KR101088978B1 - Catalyst electrode of core/shell nanostructure supports and method of it for fuel cell - Google Patents

Catalyst electrode of core/shell nanostructure supports and method of it for fuel cell Download PDF

Info

Publication number
KR101088978B1
KR101088978B1 KR1020090038775A KR20090038775A KR101088978B1 KR 101088978 B1 KR101088978 B1 KR 101088978B1 KR 1020090038775 A KR1020090038775 A KR 1020090038775A KR 20090038775 A KR20090038775 A KR 20090038775A KR 101088978 B1 KR101088978 B1 KR 101088978B1
Authority
KR
South Korea
Prior art keywords
tin
core
titanium nitride
shell
carbon
Prior art date
Application number
KR1020090038775A
Other languages
Korean (ko)
Other versions
KR20100119833A (en
Inventor
박경원
이종민
한상범
오제경
이진규
이영우
김현수
Original Assignee
숭실대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숭실대학교산학협력단 filed Critical 숭실대학교산학협력단
Priority to KR1020090038775A priority Critical patent/KR101088978B1/en
Publication of KR20100119833A publication Critical patent/KR20100119833A/en
Application granted granted Critical
Publication of KR101088978B1 publication Critical patent/KR101088978B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

본 발명은 연료전지용 촉매전극을 위한 코어/쉘(core/shell)구조의 나노 지지체 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 티타늄 질화물(TiN)을 탄화분위기에서 열처리함으로써, 기존 TiN에서 외부 껍질에 탄소를 입히는 코어/쉘 나노구조로 전기전도도와 나노구조를 조절하여 새로운 지지체인 TiN@C와 촉매 전극구조를 개발할 수 있도록 한 연료전지용 촉매전극 및 그 제조방법에 관한 것이다.The present invention relates to a nano support of a core / shell structure for a catalyst electrode for a fuel cell and a method of manufacturing the same, and more particularly, to an outer shell of an existing TiN by heat-treating titanium nitride (TiN) in a carbonization atmosphere. The present invention relates to a catalyst cell for a fuel cell and a method of manufacturing the same, wherein a core / shell nanostructure coated with carbon is used to develop a new support TiN @ C and a catalyst electrode structure by controlling electrical conductivity and nanostructure.

이를 위해, 본 발명은 열처리를 통해 티타늄 질화물에 탄소를 껍질과 같이 입힌 코어/쉘이 나노물질을 촉매의 지지체로 사용되는 것을 특징으로 하는 연료전지용 촉매전극을 제공한다.To this end, the present invention provides a catalyst electrode for a fuel cell, characterized in that the core / shell coated with carbon to titanium nitride through heat treatment is used as a support for the catalyst.

고분자 전해질 연료전지, 비탄소계 지지체, TiN, TiN@C, core/shell Polymer electrolyte fuel cell, non-carbon support, TiN, TiN @ C, core / shell

Description

연료전지용 촉매전극을 위한 코어/쉘 구조의 나노 지지체 및 그 제조방법{Catalyst electrode of core/shell nanostructure supports and method of it for fuel cell}Core / shell nanostructure support and method for manufacturing the catalyst for fuel cell catalyst electrode

본 발명은 연료전지용 촉매전극을 위한 코어/쉘(core/shell)구조의 나노 지지체 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 티타늄 질화물(TiN)을 탄화분위기에서 열처리함으로써, 기존 TiN에서 외부 껍질에 탄소를 입히는 코어/쉘 나노구조로 전기전도도와 나노구조를 조절하여 새로운 지지체인 TiN@C와 촉매 전극구조를 개발할 수 있도록 한 연료전지용 촉매전극 및 그 제조방법에 관한 것이다The present invention relates to a nano support of a core / shell structure for a catalyst electrode for a fuel cell and a method of manufacturing the same, and more particularly, to an outer shell of an existing TiN by heat-treating titanium nitride (TiN) in a carbonization atmosphere. The present invention relates to a fuel cell catalyst electrode and a method of manufacturing the same, wherein a core / shell nanostructure coated with carbon is used to develop a new support TiN @ C and a catalyst electrode structure by controlling electrical conductivity and nanostructure.

연료전지는 탄소계-촉매 전극구조를 일반적으로 이용하고 있는데 음극에 연료가스(수소)와 양극에 산화제(산소)를 공급하여 전기화학적으로 반응시켜 생기는 에너지를 직접 전기에너지로 변환시키는 차세대 에너지 발전 시스템이다.Fuel cells generally use a carbon-catalytic electrode structure, which supplies fuel gas (hydrogen) to the cathode and oxidant (oxygen) to the anode, and converts the energy generated by the electrochemical reaction directly into electrical energy. to be.

본 발명은 상기와 같은 점을 감안하여 안출한 것으로서, 티타늄 질화물을 탄화분위기에서 열처리함으로써, 기존 TiN에서 외부 껍질에 탄소를 입히는 코어/쉘 나노구조로 전기전도도와 나노구조를 조절하여 새로운 지지체인 TiN@C와 촉매 전극구조를 개발할 수 있고, 백금촉매와의 상호작용을 증대시키고 산화환원반응에 대한 내구성을 향상시킴으로써, 고분자 전해질 연료전지의 효율 및 내구성을 향상시킬 수 있도록 한 연료전지용 촉매전극을 위한 코어/쉘(core/shell)구조의 나노 지지체 및 그 제조방법을 제공하는데 그 목적이 있다.The present invention has been made in view of the above, by heat-treating titanium nitride in a carbonized atmosphere, the TiN is a new support by controlling the electrical conductivity and nanostructure from the existing TiN core / shell nanostructure to apply carbon to the outer shell The catalyst electrode for fuel cell can be developed to improve the efficiency and durability of polymer electrolyte fuel cell by developing @C and catalyst electrode structure and increasing interaction with platinum catalyst and improving the resistance to redox reaction. It is an object of the present invention to provide a nano support and a method for manufacturing the core / shell structure (core / shell).

상기한 목적을 달성하기 위한 본 발명은 연료전지용 촉매전극에 있어서, 열처리를 통해 (i) 전이금속 산화물과 (ii) 전이금속 질화물에서 선택된 물질로 구성된 선구물질을 탄화한 선구물질코어/쉘이 촉매의 지지체로 사용되는 것을 특징으로 한다. In order to achieve the above object, the present invention provides a catalyst electrode for a fuel cell, wherein the precursor core / shell carbonizes a precursor consisting of a material selected from (i) transition metal oxide and (ii) transition metal nitride through heat treatment. It is characterized by being used as a support for.

바람직한 구현예로서, 상기 선구물질 코어/쉘은 고분자 전해질 연료전지의 양극과 음극에서 금속 촉매의 지지체로 사용되는 것을 특징으로 한다. In a preferred embodiment, the precursor core / shell is used as a support for the metal catalyst in the anode and cathode of the polymer electrolyte fuel cell.

더욱 바람직한 구현예로서, 상기 티타늄 질화물 코어/탄소 쉘(TiN@C)은 700~900℃에서 1~9시간동안 열처리하여 합성된 것을 특징으로 한다.In a more preferred embodiment, the titanium nitride core / carbon shell (TiN @ C) is characterized in that synthesized by heat treatment for 1 to 9 hours at 700 ~ 900 ℃.

또한, 상기 티타늄 질화물 코어/탄소 쉘(TiN@C)은 메탄, 부탄, 프로판 가스 중 선택된 어느 하나의 탄화가스 분위기 하에서 합성된 것을 특징으로 한다.  In addition, the titanium nitride core / carbon shell (TiN @ C) is characterized in that it is synthesized under any carbonized gas atmosphere selected from methane, butane, propane gas.

본 발명의 다른 측면은 연료전지용 촉매전극의 제조방법에 있어서,  Another aspect of the present invention is a method of manufacturing a catalyst electrode for a fuel cell,

티타늄 질화물을 보트에 고르게 올려 전기로에 넣고 탄화가스를 흘려주어 탄화 분위기를 만드는 단계; 상기 탄소화 분위기에서 온도를 일정시간 동안 설정온도까지 상승시키면서 메탄 가스를 흘려주는 단계; 및 상기 설정온도에서 일정시간동안 유지시켜 티타늄 질화물 코어/탄소 쉘(TiN@C)을 탄화시키는 단계를 포함하여 이루어지는 것을 특징으로 한다.  Placing titanium nitride evenly on the boat into an electric furnace to create a carbonizing atmosphere by flowing carbonized gas; Flowing methane gas while raising the temperature to a predetermined temperature for a predetermined time in the carbonization atmosphere; And carbonizing the titanium nitride core / carbon shell (TiN @ C) by maintaining for a predetermined time at the set temperature.

바람직한 구현예로서, 상기 설정온도는 700~900℃이고, 상기 설정온도에서 유지하는 시간은 1-9시간인 것을 특징으로 한다.  In a preferred embodiment, the set temperature is 700 ~ 900 ℃, it is characterized in that the time maintained at the set temperature is 1-9 hours.

또한, 상기 전이금속 산화물은 TiO2, Cr2O3, Co3O4, MnO2, Fe2O3, ZnO, Al2O3, Ga2O3, HfO2, WO3, V2O5, ZrO2, Nb2O5, Ta2O5, MoO3, NiO, PdO, RuO2, IrO2, In2O3, SiO2, ReO3, MnO를 포함한 선구물질을 특징으로 한다.In addition, the transition metal oxide is TiO 2 , Cr 2 O 3 , Co 3 O 4 , MnO 2 , Fe 2 O 3 , ZnO, Al 2 O 3 , Ga 2 O 3 , HfO 2 , WO 3 , V 2 O 5 And precursors including ZrO 2 , Nb 2 O 5 , Ta 2 O 5 , MoO 3 , NiO, PdO, RuO 2 , IrO 2 , In 2 O 3 , SiO 2 , ReO 3 , MnO.

게다가, 전이금속 질화물은 TiN, VN, CrN, ZrN, NbN, MoN, HfN, TaN, GaN, InN, WN, Mn4N, Fe4N, AlN, Si3N4, V2N, Re2N, Ni3N2, LaN, CoN, Ta2N, Nb2N, Nb4N3, BN, SiN, Si3N를 포함한 선구물질을 특징으로 한다.In addition, transition metal nitrides include TiN, VN, CrN, ZrN, NbN, MoN, HfN, TaN, GaN, InN, WN, Mn 4 N, Fe 4 N, AlN, Si 3 N 4 , V 2 N, Re 2 N Characterized by precursors including Ni 3 N 2 , LaN, CoN, Ta 2 N, Nb 2 N, Nb 4 N 3 , BN, SiN, Si 3 N.

이에 따라 본 발명에 따른 연료전지용 촉매전극을 위한 코어/쉘(core/shell)구조의 나노 지지체 및 그 제조방법에 의하면, 탄화분위기에서 티타늄 질화물을 열처리하여 합성된 티타늄 질화물 코어/탄소 쉘(TiN@C)는 산에서 부식에 대한 저항성 이 뛰어나고 열적, 전기적인 전기전도도가 좋은 점을 가지고 있어서 내구성이 뛰어나고, 탄소 쉘은 기존 탄소보다 결정성이 좋은 흑연과 같은 탄소구조를 가지고 있어서 산화적인 분위기에서 안정적인 장점을 가지고 있다.Accordingly, according to the nano support and the manufacturing method of the core / shell (core / shell) structure for the fuel electrode catalyst electrode according to the present invention, the titanium nitride core / carbon shell synthesized by heat-treating the titanium nitride in a carbonized atmosphere (TiN @ C) is excellent in corrosion resistance in acid and has excellent thermal and electrical conductivity, so it is durable, and carbon shell has graphite-like carbon structure with better crystallinity than existing carbon, so it is stable in oxidative atmosphere. It has advantages

이런 장점을 이용하여 티타늄 질화물 코어/탄소 쉘(TiN@C)을 지지체로 사용하여 음극과 양극에서의 연료전지 테스트를 통해 촉매와의 높은 상호작용으로 인한 촉매 활성과 산화 환원 특성이 향상되었고, 특히 양극에서의 메탄올에 대한 저항성으로 양극에 대한 안정성도 확보할 수 있다. Taking advantage of these advantages, using titanium nitride core / carbon shell (TiN @ C) as a support, fuel cell tests at the cathode and anode improved catalytic activity and redox properties due to high interaction with the catalyst. Resistance to methanol at the anode can also ensure stability to the cathode.

이하, 본 발명의 바람직한 실시예를 첨부도면을 참조로 상세하게 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 백금-티타늄 질화물 코어/탄소 쉘(TiN@C)촉매전극을 기본으로 각각의 일정한 열처리 온도에서 시간 변화에 따른 티타늄 질화물 코어/탄소 쉘(TiN@C)을 지지체로 사용하는 고분자 전해질 연료전지용 전극의 제조방법을 제공한다.     The present invention is based on a platinum-titanium nitride core / carbon shell (TiN @ C) catalyst electrode, and a polymer electrolyte fuel using a titanium nitride core / carbon shell (TiN @ C) as a support at each constant heat treatment temperature according to time change. Provided is a method of manufacturing a battery electrode.

먼저, 티타늄 질화물을 보트에 고르게 올려 전기로에 넣고 탄소화가스를 흘려주어 탄화 분위기를 만든다. 이 과정은 전기로 내부의 산소의 영향을 인한 반응을 제거하기위한 전처리 과정이다. 이러한 탄화분위기에서 온도를 2시간동안 900℃까지 올리면서 메탄 가스를 흘려준다.     First, titanium nitride is evenly placed on a boat and placed in an electric furnace to create carbonized atmosphere by flowing carbonized gas. This process is a pretreatment process to remove the reaction caused by the influence of oxygen inside the furnace. In this carbon atmosphere, methane gas flows while raising the temperature to 900 ° C for 2 hours.

그리고 2시간 동안 900℃까지 올린 후 900℃에서 1시간 유지시켜준다. 열처리 과정이 끝난 후 서서히 온도를 상온까지 낮추고 질소로 정화시켜준다.    And after raising to 900 ℃ for 2 hours and maintains at 900 ℃ for 1 hour. After the heat treatment process, gradually lower the temperature to room temperature and purify with nitrogen.

그리고 3시간, 6시간 동안 위와 같은 방법으로 유지시간을 변화시켜주어 티타늄 질화물을 코어/쉘 과정의 탄화과정을 거친다.    In addition, the titanium nitride is subjected to the carbonization process of the core / shell process by changing the holding time in the same manner for 3 hours and 6 hours.

본 발명은 기존의 전극 촉매의 지지체인 탄소 대신 일정한 온도에서 다양한 온도에서의 열처리 과정을 거친 티타늄 질화물 코어/탄소 쉘(TiN@C)로 만든 후 지지체로 사용하여 비탄소계-촉매 전극을 만들고자 한다.    The present invention is to make a non-carbon-catalytic electrode by using a titanium nitride core / carbon shell (TiN @ C) after a heat treatment process at various temperatures at a constant temperature instead of carbon as a support of the conventional electrode catalyst and using it as a support.

비탄소계 티타늄 질화물 코어/탄소 쉘(TiN@C)에 촉매인 백금을 올리는 실험은 다음과정으로 행하여 진다. 900℃에서 1시간 탄화시켜 만든 티타늄 질화물 코어/탄소 쉘(TiN@C)을 600밀리리터 물에 0.1그램을 넣고 초음파 세척기와 막대자석을 이용하여 강하게 교반하여 분산시킨다.     The experiment of loading platinum as a catalyst on a non-carbon titanium nitride core / carbon shell (TiN @ C) is carried out by the following procedure. Titanium nitride cores / carbon shells (TiN @ C) made by carbonization at 900 ° C. for 1 hour are added to 600 grams of water in 600 milliliters of water, and then dispersed by vigorous stirring using an ultrasonic cleaner and a bar magnet.

2시간 동안 교반시킨 뒤 촉매로 쓰일 H2PtCl66H2O시약을 20wt%로 계산하여 물에 녹인 뒤 교반 중인 비이커에 넣는다. 1시간 동안 다시 강한 교반을 시켜준 뒤 강한 환원제인 NaBH4를 촉매에 대한 몰비로 10배로 계산하여 물에 빨리 녹인 후 강하게 교반중인 비이커에 순간적으로 넣고 다시 1시간 동안 강한 교반으로 반응시킨다.After stirring for 2 hours, 20 wt% of H 2 PtCl 6 6H 2 O reagent to be used as a catalyst is dissolved in water and placed in a stirring beaker. After strong stirring for 1 hour, NaBH 4 , a strong reducing agent, was calculated 10 times as molar ratio to the catalyst, dissolved quickly in water, and then immediately placed in a strong stirring beaker and reacted with strong stirring for 1 hour.

1시간 후 교반중인 비이커에 산용액으로 pH=2 정도로 맞추고 다시 강한 교반을 8시간 동안 가해준다. 왜냐하면 탄소와 같은 쉘은 강한 산성분위기에서 백금촉매와 더 강한 결합을 하기 때문이다.      After 1 hour, adjust the pH to 2 with acid solution to the beaker under stirring and apply strong stirring for 8 hours. This is because shells such as carbon bond more strongly with platinum catalysts in strong acidic conditions.

반응이 끝난 후 3~5차례 물로 세척 과정을 거친 후 50℃의 건조기에서 12시간 건조시킨다. 티타늄 질화물 코어/탄소 쉘(TiN@C)지지체 위에 백금을 올리는 실험은 3시간, 6시간 동안 탄화 시킨 티타늄 질화물 코어/탄소 쉘(TiN@C)도 같은 방법으로 티타늄 질화물 코어/탄소 쉘(TiN@C)-촉매 물질을 제조하였다.      After completion of the reaction, the product is washed with water three to five times and dried in a drier at 50 ° C for 12 hours. Platinum loading on titanium nitride core / carbon shell (TiN @ C) supports is the same as titanium nitride core / carbon shell (TiN @ C) carbonized for 3 hours and 6 hours. C) -catalyst material was prepared.

실험예 1 : X선회절 분석         Experimental Example 1: X-ray diffraction analysis

본 발명에 따라 제조된 900℃에서 1시간, 3시간, 6시간 동안 탄화 시킨 티타늄 질화물과 촉매를 20wt%로 올렸을 때의 촉매-지지체 구조를 확인하기 위하여 X-선 회절 (XRD) 분석을 θ값이 20 ~80o까지 수행하였으며, 그 결과를 도 1에 나타내었다.X-ray diffraction (XRD) analysis was performed to determine the catalyst-support structure when the titanium nitride and the catalyst carbonized at 900 ° C. for 1 hour, 3 hours, and 6 hours were prepared in accordance with the present invention. Up to 20 to 80 o It carried out, and the result is shown in FIG.

도 1에 나타낸 바와 같이 일정한 온도에서 반응시간에 따라 티타늄 질화물을 탄화시켰을 때 동일한 세기의 TiN의 픽(Peak)과 함께 흑연과 같은 탄소의 픽(Peak)이 확인 되었다.        As shown in FIG. 1, when carbonized titanium nitride at a reaction temperature at a constant temperature, a peak of carbon, such as graphite, with a peak of TiN of the same strength was confirmed.

1시간 동안 탄화시킨 TiN@C에서는 흑연과 같은 탄소의 픽(Peak)이 관찰되지 않았지만 3시간과 6시간 동안 탄화시킨 TiN@C에서는 흑연과 같은 탄소 픽(Peak)의 세기가 증가했다는 것을 확인할 수 있었다. 이것은 일정한 고온에서 메탄의 분해로부터 얻은 탄소가 질화물에 증착하면서 얻은 결과이다. 그리고 반응시간의 증가와 함께 증착되는 흑연과 같은 탄소의 양도 증가한다는 결과이기도 하다.        The peak of carbon such as graphite was not observed in TiN @ C carbonized for 1 hour, but the intensity of carbon peak such as graphite increased in TiN @ C carbonized for 3 and 6 hours. there was. This is the result of the deposition of carbon onto nitride from the decomposition of methane at a constant high temperature. The increase in reaction time also increases the amount of carbon, such as graphite, that is deposited.

도 2에 나타낸 바와 같이 900에서 반응시간 1시간, 3시간, 6시간 동안 메탄의 분위기에서 열처리하여 탄화시킨 티타늄 질화물 코어/탄소 쉘(TiN@C) 위에 올린 20wt%의 백금 촉매의 XRD 결과를 얻을 수 있었고, 고분자 전해질 연료전 지용 전극 내에 결정화된 백금 및 결정성 티타늄 질화물 코어/탄소 쉘(TiN@C)이 한 기판 위에 균질한 혼합상태로 존재한다는 것을 확인할 수 있었다.         As shown in FIG. 2, XRD results of a 20 wt% platinum catalyst on a titanium nitride core / carbon shell (TiN @ C) carbonized by heat treatment in an atmosphere of methane for 1 hour, 3 hours, and 6 hours at 900 were obtained. It was found that the crystallized platinum and crystalline titanium nitride core / carbon shell (TiN @ C) were present in a homogeneous mixed state on the substrate for the polymer electrolyte fuel cell electrode.

실험예 2 : 전자투과현미경 (TEM) 관찰          Experimental Example 2 Observation of the Electronic Transmission Microscope (TEM)

상기에서 본 발명에 따라 제조된 고분자 전해질 연료전지용 전극의 티타늄 질화물 코어/탄소 쉘(TiN@C)과 백금 촉매의 나노 입자 형성 구조를 확인하기 위하여 전자투과현미경(TEM) 관찰을 수행하였으며, 그 결과를 도 3과 도 4에 나타내었다.         Electron transmission microscope (TEM) observation was performed to confirm the nanoparticle formation structure of the titanium nitride core / carbon shell (TiN @ C) and the platinum catalyst of the electrode for a polymer electrolyte fuel cell manufactured according to the present invention. 3 and 4 are shown.

도 3 내지 도 5에 나타낸 바와 같이 상기에서 제조된 시간에 따른 티타늄 질화물 코어/탄소 쉘(TiN@C) 고분자 전해질 연료전지용 전극은 나노크기의 티타늄 질화물 코어/탄소 쉘(TiN@C) 입자 및 결정질 형태의 상태라는 것을 확인할 수 있었다.         As shown in FIGS. 3 to 5, the electrode for a titanium nitride core / carbon shell (TiN @ C) polymer electrolyte fuel cell according to the time produced above is nano-sized titanium nitride core / carbon shell (TiN @ C) particles and crystalline particles. It was confirmed that the state of the form.

그리고 반응시간을 1시간에서 6시간으로 변화할 때 티타늄 질화물 코어에 비정질 형태의 탄소 쉘의 두께가 1시간, 3시간, 6시간 반응시켰을 때 2나노, 4.5나노, 14나노로 결정성을 이루면서 증가하는 것을 확인할 수 있었다.          In addition, when the reaction time was changed from 1 hour to 6 hours, the thickness of the amorphous carbon shell on the titanium nitride core was increased to 2 nm, 4.5 nm, and 14 nm when reacted for 1 hour, 3 hours, and 6 hours. I could confirm that.

도 6 내지 도 8에 나타낸 바와 같이 상기 제조된 각 반응시간에서 제조된 티타늄 질화물 코어/탄소 쉘(TiN@C)-백금 형태의 상태라는 것을 확인할 수 있었다. 1시간, 3시간, 6시간 동안 반응시킨 티타늄 질화물 코어/탄소 쉘(TiN@C)에서는 백금 촉매가 고르게 잘 분포되어 있는 형태를 확인 할 수 있었다. 이는 본 발명에 있어서 티타늄 질화물 코어/탄소 쉘(TiN@C)이 백금촉매와 상호작용이 높다는 것을 의미한다.         6 to 8, it was confirmed that the titanium nitride core / carbon shell (TiN @ C) -platinum form was prepared at each reaction time. In the titanium nitride core / carbon shell (TiN @ C) reacted for 1 hour, 3 hours, and 6 hours, the platinum catalyst was evenly distributed. This means that the titanium nitride core / carbon shell (TiN @ C) in the present invention has a high interaction with the platinum catalyst.

실험예 3 : 고배율 전자투과현미경 (HRTEM) 관찰          Experimental Example 3 Observation of High Magnification Electron Transmission Microscope (HRTEM)

상기에서 본 발명에 따라 제조된 고분자 전해질 연료전지용 전극 내에 형성된 티타늄 질화물 코어/탄소 쉘(TiN@C)에 20wt%의 백금을 올린 나노 입자의 구조를 확인하기 위하여 고배율 전자투과현미경 (HRTEM) 관찰을 수행하였으며, 그 결과를 도 9 내지 도 11에 나타내었다.         High magnification electron transmission microscope (HRTEM) observation was performed to confirm the structure of the nanoparticles having 20wt% platinum on the titanium nitride core / carbon shell (TiN @ C) formed in the electrode for polymer electrolyte fuel cell manufactured according to the present invention. The results are shown in FIGS. 9 to 11.

도 9 내지 도 11에 나타낸 바와 같이 형성된 백금 입자가 약 3~4nm의 나노 크기임을 확인할 수 있었으며, 금속 입자의 결정구조를 잘 보여주는 격자면을 확인할 수 있다. 이는 본 발명에 의한 티타늄 질화물 코어/탄소 쉘(TiN@C)의 구조를 보여주는 결과이다.        9 to 11, the platinum particles formed as shown in the nano-size of about 3 ~ 4nm, it can be confirmed, the lattice surface well showing the crystal structure of the metal particles can be confirmed. This is a result showing the structure of the titanium nitride core / carbon shell (TiN @ C) according to the present invention.

실험예 4 : 라만 분광기 (Raman spectra)          Experimental Example 4: Raman spectra

상기 본 발명에 따라 제조된 티타늄 질화물 코어/탄소 쉘(TiN@C) 고분자 전해질 연료전지용 전극에 대한 탄소 쉘을 확인하기 위하여 라만 분광기 (Raman spectra) 관찰을 수행하였으며, 그 결과를 도 6에 나타내었다.         Raman spectra observation was performed to confirm the carbon shell of the titanium nitride core / carbon shell (TiN @ C) polymer electrolyte fuel cell electrode manufactured according to the present invention, and the results are shown in FIG. 6. .

도 12에 나타낸 바와 같이 모든 샘플의 스펙트라(Spectra)에서 1277cm-1와 1596cm-1 두 픽(Peak)을 확인할 수 있다. 1596cm-1 두 픽(Peak)에서는 흑연의 특성을 나타내는 G-밴드라고 할 수 있으며, 모든 샘플에서 sp 2 탄소종류 구조를 확인하는 결과를 나타낸다. 1277cm-1 픽(Peak)은 D-밴드를 나타내며, 헥사고널(hexagonal) 흑연 구조내의 결점의 존재를 나타내는 결과이기도 하다.As shown in FIG. 12, two peaks of 1277 cm −1 and 1596 cm −1 can be identified in the spectra of all samples. The two peaks of 1596 cm -1 are called G-bands that show the characteristics of graphite, and the results show the sp 2 carbon type structure in all samples. The 1277 cm −1 peak represents the D-band and is also a result of the presence of defects in the hexagonal graphite structure.

그리고 순수 흑연 결정체(1575cm-1)의 스펙트라(Spectra)와 비교 하였을 때, 모든 샘플에서 높은 파장으로 이동했다는 것은 탄소 쉘의 구조적결함이 있다는 것을 확인할 수 있다.          And when compared to the spectra of the pure graphite crystals (1575cm-1), it can be seen that the movement of the high wavelength in all the samples there is a structural defect of the carbon shell.

실험예 5 : 전압에 따른 메탄올 산화 전류밀도 측정            Experimental Example 5 Measurement of Methanol Oxidation Current Density According to Voltage

상기 본 발명에 따라 제조된 백금-티타늄 질화물 코어/탄소 쉘(TiN@C) 고분자 전해질 연료전지용 전극에 대한 전압변화에 따른 황산에서 산화환원 전류밀도의 변화를 일반적인 전기화학적 방법(3극 셀)으로 측정하였다. 이때, 상기에서 제조된 전극을 작업전극으로 하였고, 백금선과 Ag/AgCl를 각각 상대전극과 기준전극으로 하여 0.5 몰의 황산 용액하에서 촉매적 활성을 비교하였다. 또한 메탄올에서 산화 전류밀도의 변화를 일반적인 전기화학적 방법으로 측정하였고 0.5 몰의 황산과 2몰의 메탄올이 혼합된 용액하에서 촉매적 활성을 비교하였다.          The change of the redox current density in sulfuric acid according to the voltage change for the platinum-titanium nitride core / carbon shell (TiN @ C) polymer electrolyte fuel cell electrode manufactured according to the present invention was carried out by a general electrochemical method (three-pole cell). Measured. In this case, the electrode prepared above was used as a working electrode, and the catalytic activity was compared under 0.5 mol of sulfuric acid solution using platinum wire and Ag / AgCl as counter electrode and reference electrode, respectively. In addition, the change of oxidation current density in methanol was measured by a general electrochemical method and catalytic activity was compared in a solution containing 0.5 mol of sulfuric acid and 2 mol of methanol.

그 결과를 도 13에 나타내었으며, 이를 통하여 본 발명에 따라 제조된 백금-티타늄 질화물 코어/탄소 쉘(TiN@C) 전극이 백금-탄소블랙 전극과 비교해 보았을 때 수소 탈착과 산소 흡착이 백금-탄소블랙 전극과 비슷한 활성을 나타냄을 확인할 수 있었다.            The results are shown in FIG. 13, through which the platinum-titanium nitride core / carbon shell (TiN @ C) electrode prepared according to the present invention was compared with the platinum-carbon black electrode. It was confirmed that the activity similar to the black electrode.

또한, 도 14에 나타낸 바와 같이 메탄올에서의 산화 전류밀도를 백금-탄소블랙 전극과 비교해 보았을 때 본 발명에 따라 제조된 백금-티타늄 질화물 코어/탄소 쉘(TiN@C) 전극이 보다 높은 산화 전류 밀도를 가지고 있다는 것을 확인한 결과 촉매적 활성이 수소 및 메탄올 등의 연료에 대한 산화력과 일반적으로 일치하는 경향을 보임을 알 수 있으며, 기존의 탄소블랙으로 사용되었던 지지체와 달리 본 발명에 따른 티타늄 질화물 코어/탄소 쉘(TiN@C) 지지체로써 사용할 수 있는 가 능성을 보여주었다. 또한, 이와 같은 연료를 산화시키기 위한 전극으로도 이용할 수 있음을 확인할 수 있었다.      In addition, the platinum-titanium nitride core / carbon shell (TiN @ C) electrode produced according to the present invention has a higher oxidation current density when the oxidation current density in methanol is compared with the platinum-carbon black electrode as shown in FIG. 14. As a result, it can be seen that the catalytic activity generally shows a tendency to coincide with the oxidizing power of fuels such as hydrogen and methanol.Titanium nitride core / It has been shown to be usable as a carbon shell (TiN @ C) support. It was also confirmed that it can be used as an electrode for oxidizing such fuel.

실험예 6 : 전압에 따른 산소 환원 전류밀도 측정     Experimental Example 6 Measurement of Oxygen Reduction Current Density According to Voltage

도 15에 나타낸 바와 같이 상기 본 발명에 따라 제조된 백금-티타늄 질화물 코어/탄소 쉘(TiN@C)-3h 고분자 전해질 연료전지용 전극에 대한 전압에 따른 산소 환원 전류밀도를 백금-탄소블랙 전극과 비교해 보았을 때 산소 환원에 대한 전류밀도가 크게 차이가 나지 않지만 백금-탄소블랙 전극보다 환원력이 더 높다는 것을 확인할 수 있었다. 이 결과로부터 양극에 티타늄 질화물 코어/탄소 쉘(TiN@C) 지지체를 이용한 백금-티타늄 질화물 코어/탄소 쉘(TiN@C) 전극으로 사용할 수 있는 가능성을 보여주었다.     As shown in FIG. 15, the oxygen reduction current density according to the voltage of the platinum-titanium nitride core / carbon shell (TiN @ C) -3h polymer electrolyte fuel cell electrode manufactured according to the present invention was compared with that of the platinum-carbon black electrode. It can be seen that the current density for oxygen reduction is not significantly different, but the reducing power is higher than that of the platinum-carbon black electrode. This result shows the possibility of using a titanium-nitride core / carbon shell (TiN @ C) electrode with a titanium nitride core / carbon shell (TiN @ C) support on the anode.

이상에서는 본 발명을 특정의 바람직한 실시예에 대하여 도시하고 설명하였으나, 본 발명은 이러한 실시예에 한정되지 않으며, 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 특허청구범위에서 청구하는 본 발명의 기술적 사상을 벗어나지 않는 범위내에서 실시할 수 있는 다양한 형태의 실시예들을 모두 포함한다.While the invention has been shown and described with respect to certain preferred embodiments thereof, the invention is not limited to these embodiments, and has been claimed by those of ordinary skill in the art to which the invention pertains. It includes all the various forms of embodiments that can be carried out without departing from the spirit.

도 1은 일정한 온도에서 반응시간의 변화에 따라 티타늄 질화물 코어/탄소 쉘(TiN@C)에서의 탄소 쉘의 변화를 나타내는 그래프.1 is a graph showing the change of carbon shell in titanium nitride core / carbon shell (TiN @ C) with the change of reaction time at constant temperature.

도 2는 티타늄 질화물 코어/탄소 쉘(TiN@C) 위에 올린 백금촉매의 XRD 결과를 나타내는 그래프.Figure 2 is a graph showing the XRD results of the platinum catalyst on the titanium nitride core / carbon shell (TiN @ C).

도 3 내지 도 8는 본 발명에 따라 제조된 고분자 전해질 연료전지용 전극의 티타늄 질화물 코어/탄소 쉘(TiN@C)와 백금-티타늄 질화물 코어/탄소 쉘(TiN@C)의 나노입자를 나타내는 전자투과현미경 사진.3 to 8 are electron transmissions showing nanoparticles of titanium nitride core / carbon shell (TiN @ C) and platinum-titanium nitride core / carbon shell (TiN @ C) of a polymer electrolyte fuel cell electrode manufactured according to the present invention. Micrograph.

도 9 내지 도 11는 본 발명에 따라 제조된 고분자 전해질 연료전지용 전극내에 형성된 티타늄 질화물 코어/탄소 쉘(TiN@C)에 백금을 올린 나노 입자를 나타내는 고배율 전자투과현미경 사진.9 to 11 are high magnification electron transmission micrographs showing nanoparticles loaded with platinum on a titanium nitride core / carbon shell (TiN @ C) formed in an electrode for a polymer electrolyte fuel cell manufactured according to the present invention.

도 12은 본 발명에 따라 제조된 티타늄 질화물 코어/탄소 쉘(TiN@C) 지지체의 탄소 존재를 나타내는 라만 스펙트라(Spectra) 결과를 나타내는 그래프.12 is a graph showing Raman Spectra results showing the carbon presence of a titanium nitride core / carbon shell (TiN @ C) support prepared according to the present invention.

도 13은 본 발명에 따라 제조된 백금-티타늄 질화물 코어/탄소 쉘(TiN@C)전극과 백금-탄소블랙 전극의 산화환원 전류를 비교하기 위한 그래프.FIG. 13 is a graph for comparing redox currents of a platinum-titanium nitride core / carbon shell (TiN @ C) electrode and a platinum-carbon black electrode prepared according to the present invention. FIG.

도 14은 본 발명에 따라 제조된 백금-티타늄 질화물 코어/탄소 쉘(TiN@C)전극과 백금-탄소블랙 전극의 산화 전류를 비교하기 위한 그래프.14 is a graph for comparing the oxidation current of the platinum-titanium nitride core / carbon shell (TiN @ C) electrode and platinum-carbon black electrode prepared according to the present invention.

도 15은 산소가 포화된 황산에서 백금-탄소블랙 전극과 본 발명에 따라 제조된 티타늄 질화물 코어/탄소 쉘(TiN@C)-3h 전극의 산화 전류밀도를 비교하기 위한 그래프이다.FIG. 15 is a graph for comparing the oxidation current density of a platinum-carbon black electrode and a titanium nitride core / carbon shell (TiN @ C) -3h electrode prepared according to the present invention in an oxygen saturated sulfuric acid.

Claims (8)

삭제delete 삭제delete 삭제delete 삭제delete 연료전지용 촉매전극의 제조방법에 있어서,In the method for producing a catalyst electrode for a fuel cell, 티타늄 질화물을 보트에 고르게 올려 전기로에 넣고 탄화가스를 흘려주어 탄화 분위기를 만드는 단계;Placing titanium nitride evenly on the boat into an electric furnace to create a carbonizing atmosphere by flowing carbonized gas; 상기 탄화 분위기에서 온도를 일정시간 동안 설정온도까지 상승시키면서 메탄 가스를 흘려주는 단계; 및Flowing methane gas while raising the temperature to a predetermined temperature for a predetermined time in the carbonization atmosphere; And 상기 설정온도에서 일정시간동안 유지시켜 티타늄 질화물 코어/탄소 쉘(TiN@C)을 탄화시키는 단계를 포함하여 이루어지는 것을 특징으로 하는 연료전지용 촉매전극의 제조방법.And carbonizing the titanium nitride core / carbon shell (TiN @ C) by maintaining it at the set temperature for a predetermined time. 청구항 5항에 있어서,The method according to claim 5, 상기 설정온도는 700~900℃이고, 상기 설정온도에서 유지하는 시간은 1-9시간인 것을 특징으로 하는 연료전지용 촉매전극의 제조방법. The set temperature is 700 ~ 900 ℃, the time for maintaining at the set temperature is a method for producing a catalyst electrode for a fuel cell, characterized in that 1-9 hours. 삭제delete 삭제delete
KR1020090038775A 2009-05-02 2009-05-02 Catalyst electrode of core/shell nanostructure supports and method of it for fuel cell KR101088978B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090038775A KR101088978B1 (en) 2009-05-02 2009-05-02 Catalyst electrode of core/shell nanostructure supports and method of it for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090038775A KR101088978B1 (en) 2009-05-02 2009-05-02 Catalyst electrode of core/shell nanostructure supports and method of it for fuel cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020110045968A Division KR101161526B1 (en) 2011-05-16 2011-05-16 Catalyst electrode of core/shell nanostructure supports and method of it for fuel cell

Publications (2)

Publication Number Publication Date
KR20100119833A KR20100119833A (en) 2010-11-11
KR101088978B1 true KR101088978B1 (en) 2011-12-01

Family

ID=43405695

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090038775A KR101088978B1 (en) 2009-05-02 2009-05-02 Catalyst electrode of core/shell nanostructure supports and method of it for fuel cell

Country Status (1)

Country Link
KR (1) KR101088978B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11005115B2 (en) * 2016-04-11 2021-05-11 Fuelcell Energy, Inc. Supported nickel catalysts used as direct internal reforming catalyst in molten carbonate fuel cells
KR102465836B1 (en) 2020-08-27 2022-11-11 한국과학기술연구원 A transition metal nitride-carbon catalyst composite, a method for manufacturing the same, a electrode catalyst for fuel cell comprising the transition metal nitride-carbon catalyst composite, a fuel cell comprising the electrode catalyst
CN114944495B (en) * 2022-04-21 2023-09-26 同济大学 Difunctional oxygen electrocatalyst with CoN/MnO double active sites and preparation and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108597A (en) 1990-03-22 1992-04-28 Regents Of The University Of Minnesota Carbon-clad zirconium oxide particles
JPH11228140A (en) 1998-02-04 1999-08-24 Otsuka Chem Co Ltd Carbon coated titanium nitride-containing titania powder and its production
US20060246344A1 (en) * 2005-05-02 2006-11-02 Halalay Ion C Supports for fuel cell catalysts

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108597A (en) 1990-03-22 1992-04-28 Regents Of The University Of Minnesota Carbon-clad zirconium oxide particles
JPH11228140A (en) 1998-02-04 1999-08-24 Otsuka Chem Co Ltd Carbon coated titanium nitride-containing titania powder and its production
US20060246344A1 (en) * 2005-05-02 2006-11-02 Halalay Ion C Supports for fuel cell catalysts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Yong Wan 외, Synthesis of Silica/Carbon-Encapsulated Core-Shell Spheres, Langmuir, Vol. 24, pp. 5024-5028 (2008)*

Also Published As

Publication number Publication date
KR20100119833A (en) 2010-11-11

Similar Documents

Publication Publication Date Title
KR101161526B1 (en) Catalyst electrode of core/shell nanostructure supports and method of it for fuel cell
Ai et al. Mechanistic insight into oxygen evolution electrocatalysis of surface phosphate modified cobalt phosphide nanorod bundles and their superior performance for overall water splitting
Lin et al. Heteronanowires of MoC–Mo 2 C as efficient electrocatalysts for hydrogen evolution reaction
Huang et al. Biomolecule-derived N/S co-doped CNT-graphene hybrids exhibiting excellent electrochemical activities
Wu et al. Nitrogen‐rich carbonaceous materials for advanced oxygen electrocatalysis: synthesis, characterization, and activity of nitrogen sites
Barhoum et al. Atomic layer deposition of Pd nanoparticles on self-supported carbon-Ni/NiO-Pd nanofiber electrodes for electrochemical hydrogen and oxygen evolution reactions
Shahid et al. Enhanced electrocatalytic performance of cobalt oxide nanocubes incorporating reduced graphene oxide as a modified platinum electrode for methanol oxidation
Yan et al. Electropolymerized supermolecule derived N, P co-doped carbon nanofiber networks as a highly efficient metal-free electrocatalyst for the hydrogen evolution reaction
Tian et al. Metal–organic framework-derived nickel phosphides as efficient electrocatalysts toward sustainable hydrogen generation from water splitting
Yang et al. A nickel nanoparticle/carbon quantum dot hybrid as an efficient electrocatalyst for hydrogen evolution under alkaline conditions
Li et al. Facile Cu3P-C hybrid supported strategy to improve Pt nanoparticle electrocatalytic performance toward methanol, ethanol, glycol and formic acid electro-oxidation
Senthilkumar et al. PEDOT/NiFe 2 O 4 nanocomposites on biochar as a free-standing anode for high-performance and durable microbial fuel cells
Dhiman et al. SiC nanocrystals as Pt catalyst supports for fuel cell applications
Du et al. Ultra-efficient electrocatalytic hydrogen evolution at one-step carbonization generated molybdenum carbide nanosheets/N-doped carbon
Cao et al. Well-dispersed ultrasmall VC nanoparticles embedded in N-doped carbon nanotubes as highly efficient electrocatalysts for hydrogen evolution reaction
Zhang et al. Preparation of graphene supported nickel nanoparticles and their application to methanol electrooxidation in alkaline medium
Kim et al. Preparation and characterization of Pt nanowire by electrospinning method for methanol oxidation
Song et al. Promotion of carbon nanotube-supported Pt catalyst for methanol and ethanol electro-oxidation by ZrO2 in acidic media
KR20130039456A (en) Nitrogen doped core/shell nanostructure catalyst and its preparation method
Zhang et al. Helical nanocoiled and microcoiled carbon fibers as effective catalyst supports for electrooxidation of methanol
Jee et al. Enhanced oxygen reduction and evolution by in situ decoration of hematite nanoparticles on carbon nanotube cathodes for high-capacity nonaqueous lithium–oxygen batteries
Liu et al. CeO 2-modified α-MoO 3 nanorods as a synergistic support for Pt nanoparticles with enhanced CO ads tolerance during methanol oxidation
Thomas et al. Carbon nanotubes as catalyst supports for ethanol oxidation
JP6392490B1 (en) Oxygen reduction catalyst, membrane electrode assembly, and fuel cell
Galal et al. Voltammetry study of electrocatalytic activity of lanthanum nickel perovskite nanoclusters-based composite catalyst for effective oxidation of urea in alkaline medium

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140930

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161024

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee