KR20100009103A - Catalyst electrode and method of it for fuel cell - Google Patents

Catalyst electrode and method of it for fuel cell Download PDF

Info

Publication number
KR20100009103A
KR20100009103A KR1020080069816A KR20080069816A KR20100009103A KR 20100009103 A KR20100009103 A KR 20100009103A KR 1020080069816 A KR1020080069816 A KR 1020080069816A KR 20080069816 A KR20080069816 A KR 20080069816A KR 20100009103 A KR20100009103 A KR 20100009103A
Authority
KR
South Korea
Prior art keywords
fuel cell
catalyst
electrode
catalyst electrode
titanium nitride
Prior art date
Application number
KR1020080069816A
Other languages
Korean (ko)
Inventor
이재승
노범욱
남우현
박경원
이종민
한상범
송유정
김지연
Original Assignee
현대자동차주식회사
숭실대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사, 숭실대학교산학협력단 filed Critical 현대자동차주식회사
Priority to KR1020080069816A priority Critical patent/KR20100009103A/en
Publication of KR20100009103A publication Critical patent/KR20100009103A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE: A catalyst electrode for a fuel cell is provided to improve catalyst activation and oxidation-reduction property due to high interaction with a catalyst through a fuel cell test by using titanium nitride as a supporter and to secure stability even in case of being operated in a long time. CONSTITUTION: A catalyst electrode for a fuel cell uses titanium nitride nitrided in titanium oxide through a thermal process as a supporter of a catalyst. A method for manufacturing the catalyst electrode for a fuel cell comprises the steps of: evenly spreading titanium oxide on a boat, putting the boat in an electric furnace, and flowing nitrogen gas to make a nitrogen atmosphere; flowing ammonia gas while raising the nitrogen atmosphere temperature to a preset temperature for a predetermined time; and nitriding the titanium oxide by maintaining the preset temperature for a predetermined time.

Description

연료전지용 촉매전극 및 그 제조방법{Catalyst electrode and method of it for fuel cell}Catalytic electrode for fuel cell and manufacturing method thereof {Catalyst electrode and method of it for fuel cell}

본 발명은 연료전지용 촉매전극 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 티타늄 산화물(TiO2)를 질소분위기에서 열처리함으로써, TiO2 에서 TiN으로의 전이과정에서 전기전도도와 나노구조를 조절하여 새로운 지지체인 TiN과 촉매 전극구조를 개발할 수 있도록 한 연료전지용 촉매전극 및 그 제조방법에 관한 것이다.The present invention relates to a catalyst electrode for a fuel cell and a method of manufacturing the same, and more particularly, by heat treatment of titanium oxide (TiO 2 ) in a nitrogen atmosphere, by adjusting the electrical conductivity and nanostructure in the transition process from TiO 2 to TiN new The present invention relates to a fuel cell catalyst electrode and a method of manufacturing the same, which enable the development of TiN and a catalyst electrode structure as a support.

연료전지는 음극에 연료가스(수소)와 양극에 산화제(산소)를 공급하여 전기화학적으로 반응시켜 생기는 에너지를 직접 전기에너지로 변환시키는 차세대 발전시스템이며, 연료전지는 탄소계-촉매 전극구조를 일반적으로 이용하고 있다. A fuel cell is a next generation power generation system that converts energy generated by electrochemical reaction by directly supplying fuel gas (hydrogen) to the cathode and oxidizing agent (oxygen) to the anode, and converting the energy generated directly into electrical energy. I use it.

그러나 최근 들어 탄소 지지체의 내구성의 문제로 양극의 과전압상에서 탄소가 이산화탄소로 산화하는 됨에 따라 탄소지지체가 부식되어 촉매와의 상호작용이 저하되어 촉매가 응집되는 문제점이 발생하여, 탄소 지지체를 대체하고자 하는 많은 연구가 진행되고 있다.However, in recent years, as carbon is oxidized to carbon dioxide in the overvoltage of the anode due to the durability of the carbon support, the carbon support is corroded and the interaction with the catalyst is degraded, resulting in agglomeration of the catalyst. Many studies are in progress.

고분자 전해질연료전지의 양극에 쓰이는 촉매 지지체 물질은 탄소를 많이 사용하고 있는데, 탄소는 전기 전도성이 뛰어나지만 과전압에서 산화되는 부식성을 가지고 있어서 촉매 지지체의 내구성을 향상시키기 위해 산화물과 탄소를 혼합물로 사용하고 있다. The catalyst support material used for the positive electrode of the polymer electrolyte fuel cell uses a lot of carbon. Carbon has excellent electrical conductivity but has corrosiveness which is oxidized at overvoltage, so that the mixture of oxide and carbon is used to improve the durability of the catalyst support. have.

기존의 탄소에 WO3와 TiO2를 혼합함으로써 백금촉매와의 직접적인 상호작용을 높여주고 탄소의 부식을 감소시켜줄 뿐만 아니라 500℃에서 기존 탄소 지지체의 덩어리지는 결점을 산화물이 감싸면서 고온에서도 견딜 수 있도록 하는 연구도 행해져 왔다. Mixing WO 3 and TiO 2 with existing carbon enhances the direct interaction with platinum catalysts and reduces the corrosion of carbon, as well as allowing the oxides to withstand the agglomeration of the existing carbon support at 500 ° C. Research has been done.

본 발명은 상기와 같은 점을 감안하여 안출한 것으로서, 티타늄 산화물(TiO2)를 질소분위기에서 열처리함으로써, TiO2 에서 TiN으로의 전이과정에서 전기전도도와 나노구조를 조절하여 새로운 지지체인 TiN과 촉매 전극구조를 개발할 수 있고, 백금촉매와의 상호작용을 증대시키고 산소환원반응에 대한 내구성을 향상시킴으로써, 고분자 전해질 연료전지의 효율 및 내구성을 향상시킬 수 있도록 한 연료전지용 촉매전극 및 그 제조방법을 제공하는데 그 목적이 있다.The present invention has been made in view of the above, by heating the titanium oxide (TiO 2 ) in a nitrogen atmosphere, by adjusting the electrical conductivity and nanostructures in the transition process from TiO 2 to TiN TiN and catalyst as a new support The present invention provides a fuel cell catalyst electrode and a method of manufacturing the same, which can improve the efficiency and durability of a polymer electrolyte fuel cell by developing an electrode structure, increasing interaction with a platinum catalyst, and improving durability against an oxygen reduction reaction. Its purpose is to.

상기한 목적을 달성하기 위한 본 발명은 연료전지용 촉매전극에 있어서,The present invention for achieving the above object in the catalyst electrode for a fuel cell,

열처리를 통해 티타늄 산화물에서 질화된 티타늄 질화물이 촉매의 지지체로 사용되는 것을 특징으로 한다.Titanium nitride nitrided in titanium oxide through heat treatment is used as the support of the catalyst.

바람직한 구현예로서, 상기 티타늄 질화물은 고분자 전해질 연료전지의 양극과 음극에서 금속 촉매의 지지체로 사용되는 것을 특징으로 한다.In a preferred embodiment, the titanium nitride is used as a support for the metal catalyst in the anode and cathode of the polymer electrolyte fuel cell.

더욱 바람직한 구현예로서, 상기 티타늄 질화물은 티타늄 산화물을 700~900℃에서 2~10시간동안 열처리하여 합성된 것을 특징으로 한다.In a more preferred embodiment, the titanium nitride is synthesized by heat treatment of titanium oxide at 700 ~ 900 ℃ for 2 to 10 hours.

또한, 상기 티타늄 질화물은 N2, NH3, N2+H2 가스 중 선택된 어느 하나의 질소가스 분위기 하에서 합성된 것을 특징으로 한다.In addition, the titanium nitride is characterized in that synthesized under a nitrogen gas atmosphere of any one selected from N 2 , NH 3 , N 2 + H 2 gas.

본 발명의 다른 측면은 연료전지용 촉매전극의 제조방법에 있어서,Another aspect of the present invention is a method of manufacturing a catalyst electrode for a fuel cell,

티타늄 산화물을 보트에 고르게 올려 전기로에 넣고 질소가스를 흘려주어 질소 분위기를 만드는 단계; 상기 질소 분위기에서 온도를 일정시간 동안 설정온도까지 상승시키면서 암모니아 가스를 흘려주는 단계; 및 상기 설정온도에서 일정시간동안 유지시켜 티타늄 산화물을 질화시키는 단계를 포함하여 이루어지는 것을 특징으로 한다.Putting titanium oxide evenly on the boat and putting it in an electric furnace to create nitrogen atmosphere by flowing nitrogen gas; Flowing ammonia gas while raising the temperature to a predetermined temperature for a predetermined time in the nitrogen atmosphere; And nitriding the titanium oxide by maintaining it at the set temperature for a predetermined time.

바람직한 구현예로서, 상기 티타늄 산화물을 질화시킨 후 온도를 상온까지 서서히 냉각하고 공기를 서서히 흘려주는 단계를 더 포함하는 것을 특징으로 한다.In a preferred embodiment, the method further comprises the step of gradually cooling the temperature to room temperature and slowly flowing air after nitriding the titanium oxide.

더욱 바람직한 구현예로서, 상기 설정온도는 700~900℃이고, 상기 설정온도에서 유지하는 시간은 2~8시간인 것을 특징으로 한다.In a more preferred embodiment, the set temperature is 700 ~ 900 ℃, the time to maintain at the set temperature is characterized in that 2 to 8 hours.

이에 따라 본 발명에 따른 연료전지용 촉매전극 및 그 제조방법에 의하면, 질소분위기에서 티타늄 산화물을 열처리하여 합성된 티타늄 질화물 지지체는 산에서 부식에 대한 저항성이 뛰어나고 열적, 전기적인 전기전도도가 좋으며 높은 녹는점을 가지고 있어서 강도와 내구성이 뛰어나고, 산화적인 분위기에서 안정적인 장점을 가지고 있다. Accordingly, according to the catalyst electrode for fuel cell and the method for manufacturing the same, the titanium nitride support synthesized by heat treatment of titanium oxide in a nitrogen atmosphere has excellent resistance to corrosion in acid, good thermal and electrical conductivity, and high melting point. It has excellent strength and durability, and has a stable advantage in an oxidizing atmosphere.

이런 장점을 이용하여 티타늄 질화물을 지지체로 사용하여 음극과 양극에서의 연료전지 테스트를 통해 촉매와의 높은 상호작용으로 인한 촉매 활성과 산화 환원 특성이 향상되었고, 장시간 작동하였을 때에도 안정성을 확보할 수 있다.With this advantage, titanium nitride is used as a support, and the fuel cell test at the cathode and anode improves catalyst activity and redox characteristics due to high interaction with the catalyst, and ensures stability even after long-term operation. .

이하, 본 발명의 바람직한 실시예를 첨부도면을 참조로 상세하게 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 백금-티타늄 질화물 촉매전극을 기본으로 각각의 열처리 온도에 따른 질화물을 지지체로 사용하는 고분자 전해질 연료전지용 전극의 제조방법을 제공한다.The present invention provides a method for producing an electrode for a polymer electrolyte fuel cell using a nitride according to each heat treatment temperature as a support based on a platinum-titanium nitride catalyst electrode.

먼저, 티타늄 산화물을 보트에 고르게 올려 전기로에 넣고 질소가스를 흘려주어 질소 분위기를 만든다. 이러한 질소분위기에서 온도를 1시간 동안 700℃까지 올리면서 암모니아 가스를 흘려준다. First, titanium oxide is evenly placed on a boat and placed in an electric furnace to create nitrogen atmosphere by flowing nitrogen gas. In this nitrogen atmosphere, ammonia gas flows while raising the temperature to 700 ° C. for 1 hour.

그리고 1시간 동안 700℃까지 올린 후 700℃에서 2시간 유지시켜준다. 열처리 과정이 끝난 후 서서히 온도를 상온까지 낮추고 공기를 서서히 흘려준다. 왜냐하면 갑자기 공기가 유입될 경우 열처리 과정을 거친 티타늄 산화물의 산화가 일어나기 때문이다. And after raising to 700 ℃ for 1 hour and maintains at 700 ℃ for 2 hours. After the heat treatment process, gradually lower the temperature to room temperature and slowly flow air. This is because sudden air ingress causes oxidation of the titanium oxide after heat treatment.

그리고 4시간, 6시간, 8시간 동안 위와 같은 방법으로 유지시간을 변화시켜주어 티타늄 산화물을 질화시킨다. 또한 위의 경우와 같은 과정을 800℃, 900℃에서 8시간 동안만 반응시켜 열처리를 행한다. Then, for 4 hours, 6 hours, and 8 hours, the titanium oxide is nitrided by changing the holding time as described above. In addition, the same process as in the above case is carried out by reacting only for 8 hours at 800 ℃, 900 ℃.

본 발명은 기존의 전극 촉매의 지지체인 탄소 대신 온도에 따른 열처리 과정을 거친 티타늄 산화물을 티타늄질화물로 만든 후 지지체로 사용하여 비탄소계-촉매 전극을 만들고자 한다. The present invention intends to make a non-carbon-catalyzed electrode by using titanium nitride made of titanium nitride after a heat treatment process according to temperature instead of carbon, which is a support of conventional electrode catalysts.

비탄소계 티타늄 질화물에 촉매인 백금을 올리는 실험은 다음과정으로 행하여 진다. 700℃에서 질화시켜 만든 티타늄을 200밀리리터 물에 1그램을 넣고 초음파 세척기와 자석 막대기를 이용하여 강하게 교반하여 분산시킨다. The experiment of loading platinum as a catalyst on non-carbon titanium nitride is carried out by the following procedure. 1 gram of titanium nitrided at 700 ° C. is added to 200 milliliters of water and vigorously stirred and dispersed using an ultrasonic cleaner and a magnetic stick.

1시간 동안 교반시킨 뒤 촉매로 쓰일 H2PtCl6·6H2O시약을 40 wt%로 계산하여 물에 녹인 뒤 교반 중인 비이커에 넣는다. 1시간 동안 다시 강한 교반을 시켜준 뒤 강한 환원제인 NaBH4를 촉매에 대한 몰비로 10배로 계산하여 물에 빨리 녹인 후 강하게 교반하고 있는 비이커에 순간적으로 넣고 다시 1시간 동안 강한 교반으로 반응시킨다. After stirring for 1 hour, H 2 PtCl 6 .6H 2 O reagent to be used as a catalyst is calculated in 40 wt%, dissolved in water and placed in a stirring beaker. After strong stirring for 1 hour, NaBH 4 , a strong reducing agent, was calculated 10 times as the molar ratio to the catalyst, dissolved quickly in water, and then instantaneously placed in a strong stirring beaker and reacted with strong stirring for 1 hour.

반응이 끝난 후 3~5차례 물로 세척 과정을 거친 후 50℃의 건조기에서 12시간 건조시킨다. 질화시킨 티타늄 지지체 위에 백금을 올리는 실험은 800℃, 900℃에서 질화된 티타늄도 같은 방법으로 질화된 티타늄-촉매 물질을 제조하였다. After completion of the reaction, the product is washed with water three to five times and dried in a drier at 50 ° C for 12 hours. The experiment of raising platinum on the nitrided titanium support produced a nitrided titanium-catalyst material in the same manner as titanium nitride at 800 ° C and 900 ° C.

실험예 1 : X선회절 분석Experimental Example 1: X-ray diffraction analysis

본 발명에 따라 제조된 700℃, 800℃, 900℃에서 2시간, 4시간, 6시간, 8시간 동안 질화 시킨 티타늄과 촉매를 20wt%, 40wt%로 올렸을 때의 촉매-지지체 구조를 확인하기 위하여 X-선 회절 (XRD) 분석을 θ값이 20°~80°까지 수행하였으며, 그 결과를 도 1에 나타내었다.In order to confirm the catalyst-support structure when titanium and the catalyst, which were nitrided for 2 hours, 4 hours, 6 hours, and 8 hours at 700 ° C., 800 ° C., and 900 ° C. according to the present invention, were raised to 20 wt% and 40 wt%, respectively. X-ray diffraction (XRD) analysis was performed from 20 ° to 80 °, and the results are shown in FIG. 1.

도 1에 나타낸 바와 같이 반응시간과 온도의 변화에 따라 티타늄 산화물에서 티타늄 질화물로 변화를 관찰할 수 있었고, 700℃에서 2시간에서 8시간 동안의 XRD 으로부터 아나타제(Anatase)와 루틸(Rutile)구조의 결정질로부터 시간이 변화함에 따라 아나타제가 줄어들고 루틸이 증가하면서 6시간 반응시킨 XRD에서는 루틸이 감소하면서 점차 TiO2의 픽(Peak)이 확인 되었다. As shown in FIG. 1, a change from titanium oxide to titanium nitride was observed according to the change in reaction time and temperature, and the anatase and rutile structures were analyzed from XRD for 2 to 8 hours at 700 ° C. As time passed from crystalline, anatase decreased and rutile increased, and rutile decreased and peaks of TiO 2 were gradually observed in XRD reacted for 6 hours.

이로부터 700℃에서 반응시간이 증가함에 따라 아나타제구조에서 루틸 구조로 변화되는 것을 확인 할 수 있었다. 그러나 800℃와 900℃에서 8시간 동안 반응시킨 XRD를 보면 티타늄 질화물인 TiN을 확인할 수 있었다. 이것은 온도에 따라 암모니아의 분해로부터 얻은 질소가 티타늄 산화물의 산소와 쉽게 치환이 되면서 얻은 결과이다.From this, as the reaction time increases at 700 ℃ it was confirmed that the change from anatase structure to rutile structure. However, looking at the XRD reacted for 8 hours at 800 ℃ and 900 ℃ it was confirmed that the titanium nitride TiN. This is the result of the nitrogen obtained from the decomposition of ammonia easily replaced by the oxygen of titanium oxide with temperature.

도 2 에 나타낸 바와 같이 700℃, 800℃, 900℃에서 8시간 동안 암모니아 분위기에서 열처리하여 질화시킨 티타늄 위에 올린 40wt%의 백금 촉매의 XRD 결과를 얻을 수 있었고, 고분자 전해질 연료전지용 전극 내에 결정화된 백금 및 결정성 티타늄 질화물이 한 기판 위에 균질한 혼합상태로 존재한다는 것을 확인할 수 있었다.As shown in FIG. 2, XRD results of a 40 wt% platinum catalyst on titanium nitride heat-treated at 700 ° C., 800 ° C., and 900 ° C. for 8 hours were obtained. The crystallized platinum in the polymer electrolyte fuel cell electrode was obtained. And it was confirmed that the crystalline titanium nitride is present in a homogeneous mixed state on one substrate.

실험예 2 : 전자투과현미경 (TEM) 관찰Experimental Example 2 Observation of the Electronic Transmission Microscope (TEM)

상기에서 본 발명에 따라 제조된 고분자 전해질 연료전지용 전극의 티타늄 질화물과 티타늄-백금촉매의 나노 입자 형성 구조를 확인하기 위하여 전자투과현미경(TEM) 관찰을 수행하였으며, 그 결과를 도 3과 도 4 에 나타내었다.Electron transmission microscope (TEM) observation was performed to confirm the nanoparticle formation structure of titanium nitride and titanium-platinum catalyst of the electrode for a polymer electrolyte fuel cell manufactured according to the present invention, and the results are shown in FIGS. 3 and 4. Indicated.

도 3a 내지 도 3c에 나타낸 바와 같이 상기에서 제조된 온도에 따른 티타늄 질화물 고분자 전해질 연료전지용 전극은 나노크기의 티타늄 질화물 입자 및 결정 질 형태의 상태라는 것을 확인할 수 있었다. As shown in Figure 3a to 3c it can be seen that the electrode for the titanium nitride polymer electrolyte fuel cell prepared according to the temperature is in the state of nano-sized titanium nitride particles and crystalline form.

또한 온도가 700℃에서 900℃로 변화할 때 비정질 형태의 입자가 각진 형태의 입자로 결정화가 증가하였고 입자의 크기는 온도가 올라갈수록 커질 것으로 예상되었던 것이 오히려 평균 0~20nm 크기의 나노 입자로 줄어든 것을 확인 할 수 있었다.Also, when the temperature was changed from 700 ℃ to 900 ℃, the crystallization of amorphous particles increased to angular particles, and the particle size was expected to increase with increasing temperature. I could confirm that

도 4a 내지 도 4c에 나타낸 바와 같이 상기 제조된 각 온도에서 제조된 티타늄 질화물-백금 형태의 상태라는 것을 확인할 수 있었다. 700℃, 800℃에서는 백금 촉매가 티타늄 질화물 지지체에서 응집된 것을 확인 할 수 있었고, 900℃에서는 백금 촉매가 고르게 잘 분포되어 있는 형태를 확인 할 수 있었다. 이는 본 발명에 있어서 900℃에서 질화된 티타늄이 백금촉매와 상호작용이 높다는 것을 의미한다. As shown in Figure 4a to 4c it could be confirmed that the state of the titanium nitride-platinum prepared at each temperature prepared above. At 700 ° C and 800 ° C, it was confirmed that the platinum catalyst was agglomerated on the titanium nitride support, and at 900 ° C, the platinum catalyst was evenly distributed. This means that titanium nitride at 900 ° C. in the present invention has a high interaction with the platinum catalyst.

실험예 3 : 고배율 전자투과현미경 (HRTEM) 관찰Experimental Example 3 Observation of High Magnification Electron Transmission Microscope (HRTEM)

상기에서 본 발명에 따라 제조된 고분자 전해질 연료전지용 전극 내에 형성된 티타늄 질화물에 40wt%의 백금을 올린 나노 입자의 구조를 확인하기 위하여 고배율 전자투과현미경(TEM) 관찰을 수행하였으며, 그 결과를 도 5a 내지 도 5c에 나타내었다.A high magnification electron transmission microscope (TEM) observation was performed to confirm the structure of the nanoparticles having 40 wt% platinum on the titanium nitride formed in the electrode for the polymer electrolyte fuel cell manufactured according to the present invention. It is shown in Figure 5c.

도 5a 내지 도 5c에 나타낸 바와 같이 형성된 백금 입자가 약 0~3nm 의 나노크기임을 확인할 수 있었으며, 그 구조에 있어서도 금속 입자의 결정구조를 잘 보여주는 격자면을 확인할 수 있다. 이는 본 발명에 의한 티타늄 질화물의 구조를 보여주는 결과이다.It can be confirmed that the platinum particles formed as shown in Figures 5a to 5c is a nano size of about 0 ~ 3nm, the lattice surface well showing the crystal structure of the metal particles also in the structure. This is a result showing the structure of the titanium nitride according to the present invention.

실험예 4 : 전압에 따른 메탄올 산화 전류밀도 측정Experimental Example 4 Measurement of Methanol Oxide Current Density According to Voltage

상기 본 발명에 따라 제조된 백금-티타늄 질화물 고분자 전해질 연료전지용 전극에 대한 전압변화에 따른 황산에서 산화환원 전류밀도의 변화를 일반적인 전기화학적 방법(3극 셀)으로 측정하였다. 이때, 상기에서 제조된 전극을 작업전극으로 하였고, 백금선과 Ag/AgCl를 각각 상대전극과 기준전극으로 하여 0.5 몰의 황산 용액하에서 촉매적 활성을 비교하였다. 또한 메탄올에서 산화 전류밀도의 변화를 일반적인 전기화학적 방법으로 측정하였고 2 몰의 메탄올과 0.5 몰의 황산이 혼합된 용액하에서 촉매적 활성을 비교하였다.The change in redox current density in sulfuric acid according to the voltage change of the electrode for the platinum-titanium nitride polymer electrolyte fuel cell manufactured according to the present invention was measured by a general electrochemical method (three-pole cell). In this case, the electrode prepared above was used as a working electrode, and the catalytic activity was compared under 0.5 mol of sulfuric acid solution using platinum wire and Ag / AgCl as counter electrode and reference electrode, respectively. In addition, the change of oxidation current density in methanol was measured by a general electrochemical method and catalytic activity was compared in a solution containing 2 mol of methanol and 0.5 mol of sulfuric acid.

그 결과를 도 6에 나타내었으며, 이를 통하여 본 발명에 따라 제조된 백금-티타늄 질화물 전극이 백금-탄소블랙 전극과 비교해 보았을 때 수소 탈착과 산소 흡착이 백금-탄소블랙 전극에 비해 높은 산화 전류를 나타내어 우수한 활성을 나타냄을 확인할 수 있었다. The results are shown in FIG. 6, through which the platinum-titanium nitride electrode prepared according to the present invention exhibited a high oxidation current compared to the platinum-carbon black electrode when hydrogen desorption and oxygen adsorption were observed. It was confirmed that the excellent activity.

또한, 도 7에 나타낸 바와 같이 메탄올에서의 산화 전류밀도를 백금-탄소블랙 전극과 비교해 보았을 때 본 발명에 따라 제조된 백금-TiN 전극의 이러한 높은 촉매적 활성은 수소 및 알코올 등의 연료에 대한 산화력과 일반적으로 일치하는 경향을 보임을 알 수 있으며, 기존의 탄소블랙으로 사용되었던 지지체와 달리 본 발명에 따른 TiN 지지체로써 사용할 수 있는 가능성을 보여주었다. 또한, 이와 같은 연료를 산화시키기 위한 전극으로도 이용할 수 있음을 확인할 수 있었다.In addition, this high catalytic activity of the platinum-TiN electrode prepared according to the present invention when compared to the platinum-carbon black electrode with oxidation current density in methanol as shown in FIG. It can be seen that the general tendency to coincide with, and showed a possibility that can be used as the TiN support according to the present invention, unlike the support used as a conventional carbon black. It was also confirmed that it can be used as an electrode for oxidizing such fuel.

실험예 5 : 전압에 따른 산소 환원 전류밀도 측정Experimental Example 5 Measurement of Oxygen Reduction Current Density According to Voltage

도 8에 나타낸 바와 같이 산소가 포화된 황산에서의 산소 환원 전류밀도를 백금-탄소블랙 전극과 비교해 보았을 때 본 발명에 따라 제조된 백금-TiN 전극은 백금-탄소 지지체 전극과 산소 환원에 대한 전류밀도가 크게 차이가 나지 않는다. 이 결과로부터 양극에 TiN 지지체를 이용한 TiN-백금 전극으로 사용할 수 있는 가능성을 보여주었다.As shown in FIG. 8, when the oxygen reduction current density in oxygen-saturated sulfuric acid is compared with the platinum-carbon black electrode, the platinum-TiN electrode prepared according to the present invention has a platinum-carbon support electrode and a current density for oxygen reduction. Does not make a big difference. From this result, the possibility of using TiN-platinum electrode using TiN support on the positive electrode was shown.

이상에서는 본 발명을 특정의 바람직한 실시예에 대하여 도시하고 설명하였으나, 본 발명은 이러한 실시예에 한정되지 않으며, 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 특허청구범위에서 청구하는 본 발명의 기술적 사상을 벗어나지 않는 범위내에서 실시할 수 있는 다양한 형태의 실시예들을 모두 포함한다.While the invention has been shown and described with respect to certain preferred embodiments thereof, the invention is not limited to these embodiments, and has been claimed by those of ordinary skill in the art to which the invention pertains. It includes all the various forms of embodiments that can be carried out without departing from the spirit.

도 1은 반응시간과 온도변화에 따라 티타늄 산화물에서 티타늄 질화물의 변화를 나타내는 그래프,1 is a graph showing the change of titanium nitride in titanium oxide with reaction time and temperature change,

도 2는 티타늄 질화물 위에 올린 백금촉매의 XRD 결과를 나타내는 그래프,2 is a graph showing the XRD results of the platinum catalyst on titanium nitride,

도 3a 내지 도 4c는 본 발명에 따라 제조된 고분자 전해질 연료전지용 전극의 티타늄 질화물과 티타늄-백금촉매의 나노입자를 나타내는 전자투과현미경 사진,3A to 4C are electron transmission micrographs showing nanoparticles of titanium nitride and titanium-platinum catalyst of an electrode for a polymer electrolyte fuel cell manufactured according to the present invention;

도 5a 내지 도 5c는 본 발명에 따라 제조된 고분자 전해질 연료전지용 전극내에 형성된 티타늄 질화물에 백금을 올린 나노 입자를 나타내는 고배율 전자투과현미경 사진,5A to 5C are high magnification electron transmission micrographs showing nanoparticles of platinum loaded on titanium nitride formed in an electrode for a polymer electrolyte fuel cell manufactured according to the present invention;

도 6은 본 발명에 따라 제조된 백금-티타늄 질화물 전극과 백금-탄소블랙 전극의 산화전류를 비교하기 위한 그래프,Figure 6 is a graph for comparing the oxidation current of the platinum-titanium nitride electrode and platinum-carbon black electrode prepared according to the present invention,

도 7은 메탄올에서 백금-탄소블랙 전극과 본 발명에 따라 제조된 백금-티타늄 질화물 전극의 산화 전류밀도를 비교하기 위한 그래프,7 is a graph for comparing the oxidation current density of the platinum-carbon black electrode and the platinum-titanium nitride electrode prepared according to the present invention in methanol,

도 8은 산소가 포화된 황산에서 백금-탄소블랙 전극과 본 발명에 따라 제조된 백금-티타늄 질화물 전극의 산화 전류밀도를 비교하기 위한 그래프이다.8 is a graph for comparing the oxidation current density of the platinum-carbon black electrode and the platinum-titanium nitride electrode prepared according to the present invention in sulfuric acid saturated with oxygen.

Claims (7)

연료전지용 촉매전극에 있어서,In the catalyst electrode for a fuel cell, 열처리를 통해 티타늄 산화물에서 질화된 티타늄 질화물이 촉매의 지지체로 사용되는 것을 특징으로 하는 연료전지용 촉매전극.A catalyst electrode for a fuel cell, wherein titanium nitride nitrided from titanium oxide through heat treatment is used as a support of the catalyst. 청구항 1에 있어서,The method according to claim 1, 상기 티타늄 질화물은 고분자 전해질 연료전지의 양극과 음극에서 금속 촉매의 지지체로 사용되는 것을 특징으로 하는 연료전지용 촉매전극.The titanium nitride is a fuel cell catalyst electrode, characterized in that used as a support for the metal catalyst in the anode and cathode of the polymer electrolyte fuel cell. 청구항 2에 있어서,The method according to claim 2, 상기 티타늄 질화물은 티타늄 산화물을 700~900℃에서 2~10시간동안 열처리하여 합성된 것을 특징으로 하는 연료전지용 촉매전극.The titanium nitride is a fuel cell catalyst electrode, characterized in that synthesized by heat-treating titanium oxide at 700 ~ 900 ℃ for 2 to 10 hours. 청구항 3에 있어서,The method according to claim 3, 상기 티타늄 질화물은 N2, NH3, N2+H2 가스 중 선택된 어느 하나의 질소가스 분위기 하에서 합성된 것을 특징으로 하는 연료전지용 촉매전극.The titanium nitride is a fuel cell catalyst electrode, characterized in that synthesized under a nitrogen gas atmosphere of any one selected from N2, NH3, N2 + H2 gas. 연료전지용 촉매전극의 제조방법에 있어서,In the method for producing a catalyst electrode for a fuel cell, 티타늄 산화물을 보트에 고르게 올려 전기로에 넣고 질소가스를 흘려주어 질소 분위기를 만드는 단계;Putting titanium oxide evenly on the boat and putting it in an electric furnace to create nitrogen atmosphere by flowing nitrogen gas; 상기 질소 분위기에서 온도를 일정시간 동안 설정온도까지 상승시키면서 암모니아 가스를 흘려주는 단계; 및Flowing ammonia gas while raising the temperature to a predetermined temperature for a predetermined time in the nitrogen atmosphere; And 상기 설정온도에서 일정시간동안 유지시켜 티타늄 산화물을 질화시키는 단계를 포함하여 이루어지는 것을 특징으로 하는 연료전지용 촉매전극의 제조방법.A method of manufacturing a catalyst electrode for a fuel cell, characterized in that it comprises the step of nitriding the titanium oxide by maintaining for a predetermined time at the set temperature. 청구항 5에 있어서,The method according to claim 5, 상기 티타늄 산화물을 질화시킨 후 온도를 상온까지 서서히 냉각하고 공기를 서서히 흘려주는 단계를 더 포함하는 것을 특징으로 하는 연료전지용 촉매전극의 제조방법.And nitriding the titanium oxide, and gradually cooling the temperature to room temperature and gradually flowing air. 청구항 6에 있어서,The method according to claim 6, 상기 설정온도는 700~900℃이고, 상기 설정온도에서 유지하는 시간은 2~8시간인 것을 특징으로 하는 연료전지용 촉매전극의 제조방법.The set temperature is 700 ~ 900 ℃, the time for maintaining at the set temperature is a method for producing a catalyst electrode for a fuel cell, characterized in that 2 to 8 hours.
KR1020080069816A 2008-07-18 2008-07-18 Catalyst electrode and method of it for fuel cell KR20100009103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080069816A KR20100009103A (en) 2008-07-18 2008-07-18 Catalyst electrode and method of it for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080069816A KR20100009103A (en) 2008-07-18 2008-07-18 Catalyst electrode and method of it for fuel cell

Publications (1)

Publication Number Publication Date
KR20100009103A true KR20100009103A (en) 2010-01-27

Family

ID=41817575

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080069816A KR20100009103A (en) 2008-07-18 2008-07-18 Catalyst electrode and method of it for fuel cell

Country Status (1)

Country Link
KR (1) KR20100009103A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110368978A (en) * 2019-07-29 2019-10-25 南京工业大学 A kind of titanium nitride hydridization carbon composite and preparation method
CN112952117A (en) * 2019-12-10 2021-06-11 现代摩比斯株式会社 Fuel cell catalyst, fuel cell electrode comprising same, and membrane electrode assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110368978A (en) * 2019-07-29 2019-10-25 南京工业大学 A kind of titanium nitride hydridization carbon composite and preparation method
CN110368978B (en) * 2019-07-29 2022-07-08 南京工业大学 Titanium nitride hybrid carbon composite material and preparation method thereof
CN112952117A (en) * 2019-12-10 2021-06-11 现代摩比斯株式会社 Fuel cell catalyst, fuel cell electrode comprising same, and membrane electrode assembly

Similar Documents

Publication Publication Date Title
Li et al. Nanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: current status and perspectives
Sha et al. Hierarchical NiCo2O4 nanowire array supported on Ni foam for efficient urea electrooxidation in alkaline medium
Yang et al. Electronic structure modification of platinum on titanium nitride resulting in enhanced catalytic activity and durability for oxygen reduction and formic acid oxidation
KR101161526B1 (en) Catalyst electrode of core/shell nanostructure supports and method of it for fuel cell
Esfahani et al. Exceptionally durable Pt/TOMS catalysts for fuel cells
KR20110070353A (en) Non-platinum cathode catalyst for polymer electrolyte membrane fuel cell and electrode manufacturing by cathode catalyst and membrane electrode assembly manufacturing by electrode
KR20130039456A (en) Nitrogen doped core/shell nanostructure catalyst and its preparation method
TW201117459A (en) Catalyst for fuel cell, and solid polymer fuel cell utilizing same
JP6392490B1 (en) Oxygen reduction catalyst, membrane electrode assembly, and fuel cell
KR101749486B1 (en) Method for preparing for graphine catalyst for fuel cell using a ball milling
Galal et al. Voltammetry study of electrocatalytic activity of lanthanum nickel perovskite nanoclusters-based composite catalyst for effective oxidation of urea in alkaline medium
KR100986563B1 (en) Method for manufacturing cathode of fuel cell
Kim et al. Effects of stabilizers on the synthesis of Pt3Cox/C electrocatalysts for oxygen reduction
Martins et al. PtNi supported on binary metal oxides: Potential bifunctional electrocatalysts for low-temperature fuel cells?
Cheng et al. Synthesis of highly stable and methanol-tolerant electrocatalyst for oxygen reduction: Co supporting on N-doped-C hybridized TiO2
Cheng et al. Well-dispersed iron oxide stabilized FeN4 active sites in porous N-doped carbon spheres as alternative superior catalyst for oxygen reduction
Yang et al. Electro-deposited copper nanoclusters on leaf-shaped cobalt phosphide for boosting hydrogen evolution reaction
Yue et al. A facile method to prepare Pt/C/TiO2 nanotubes electrode for electro-oxidation of methanol
Luong et al. An effective strategy for preparing nickel nanoparticles encapsulated in polymer matrix-derived carbon shell with high catalytic activity and long-term durability toward urea electro-oxidation
Yang et al. Reduced-graphene-oxide supported tantalum-based electrocatalysts: Controlled nitrogen doping and oxygen reduction reaction
Baruah et al. Enabling methanol oxidation by an interacting hybrid nanosystem of spinel Co 3 O 4 nanoparticle decorated MXenes
KR20100009103A (en) Catalyst electrode and method of it for fuel cell
KR101994088B1 (en) Method for manufacturing palladium catalysts for fuel cells and palladium catalysts for fuel cells thereby
TW201143194A (en) Method of producing fuel cell electrode catalyst and uses thereof
KR101088978B1 (en) Catalyst electrode of core/shell nanostructure supports and method of it for fuel cell

Legal Events

Date Code Title Description
A201 Request for examination
E601 Decision to refuse application