KR20100033998A - 편광 광원 - Google Patents

편광 광원 Download PDF

Info

Publication number
KR20100033998A
KR20100033998A KR1020107000067A KR20107000067A KR20100033998A KR 20100033998 A KR20100033998 A KR 20100033998A KR 1020107000067 A KR1020107000067 A KR 1020107000067A KR 20107000067 A KR20107000067 A KR 20107000067A KR 20100033998 A KR20100033998 A KR 20100033998A
Authority
KR
South Korea
Prior art keywords
light
light source
transparent
polarized
reflective polarizer
Prior art date
Application number
KR1020107000067A
Other languages
English (en)
Inventor
우다얀 카나데
발라지 가나파티
가우라브 쿨카르니
카르트히크 스리다란
마나스 알레카르
마노하르 조쉬
사낫 가누
Original Assignee
아이2아이씨 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아이2아이씨 코포레이션 filed Critical 아이2아이씨 코포레이션
Publication of KR20100033998A publication Critical patent/KR20100033998A/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/281Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for attenuating light intensity, e.g. comprising rotatable polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0056Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133541Circular polarisers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Projection Apparatus (AREA)
  • Planar Illumination Modules (AREA)
  • Polarising Elements (AREA)

Abstract

한 가지 에너지 효율적 편광 광원 시스템이 공개된다. 일 실시 예에서, 해당 시스템은 하나의 반사기와 하나의 반사 편광자로 구성된다. 투명 광원과 파장 지연판이 반사기와 반사 편광자 사이에 위치한다.

Description

편광 광원{A POLARIZED LIGHT SOURCE}
본 발명은 광학, 소재 및 전자 분야에 대한 것이다. 특히, 본 발명은 에너지 효율적인 편광 광원에 대한 것이다.
대부분의 광원에서 나오는 빛은 무작위적으로 편광된다. 하지만, 일부 어플리케이션의 경우에는 선형 편광 또는 원편광이 요구된다. 예를 들어, 많은 광 밸브(예. 액정 표시) 및 광학 프로세서는 선형 편광을 요구한다.
무작위 편광을 편광으로 변환하는 종래의 기술 시스템이 존재한다. 종래의 기술 시스템 중 일부는 광원 앞에 편광자를 사용한다. 비편광이 편광자를 통과하면 편광이 편광자에서 나온다. 그러한 시스템은 편광자가 한 가지 편광 성분에 대해서는 전송을 허용하지만 다른 편광 성분은 흡수하기 때문에 비효율적이다. 그리하여, 광 에너지의 약 절반이 편광자에서 분산된다.
다른 종래의 기술 시스템은 편광에 대하여 편광 빔 분배기를 사용한다. 편광 빔 분배기는 요구되는 편광 성분이 통과하는 것은 허용하지만, 원하지 않는 편광 성분은 굴절되어 버리고 에너지는 어딘가에서 분산된다. 그러므로, 그러한 시스템 역시 비효율적이다.
종래의 기술 시스템 일부는 다음 성분을 사용한다: 거울, 판 형태의 광원, 4분파장 지연판 및 반사 편광판. 반사 편광자는 한 가지 편광 성분은 통과하게 하지만 다른 편광 성분은 반사하는 소자이다. 이 다른 편광 성분은 4분파장 지연판, 광원 및 거울에 의해 재사용된다. 이들 종래의 기술 시스템은 비효율적이다. 광원이 투명하지 않기 때문에 빛이 광원을 통과할 때마다 빛의 편광이 방해된다. 그리하여, 높은 광 재사용 효율성이 달성되지 않는다.
본 발명은 전술한 문제점을 해결하기 위한 것을 주 목적으로 한다.
하나의 에너지 효율적 편광 광원 시스템이 공개된다. 일 실시 예에서, 해당 시스템은 반사기와 반사 편광자로 구성된다. 투명 광원과 파장 지연판이 반사기와 반사 편광자 사이에 놓인다.
소자들의 구현 및 조합의 다양한 세부사항을 포함하여 위 및 기타 선호되는 특징들은 특히 첨부 도면과 관련하여 설명되며 청구항에서 지적된다. 여기에서 설명된 특정한 방법 및 시스템은 설명의 방법으로만 제시되는 것이지 제한으로서 제시되는 것이 아니다. 해당 기술에 정통한 사람들이라면 쉽게 이해하겠지만, 여기에서 설명된 원리 및 특징은 해당 발명의 범위를 벗어나지 않는 다양하고 수많은 실시 예에서 이용될 수 있다.
본 발명에 따르면, 전술한 목적을 달성할 수 있다.
본 명세서의 일부로서 포함되는 첨부 도면은 현재 선호되는 실시 예를 위에서 제시된 일반적인 설명 및 아래 제시된 선호되는 실시 예에 대한 상세한 설명과 함께 상술함으로써 본 발명의 원리를 설명하고 가르친다.
도 1a는 일 실시 예에 따른 예시적인 편광 광원의 단면도 블록 다이어그램을 나타낸 것이다.
도 1b은 일 실시 예에 따른 예시적인 광선의 편광 상태를 묘사하는 예시적인 편광 광원 단면도의 블록 다이어그램을 보여준다.
도 2a는 일 실시 예에 따른 편광 광원의 예시적인 기구 단면도의 블록 다이어그램을 보여준다.
도 2b는 일 실시 예에 따른 예시적인 광선의 편광 상태를 설명하는 예시적인 편광 광원 단면도의 블록 다이어그램을 나타낸다.
도 3a는 일 실시 예에 따라 예시적인 편광 광원의 단면도에 대한 블록 다이어그램을 보여준다.
도 3b은 일 실시 예에 따른 예시적인 광선의 편광 상태를 묘사하는 예시적인 편광 광원의 단면도에 대한 블록 다이어그램을 보여준다.
도 4a는 일 실시 예에 따른 예시적인 편광 광원의 단면도에 대한 블록 다이어그램을 보여준다.
도 4b은 일 실시 예에 따른 예시적인 광선의 편광 상태를 묘사하는 예시적인 편광 광원의 단면도에 대한 블록 다이어그램을 보여준다.
도 5a는 일 실시 예에 따른 예시적인 투명 광원의 블록 다이어그램을 보여준다.
도 5b는 일 실시 예에 따른 측면에서 보여지는 예시적인 투명 광원의 블록 다이어그램을 보여준다.
도 6은 일 실시 예에 따른 예시적인 광원 코어의 예시적인 소자의 블록 다이어그램을 보여준다.
도 7은 일 실시 예에 따른 확산제 입자의 다양화된 집중을 갖고 있는 예시적인 광원의 다이어그램을 보여준다.
도 8은 일 실시 예에 따른 2개의 광원을 갖는 예시적인 광원을 보여준다.
도 9는 일 실시 예에 따른, 거울이 달린 코어를 가지고 있는 예시적인 광원의 다이어그램을 보여준다.
하나의 에너지 효율적 편광 광원 시스템이 공개된다. 일 실시 예에서, 해당 시스템은 반사기와 반사 편광자로 구성된다. 투명 광원 및 파장 지연판는 반사기와 반사 편광자 사이에 놓인다.
도 1a은 일 실시 예에 따른, 예시적인 편광 광원 시스템(199)의 단면도에 대한 블록 다이어그램을 나타낸다. 기구는 금속 표면, 분포된 브래그 반사기, 하이브리드 반사기, 내부 전반사기, 전방향 반사기 또는 산란 반사기를 포함하여 어떠한 광 반사기일 수도 있는 거울(101)을 포함한다. 4분파장 지연판(102)은 거울(101) 앞에 위치한다. 투명 광원(10)은 4분파장 지연판(102) 앞에 위치한다. 반사 원형 편광자(104)는 투명 광원(103) 앞에 위치한다. 반사 원형 편광자(104)는 광원(103)에서 나온 빛을 분기시키며, 원형 편광을 갖는 일부 빛은 그것을 통과하고 일부 빛은 다시 반사된다. 편광 광원 시스템(199)은 원편광을 방출하는 에너지 효율적 광원이다.
4분파장 지연판(102)은 한 방향으로 편광된 빛과 다른 방향으로 편광된 빛 사이의 광로차가 광파장의 1/4와 같은 복굴절 소자이다. 일 실시예에 따르면, 4분파장 지연판(102)은 반드시 완전한 4분파장 지연판일 필요가 없다. 일 실시 예에서, 4분파장 지연판(102)은 일단의 파장 범위(광대역 4분파장 지연판으로 알려짐)에 걸쳐 4분의 1 파장의 광로차를 가지고 있다. 또 다른 실시 예에서, 파장의 분수로서의 해당 광로차는 상이한 파장에 대하여 다르다. 다른 실시 예에 있어서, 파장 지연판(102)은 파장의 1/4과 동등한 광로차를 가지고 있지는 않지만 1/8, 3/4 등과 같은 파장의 어떤 분수와 같다.
도 1b은 일 실시 예에 따른, 예시적인 광선의 편광 상태를 묘사하는 예시적인 편광 광원(199)의 단면도에 대한 블록 다이어그램을 보여준다. 빛은 투명 광원(103)의 양면으로부터 발산할 수 있다. 투명 광원(103)의 전면에서 발산하는 비편광 또는 부분 편광(112)은 반사 편광자(104)로 입사된다. 특정 방향성(예, 시계 반대방향 또는 시계 방향 편광)을 보이는 편광(112)의 원편광 성분(113)은 반사 편광자(104)로부터 나온다. 반대 방향성을 보이는 광(112)의 원편광 성분(114)은 편광자(104)에 의해 다시 반사된다. 원편광 성분(114)은 투명 광원(103)을 통과한다. 광원(103)은 투명하기 때문에, 광(114)의 편광 상태는 유지된다. 더 나아가, 광(114)은 1/4파장 지연판(102)에 입사한다. 원편광(114)은 1/4파장 지연판(102)을 통과하여 선형 편광된다. 선형 편광(115)은 거울(101)로부터 반사된다. 광(115)의 거울 반사는 편광 상태를 유지한다. 반사된 선형 편광(116)은 1/4파(102)를 통과하여 원형 편광되고 광(114)의 그것에 대하여 반대 방향성으로 원형 편광된다. 원편광(117)은 투명 광원(103)을 통과하고 반사 편광자(104)로 입사한다. 광원(103)은 투명하기 때문에, 광(117)의 편광 상태는 유지된다. 광(117)은 반사 편광자(104)에 의해 전달된 방향성으로 원형 편광된다. 광(117)은 반사 편광자(104)를 통과한다. 그리하여, 투명 광원(103)의 후면으로부터 추출된 광(112)은 원형 편광되며 반사 편광자(104)에서 나온다.
투명 광원(103)의 뒷면에서 나오는 비편광 또는 부분 편광(105)은 4분파장 지연판(102)를 통과하고, 거울(101)에 의해 반사되며, 4분파장 지연판(102)를 다시 통과하고, 투명 광원(103)을 통하여 비편광 또는 부분 편광(106)을 형성한다. 비편광 또는 부분 편광(106)은 투명 광원(103)의 전면으로부터 발산하는 광(112)에 유사한 방식으로 반사 편광자(104)로 입사되고, 그리하여 광(112)이 거치는 것처럼 유사한 변형을 거쳐, 광(113)과 같은 방향성인 원편광(107)과 원편광(111)을 형성한다. 그리하여, 투명 광원(103)의 뒷면에서 추출된 광(105)은 원형 편광되어 반사 편광자(104)에서 나온다. 투명 광원(103)의 양면에서 추출된 빛은 원형 편광된 상태로 광 시스템(199)에서 나온다.
파장 지연판(102)이 완벽한 4분파장 지연판이 아닌 경우, 반사 편광자(104)에 의해 반사된 빛의 일부는 반사 편광자(104)에 의해 처음에는 편광되지 않을 것이다. 이 경우, 편광되지 않은 부분은(전부가 아니라면) 대부분의 빛이 반사 편광자(104)에 의해 편광될 때까지 다시 반사될 것이다. 그리하여, 빛은 여러 번 튄 후에 광원(199)에서 나온다.
도 2a는 일 실시 예에 따른, 예시적인 편광 광원(299)의 단면 블록 다이어그램을 나타낸다. 광원 시스템(299)는 금속 표면, 분포된 브래그 반사기, 하이브리드 반사기, 내부 전반사기, 전방향 반사기 또는 산란 반사기를 포함하여 어떠한 광 반사기일 수도 있는 거울(201)을 포함한다. 투명 광원(202)은 거울(201)의 전면에 위치한다. 4분파장 지연판(203)은 투명 광원(202)의 앞에 위치한다. 반사하는 원형 편광자(204)는 4분파장 지연판(203)의 앞에 위치한다. 반사 원형 편광자(204)는 하나의 원형 편광이 그것을 통과하도록 허용하지만, 다른 원형 편광은 다시 반사한다. 광원 시스템(299)은 원편광을 방출하는 에너지 효율적 광원이다.
대안적인 실시 예에서, 하나 이상의 파장 지연판이 사용된다. 파장 지연판은 거울(201)과 투명 광원(202) 사이 그리고 투명 광원(202)과 반사 편광자(204) 사이 모두에 위치할 수 있다.
도 2b는 일 실시 예에 따라, 예시적인 광선의 편광 상태를 묘사하는 광원 시스템(299)의 단면도에 대한 블록 다이어그램을 보여준다. 빛은 투명 광원(202)의 양면으로부터 발산할 수 있다. 투명 광원(202)의 전면으로부터 발산하는 비편광 또는 부분 편광(213)은 4분파장 지연판(203)을 통과하여 비편광 또는 부분 편광(214)을 형성한다. 비편광 또는 부분 편광(214)은 반사 편광자(204)에 입사된다. 특정 방향성을 보이는 광(214)의 원편광 성분(215)은 반사 편광자(204)를 통해 전달된다. 반대 방향성을 보이는 광(214)의 원편광 성분(216)은 반사 편광자(204)에 의해 다시 반사된다. 원형 편광 성분(216)은 4분파장 지연판를 통과하여 선형 편광이 된다. 선형적으로 편광된 광(217)은 투명 광원(202)를 통과하고 거울(201)로부터 반사된다. 광원(202)은 투명하기 때문에, 광(217)의 편광 상태는 유지된다. 광(217)의 거울 반사는 편광을 유지한다. 반사된 선형 편광(218)은 투명 광원(202)을 통과한다. 광원(202)은 투명하기 때문에, 광(218)의 편광 상태는 유지된다. 더욱이, 광(218)은 4분파장 지연판(202)을 통과하여 광(216)의 방향에 반대 방향성으로 원형 편광된다. 원편광(219)는 반사 편광자(204)에 의해 전달된 방향성을 가지고 있다. 원편광(219)은 반사 편광자(204)를 통과한다. 그리하여, 투명 광원의 전면에서 추출된 광(213)은 원형 편광되어 반사 편광자(204)에서 나온다.
투명 광원(202)의 후면에서 나오는 비편광 또는 부분 편광(205)은 거울(201)에 의해 반사되고, 투명 광원(202)을 통과한 후, 비편광 또는 부분 편광(207)을 형성한다. 비편광 또는 부분 편광(207)은 투명 광원(202)의 전면에서 발산하는 광(213)에 대하여 유사한 방식으로 4분파장 지연판에 입사하고, 그리하여 광(213)이 거치는 것과 유사한 변형을 거쳐서 광(215)과 동일한 방향성의 원편광(208)과 원편광(212)을 형성한다. 그리하여, 투명 광원(202)의 후면에서 추출된 광(205)은 원형 편광되고 반사 편광자(204)에서 나온다. 투명 광원(202)의 양면으로부터 추출된 빛은 원형 편광된 상태로 광원 시스템(299)에서 나온다.
도 3a은 일 실시 예에 따른, 편광 광원 시스템(399)의 단면에 대한 블록 다이어그램을 나타낸다. 광원 시스템(399)은 금속 표면, 분포된 브래그 반사기, 하이브리드 반사기, 내부 전반사기, 전방향 반사기 또는 산란 반사기를 포함하여 어떠한 광 반사기도 될 수 있는 거울(301)을 포함한다. 4분파장 지연판(302)은 거울(301) 앞에 위치한다. 투명 광원(303)은 4분파장 지연판(302)의 앞에 위치한다. 반사 선형 편광자(304)는 투명 광원(303) 앞에 위치한다. 반사 선형 편광자(304)는 빛 중에서 하나의 선형 편광 성분이 통과하는 것은 허용하지만, 빛 중에서 수직 선형 편광 성분은 다시 반사한다. 일 실시 예에서, 4분파장 지연판(302)의 광학 축은 선형 편광자에 의해 다시 반사된 빛의 편광 방향과 45도 각을 이룬다. 광원 시스템 (399)은 선형 편광을 방출하는 에너지 효율적 광원이다.
도 3b은 일 실시 예에 따른, 예시적인 광선의 편광 상태를 묘사하는 광원 시스템(399)의 단면에 대한 블록 다이어그램을 나타낸다. 빛은 투명 광원(303)의 양면으로부터 발산할 수 있다. 투명 광원(303)의 전면에서 나오는 비편광 또는 부분 편광(312)은 반사 편광자(304)에 입사된다. 특정한 편광 방향을 갖는 광(312)의 선형 편광 성분(313)은 반사 편광자(304)에서 나온다. 광(313)의 방향과 수직을 이루는 편광 방향을 갖는 광(312)의 선형 편광 성분(314)은 편광자(304)에 의해 다시 반사된다. 선형 편광 성분(314)은 투명 광원(303)을 통과한다. 광원(303)은 투명하기 때문에, 광(314)의 편광 상태는 유지된다. 더 나아가, 선형 편광(314)은 4분파장 지연판(302)을 통과하여 원형 편광된다. 원편광(315)은 거울(301)로부터 반사된다. 광 성분(315)의 방향과 반대 방향성을 갖는 반사된 원편광(316)은 4분파 302를 통과하여 광(314)의 방향과 수직을 이루는 방향으로 선형 편광된다. 선형 편광(317)은 투명 광원(103)을 통과하여 반사 편광자(304)에 입사된다. 광원(303)은 투명하기 때문에, 광(317)의 편광 상태는 유지된다. 광(317)은 반사 편광자(304)에 의해 전달된 방향으로 선형 편광된다. 광(317)은 반사 편광자(304)를 통과한다. 그리하여, 투명 광원(303)의 전면으로부터 추출된 광(312)은 선형 편광되어 반사 편광자(304)에서 나온다.
투명 광원(303)의 후면에서 나오는 비편광 또는 부분 편광(305)은 4분파장 지연판(302)을 통과하고, 거울(301)에 의해 반사되며, 4분파장 지연판(302)을 다시 통과하고, 투명 광원(303)을 통하여 비편광 또는 부분 편광(306)을 형성한다. 비편광 또는 부분 편광(306)은 투명 광원(303)의 전면으로부터 발산하는 광(312)에 대하여 유사한 방식으로 반사 편광자(304)에 입사된다. 선형 편광(307)과 선형 편광(311)은 광(313)과 같은 방향으로 편광된다. 그리하여, 투명 광원(303)의 후면으로부터 추출된 광(305)은 선형 편광되어 반사 편광자(304)에서 나온다. 투명 광원(303)의 면에서 추출된 빛은 선형 편광 상태로 광원(399)에서 나온다.
도 4a는 일 실시 예에 따른, 예시적인 편광 광원(499) 단면도의 블록 다이어그램을 나타낸다. 본 기구는 금속 표면, 분포 브래그 반사기, 하이브리드 반사기, 내부 전반사기, 전방향 반사기 또는 산란 반사기를 포함하여 어떤 광 반사기도 될 수 있는 거울(401)을 포함한다. 투명 광원(402)은 거울(401)의 앞에 위치한다. 4분파장 지연판(403)은 투명 광원(402)의 앞에 위치한다. 반사 선형 편광자(404)는 4분파장 지연판(403)의 앞에 위치한다. 반사 선형 편광자(404)는 빛 중에서 하나의 선형 편광 성분이 그것을 통과하는 것은 허용하지만 빛 중에서 수직선형 편광 성분은 다시 반사한다. 광원 시스템(499)은 선형 편광을 방출하는 에너지 효율적 광원이다.
도 4b는 일 실시 예에 따른, 예시적인 광선의 편광 상태를 표현하는 예시적인 기구(499)의 단면도에 대한 블록 다이어그램을 나타낸다. 빛은 투명 광원(402)의 양면으로부터 발산할 수 있다. 투명 광원(402)의 전면에서 나오는 비편광 또는 부분 편광(413)은 4분파장 지연판(403)을 통과하여 비편광 또는 부분 편광(414)을 형성한다. 비편광 또는 부분 편광(414)은 반사 편광자(404)에 입사한다. 특정 편광 방향을 가진 광(414)의 선형 편광 성분(415)은 반사 편광자(404)를 통해 전송된다. 광 성분(415)의 방향에 수직인 편광 방향을 갖고 있는 광(414)의 선형 편광 성분(416)은 반사 편광자(404)에 의해 다시 반사된다. 선형 편광 성분(416)은 4분파장 지연판(403)을 통과하여 원형 편광된다. 원편광(417)은 투명 광원(402)을 통과하여 거울(401)로부터 반사된다. 광원(402)은 투명하기 때문에, 광(417)의 편광 상태는 유지된다. 광(417)의 거울 반사는 편광 상태를 유지한다. 반사된 원편광(418)은 투명 광원(402)을 통과한다. 광원(402)은 투명하기 때문에, 광(418)의 편광 상태는 유지된다. 더 나아가, 광 반사된 원편광(418)은 4분파장 지연판(402)을 통과하여 광 성분(416)의 방향에 수직인 편광 방향으로 선형 편광된다. 선형 편광(419)은 반사 편광자(404)에 의해 전송된 편광 방향을 가지고 있다. 선형 편광된 광(419)은 반사 편광자(404)를 통과한다. 그리하여, 투명 광원의 전면에서 추출된 광(413)은 선형적으로 편광되며 반사 편광자(404)에서 나온다.
투명 광원(402)의 후면에서 발산하는 비편광 또는 부분 편광(405)은 거울(401)에 의해 반사되고 투명 광원(402)을 통과하여 비편광 또는 부분 편광(407)을 생성한다. 비편광 또는 부분 편광(407)은 4분파장 지연판(403)에 입사하여, 선형 편광(408)과 선형 편광(412)을 광(415)과 같은 방향으로 편광되게 한다. 그리하여, 투명 광원(402)의 후면으로부터 추출된 광(405)은 선형 편광되며 반사 편광자(404)에서 나온다. 그리하여, 투명 광원(402)의 양 면으로부터 추출된 빛은 광원 시스템(499)으로부터 선형 편광 상태로 나온다.
투명 광원
도 5a는 일 실시 예에 따른 예시적인 투명 광원(599)의 블록 다이어그램을 보여준다. 광원(599)은 투명하며 낮은 지수 클래딩(503,505)으로 둘러 쌓인 코어(504)를 가진 도광체(506)를 포함한다. 일 실시 예에서, 클래딩은 공기 또는 진공이다. 코어(504)는 광 확산 입자의 희박한 분포를 보이는 확산제를 포함한다. 확산제는 반사, 굴절 또는 산란에 의해 빛을 굴절시키는 금속, 유기물 또는 기타 분말이나 색소, 또는 투명입자나 거품으로 이루어진다. 선형 광원(502)은 종단 중 하나인 507로부터 도광체를 비춘다. 선택적인 반사기(501)는 선형 광원(502)으로부터 도광체(506)로 빛을 모은다. 주 광원(502)에서 나온 빛은 도광체(506)를 통과하여 이동하고, 도광체(506) 전체로 확산된 후 도광체(506)를 빠져 나간다. 도광체(506)는 주로 투명하며 외부에서 볼 때 선명하다.
도 5b는 일 실시 예에 따른, 측면에서 보여지는 예시적인 투명 광원의 블록 다이어그램을 보여준다. 광원(599)은 주로 투명하며 낮은 지수의 클래딩(503,505)에 의해 둘러 쌓인 코어(504)를 가진 도광체(506)로 구성된다. 코어(504)는 광 확산 입자들이 희박한 분포를 보이는 확산제를 포함한다. 선형 광원(502)은 양끝 중 한 끝인 507로부터 해당 도광체를 비춘다. 빛은 도광체(506) 내에서 이동하며 도광체(506) 전체로 확산된다.
선택적인 반사기(501)는 선형 광원(502)으로부터 빛을 도광체(506)로 모은다.
도 6은 일 실시 예에 따른, 투명 광원에 대한 예시적인 소자(699)의 블록 다이어그램을 나타낸다. 코어 소자(699)는 두껍고 넓은 코어를 가지고 있지만 높이는 매우 작다. 광(600)은 소자(699)에 들어간다. 광(600)의 일부는 분산되어 조명 광(602)과 잔여 광(604)이 다음 코어 소자로 이동하는 동안 해당 도광체를 떠난다. 들어가는 광(600)의 전력은 분산 광(602)와 계속해서 다음 코어 소자(604)로 가는 빛의 합계와 일치한다. 소자(699)의 높이로 소자(699)에 들어가는 광(600)과 관련하여 광 확산된 조명광(602)의 분수 비율은 소자(699)의 부피 소멸 계수이다. 소자(699)의 높이가 감소함에 따라, 부피 소멸 계수는 상수에 접근한다. 소자(699)의 이 부피 소멸 계수는 소자(699)에서의 확산제 농도에 대한 특정한 관계를 띤다. 해당 관계는 코어 소자(699)의 확산제 농도로부터 코어 소자(699)의 부피 소멸 계수의 평가 또는 그의 반대를 허용한다.
소자(699)의 높이가 감소함에 따라, 발산하는 광(602)에서의 전력은 비례하여 감소한다. 발산하는 광(602) 전력의 소자(699)의 높이에 대한 비율은, 소자의 높이가 감소함에 따라 상수에 접근하는데, 소자(699)에서의 발산된 선형 발광이다. 소자(699)에서의 발산된 선형 발광은 부피 소멸 계수 곱하기 인입광의 전력(예를 들어 해당 소자를 통과하여 이동하는 빛의 전력)이다. 해당 소자(699)를 통과하여 이동하는 빛의 전력의 경사도는 발산된 선형 발광의 음수이다. 이러한 두 가지 관계는 미분 방정식을 제공한다. 이 방정식은 "dP/dh = -qP = -K" 형태로 나타내질 수 있는데 여기에서 h는 주 광원이 근처에 위치하고 있는 코어의 해당 종단으로부터 코어 소자의 거리이며; P는 해당 소자를 통해 안내되는 빛의 전력이며; q는 해당 소자의 부피 소멸 계수; 그리고 K는 해당 소자에서의 발산된 선형 발광이다.
본 방정식은 각 소자에서의 부피 소멸 계수가 주어졌을 때 발산된 선형 발광을 구하기 위해 사용된다. 본 방정식은 또한 발산된 선형 발광이 주어진 경우 각 소자의 부피 소멸 계수를 구하기 위해서도 사용된다. 특정한 발산된 선형 발광을 가진 특정한 광원을 설계하기 위해서, 위 미분 방정식은 해당 광원의 각 소자에서의 부피 소멸 계수를 판단하기 위해 해결된다. 이로부터, 해당 코어의 각 코어 소자에서의 확산제 농도가 결정된다. 그러한 코어는 도광체에서 사용되어, 요구되는 발산된 선형 발광 패턴을 보이는 광원을 제공한다.
확산제의 균일한 농도가 코어에서 사용되는 경우, 발산된 선형 발광은 높이와 함께 누승적으로 감소한다. 균일 발산된 선형 발광은 확산제 농도를 선택하여 광원 근처의 모서리로부터 반대편 모서리로의 전력 감소가 최소화되도록 하는 것에 의해 어림될 수 있다. 전력 손실을 줄이고 또한 발산된 전력의 균일성을 향상시키기 위해서도, 반대쪽 모서리는 빛을 코어로 다시 반사한다. 대안적인 실시 예에서, 다른 광원은 빛을 반대편 모서리로 투영한다.
균일한 조명을 달성하려면, 부피 소멸 계수와 그로 인한 확산제 농도가 코어의 길이에 걸쳐 다양하게 되어야 한다. 이것은 위의 방법을 이용하여 이루어질 수 있다. 요구되는 부피 소멸 계수는 q = K/(A-hK)인데, 여기에서 A는 선형 광원(604)으로 들어가는 전력이며 K는 각 소자에서의 발산된 선형 발광, 즉 균일한 조명에 대한 상수이다. 만약 선형 광원의 총 높이가 H라면, H와 K를 곱한 값은 A보다 작아야 하며, 예를 들어 발산된 총 전력은 도광체로 들어가는 총 전력보다 작아야 한다. 도광체에 들어가는 완전한 전력의 조명을 위해 활용되는 경우, H 곱하기 K는 A와 같다. 예시적인 광원에서, H 곱하기 K는 A보다 약간 적게 유지되어, 부피 소멸 계수가 제한될 뿐만 아니라 단지 적은 전력만 소모된다.
도 7은 일 실시 예에 따른, 다양한 농도의 확산제 입자를 갖는 예시적인 광원(799)의 다이어그램을 보여준다. 확산제(702)의 농도는 선형 광원 칼럼에서 반대 끝까지 낮은 농도에서 높은 농도까지 다양하다.
도 8은 일 실시 예에 따른, 2개의 광원을 가지고 있는 예시적인 광원(899)을 보여준다. 2개의 광원(808,809)을 사용함으로써, 코어에 확산제(802)의 농도에 있어 높은 변화가 필요하지 않다. 제공된 미분 방정식은 광원(808,809) 각각으로 인하여 발산된 선형 발광을 추론하기 위해 독립적으로 사용된다. 이러한 두 개의 발산된 선형 발광의 추가는 특정 코어 소자에서의 총 발산된 선형 발광을 제공한다.
광원(899)에 대한 균일한 조명은 부피 소멸 계수 q = 1/sqrt((h-H/2)∧2 + C/KA2)에 의해 달성되는데 여기에서 sqrt는 제곱근 함수이며, ∧는 누승법을 나타내며, K는 (수치적으로 각 소자에서 발산된 총 선형 발광의 절반과 동등한) 광원당 발산된 선형 발광의 평균이며, h는 코어 소자의 높이이며, H는 광원의 높이이고, C = A(A-HK)이다.
도 9는 일 실시 예에 따른, 거울이 달린 코어(904)를 가지고 있는 예시적인 광원(999)의 다이어그램을 보여준다. 거울이 달린 코어(904)를 사용함으로써, 코어(904)내 확산제(902)의 농도에 있어서 높은 변화가 필요하지 않다. 코어(910)의 상단 모서리는 거울로 되어 있고, 이것은 빛을 코어(904)로 다시 반사한다. 광원(999)에서 균일한 조명을 달성하기 위한 부피 소멸 계수는: q = 1/sqrt ((h-H)∧2 + D/K∧2) 이고 여기에서 D = 4A(A-HK)이다.
위에서 설명된 어떤 시스템(광원(799, 899 및 999)와 같은)에 대하여, 광원 전력이 변하는 경우에도 동일한 양상의 발산이 유지될 것이다. 예를 들어, 광원(799)의 주 광원이 정격 전력의 절반을 제공하면, 코어의 각 소자는 자체 정격 전력의 절반을 발산하게 된다. 구체적으로, 광원 또는 광원들의 전력을 변경하는 것에 의하여 모든 전력 등급에서 균일 광원으로서의 균일 광원으로 동작하도록 설계된 도광체 코어이다. 2개의 광원이 있는 경우에는, 그것들의 전력은 이 효과를 달성하기 위해 앞뒤로 일렬이 되어 변경된다.
한 가지 편광 광원이 공개된다. 여기에서 설명된 실시 예는 설명 목적을 위한 것이며 본 특허의 주제를 제한하는 것으로 간주되어서는 안 되는 것으로 이해된다. 다양한 수정, 활용, 대체, 재조합, 개선, 해당 범위를 벗어나지 않는 생산 방법 또는 본 발명의 정신은 해당 기술에 정통한 개인에게는 자명할 것이다.

Claims (10)

  1. 반사기, 반사 편광자, 반사기와 반사 편광자 사이의 투명 광원, 그리고 반사기와 반사 편광자 사이의 지연판으로 구성되는 기구.
  2. 제1항에 있어서,
    상기 반사 편광자가 반사 원형 편광자인 것을 특징으로 하는 기구.
  3. 제1항에 있어서,
    상기 반사 편광자가 반사 선형 편광자인 것을 특징으로 하는 기구.
  4. 제1항에 있어서,
    상기 파장 지연판이 4분파장 지연판인 것을 특징으로 하는 기구.
  5. 제1항에 있어서,
    파장 지연판이 투명 광원과 반사기 사이에 있는 것을 특징으로 하는 기구.
  6. 제1항에 있어서,
    상기 파장 지연판이 투명 광원과 반사 편광자 사이에 있는 것을 특징으로 하는 기구.
  7. 제1항에 있어서,
    상기 투명 광원이 더 나아가 확산제 입자의 변하는 농도로 구성되는 것을 특징으로 하는 기구.
  8. 제7항에 있어서,
    상기 투명 광원이 더 나아가 하나 이상의 클래딩 재료 부분으로 구성되는 것을 특징으로 하는 기구.
  9. 제8항에 있어서,
    상기 광원이 하나의 방정식에 따라 발산된 선형 발광을 제공하고,
    상기 방정식은 dP/dh = -qP = -K이고, 여기에서 h는 코어 소자의 주 광원까지의 거리이며, P는 코어 소자를 통해 안내되는 빛의 전력이며; q는 코어 소자의 부피 소멸 계수이고; K는 발산된 선형 발광인 것을 특징으로 하는 기구.
  10. 제9항에 있어서,
    상기 광원이 부피 소멸 계수 q가 1/sqrt((h-H/2)∧2 + C/K∧2)인 균일한 조명을 제공하고, sqrt는 제곱근 함수이며, ∧는 누승이고, H는 광원의 높이이고, h는 코어 소자의 높이이며, C는 A(A-HK)인 것을 특징으로 하는 기구.
KR1020107000067A 2007-06-05 2008-06-05 편광 광원 KR20100033998A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IN1060/MUM/2007 2007-06-05
IN1060MU2007 2007-06-05

Publications (1)

Publication Number Publication Date
KR20100033998A true KR20100033998A (ko) 2010-03-31

Family

ID=40094203

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107000067A KR20100033998A (ko) 2007-06-05 2008-06-05 편광 광원

Country Status (6)

Country Link
US (1) US20080309856A1 (ko)
EP (1) EP2158505A4 (ko)
JP (1) JP2010530551A (ko)
KR (1) KR20100033998A (ko)
CN (1) CN101715562A (ko)
WO (1) WO2008151292A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3451047B1 (en) * 2016-04-26 2021-07-07 Kyocera Corporation Display apparatus and vehicular head-up display
CN109323712A (zh) * 2018-12-04 2019-02-12 桂林聚联科技有限公司 一种随机偏振光源

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002829A (en) * 1992-03-23 1999-12-14 Minnesota Mining And Manufacturing Company Luminaire device
US5627666A (en) * 1994-07-27 1997-05-06 Board Of Regents Of The University Of Colorado Liquid crystal phase modulator using cholesteric circular polarizers
DE19538893A1 (de) * 1995-10-19 1997-04-24 Bosch Gmbh Robert Beleuchtungskörper mit einem Diffusor
JPH1164791A (ja) * 1997-08-11 1999-03-05 Seiko Epson Corp 偏光源及び表示装置及び電子機器
KR100783607B1 (ko) * 2000-06-23 2007-12-07 삼성전자주식회사 액정표시장치용 백라이트 유니트
KR100828520B1 (ko) * 2001-11-23 2008-05-13 삼성전자주식회사 액정 표시 모듈
JP2003279986A (ja) * 2002-03-26 2003-10-02 Seiko Epson Corp 液晶表示装置および電子機器
JP2003330022A (ja) * 2002-05-10 2003-11-19 Advanced Display Inc 液晶表示装置
TW547668U (en) * 2002-11-29 2003-08-11 Hon Hai Prec Ind Co Ltd Liquid crystal display and backlit module used therein
TWM242730U (en) * 2003-02-27 2004-09-01 Hon Hai Prec Ind Co Ltd Liquid crystal display and backlight module used therein
JP2004271675A (ja) * 2003-03-06 2004-09-30 Dainippon Printing Co Ltd 液晶表示素子及びそれを備えた液晶表示装置
KR100508240B1 (ko) * 2003-03-13 2005-08-17 엘지.필립스 엘시디 주식회사 액정표시모듈
KR20040089286A (ko) * 2003-04-11 2004-10-21 삼성전자주식회사 액정표시장치
WO2006031545A1 (en) * 2004-09-09 2006-03-23 Fusion Optix, Inc. Enhanced lcd backlight
WO2006098162A1 (en) * 2005-02-25 2006-09-21 Fujifilm Corporation Optical compensation sheet, polarizing plate and liquid crystal display
DE102006023993A1 (de) * 2005-05-23 2007-03-08 Wang, Ran-Hong, Tustin Polarisationssteuerung für Flüssigkristallanzeigen
US7633583B2 (en) * 2005-05-23 2009-12-15 Ran-Hong Raymond Wang Controlling polarization for liquid crystal displays
CN101563567B (zh) * 2005-10-17 2012-11-21 I2Ic公司 提供表面形式的光源的装置和方法
US8217572B2 (en) * 2005-10-18 2012-07-10 Semiconductor Energy Laboratory Co., Ltd. Display device with prism layer

Also Published As

Publication number Publication date
CN101715562A (zh) 2010-05-26
US20080309856A1 (en) 2008-12-18
EP2158505A4 (en) 2012-03-14
JP2010530551A (ja) 2010-09-09
WO2008151292A1 (en) 2008-12-11
EP2158505A1 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
KR100795864B1 (ko) 콜리메이트 광을 액정 디스플레이에 분포시키기 위한 중공캐비티 라이트 가이드
EP2080044B1 (en) Light outcoupling structure for a lighting device
JP6511144B2 (ja) 偏光混合(polarization−mixing)ライトガイド、および同ライトガイドを用いるマルチビーム回折格子ベースの背面照明
US6044196A (en) Luminaire device
KR100754400B1 (ko) 백라이트 유닛 및 이를 채용한 디스플레이 장치
US20030058386A1 (en) Polarizing device
JP2021506055A (ja) 光学照明装置
JP2006351515A (ja) 導光板及びバックライトモジュール
JP7129416B2 (ja) スキュー照明器
KR20100044826A (ko) 축광 광원
JP2011508909A (ja) 鏡面部分反射体及び円形モード反射偏光子を含むバックライティングシステム
JP2016224186A (ja) 光源ユニット及び投影装置
KR20230117438A (ko) 개선된 효율을 갖는 에지-라이트형 백 라이트 유닛
KR20100033998A (ko) 편광 광원
US20110182050A1 (en) Polarized Linear Light Source
US20170045670A1 (en) Light guide plate assembly and display apparatus
JP3820623B2 (ja) 導光板および液晶表示装置
JP2011186499A (ja) 照明装置及び液晶表示装置
Ershov et al. Ray tracing in presence of birefrigent media
KR100986235B1 (ko) 편광된 광 조명 디바이스
JP2004363062A (ja) 導光体、面光源装置及び画像表示装置
JP5885449B2 (ja) 表示装置および撮像装置
Cassarly Using the on-axis BSDF at a dielectric surface to model the BSDF at off-axis angles
JP2006054144A (ja) 面状光源装置及びそれを用いた液晶表示装置
JPH11218608A (ja) 電磁信号の偏波を回転させるマルチミラー装置

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination