれて変形量が大きく増加している。このことから、熱間圧延後の金属帯Sの変形過程では、コイラー3での巻取後にコイルヤード6において冷却されることによるクリープ変形が支配的であり、コイルヤード6における冷却過程での形状制御が最終製品の形状に大きく影響することがわかる。   FIG. 2 is a diagram showing the relationship between the air cooling time (hr) of the metal strip S and the amount of deformation (%) in the coil yard 6. As shown in FIG. 2, the amount of deformation at the time when the metal strip S is wound in a coil shape is about 10%, but the amount of deformation greatly increases as the air cooling time increases. Therefore, in the deformation process of the metal strip S after hot rolling, creep deformation due to cooling in the coil yard 6 after winding by the coiler 3 is dominant, and the shape in the cooling process in the coil yard 6 is dominant. It can be seen that the control greatly affects the shape of the final product.

〔数値解析モデルの構成〕
上記の変形過程を経て常温まで冷却後の金属帯Sの最終形状を予測する手法として、金属帯Sに発生する変形を順次解析していく数値解析モデルを用いることが考えられる。数値解析モデルとしては、特許文献2に開示されているような形状変化予測モデルを用いることができる。この形状変化予測モデルの概要(解析手順のフローチャート)は図3に示す通りである。
[Configuration of numerical analysis model]
As a method for predicting the final shape of the metal strip S after being cooled to room temperature through the above deformation process, it is conceivable to use a numerical analysis model that sequentially analyzes the deformation generated in the metal strip S. As the numerical analysis model, a shape change prediction model as disclosed in Patent Document 2 can be used. The outline of this shape change prediction model (the flowchart of the analysis procedure) is as shown in FIG.

図3は、本発明の一実施形態である形状変化予測処理の流れを示すフローチャートである。図3に示すように、本発明の一実施形態である形状変化予測処理では、まず、材料条件(金属帯Sの寸法、降伏関数、熱物性値、相変態挙動を表すパラメータ等)、通板条件(金属帯Sの通板速度、通板張力等)、冷却条件(熱伝達係数、冷却媒体温度、冷却帯の長さ等)、巻取条件(巻取張力、ドラム径等)、及び初期条件(金属帯Sの温度分布及び形状分布)を設定する。その後、冷却装置2を備えるランアウトテーブルでの伝熱モデル、相変態モデル、及び応力・歪みモデルを解析するステップと、コイルヤード6での冷却設備7による冷却伝熱モデル、相変態モデル、及び応力・歪みモデルを解析するステップを実行して、常温まで冷却後の金属帯Sの最終形状を出力する。以下、図3に示すフローチャート上の各モデルの概要について以下に示す。   FIG. 3 is a flowchart showing the flow of the shape change prediction process according to the embodiment of the present invention. As shown in FIG. 3, in the shape change prediction process according to an embodiment of the present invention, first, material conditions (dimensions of the metal strip S, yield function, thermophysical property values, parameters indicating the phase transformation behavior, etc.), threading plate Conditions (feeding speed of metal strip S, feeding plate tension, etc.), cooling conditions (heat transfer coefficient, cooling medium temperature, cooling zone length, etc.), winding conditions (winding tension, drum diameter, etc.), and initial Conditions (temperature distribution and shape distribution of the metal strip S) are set. Thereafter, a step of analyzing a heat transfer model, a phase transformation model, and a stress / strain model on a run-out table including the cooling device 2, a cooling heat transfer model, a phase transformation model, and a stress by the cooling equipment 7 in the coil yard 6. The step of analyzing the strain model is executed, and the final shape of the metal strip S after cooling to room temperature is output. The outline of each model on the flowchart shown in FIG.

[伝熱モデル]
金属帯Sの幅方向の温度分布は、ランアウトテーブル上では板厚が板幅に比べて極端に短いこと、コイル長が板幅に比べて極端に長いことから下記の1次元熱伝導方程式(1)と境界条件式(2)とを解くことにより計算され、コイルヤード冷却では幅方向のみならずコイルCの径方向の伝熱を考慮した2次元熱伝導方程式(3)を解くことにより計算される。オンラインモデルとしては、例えば数式(1)〜(3)を離散化した陽解法差分モデルを用いることにより、オンラインでの使用に耐え得るような短時間での温度分布計算が可能となる。
[Heat transfer model]
The temperature distribution in the width direction of the metal strip S has the following one-dimensional heat conduction equation (1) because the plate thickness is extremely short compared to the plate width on the run-out table and the coil length is extremely long compared to the plate width. ) And boundary condition equation (2), and in coil yard cooling, it is calculated by solving the two-dimensional heat conduction equation (3) considering the heat transfer not only in the width direction but also in the radial direction of the coil C. The As an online model, for example, by using an explicit differential model obtained by discretizing the mathematical formulas (1) to (3), it is possible to calculate a temperature distribution in a short time that can withstand online use.

Figure 2018047483
Figure 2018047483
Figure 2018047483
Figure 2018047483
Figure 2018047483
Figure 2018047483

ここで、Tは金属帯Sの温度(K)、Tは金属帯Sの表面温度(K)、Tは冷却水又は雰囲気の温度(K)、tは時間(s)、λは熱伝導率(J/smK)、qは熱流束(J/ms)、ρは密度(kg/m)、cは比熱(J/kgK)、hは熱伝達係数(J/mhK)である。 Here, T is the temperature (K) of the metal strip S, T s is the surface temperature (K) of the metal strip S, T f is the temperature of the cooling water or atmosphere (K), t is the time (s), and λ is the heat Conductivity (J / smK), q is heat flux (J / m 2 s), ρ is density (kg / m 3 ), c is specific heat (J / kgK), h is heat transfer coefficient (J / m 2 hK) ).

[相変態モデル]
相変態モデルとしては、以下に示す数式(4)〜(6)式に基づいて、まず金属帯Sの成分に応じて数式(4)に従ってTTT線図を作成し、ある時点における金属帯Sの温度と経過時間とから金属帯Sの組織を決定する。ここで、TTT線図とは、時間と温度及び変態との関係を示した図であり、物質の温度とその温度になるまでの時間を与えることで相変態の挙動を知ることができるものである。
[Phase transformation model]
As the phase transformation model, first, a TTT diagram is created according to the formula (4) according to the components of the metal band S based on the following formulas (4) to (6). The structure of the metal strip S is determined from the temperature and the elapsed time. Here, the TTT diagram is a diagram showing the relationship between time, temperature and transformation, and it is possible to know the behavior of phase transformation by giving the temperature of the substance and the time until it reaches that temperature. is there.

Figure 2018047483
Figure 2018047483
Figure 2018047483
Figure 2018047483
Figure 2018047483
Figure 2018047483

ここで、T、T、t、tは化学成分とオーステナイト粒径の関数として与えられ、t、T及びt、TはTTT曲線の平衡変態点及びノーズ点に対応している。相変態が生じる場合には、発熱量の計算を比熱の差を考慮することで行う。 Here, T 0 , T N , t 0 and t N are given as a function of chemical composition and austenite grain size, and t 0 , T 0 and t N and T N correspond to the equilibrium transformation point and nose point of the TTT curve. doing. When phase transformation occurs, the calorific value is calculated by considering the difference in specific heat.

[応力・歪み解析モデル]
応力・歪み解析モデルには、ランアウトテーブル上での金属帯Sの状態、コイラー3での巻取中のコイルCの状態、及び巻取後(抜き取り後)の冷却中のコイルCの状態についてそれぞれ別のモデルが必要となる。正確な形状予測解析を行うためには、熱収縮、相変態に伴う体積膨張、クリープ変形、及び塑性変形を考慮したモデルとする必要がある。
[Stress / strain analysis model]
In the stress / strain analysis model, the state of the metal strip S on the runout table, the state of the coil C during winding by the coiler 3, and the state of the coil C during cooling after winding (after extraction) are respectively shown. Another model is required. In order to perform accurate shape prediction analysis, it is necessary to use a model that takes into account heat shrinkage, volume expansion associated with phase transformation, creep deformation, and plastic deformation.

以上の伝熱モデル、相変態モデル、及び応力・歪みモデルを用いて常温まで解析していくことにより、熱収縮(相変態に伴う体積膨張を含む)、クリープ変形、及び塑性変形の和として金属帯Sの永久変形が求まる。最終的な金属帯形状は永久変形の幅方向分布より求まる伸び差率によって評価する。   By analyzing to the normal temperature using the above heat transfer model, phase transformation model, and stress / strain model, the metal as the sum of thermal shrinkage (including volume expansion accompanying phase transformation), creep deformation, and plastic deformation The permanent deformation of the band S is obtained. The final metal strip shape is evaluated by the elongation difference obtained from the widthwise distribution of permanent deformation.

仕上圧延機1の出側における金属帯Sの温度及び平坦度を初期値として、上記の数値解析モデルを用いて、常温まで冷却後の金属帯Sの最終形状を予測し、その予測形状を補償するようなコイルヤード6での冷却後の金属帯Sの目標形状を逆算し、金属帯形状を作り込むことにより、常温まで冷却後の金属帯形状を全長にわたり目標範囲内に制御することができる。なお、コイルヤード6での冷却後の金属帯Sの目標形状は、金属帯Sの予測形状の逆符号として計算できる。以下、図4を参照して、本発明の一実施形態である金属帯の形状制御処理の流れについて説明する。   Using the above numerical analysis model, the final shape of the metal strip S after cooling to room temperature is predicted using the temperature and flatness of the metal strip S on the exit side of the finishing mill 1 as initial values, and the predicted shape is compensated. By calculating backward the target shape of the metal band S after cooling in the coil yard 6 and making the metal band shape, the metal band shape after cooling to room temperature can be controlled within the target range over the entire length. . The target shape of the metal band S after cooling in the coil yard 6 can be calculated as the reverse sign of the predicted shape of the metal band S. Hereinafter, with reference to FIG. 4, the flow of the metal strip shape control process according to an embodiment of the present invention will be described.

〔形状制御処理〕
図4は、本発明の一実施形態である金属帯の形状制御処理の流れを示すフローチャートである。図4に示すように、本発明の一実施形態である金属帯の形状制御処理では、まず、制御装置8が、常温まで冷却後の金属帯形状を予測し(ステップS1)、予測結果に基づいて常温まで冷却後の金属帯形状を目標範囲内に制御するために必要な仕上圧延機1による補償形状を算出する(ステップS2)。次に、制御装置8は、仕上圧延機1において一般的に適用されているワークロールベンダー等の形状制御手法によってステップS2の処理において算出された補償形状を金属帯Sに与える(ステップS3)。
[Shape control processing]
FIG. 4 is a flowchart showing the flow of the metal strip shape control process according to the embodiment of the present invention. As shown in FIG. 4, in the metal strip shape control process according to an embodiment of the present invention, first, the control device 8 predicts the metal strip shape after cooling to room temperature (step S1), and based on the prediction result. Then, a compensation shape by the finish rolling mill 1 necessary for controlling the metal strip shape after cooling to room temperature within the target range is calculated (step S2). Next, the control device 8 gives the metal strip S the compensated shape calculated in the process of step S2 by a shape control method such as a work roll bender generally applied to the finishing mill 1 (step S3).

次に、制御装置8は、ステップS1の処理において予測された金属帯形状とステップS3の処理後の金属帯形状との差が所定値以上であるか否かを判別することによって、常温まで冷却後の金属帯形状が目標範囲内にあるか否かを判別する(ステップS4)。判別の結果、差が所定値未満である場合(ステップS4:Yes)、制御装置8は、常温まで冷却後の金属帯形状は目標範囲内にあると判断し、一連の形状制御処理を終了する。一方、差が所定値以上である場合(ステップS4:No)、制御装置8は、常温まで冷却後の金属帯形状は目標範囲内にないと判断し、形状制御処理をステップS5の処理に進める。   Next, the control device 8 determines whether or not the difference between the metal band shape predicted in the process of step S1 and the metal band shape after the process of step S3 is equal to or greater than a predetermined value, thereby cooling to room temperature. It is determined whether or not the subsequent metal band shape is within the target range (step S4). If the difference is less than the predetermined value as a result of the determination (step S4: Yes), the control device 8 determines that the metal band shape after cooling to room temperature is within the target range, and ends the series of shape control processes. . On the other hand, when the difference is equal to or larger than the predetermined value (step S4: No), the control device 8 determines that the metal strip shape after cooling to room temperature is not within the target range, and advances the shape control process to the process of step S5. .

次に、制御装置8は、ステップS1の処理において予測された金属帯形状とステップS3の処理後の金属帯形状との差をコイルヤード冷却中の補償形状として算出し(ステップS5)、冷却設備7を制御することによってコイルヤード冷却中の補償形状を金属帯Sに付与する(ステップS6)。次に、制御装置8は、ステップS1の処理において予測された金属帯形状とステップS6の処理後の金属帯形状との差が所定値以上であるか否かを判別することによって、常温まで冷却後の金属帯形状が目標範囲内にあるか否かを判別する(ステップS7)。   Next, the control device 8 calculates the difference between the metal band shape predicted in the process of step S1 and the metal band shape after the process of step S3 as a compensated shape during coil yard cooling (step S5), and cooling equipment 7 is applied to the metal strip S to provide a compensation shape during coil yard cooling (step S6). Next, the control device 8 determines whether or not the difference between the metal band shape predicted in the process of step S1 and the metal band shape after the process of step S6 is equal to or greater than a predetermined value, thereby cooling to room temperature. It is determined whether or not the subsequent metal band shape is within the target range (step S7).

判別の結果、差が所定値未満である場合(ステップS7:Yes)、制御装置8は、常温まで冷却後の金属帯形状は目標範囲内にあると判断し、一連の形状制御処理を終了する。一方、差が所定値以上である場合(ステップS7:No)、制御装置8は、常温まで冷却後の金属帯形状は目標範囲内にないと判断し、形状制御処理をステップS8の処理に進める。   As a result of the determination, if the difference is less than the predetermined value (step S7: Yes), the control device 8 determines that the metal band shape after cooling to room temperature is within the target range, and ends the series of shape control processes. . On the other hand, when the difference is equal to or larger than the predetermined value (step S7: No), the control device 8 determines that the metal band shape after cooling to room temperature is not within the target range, and advances the shape control process to the process of step S8. .

次に、制御装置8は、ステップS1の処理において予測された金属帯形状とステップS6の処理後の金属帯形状との差をランアウトテーブル出側の補償形状として算出し(ステップS8)、冷却装置2を制御することによってランアウトテーブル出側の補償形状を金属帯Sに付与する(ステップS9)。これにより、一連の形状制御処理は終了する。以下では、ランアウトテーブル上の冷却装置2及びコイルヤード6における冷却設備7を用いた具体的な金属帯Sの形状制御方法について説明する。   Next, the control device 8 calculates the difference between the metal band shape predicted in the process of step S1 and the metal band shape after the process of step S6 as a compensated shape on the run-out table exit side (step S8), and the cooling device By controlling 2, the compensation shape on the run-out table exit side is imparted to the metal strip S (step S 9). Thereby, a series of shape control processing is complete | finished. Below, the concrete shape control method of the metal strip S using the cooling device 2 on the runout table and the cooling equipment 7 in the coil yard 6 will be described.

金属帯Sの幅方向の温度分布と金属帯形状との関係は、温度変化による金属帯Sの弾性変形を無視すると以下に示す数式(7)によって表される。   The relationship between the temperature distribution in the width direction of the metal band S and the metal band shape is expressed by the following formula (7) when the elastic deformation of the metal band S due to temperature change is ignored.

Figure 2018047483
Figure 2018047483

ここで、Δεは金属帯Sの幅方向中央部と幅方向端部との間の伸び差率、αは線膨張係数である。また、ΔTは、図5(a)に示すようにランアウトテーブル及びコイルヤードにおける金属帯Sの幅方向冷却が均一な場合と図5(b)に示すように幅方向冷却に分布を持たせた場合とにおける金属帯Sの幅方向端部の温度差として定義される。具体的には、ΔTは、均一に冷却した場合の幅方向端部の金属帯温度から分布を持たせて冷却した場合の幅方向端部の金属帯温度を差し引くことで計算でき、幅方向端部を強冷却した場合がプラスとなる。金属帯を拘束した状態で金属帯の幅方向にΔTの温度分布を付与することにより、金属帯を塑性変形させて金属帯形状を制御できる。線膨張係数を10.8×10−6(1/K)とし、ランアウトテーブル上の冷却装置によって幅方向に温度差ΔT=±30を生じさせるとすると、金属帯Sの幅方向中央部と幅方向端部との間の伸び差率Δεは約±32.4×10−5となり、金属帯Sが平坦な場合には急峻度で約±1.15%の形状制御が可能となる。 Here, Δε is a difference in elongation between the center portion in the width direction and the end portion in the width direction of the metal band S, and α is a linear expansion coefficient. Further, ΔT has a distribution in the width direction cooling as shown in FIG. 5B when the width direction cooling of the metal strip S in the runout table and the coil yard is uniform as shown in FIG. 5A. It is defined as the temperature difference between the ends of the metal strip S in the width direction. Specifically, ΔT can be calculated by subtracting the metal band temperature at the end in the width direction when cooling with a distribution from the metal band temperature at the end in the width direction when cooling uniformly, When the part is cooled strongly, it becomes a plus. By providing a temperature distribution of ΔT in the width direction of the metal band in a state where the metal band is constrained, the metal band shape can be controlled by plastic deformation. If the linear expansion coefficient is 10.8 × 10 −6 (1 / K) and the temperature difference ΔT = ± 30 is generated in the width direction by the cooling device on the run-out table, the width direction central portion and the width of the metal strip S The elongation difference ratio Δε between the direction ends is about ± 32.4 × 10 −5 , and when the metal band S is flat, the shape can be controlled with a steepness of about ± 1.15%.

さらに、コイルヤードにおける冷却設備によってコイルCの幅方向端面を水冷却し、幅方向に温度差ΔT=30(K)を生じさせるとすると、同様に急峻度で約1.15%の形状制御が可能となる。つまり、合計で+2.30%〜−1.15%の形状矯正が可能であり、仕上圧延機で付与できる形状矯正量が小さくても、形状矯正が可能である。ランアウトテーブル上の冷却装置を用いて幅方向不均一冷却を行うためには、幅方向の温度差ΔTがプラスの場合、図6に示すようにノズル10から噴射される冷却水11の幅方向流量密度を変化させ、幅方向の温度差ΔTがマイナスの場合は、図7に示すようにマスク装置12を用いて幅方向端部の冷却水11を遮断することで金属帯Sの幅方向に温度分布を発生させる。また、コイルヤードにおける冷却設備では、図8に示すように環状の水冷却設備7aから冷却水11を噴射することによってコイルCの幅方向端部を冷却することにより、幅方向に温度分布を発生させる。   Further, assuming that the width direction end face of the coil C is water-cooled by the cooling equipment in the coil yard and a temperature difference ΔT = 30 (K) is generated in the width direction, the shape control of about 1.15% is similarly performed with a steepness. It becomes possible. That is, shape correction of + 2.30% to -1.15% in total is possible, and shape correction is possible even if the amount of shape correction that can be imparted by the finishing mill is small. In order to perform non-uniform cooling in the width direction using the cooling device on the runout table, when the temperature difference ΔT in the width direction is positive, the flow rate in the width direction of the cooling water 11 injected from the nozzle 10 as shown in FIG. When the density is changed and the temperature difference ΔT in the width direction is negative, the temperature in the width direction of the metal strip S is blocked by blocking the cooling water 11 at the end in the width direction using the mask device 12 as shown in FIG. Generate a distribution. Moreover, in the cooling equipment in the coil yard, as shown in FIG. 8, the temperature distribution is generated in the width direction by cooling the width direction end of the coil C by injecting the cooling water 11 from the annular water cooling equipment 7a. Let

ランアウトテーブル上の冷却装置及びコイルヤードにおける冷却設備における冷却水の流量密度は非特許文献1によれば以下に示す数式(8)によって表される。ここで、hは熱伝達係数(kJ/hmK)、Tは金属帯の温度(K)、wは冷却水の流量密度(L/mmin)、a〜dは補正係数であり、a=2.03、b=0.793、c=0.000308、d=0.083とすることによりランアウトテーブル上の冷却装置及びコイルヤードにおける冷却設備用に合わせ込んでいる。 According to Non-Patent Document 1, the cooling water flow density in the cooling device on the run-out table and the cooling facility in the coil yard is expressed by the following formula (8). Here, h is a heat transfer coefficient (kJ / hm 2 K), T is a temperature (K) of the metal strip, w is a flow rate density of cooling water (L / m 2 min), and a to d are correction coefficients. By setting a = 2.03, b = 0.793, c = 0.000308, and d = 0.083, the cooling device on the runout table and the cooling equipment in the coil yard are adjusted.

Figure 2018047483
Figure 2018047483

また、数式(8)においてh=3347とすると、ランアウトテーブル上の冷却装置における冷却水の流量密度と金属帯Sの温度との関係は以下に示す数式(9)で近似される。   Further, when h = 3347 in the formula (8), the relationship between the cooling water flow density in the cooling device on the runout table and the temperature of the metal strip S is approximated by the following formula (9).

Figure 2018047483
Figure 2018047483

数式(9)よりランアウトテーブル上において金属帯Sの幅方向中央部と幅方向端部との間に温度差ΔT=±30Kを生じさせるために必要な冷却水の流量密度は、金属帯Sの幅方向中央部の温度が1103(K)、幅方向端部の温度が1073(K)であるとすると、幅方向中央部と幅方向端部との間の冷却水の流量密度差が9.31(L/mmin)あればよく、ランアウトテーブル上の冷却装置によって容易に達成できる値である。また、コイルヤードでの冷却設備によって温度差ΔT=30(K)を生じさせるのに必要な冷却水の流量密度は、金属帯Sの幅方向中央部の温度が823(K)、幅方向端部の温度が793(K)であるとすると、11.89(L/mmin)であり、一般的な冷却設備によって容易に達成できる値である。 From Equation (9), on the runout table, the flow rate density of the cooling water necessary to generate the temperature difference ΔT = ± 30K between the width direction center and the width direction end of the metal band S is Assuming that the temperature in the center in the width direction is 1103 (K) and the temperature in the end in the width direction is 1073 (K), the flow rate difference in cooling water between the center in the width direction and the end in the width direction is 9. 31 (L / m 2 min) is sufficient, and can be easily achieved by the cooling device on the runout table. Moreover, the flow rate density of the cooling water necessary to generate the temperature difference ΔT = 30 (K) by the cooling equipment in the coil yard is 823 (K) at the temperature in the central portion in the width direction of the metal strip S, and ends in the width direction. If the temperature of the part is 793 (K), it is 11.89 (L / m 2 min), which is a value that can be easily achieved by general cooling equipment.

〔実施例1〕
本実施例は、ワークロールベンダー(90〜230tonf/chock)を有する7スタンドの4段仕上圧延機及び最大流量約2000L/min、長さ120mのランアウトテーブル冷却装置を有する熱間圧延設備において、本発明を適用した実施例である。供試材として低炭素鋼、仕上圧延後の板厚2.0mm、板幅1000mm、板長さ1275mを使用し、常温まで冷却後の形状不良の目標範囲は急峻度で±1.5%とした。従来例1として、仕上圧延機以降の形状変化を考慮せずに、仕上圧延によって平坦形状に制御した場合の常温まで冷却後の金属帯形状を図9に示す。従来例1では、常温まで冷却後には先端部で耳波、尾端部で腹伸びの形状不良が確認できた。上記仕上圧延機の形状制御アクチュエータであるワークロールベンダーを使用した場合の金属帯形状の制御範囲は急峻度±0.37%である。
[Example 1]
In this example, in a hot rolling facility having a seven-stand four-stage finishing mill having a work roll bender (90 to 230 ton / chock) and a runout table cooling device having a maximum flow rate of about 2000 L / min and a length of 120 m, It is the Example to which invention is applied. Using low-carbon steel as the test material, plate thickness 2.0mm after finish rolling, plate width 1000mm, plate length 1275m, the target range of shape defects after cooling to room temperature is steepness ± 1.5% did. As Conventional Example 1, FIG. 9 shows the metal strip shape after cooling to room temperature when it is controlled to a flat shape by finish rolling without considering the shape change after the finish rolling mill. In Conventional Example 1, after cooling to room temperature, it was possible to confirm a shape defect of an ear wave at the tip and an abdominal stretch at the tail. When the work roll bender, which is the shape control actuator of the finishing mill, is used, the control range of the metal band shape is steepness ± 0.37%.

従来例2として、仕上圧延機によって、形状不良を補償するような形状制御を±0.37%の範囲で行った結果を図9に示す。先端部で約±1.8%、尾端部で約2.2%の形状不良が確認でき、仕上圧延機による形状制御能力が十分でないことが確認できた。これに対して、本発明例1では、仕上圧延機において±0.37%の形状制御を行い、さらに形状不良の大きい長手方向位置957〜1200mの範囲内においてコイル端面を水冷却することでコイルヤード形状制御を行い、予測した形状変化を補償するような形状制御を行い、さらにランアウトテーブル冷却装置によって長手方向位置0〜876mの範囲内では金属帯の幅方向中央部の温度を幅方向端部の温度よりも30K低く制御し、長手方向位置876m以降では幅方向中央部の温度を幅方向端部の温度よりも30K高く制御することで形状制御を行うことにより、図9に示すように金属帯全長にわたり急峻度1.5%以下となり、形状不良を目標範囲内に収めることができた。   As Conventional Example 2, FIG. 9 shows the result of performing shape control within a range of ± 0.37% by a finishing mill to compensate for shape defects. A shape defect of about ± 1.8% at the tip portion and about 2.2% at the tail end portion was confirmed, and it was confirmed that the shape control ability by the finish rolling mill was not sufficient. On the other hand, in Example 1 of the present invention, the shape control of ± 0.37% is performed in the finish rolling mill, and the coil end face is water-cooled within the range of the longitudinal positions 957 to 1200 m where the shape defect is large. Yard shape control is performed, shape control is performed to compensate for the predicted shape change, and the temperature at the center in the width direction of the metal strip is set to the end in the width direction within the range of 0 to 876 m in the longitudinal direction by the run-out table cooling device. The shape is controlled by controlling the temperature at a position 30K lower than the temperature in the width direction and by controlling the temperature at the center in the width direction by 30K higher than the temperature at the end in the width direction after the longitudinal position 876m, as shown in FIG. The steepness was 1.5% or less over the entire length of the band, and the shape defect could be kept within the target range.

〔実施例2〕
上記熱間圧延設備において、供試材として極低炭素鋼、仕上圧延後の板厚1.6mm、板幅1200mm、板長さ1320mを使用した場合の結果を図10に示す。従来例3として、仕上圧延機によって金属帯形状を平坦形状に制御し、仕上圧延機以降の形状制御を行わなかった場合の結果を図10に示す。金属帯の先端部では形状不良が小さいが、尾端部において形状不良が大きく、約−1.8%の形状不良が確認できた。これに対して、本発明例2として、コイルヤード冷却設備によって、金属帯の尾端部において形状不良を補償するような形状制御を行った場合の結果を図10に示す。特に形状不良の大きい、金属帯の長手方向位置984〜1282mの範囲内において金属帯の幅方向中央部の温度を幅方向端部の温度よりも30K高く制御することで、予測した形状変化を補償するような金属帯の形状制御を行った。本発明例2では金属帯の全長にわたり、形状不良を目標範囲内に収めることができた。
[Example 2]
FIG. 10 shows the results when the ultra-low carbon steel, the plate thickness after finishing rolling of 1.6 mm, the plate width of 1200 mm, and the plate length of 1320 m are used as the test material in the hot rolling facility. FIG. 10 shows the result when the shape of the metal strip is controlled to a flat shape by a finishing mill and the shape control after the finishing mill is not performed as Conventional Example 3. Although the shape defect was small at the tip of the metal strip, the shape defect was large at the tail end, and a shape defect of about −1.8% was confirmed. On the other hand, as Example 2 of the present invention, FIG. 10 shows the result when shape control is performed so as to compensate for the shape defect at the tail end portion of the metal strip by the coil yard cooling facility. Compensate for the predicted shape change by controlling the temperature of the central part in the width direction of the metal band 30K higher than the temperature of the end part in the width direction within the range of 984 to 1282m in the longitudinal direction of the metal band, which has particularly large shape defects. The shape of the metal strip was controlled. In Example 2 of the present invention, the shape defect could be kept within the target range over the entire length of the metal strip.

以上の結果から、形状変化予測モデルを用いて常温まで冷却後の金属帯に対して冷却過程で生じる形状変化を補償するようなコイルヤード冷却後の目標形状を設定し、仕上圧延機、ランアウトテーブル上の冷却装置、及びコイルヤードにおける冷却設備によって形状制御することにより、金属帯の全長にわたって形状不良を目標範囲内に収めることができることが確認された。また、これにより、形状不良部の切捨て量削減による歩留まり向上とコスト削減とを実現できる。   Based on the above results, we set the target shape after coil yard cooling to compensate for the shape change that occurs in the cooling process for the metal strip after cooling to room temperature using the shape change prediction model, and finish mill, runout table It was confirmed that shape defects could be accommodated within the target range over the entire length of the metal strip by controlling the shape with the cooling device above and the cooling equipment in the coil yard. This also makes it possible to improve yield and reduce costs by reducing the cut-off amount of defective shape portions.

1 仕上圧延機
2 冷却装置
3 コイラー
4 マンドレル
6 コイルヤード
7 冷却設備
8 制御装置
C コイル
S 金属帯
DESCRIPTION OF SYMBOLS 1 Finishing mill 2 Cooling device 3 Coiler 4 Mandrel 6 Coil yard 7 Cooling equipment 8 Control device C Coil S Metal strip

Claims (4)

仕上圧延機による熱間圧延後の金属帯をコイルヤードにおいて常温まで冷却した際に金属帯の長手方向の各位置において発生する形状変化を予測する予測ステップと、
前記予測ステップにおいて予測された金属帯の形状変化を補償するように常温まで冷却した際の金属帯の目標形状を金属帯の長手方向位置に応じて設定し、コイルヤード冷却設備を制御することによって常温まで冷却した際の金属帯形状を前記目標形状に制御する制御ステップと、
を含むことを特徴とする金属帯の形状制御方法。
A prediction step for predicting a shape change that occurs at each position in the longitudinal direction of the metal strip when the metal strip after hot rolling by the finish mill is cooled to room temperature in the coil yard;
By setting the target shape of the metal band when it is cooled to room temperature so as to compensate for the shape change of the metal band predicted in the prediction step, according to the position in the longitudinal direction of the metal band, and by controlling the coil yard cooling equipment A control step for controlling the shape of the metal strip when cooled to room temperature to the target shape;
The shape control method of a metal strip characterized by including.
前記制御ステップは、前記仕上圧延機の出側に設けられたランアウトテーブル上の冷却装置を制御することによって常温まで冷却した際の金属帯形状を前記目標形状に制御するステップを含むことを特徴とする請求項1に記載の金属帯の形状制御方法。   The control step includes a step of controlling the metal strip shape to the target shape when cooled to room temperature by controlling a cooling device on a run-out table provided on the exit side of the finishing mill. The shape control method of the metal strip according to claim 1. 前記予測ステップは、前記仕上圧延機の出側における金属帯の温度及び平坦度を初期値として、ランアウトテーブルでの冷却、コイラー巻取、及びコイル冷却の各過程での金属帯の温度及び応力・歪み成分を相変態と共に解析することによって、金属帯の長手方向の各位置において発生する形状変化を予測するステップを含むことを特徴とする請求項1又は2に記載の金属帯の形状制御方法。   The prediction step uses the temperature and flatness of the metal strip on the exit side of the finish rolling mill as initial values, and the temperature and stress of the metal strip in each process of cooling at the runout table, coiler winding, and coil cooling. The metal strip shape control method according to claim 1, further comprising a step of predicting a shape change occurring at each position in the longitudinal direction of the metal strip by analyzing the strain component together with the phase transformation. 仕上圧延機による熱間圧延後の金属帯をコイルヤードにおいて常温まで冷却した際に金属帯の長手方向の各位置において発生する形状変化を予測する予測手段と、
前記予測手段によって予測された金属帯の形状変化を補償するように常温まで冷却した際の金属帯の目標形状を金属帯の長手方向位置に応じて設定し、コイルヤード冷却設備を制御することによって常温まで冷却した際の金属帯形状を前記目標形状に制御する制御手段と、
を備えることを特徴とする金属帯の形状制御装置。
A predicting means for predicting a shape change that occurs at each position in the longitudinal direction of the metal strip when the metal strip after hot rolling by the finishing mill is cooled to room temperature in the coil yard;
By setting the target shape of the metal band when it is cooled to room temperature so as to compensate for the change in shape of the metal band predicted by the prediction means, according to the position in the longitudinal direction of the metal band, and by controlling the coil yard cooling facility Control means for controlling the shape of the metal strip when cooled to room temperature to the target shape;
A shape control device for a metal strip, comprising:
JP2016183667A 2016-09-21 2016-09-21 Shape control method of metal strip and shape control device Pending JP2018047483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016183667A JP2018047483A (en) 2016-09-21 2016-09-21 Shape control method of metal strip and shape control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016183667A JP2018047483A (en) 2016-09-21 2016-09-21 Shape control method of metal strip and shape control device

Publications (1)

Publication Number Publication Date
JP2018047483A true JP2018047483A (en) 2018-03-29

Family

ID=61766956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016183667A Pending JP2018047483A (en) 2016-09-21 2016-09-21 Shape control method of metal strip and shape control device

Country Status (1)

Country Link
JP (1) JP2018047483A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110877055A (en) * 2019-10-31 2020-03-13 河钢股份有限公司承德分公司 Method for improving hot-rolled steel strip tail coiling temperature hit
CN114888094A (en) * 2022-04-21 2022-08-12 东北大学 Rolling plate shape compensation method based on residual stress prediction in cooling process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03165925A (en) * 1989-11-24 1991-07-17 Kobe Steel Ltd Method for cooling thin hot rolled coil
JP2000126815A (en) * 1998-10-23 2000-05-09 Sumitomo Metal Ind Ltd Method and device for correcting coiled shape of coil, and method and device for judging coiled shape of coil
JP2007216246A (en) * 2006-02-15 2007-08-30 Jfe Steel Kk Method for controlling shape of metal strip in hot rolling
JP2013081990A (en) * 2011-10-12 2013-05-09 Jfe Steel Corp Hot-rolled coil cooling method, manufacturing method, and cooling apparatus
JP2016107280A (en) * 2014-12-03 2016-06-20 Jfeスチール株式会社 Shape control method and shape control device for metal strip

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03165925A (en) * 1989-11-24 1991-07-17 Kobe Steel Ltd Method for cooling thin hot rolled coil
JP2000126815A (en) * 1998-10-23 2000-05-09 Sumitomo Metal Ind Ltd Method and device for correcting coiled shape of coil, and method and device for judging coiled shape of coil
JP2007216246A (en) * 2006-02-15 2007-08-30 Jfe Steel Kk Method for controlling shape of metal strip in hot rolling
JP2013081990A (en) * 2011-10-12 2013-05-09 Jfe Steel Corp Hot-rolled coil cooling method, manufacturing method, and cooling apparatus
JP2016107280A (en) * 2014-12-03 2016-06-20 Jfeスチール株式会社 Shape control method and shape control device for metal strip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110877055A (en) * 2019-10-31 2020-03-13 河钢股份有限公司承德分公司 Method for improving hot-rolled steel strip tail coiling temperature hit
CN114888094A (en) * 2022-04-21 2022-08-12 东北大学 Rolling plate shape compensation method based on residual stress prediction in cooling process
CN114888094B (en) * 2022-04-21 2023-01-31 东北大学 Rolling plate shape compensation method based on residual stress prediction in cooling process

Similar Documents

Publication Publication Date Title
RU2591788C2 (en) Method of producing hot-rolled silicon steel
CN104511484B (en) The micro-middle wave board-shape control method of a kind of hot-strip
US6615633B1 (en) Metal plateness controlling method and device
EP3560616B1 (en) Method for cooling steel sheet and method for manufacturing steel sheet
JP2007216246A (en) Method for controlling shape of metal strip in hot rolling
JP6068146B2 (en) Set value calculation apparatus, set value calculation method, and set value calculation program
CN105324190A (en) Method for producing a metal strip
JP5293022B2 (en) Temperature control method in continuous annealing furnace and continuous annealing furnace
JP6295932B2 (en) Metal strip shape control method and shape control apparatus
JP2018047483A (en) Shape control method of metal strip and shape control device
JP5217543B2 (en) Continuous annealing method and continuous annealing equipment for steel strip with Curie point
JP7311764B2 (en) Cold tandem rolling equipment and cold tandem rolling method
JP6237928B2 (en) Steel plate manufacturing method and steel plate manufacturing apparatus
JP2006055884A (en) Method for manufacturing hot-rolled steel sheet and apparatus for controlling rolling
JP6897609B2 (en) Hot rolling equipment and hot-rolled steel sheet manufacturing method
JP2010149156A (en) Method for predictive calculation of roll crown of work roll
KR20110000388A (en) Cooling method for inverted angle
JP2004331992A (en) Method for predicting temperature of and cooling metal sheet in hot rolling
US11779977B2 (en) Method for setting different cooling curves of rolling material over the strip width of a cooling stretch in a hot-strip mill or heavy-plate mill
JP3684942B2 (en) Cold rolled steel strip manufacturing method
JP4721855B2 (en) Method for reducing surface defects in hot rolling
JP2005238304A (en) Method for manufacturing hot-rolled steel sheet
JP2024009584A (en) Manufacturing method of hot rolled steel sheet
JP4617956B2 (en) Target thickness setting method during hot rolling
JP2006255763A (en) Thermal crown controller, rolling mill, and manufacturing method of metallic strip using rolling mill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200303