KR20100035080A - Iron based sintered bearing and method for producing the same - Google Patents

Iron based sintered bearing and method for producing the same Download PDF

Info

Publication number
KR20100035080A
KR20100035080A KR1020090013418A KR20090013418A KR20100035080A KR 20100035080 A KR20100035080 A KR 20100035080A KR 1020090013418 A KR1020090013418 A KR 1020090013418A KR 20090013418 A KR20090013418 A KR 20090013418A KR 20100035080 A KR20100035080 A KR 20100035080A
Authority
KR
South Korea
Prior art keywords
bearing
iron
powder
copper
phase
Prior art date
Application number
KR1020090013418A
Other languages
Korean (ko)
Other versions
KR101101078B1 (en
Inventor
다케시 야나세
Original Assignee
히다치 훈마츠 야킨 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 히다치 훈마츠 야킨 가부시키가이샤 filed Critical 히다치 훈마츠 야킨 가부시키가이샤
Publication of KR20100035080A publication Critical patent/KR20100035080A/en
Application granted granted Critical
Publication of KR101101078B1 publication Critical patent/KR101101078B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • F16C33/145Special methods of manufacture; Running-in of sintered porous bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/128Porous bearings, e.g. bushes of sintered alloy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2206/00Materials with ceramics, cermets, hard carbon or similar non-metallic hard materials as main constituents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/20Shaping by sintering pulverised material, e.g. powder metallurgy

Abstract

PURPOSE: A ferrous sintered bearing and a manufacturing method thereof are provided to improve abrasion resistance and anti-seizure property. CONSTITUTION: An iron based sintered bearing consists of Cu: 2.0-9.0% C: 1.5-3.7%, and remnant of Fe. An iron alloy phase is made of ferrite 20~85% and the remnant of pearlite. The copper phase is extended to the direction crossing to the axial direction of the bearing.

Description

철계 소결 베어링 및 그 제조 방법{IRON BASED SINTERED BEARING AND METHOD FOR PRODUCING THE SAME}Iron-based sintered bearing and its manufacturing method {IRON BASED SINTERED BEARING AND METHOD FOR PRODUCING THE SAME}

본 발명은, 모터의 베어링이나 복사기 등의 종이 이송 롤러축의 베어링 등에 사용하기에 적합한 철계 소결 베어링 및 그 제조 방법에 관한 것으로, 특히, 베어링의 마모량을 적게 하고, 또한 샤프트의 마모량도 저감시키는 기술에 관한 것이다.The present invention relates to an iron-based sintered bearing suitable for use in a bearing of a paper feed roller shaft, such as a motor bearing or a copying machine, and a manufacturing method thereof. In particular, the present invention relates to a technique for reducing the wear amount of a bearing and also the wear amount of a shaft. It is about.

종래부터 베어링에는, 소결 합금제인 것이 많이 이용되고 있다. 소결 합금은 함침된 윤활유에 의한 자기 윤활성을 부여할 수 있으므로, 내소부(燒付)성과 내마모성이 양호하여 넓게 이용되고 있다. 예를 들어 일본국 특허공개 평 11-117940호 공보에는, Cu:10∼30%, 잔부:Fe로 이루어지는 철구리계 소결 합금층을 슬라이드면에 설치한 베어링이 개시되어 있다.Conventionally, the thing made from a sintered alloy is used for a bearing much. Since sintered alloys can impart self-lubricating properties by impregnated lubricating oil, they have been widely used because they have good seizure resistance and wear resistance. For example, Japanese Patent Laid-Open No. 11-117940 discloses a bearing in which an iron copper-based sintered alloy layer made of Cu: 10 to 30% and the balance: Fe is provided on a slide surface.

그러나, 최근, 구리의 가격이 상승하고 있으므로, 일본국 특허공개 평 11-117940호 공보와 같이 구리를 10∼30% 사용하는 기술에서는 제조 비용이 비교적 높아 실용적이지 않다. 이 때문에, 철을 주성분으로 하는 베어링의 수요가 높아지고 있다. 그러나, 철을 주성분으로 하는 베어링의 경우에는, 소부되기 쉽고, 또한, 상대 부품인 샤프트를 손상시키고 쉽다는 결점이 있다. 특히, 열처리를 실시하지 않은 경도가 낮은 샤프트와 철을 주성분으로 하는 베어링을 조합하여 이용하는 경우, 상기의 현상은 현저하게 된다.However, since the price of copper is rising in recent years, in the technique which uses 10 to 30% of copper like Japanese Unexamined-Japanese-Patent No. 11-117940, manufacturing cost is comparatively high and it is not practical. For this reason, the demand of the bearing which has iron as a main component is increasing. However, in the case of a bearing containing iron as a main component, there is a drawback that it is easy to burn and damage the shaft which is a counterpart. In particular, the above phenomenon becomes remarkable when using a combination of a shaft having low hardness and a bearing containing iron as a main component without heat treatment.

따라서, 본 발명은, 뛰어난 내마모성을 가짐과 더불어, 철구리계 소결 합금 베어링에 필적하는 내소부성 및 상대 부품에의 공격 완화성을 가지는 철계 소결 합금 베어링 및 그 제조 방법을 제공하는 것을 목적으로 하고 있다.Accordingly, an object of the present invention is to provide an iron-based sintered alloy bearing having excellent wear resistance, comparable to that of an iron-copper sintered alloy bearing, and having an attack resistance against a counterpart, and a manufacturing method thereof. .

본 발명은, 축의 외주면을 지지하는 베어링면을 가지는 철계 소결 베어링으로서, 소결 합금의 전체 조성이, 질량비로, Cu:2.0∼9.0%, C:1.5∼3.7%, 잔부:Fe 및 불가피 불순물로 이루어지고, 베어링의 내부는, 면적율로 페라이트(ferrite)가 20∼85% 및 잔부가 펄라이트(pearlite)로 이루어지는 철합금상 중에, 베어링의 축방향에 대해서 교차하는 방향으로 연장되는 구리상과, 흑연상 및 기공이 분산하는 금속 조직을 나타내고, 베어링면에, 구리상이 8∼40%의 면적율로 노출되어 있는 것을 특징으로 하고 있다.The present invention is an iron-based sintered bearing having a bearing surface for supporting the outer circumferential surface of the shaft, wherein the total composition of the sintered alloy is made of Cu: 2.0 to 9.0%, C: 1.5 to 3.7%, balance: Fe and unavoidable impurities in mass ratio. The inside of the bearing has a copper phase and a graphite phase extending in a direction intersecting with respect to the axial direction of the bearing in an iron alloy phase composed of 20 to 85% of ferrite and the remainder of pearlite at an area ratio. And a metal structure in which pores are dispersed, and a copper phase is exposed to a bearing surface at an area ratio of 8 to 40%.

또한, 본 발명은, 형공(型孔)을 가지는 다이(die)와, 형공 내에 배치되는 코어 로드와, 다이의 형공과 코어 로드의 외주에 슬라이드 가능하게 끼워맞추는 하부 펀치로 구성되는 캐비티에 원료 분말을 충전하고, 이 원료 분말을, 다이의 형공과 코어 로드의 외주에 슬라이드 가능하게 끼워 맞추는 상부 펀치와 하부 펀치에 의해 압분 성형하고, 얻어진 압분체를 소결하는 철계 소결 베어링의 제조 방법에 있어서, 원료 분말은, 평균 입경이 20∼150㎛인 편평 형상의 구리분말을 2.0∼9.0질량%와, 평균 입경이 40∼80㎛인 흑연 분말을 1.5∼3.7질량%를 철분말에 첨가하여 혼합 한 것이며, 소결의 온도는 950∼1030℃인 것을 특징으로 하고 있다.Moreover, this invention is raw material powder in the cavity comprised from the die which has a mold hole, the core rod arrange | positioned in a mold hole, and the lower punch which slidably fits in the outer periphery of the die hole of a die, and a core rod. In the method for producing an iron-based sintered bearing, the raw powder is compacted by means of an upper punch and a lower punch slidably fitted to the die hole of the die and the outer periphery of the core rod, and the obtained green compact is sintered. The powder is a mixture of 2.0 to 9.0% by mass of a flat copper powder having an average particle diameter of 20 to 150 µm and 1.5 to 3.7% by mass of a graphite powder having an average particle diameter of 40 to 80 µm added to the iron powder, The temperature of sintering is characterized by being 950-1030 degreeC.

이하, 본 발명의 수치 한정의 근거를 본 발명의 작용과 함께 설명한다. 또한, 이하의 설명에 있어서 「%」는 질량%의 뜻이다.EMBODIMENT OF THE INVENTION Hereinafter, the basis of numerical limitation of this invention is demonstrated with the action of this invention. In addition, in the following description, "%" means the mass%.

구리분말의 입경Particle size of copper powder

본 발명의 철계 소결 베어링의 제조 방법에서는, 원료 분말에 편평 형상의 구리분말을 혼합하여 캐비티에 충전한다. 그리고, 다이캐비티 내를 원료 분말이 낙하할 때에, 코어 로드에 구리분말이 달라붙고, 코어 로드에 구리분말이 붙은 상태로 된다. 이에 따라, 베어링 내부와 비교해 슬라이드 특성이 요구되는 베어링 내경(內徑) 면에 노출되는 구리상의 양이 많아진다. 본 발명에서는, Cu량의 전체를 편평 형상의 구리분말서 부여함으로써, 베어링 내경 면에 노출되는 구리상의 양을 확보하면서, 베어링 내부의 Cu량을 저감시킬 수 있다.In the manufacturing method of the iron-based sintered bearing of this invention, a flat copper powder is mixed with raw material powder, and it fills a cavity. Then, when the raw material powder falls in the die cavity, the copper powder adheres to the core rod and the copper powder adheres to the core rod. Thereby, compared with the inside of a bearing, the quantity of the copper phase exposed to the bearing inner diameter surface which slide characteristic is calculated | required increases. In the present invention, the amount of Cu in the bearing can be reduced while securing the amount of the copper phase exposed to the bearing inner diameter surface by giving the entire Cu amount as a flat copper powder.

편평 형상의 구리분말을 함유하는 원료 분말을 충전하면, 코어 로드의 주위에 구리분말이 평행 내지 그에 근접한 상태로 배향하는데, 베어링 내부에서는, 편평 형상의 구리분말이 다이캐비티로의 낙하 시에 베어링의 축방향에 수직인 방향으로 배향하기 쉽다. 이 때문에, 원료 분말을 압축 성형, 소결의 후에는, 베어링 내부에 있어서 구리상은 베어링의 축방향에 대해서 직교 내지 그에 근접한 상태로 연장되게 된다.When the raw material powder containing the flat copper powder is filled, the copper powder is oriented in a state of parallel to or close to the core rod around the core rod. In the bearing, the flat copper powder is formed when the bearing falls to the die cavity. It is easy to orientate in the direction perpendicular to the axial direction. For this reason, after compression molding and sintering the raw material powder, the copper phase in the bearing extends perpendicular to or close to the axial direction of the bearing.

구리상은, 철합금상과 비교하여 강도는 낮지만, 구리상이 상기와 같이 분산함으로써, 축방향의 구리상의 양이 적어지므로, 축방향의 하중에 대해서 강도가 확보된다. 이상과 같은 작용, 효과를 얻기 위해서, 편평 형상의 구리분말의 입경은 20∼150㎛로 한다. 구리분말의 입경이 20㎛를 밑돌면, 철입자간에 존재하는 구리의 비율이 너무 많아져, 입자간의 소결이 진행되기 어려워진다. 그 결과, 베어링의 강도가 저하하여 베어링의 마모량이 증대한다. 한편, 구리분말의 입경이 150㎛를 넘으면, 구리분말이 코어 로드에 부착되기 어려워져, 베어링 내경 면에 노출되는 구리상의 면적율이 저하한다. 그 결과, 베어링의 소부가 발생하기 쉬워짐과 더불어 샤프트의 마모량이 증대한다. 또한, 구리분말의 편평성을 확보하기 위해서, 구리분말의 입자 직경과 두께의 비는 2.5∼20인 것이 바람직하다.Although the copper phase has a lower strength than the iron alloy phase, the copper phase is dispersed as described above, whereby the amount of the copper phase in the axial direction decreases, so that the strength is secured with respect to the axial load. In order to obtain the above functions and effects, the particle size of the flat copper powder is set to 20 to 150 m. If the particle diameter of the copper powder is less than 20 µm, the proportion of copper present between the iron particles becomes too large, and sintering between the particles becomes difficult to proceed. As a result, the strength of the bearing decreases and the wear amount of the bearing increases. On the other hand, when the particle diameter of a copper powder exceeds 150 micrometers, a copper powder becomes difficult to adhere to a core rod, and the area ratio of the copper phase exposed to the bearing inner diameter surface falls. As a result, burning of the bearing tends to occur and the amount of wear of the shaft increases. In addition, in order to ensure the flatness of a copper powder, it is preferable that ratio of the particle diameter of a copper powder and thickness is 2.5-20.

구리분말의 첨가량Added amount of copper powder

구리분말의 첨가량이 적으면 베어링 내경 면에 노출되는 구리상의 면적율이 저하한다. 한편, 구리분말의 첨가량이 많으면, 베어링의 강도가 저하하여 베어링의 마모량이 증대한다. 따라서, 구리분말의 첨가량은 2.0∼9.0%로 한다.When the addition amount of copper powder is small, the area ratio of the copper phase exposed to the bearing inner diameter surface will fall. On the other hand, when the addition amount of copper powder is large, the strength of the bearing decreases and the wear amount of the bearing increases. Therefore, the addition amount of copper powder shall be 2.0 to 9.0%.

흑연분말의 입경Particle size of graphite powder

상술의 편평 형상의 구리분말에 의해, 베어링 내경 면에 노출되는 구리상의 양을 확보할 수 있는데, 본 발명에서는, 또한, 철합금상 중에 흑연을 분산시켜 유리(遊離) 흑연상을 형성한다. 유리 흑연상은, 고체 윤활제로서 작용하여, 슬라이드 특성을 향상시킨다. 여기서, 흑연분말의 입경이 너무 작으면 C가 철합금상 중에 확산하기 쉬워져, 펄라이트의 양이 증대하여 철합금 상의 경도가 증가한다. 그 결과, 슬라이드 상대인 샤프트의 마모량이 증대한다. 또한, 유리 흑연상의 양이 적어져 슬라이드 특성이 저하한다. 한편, 흑연분말의 입경이 너무 크면, 철합금상 중으로의 C의 확산이 발생하기 어려워지고, 기지의 경도가 저하하여 베어링의 마모 량이 증대한다. 또한, 흑연의 입경이 너무 커진 경우, 금속분말끼리의 결합을 저해하여 재료 강도가 저하하기 때문에, 베어링의 마모량이 증대한다. 따라서, 흑연 분말의 평균 입경은, 40∼80㎛로 한다.The above-mentioned flat copper powder can ensure the amount of copper phase exposed to the bearing inner diameter surface. In the present invention, graphite is dispersed in the iron alloy phase to form a free graphite phase. The free graphite phase acts as a solid lubricant and improves slide characteristics. Here, when the particle size of the graphite powder is too small, C tends to diffuse in the iron alloy phase, the amount of pearlite increases, and the hardness of the iron alloy phase increases. As a result, the amount of wear of the shaft as the slide counterpart increases. In addition, the amount of the glass graphite phase decreases and the slide characteristic is lowered. On the other hand, when the particle size of the graphite powder is too large, diffusion of C into the iron alloy phase is less likely to occur, the known hardness decreases, and the wear amount of the bearing increases. In addition, when the particle size of the graphite is too large, the bond strength between the metal powders is inhibited and the material strength is lowered, so that the wear amount of the bearing increases. Therefore, the average particle diameter of graphite powder shall be 40-80 micrometers.

흑연분말의 첨가량Added amount of graphite powder

흑연 분말의 첨가량이 적으면, 철합금상 중의 페라이트의 양이 많아지고, 경도가 낮아져 베어링의 마모량이 증대한다. 또한, 고체 윤활 효과가 저하한다. 한편, 흑연 분말의 첨가량이 많으면 펄라이트의 양이 증가하여 철합금상의 경도의 상승을 초래함과 더불어, 금속분말끼리의 결합이 저해되어 재료 강도가 저하하기 때문에, 샤프트 및 베어링의 마모량이 증대한다. 따라서, 흑연분말의 첨가량은 1.5∼3.7%로 한다.When the addition amount of the graphite powder is small, the amount of ferrite in the iron alloy phase increases, the hardness decreases, and the wear amount of the bearing increases. In addition, the solid lubrication effect is lowered. On the other hand, when the amount of graphite powder added is large, the amount of pearlite increases, leading to an increase in the hardness of the iron alloy phase. In addition, the bond between metal powders is inhibited and the material strength decreases, so that the amount of wear of the shaft and bearing increases. Therefore, the addition amount of graphite powder shall be 1.5 to 3.7%.

소결 온도Sintering temperature

본 발명에서는, 철합금상 중에 흑연상을 형성하기 위해, 소결 온도는 중요하다. 소결 온도가 낮으면 철합금상 중의 페라이트의 양이 많아져, 경도가 낮아져 베어링의 마모량이 증대한다. 한편, 소결 온도가 높으면 펄라이트의 양이 증가하여 경도가 증가하므로, 샤프트의 마모량이 증대함과 더불어 철합금상의 강도가 저하하여 베어링의 마모량이 증대한다. 따라서, 소결 온도는 950∼1030℃로 한다.In the present invention, in order to form a graphite phase in the iron alloy phase, the sintering temperature is important. When the sintering temperature is low, the amount of ferrite in the iron alloy phase increases, the hardness decreases, and the wear amount of the bearing increases. On the other hand, when the sintering temperature is high, since the amount of pearlite increases and hardness increases, the wear amount of the shaft increases and the strength of the iron alloy phase decreases, thereby increasing the wear amount of the bearing. Therefore, sintering temperature shall be 950-1030 degreeC.

본 발명에 의하면, 베어링 내경 면에 노출된 구리상과 흑연상에 의해, 뛰어난 내마모성을 가짐과 더불어, 철구리계 소결 합금 베어링에 필적하는 내소부성 및 상대 부품에의 공격 완화성을 가지는 등의 효과가 얻어진다.Advantageous Effects of Invention According to the present invention, the copper phase and the graphite phase exposed to the bearing inner diameter surface have excellent abrasion resistance, and have an effect such as calcination resistance comparable to iron copper-based sintered alloy bearings and attack resistance against counterpart parts. Is obtained.

(1) 베어링의 제작(1) manufacture of bearings

이하, 본 발명을 실시예에 의해 더욱 상세하게 설명한다.Hereinafter, an Example demonstrates this invention further in detail.

베어링의 소결 합금을 제작하기 위해서 하기의 원료 분말을 준비했다.In order to manufacture the sintered alloy of the bearing, the following raw material powder was prepared.

1. 광석 환원 철분말(평균 입경:100㎛)1.Ore reduced iron powder (average particle diameter: 100㎛)

2. 구리박 분말2. Copper foil powder

(평균 입경:10㎛, 20㎛, 50㎛, 100㎛, 150㎛, 200㎛)(Average particle diameter: 10 μm, 20 μm, 50 μm, 100 μm, 150 μm, 200 μm)

3. 전해 구리분말(평균 입경:50㎛)3. Electrolytic copper powder (average particle diameter: 50 µm)

4. 천연 흑연분말(평균 입경:20㎛, 40㎛, 60㎛, 80㎛, 100㎛)4. Natural graphite powder (average particle diameter: 20 µm, 40 µm, 60 µm, 80 µm, 100 µm)

5. 스테아린산아연5. Zinc Stearate

이들 분말을 전체 조성이 표 1에 나타내는 비율이 되도록 배합하고, 혼합기로 혼합했다. 또한, 스테아린산아연은, 성형 시의 윤활을 위해서 첨가하는 것이며, 이를 제외한 혼합 분말을 100%로 했을 때에, 모든 혼합 분말에 대해서 0.5% 첨가했다.These powders were mix | blended so that the whole composition might become the ratio shown in Table 1, and it mixed with the mixer. In addition, zinc stearate is added for the lubrication at the time of shaping | molding, and when it mixed 100% of the mixed powder except this, 0.5% was added with respect to all the mixed powders.

<표 1>TABLE 1

Figure 112009010029960-PAT00001
Figure 112009010029960-PAT00001

상기 혼합 분말을 베어링의 원통 형상으로 압축 성형하고, 소결 및 사이징(sizing)을 행했다. 소결은, 수소 가스와 질소 가스의 혼합 가스 중에서 표 1에 나타내는 온도로 행하고, 통상의 방법으로 사이징을 행했다. 베어링의 밀도는 6.OMg/㎥, 유효 다공율은 20%로 했다. 그리고, 베어링의 기공에 윤활유(광물유 점도 그레이드 ISO VG56)를 함침시켜, 시료 No.1∼24를 얻었다.The mixed powder was compression molded into a cylindrical shape of a bearing, and sintered and sized. Sintering was performed at the temperature shown in Table 1 in the mixed gas of hydrogen gas and nitrogen gas, and sizing was performed by the normal method. The density of the bearing was 6.OMg / m 3 and the effective porosity was 20%. And lubricating oil (mineral oil viscosity grade ISO VG56) was impregnated to the pore of a bearing, and sample No.1-24 was obtained.

(2) 평가(2) evaluation

상기 시료에 대해서 베어링의 내경 면의 구리상의 면적율, 철합금 기지 중의 페라이트 면적율, 외관 경도(록웰(rock well) 경도), 압환 강도, 및 베어링과 샤프 트의 마모량을 측정했다. 마모량의 측정은, 수평으로 한 모터의 회전축에 S45C제의 샤프트를 부착하고, 이 샤프트를 하우징에 부착한 베어링에 간극을 가지게 하여 삽입하고, 하우징에 수직 방향의 하중을 부여한 상태에서 샤프트를 회전시켜 행했다. 이 시험의 주위의 온도는 80℃로 유지하고, 샤프트의 회전수를 3000rpm, 부하 면압을 1MPa로 했다. 베어링 및 샤프트의 마모량은, 시험전의 내경 및 외경의 치수와, 1000시간 운전 후의 치수의 차로 했다. 이상의 결과를 표 2에 나타낸다.For the sample, the area ratio of the copper phase on the inner diameter surface of the bearing, the area ratio of ferrite in the iron alloy matrix, the appearance hardness (rockwell hardness), the crushing strength, and the wear amount of the bearing and the shaft were measured. To measure the amount of wear, a shaft made of S45C is attached to a rotating shaft of a horizontal motor, and the shaft is inserted with a gap in a bearing attached to the housing, and the shaft is rotated while a load in the vertical direction is applied to the housing. Done. The temperature around this test was kept at 80 degreeC, the rotation speed of the shaft was 3000 rpm, and the load surface pressure was 1 MPa. The wear amount of the bearing and the shaft was made into the difference between the dimension of the inner diameter and outer diameter before a test, and the dimension after 1000 hours of operation. The above result is shown in Table 2.

<표 2>TABLE 2

Figure 112009010029960-PAT00002
Figure 112009010029960-PAT00002

표 2에 나타내는 바와같이, 구리박 분말의 첨가량이 본 발명의 범위를 밑도는 시료 No.1에서는, 베어링의 내경 면에 있어서의 구리상의 면적율이 적기 때문에 샤프트의 마모가 많아졌다. 또한, 구리박 분말의 첨가량이 본 발명의 범위를 넘는 시료 No.5에서는, 베어링의 강도가 저하했기 때문에 베어링의 마모량이 많아졌다. 시료 No.6은, 첨가하는 구리분말으로서 전해 구리분말을 사용하고 있는데, 베어링 및 샤프트 쌍방의 마모량이 많아졌다. 이는 베어링의 내경 면에 있어서의 구리상의 면적율이 낮아져 있어, 코어 로드에 달라붙는 구리분말의 양이 적어졌기 때문이라고 생각된다. 이에 대해서, 본 발명예인 시료 No.2∼4에서는, 베어링 및 축의 마모량이 적다.As shown in Table 2, in sample No. 1 in which the addition amount of the copper foil powder was less than the scope of the present invention, wear of the shaft increased because the area ratio of the copper phase on the inner diameter surface of the bearing was small. Moreover, in sample No. 5 in which the addition amount of copper foil powder exceeded the range of this invention, since the strength of the bearing fell, the wear amount of the bearing increased. Sample No. 6 uses an electrolytic copper powder as the copper powder to be added, but the wear amount of both the bearing and the shaft increased. This is considered to be because the area ratio of the copper phase in the inner diameter surface of the bearing is low, and the amount of copper powder adhering to the core rod is reduced. In contrast, in Sample Nos. 2 to 4 which are examples of the present invention, the wear amount of the bearing and the shaft is small.

흑연분말의 첨가량이 본 발명의 범위를 밑도는 시료 No.7에서는, 철합금상 중의 페라이트의 면적율이 많기 때문에 기지 경도가 저하하고, 외관 경도가 낮아지며, 베어링 마모량이 많아졌다. 또한, 유리 흑연상의 양이 적고 고체 윤활성이 떨어지므로, 샤프트의 마모량도 많아졌다. 또한, 흑연분말의 첨가량이 증가하면, 철합금상 중의 페라이트의 면적율이 저하하여 펄라이트의 면적율이 증가하기 때문에, 외관 경도가 증가하여, 베어링의 마모량이 저하한다. 한편, 흑연분말의 첨가량이 본 발명의 범위를 넘는 시료 No.11에서는, 흑연분말의 첨가량이 너무 많아져, 철분말끼리의 확산을 저해하고, 그 결과, 외관 경도가 저하하지만, 철합금상 중의 펄라이트의 면적율이 증가하고, 기지 경도가 높아져, 샤프트의 마모량이 많아진다. 또한, 베어링의 압환 강도(또는 강도)가 저하했기 때문에, 베어링의 마모량도 증대했다. 이에 대해서, 본 발명예인 시료 No.8∼10에서는, 베어링 및 샤프트의 마모량이 적다.In Sample No. 7 in which the addition amount of the graphite powder was less than the scope of the present invention, since the area ratio of ferrite in the iron alloy phase was large, the known hardness decreased, the external hardness decreased, and the bearing wear amount increased. Moreover, since the amount of free graphite phase was small and solid lubricity was inferior, the amount of abrasion of the shaft also increased. Moreover, when the addition amount of graphite powder increases, since the area ratio of the ferrite in an iron alloy phase falls and the area ratio of pearlite increases, external appearance hardness will increase and the wear amount of a bearing will fall. On the other hand, in sample No. 11 in which the addition amount of the graphite powder exceeds the scope of the present invention, the addition amount of the graphite powder is too large, inhibits the diffusion of the iron powders, and as a result, the appearance hardness decreases, but in the iron alloy phase The area ratio of pearlite increases, the known hardness increases, and the amount of wear of the shaft increases. In addition, since the rolling strength (or strength) of the bearings decreased, the amount of wear of the bearings also increased. In contrast, in Sample Nos. 8 to 10, which are examples of the present invention, the wear amount of the bearing and the shaft is small.

흑연분말의 입경이 본 발명의 범위를 밑도는 시료 No.12에서는, 철합금상 중의 펄라이트의 면적율이 많기 때문에 경도가 증가하고, 샤프트의 마모량이 많아졌 다. 또한, 샤프트의 마모 분말이 연마재로서 작용한 결과, 베어링의 마모량도 많다. 흑연분말의 입경이 본 발명의 범위를 넘는 시료 No.15에서는, 베어링의 압환 강도(또는 강도)가 저하하여 베어링의 마모량이 많아졌다. 이에 대해서, 본 발명예인 시료 No. 13, 14에서는, 베어링 및 샤프트의 마모량이 적다.In Sample No. 12 in which the particle diameter of the graphite powder was less than the scope of the present invention, the hardness was increased because the area ratio of pearlite in the iron alloy phase was large, and the amount of wear on the shaft was increased. In addition, as a result of the wear powder of the shaft acting as an abrasive, the wear amount of the bearing is also large. In Sample No. 15 in which the particle diameter of the graphite powder exceeded the scope of the present invention, the rolling force (or strength) of the bearing decreased, and the wear amount of the bearing increased. On the other hand, sample No. which is an example of this invention. In 13 and 14, the wear amount of the bearing and the shaft is small.

구리박 분말의 입경이 본 발명의 범위를 밑도는 시료 No.16에서는, 철입자간에 존재하는 구리의 비율이 너무 많아져, 입자간의 소결이 진행되기 어려워진 결과, 베어링의 강도가 저하하여 베어링의 마모량이 많아졌다. 구리박 분말의 입경이 본 발명의 범위를 넘는 시료 No.20에서는, 구리분말이 코어 로드에 부착되기 어려워져, 베어링 내경 면에 노출되는 구리상의 면적율이 저하한 결과, 샤프트의 마모량이 많아졌다. 이에 대해서, 본 발명예인 시료 No.17∼19에서는, 베어링 및 샤프트의 마모량이 적다.In Sample No. 16, in which the particle diameter of the copper foil powder was less than the scope of the present invention, the proportion of copper present between the iron particles became too large, and as the sintering between the particles became difficult to proceed, the strength of the bearing decreased and the wear amount of the bearing decreased. Increased. In Sample No. 20 in which the particle diameter of the copper foil powder exceeded the scope of the present invention, the copper powder became difficult to adhere to the core rod, and the area ratio of the copper phase exposed to the bearing inner diameter surface decreased, resulting in a large amount of abrasion of the shaft. In contrast, in Sample Nos. 17 to 19 which are examples of the present invention, the wear amount of the bearing and the shaft is small.

소결 온도가 본 발명의 범위를 밑도는 시료 No.21에서는, 철합금상 중의 페라이트의 양이 많아지고, 경도가 낮아져 베어링의 마모량이 많다. 소결 온도가 본 발명의 범위를 넘는 시료 No.24에서는, 펄라이트의 양이 증가하여 경도가 단단해지므로, 샤프트의 마모량이 많아졌다. 이에 대해서, 본 발명예인 시료 No.22, 23에서는, 베어링 및 샤프트의 마모량이 적다.In Sample No. 21 where the sintering temperature is less than the scope of the present invention, the amount of ferrite in the iron alloy phase increases, the hardness decreases, and the wear amount of the bearing is large. In sample No. 24 whose sintering temperature exceeded the range of this invention, since the quantity of pearlite increased and hardness became hard, the amount of abrasion of the shaft increased. In contrast, in Sample Nos. 22 and 23 which are examples of the present invention, the wear amount of the bearing and the shaft is small.

(3) 조직 관찰(3) tissue observation

도 1은 본 발명예의 베어링 내경 면의 SEM 사진이다. 도 1에 나타내는 바와같이, 본 발명예의 베어링 내경 면에는, 철합금상 중에 구리상과 흑연상이 분산하여, 구리상은 베어링 내경 면에 평행하게 배치되어 있다. 이러한 구리상에 의해 베어링 내경 면의 구리상의 면적율이 증대하고, 상기한 것과 같은 슬라이드 성능의 향상이 얻어진다.1 is a SEM photograph of the bearing inner diameter surface of the present invention. As shown in FIG. 1, in the bearing inner diameter surface of the example of this invention, a copper phase and a graphite phase disperse | distribute in an iron alloy phase, and a copper phase is arrange | positioned parallel to a bearing inner diameter surface. Such a copper phase increases the area ratio of the copper phase of the bearing inner diameter surface, and the improvement of the slide performance as mentioned above is obtained.

도 1은 본 발명예의 베어링 내경 면의 광학 현미경 사진이다.1 is an optical micrograph of the bearing inner diameter surface of the example of the present invention.

Claims (3)

축의 외주면을 지지하는 베어링면을 가지는 철계 소결 베어링으로서, An iron-based sintered bearing having a bearing surface for supporting an outer circumferential surface of a shaft, 소결 합금의 전체 조성이,The overall composition of the sintered alloy, 질량비로, Cu:2.0∼9.0%, C:1.5∼3.7%, 잔부:Fe 및 불가피 불순물로 이루어지고,By mass ratio, it consists of Cu: 2.0-9.0%, C: 1.5-3.7%, remainder: Fe and an unavoidable impurity, 베어링의 내부는, 면적율로 페라이트가 20∼85% 및 잔부가 펄라이트로 이루어지는 철합금상(相) 중에, 베어링의 축방향에 대해서 교차하는 방향으로 연장되는 구리상과, 흑연상 및 기공이 분산하는 금속 조직을 나타내고,Inside the bearing, a copper phase extending in a direction intersecting with respect to the axial direction of the bearing and a graphite phase and pores are dispersed in an iron alloy phase composed of 20 to 85% of ferrite and the remainder of pearlite in an area ratio. Represents a metal structure, 상기 베어링면에, 구리상이 8∼40%의 면적율로 노출되어 있는 것을 특징으로 하는 철계 소결 베어링.An iron-based sintered bearing, wherein the copper phase is exposed at an area ratio of 8 to 40% on the bearing surface. 형공(型孔)을 가지는 다이(die)와, 상기 형공 내에 배치되는 코어 로드와, 상기 다이의 형공과 상기 코어 로드의 외주에 슬라이드 가능하게 끼워맞추는 하부 펀치로 구성되는 캐비티에 원료 분말을 충전하고, 이 원료 분말을, 상기 다이의 형공과 상기 코어 로드의 외주에 슬라이드 가능하게 끼워맞추는 상부 펀치와 상기 하부 펀치에 의해 압분(壓粉) 성형하고, 얻어진 압분체를 소결하는 철계 소결 베어링의 제조 방법에 있어서,The raw material powder is filled into a cavity composed of a die having a mold hole, a core rod disposed in the mold hole, and a lower punch slidably fitted to the die hole of the die and the outer circumference of the core rod. And a method of manufacturing an iron-based sintered bearing in which the raw powder is compacted by an upper punch and the lower punch slidably fitted into the die hole of the die and the outer periphery of the core rod, and the obtained green compact is sintered. To 상기 원료 분말은, 평균 입경이 20∼150㎛인 편평 형상의 구리분말을 2.0∼9.0질량%와, 평균 입경이 40∼80㎛인 흑연분말을 1.5∼3.7질량%를 철분말에 첨가하 여 혼합한 것이며,The raw material powder is mixed with 2.0 to 9.0% by mass of flat copper powder having an average particle diameter of 20 to 150 µm and 1.5 to 3.7% by mass of graphite powder having an average particle diameter of 40 to 80 µm to the iron powder. One, 상기 소결의 온도는 950∼1030℃인 것을 특징으로 하는 철계 소결 베어링의 제조 방법.The temperature of the sintering is 950 ~ 1030 ℃ manufacturing method of iron-based sintered bearing. 청구항 2에 있어서,The method according to claim 2, 상기 구리분말의 입자 직경과 두께의 비가 2.5∼20인 것을 특징으로 하는 철계 소결 베어링의 제조 방법.The ratio of the particle diameter and thickness of the said copper powder is 2.5-20, The manufacturing method of the iron type sintered bearing characterized by the above-mentioned.
KR1020090013418A 2008-09-25 2009-02-18 Iron based sintered bearing and method for producing the same KR101101078B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008245492A JP5247329B2 (en) 2008-09-25 2008-09-25 Iron-based sintered bearing and manufacturing method thereof
JPJP-P-2008-245492 2008-09-25

Publications (2)

Publication Number Publication Date
KR20100035080A true KR20100035080A (en) 2010-04-02
KR101101078B1 KR101101078B1 (en) 2011-12-30

Family

ID=42047908

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090013418A KR101101078B1 (en) 2008-09-25 2009-02-18 Iron based sintered bearing and method for producing the same

Country Status (3)

Country Link
JP (1) JP5247329B2 (en)
KR (1) KR101101078B1 (en)
CN (1) CN101684536B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101066789B1 (en) * 2010-11-29 2011-09-21 주식회사 넥스텍 Sinter bearing and maufacturing method thereof
KR101352883B1 (en) * 2009-05-28 2014-01-17 제이에프이 스틸 가부시키가이샤 Iron-based mixed powder for powdery metallurgy

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2436463B1 (en) * 2010-09-30 2013-07-10 Hitachi Powdered Metals Co., Ltd. Sintered materials for valve guides and production methods therefor
WO2013042664A1 (en) * 2011-09-22 2013-03-28 Ntn株式会社 Sintered bearing and method for manufacturing same
US10081056B2 (en) 2011-09-22 2018-09-25 Ntn Corporation Sintered bearing and method for manufacturing same
JP6038460B2 (en) * 2012-02-02 2016-12-07 Ntn株式会社 Manufacturing method of sintered bearing
JP5972588B2 (en) * 2012-02-02 2016-08-17 Ntn株式会社 Manufacturing method of sintered bearing
JP6038459B2 (en) * 2011-09-22 2016-12-07 Ntn株式会社 Sintered bearing
CN102689013A (en) * 2012-06-06 2012-09-26 海安县鹰球集团有限公司 High-toughness oil-retaining bearing for iron-base power metallurgy and manufacturing method thereof
JP6038522B2 (en) * 2012-07-24 2016-12-07 Ntn株式会社 Sintered bearing
JP6114512B2 (en) 2012-07-26 2017-04-12 Ntn株式会社 Sintered bearing and manufacturing method thereof
JP5442145B1 (en) * 2012-10-24 2014-03-12 Ntn株式会社 Sintered bearing
CN103071800A (en) * 2012-11-23 2013-05-01 东睦(江门)粉末冶金有限公司 Iron-based oil-containing bearing and manufacturing method thereof
JP6412315B2 (en) * 2013-03-25 2018-10-24 Ntn株式会社 Vibration motor
US10536048B2 (en) 2013-03-25 2020-01-14 Ntn Corporation Method for manufacturing sintered bearing, sintered bearing, and vibration motor equipped with same
JP6194613B2 (en) * 2013-03-29 2017-09-13 日立化成株式会社 Iron-based sintered alloy for sliding member and manufacturing method thereof
JP6302259B2 (en) * 2014-01-20 2018-03-28 Ntn株式会社 Manufacturing method of sintered bearing
CN105593543B (en) 2013-10-03 2019-09-17 Ntn株式会社 Sintered bearing and its manufacturing method
JP2016023349A (en) * 2014-07-23 2016-02-08 Ntn株式会社 Sinter machine component
JP2017066491A (en) * 2015-09-30 2017-04-06 Ntn株式会社 Powder for powder metallurgy, green compact and method for producing sintered component
JP6170587B2 (en) * 2016-03-28 2017-07-26 Ntn株式会社 Sintered bearing
CN105648333A (en) * 2016-03-31 2016-06-08 泰安皆瑞金属科技有限公司 Copper-containing iron-based powder metallurgy material and preparation process thereof
CN109154043B (en) * 2016-05-19 2019-11-19 日立化成株式会社 Iron series sintered metal bearing
WO2018021501A1 (en) * 2016-07-29 2018-02-01 株式会社ダイヤメット Iron-copper-based oil-impregnated sintered bearing and method for manufacturing same
JP6817094B2 (en) 2016-07-29 2021-01-20 株式会社ダイヤメット Iron-copper-based sintered oil-impregnated bearing and its manufacturing method
US10697495B2 (en) 2016-07-29 2020-06-30 Diamet Corporation Iron-copper-based oil-impregnated sintered bearing and method for manufacturing same
WO2018079670A1 (en) * 2016-10-26 2018-05-03 株式会社ダイヤメット Oil-impregnated sintered bearing
JP6487957B2 (en) * 2017-03-17 2019-03-20 Ntn株式会社 Sintered bearing
JP6462053B2 (en) * 2017-06-30 2019-01-30 Ntn株式会社 Sintered bearing
WO2019059248A1 (en) 2017-09-20 2019-03-28 株式会社ダイヤメット Sintered oil-retaining bearing
JP7024291B2 (en) * 2017-09-29 2022-02-24 昭和電工マテリアルズ株式会社 Iron-based sintered bearings and iron-based sintered oil-impregnated bearings
CN108127111A (en) * 2017-11-22 2018-06-08 瑞安市钰易来汽摩零部件有限公司 A kind of sintered metal bearing and its manufacture craft
JP6536866B1 (en) 2017-12-28 2019-07-03 日立化成株式会社 Sintered bearing, sintered bearing device and rotating device
JP2019138472A (en) * 2019-02-25 2019-08-22 Ntn株式会社 Instrument having sinter bearing
CN110144488A (en) * 2019-06-27 2019-08-20 浙江乐粉轨道交通科技有限公司 A kind of powdered metallurgical material and its friction piece and frictional disk of application
CN110646428A (en) * 2019-09-29 2020-01-03 山东大学 Quantitative analysis method for metallographic phase of vermicular graphite cast iron and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137606B2 (en) * 1971-10-12 1976-10-16
JPS59110768A (en) * 1982-12-13 1984-06-26 Toyota Motor Corp Abrasion resistance ferrous sintered body and preparation thereof
JP3168538B2 (en) * 1997-04-19 2001-05-21 チャン リー ウー Sliding bearing and method of manufacturing the same
KR100653953B1 (en) * 2001-06-29 2006-12-04 두산인프라코어 주식회사 Method for manufacturing sintered bearing
JP3857116B2 (en) * 2001-09-28 2006-12-13 三菱マテリアルPmg株式会社 Powder mold and method for producing powder molded product
CN1316173C (en) * 2004-12-24 2007-05-16 上海汽车股份有限公司 Method of making oil-containing bearing block through powdered metallurgy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101352883B1 (en) * 2009-05-28 2014-01-17 제이에프이 스틸 가부시키가이샤 Iron-based mixed powder for powdery metallurgy
KR101066789B1 (en) * 2010-11-29 2011-09-21 주식회사 넥스텍 Sinter bearing and maufacturing method thereof
WO2012074276A3 (en) * 2010-11-29 2012-09-07 현대제철 주식회사 Sintered bearing and preparation method thereof

Also Published As

Publication number Publication date
CN101684536A (en) 2010-03-31
CN101684536B (en) 2012-05-02
JP5247329B2 (en) 2013-07-24
JP2010077474A (en) 2010-04-08
KR101101078B1 (en) 2011-12-30

Similar Documents

Publication Publication Date Title
KR101101078B1 (en) Iron based sintered bearing and method for producing the same
JP4675563B2 (en) Bearing and manufacturing method thereof
US10428873B2 (en) Iron-copper-based oil-impregnated sintered bearing and method for manufacturing same
KR101066789B1 (en) Sinter bearing and maufacturing method thereof
JP6424983B2 (en) Iron-based sintered oil-impregnated bearing
JP6114512B2 (en) Sintered bearing and manufacturing method thereof
WO2016035880A1 (en) Cu-BASED SINTERED BEARING AND PRODUCTION METHOD FOR Cu-BASED SINTERED BEARING
JP2018048358A (en) Copper-based sintered alloy oil retaining bearing
US10697495B2 (en) Iron-copper-based oil-impregnated sintered bearing and method for manufacturing same
CN108672696B (en) Sintered bearing for EGR valve and method for manufacturing same
JP6819696B2 (en) Iron-based sintered oil-impregnated bearing
KR101594207B1 (en) Bearing material
JP2019065323A (en) Iron-based sintered shaft bearing, and iron-based sintered oil-containing shaft bearing
US6833018B1 (en) Powder metal materials including glass
JP2001003123A (en) Sintered alloy for oilless bearing, and its manufacture
JP7219198B2 (en) Copper alloy sliding material
JP5424121B2 (en) Sliding material
JPH04124248A (en) Sintered alloy for oilless bearing and its production
JP6759389B2 (en) Sintered bearing
JP6720362B2 (en) Sintered bearing for EGR valve
CN114540697B (en) Superfine Fe-Cu-SiC-C-Al 2 O 3 Composite material and preparation method thereof
JP7021312B2 (en) Sintered bearing
JPH0499836A (en) Sintered copper series sliding material
KR100940117B1 (en) Fe based alloy for self-lubricating bearing, manufacturing method for the same and self-lubricating bearing manufactured therefrom
JPH08209264A (en) Sintered sliding member

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141212

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151211

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161216

Year of fee payment: 6