KR20080055533A - Method for manufacturing positive plate 0f storage battery - Google Patents

Method for manufacturing positive plate 0f storage battery Download PDF

Info

Publication number
KR20080055533A
KR20080055533A KR1020060128995A KR20060128995A KR20080055533A KR 20080055533 A KR20080055533 A KR 20080055533A KR 1020060128995 A KR1020060128995 A KR 1020060128995A KR 20060128995 A KR20060128995 A KR 20060128995A KR 20080055533 A KR20080055533 A KR 20080055533A
Authority
KR
South Korea
Prior art keywords
lead
tetrabasic
sulfate
active material
electrode plate
Prior art date
Application number
KR1020060128995A
Other languages
Korean (ko)
Inventor
박용환
Original Assignee
주식회사 델코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 델코 filed Critical 주식회사 델코
Priority to KR1020060128995A priority Critical patent/KR20080055533A/en
Publication of KR20080055533A publication Critical patent/KR20080055533A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/98Other compounds containing sulfur and oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

A method for manufacturing a positive electrode plate of a lead-acid battery is provided to improve a conversion efficiency of tetrabasic lead sulfate and initial performances of the lead-acid battery even if high-temperature aging is used. A method for manufacturing a positive electrode plate of a lead-acid battery includes the steps of: mixing a lead powder with water, sulfuric acid, and tetrabasic lead sulfate powder to obtain a paste, wherein the lead powder comprises fine powders of lead and lead oxide; coating a lattice-like current collector with the paste, aging and drying the coated current collector for a certain time to obtain an aged active material containing tetrabasic lead sulfate; and applying electricity to the aged active material to convert the aged active material into lead dioxide.

Description

납축전지 양극판 제조방법{METHOD FOR MANUFACTURING POSITIVE PLATE 0F STORAGE BATTERY}Lead-acid battery positive electrode manufacturing method {METHOD FOR MANUFACTURING POSITIVE PLATE 0F STORAGE BATTERY}

도 1은 본 발명의 실시 예에 따른 사염기황산납분말을 미적용한 숙성 활물질의 사진도,1 is a photographic view of the aged active material without applying the lead tetrabasic sulfate powder according to an embodiment of the present invention,

도 2는 본 발명의 실시 예에 따른 사염기황산납분말을 적용한 숙성 활물질의 사진도,2 is a photographic view of the aging active material to which is applied lead tetrabasic sulfate powder according to an embodiment of the present invention,

도 3은 본 발명의 실시 예에 따라 활물질 결정입자의 크기가 감소되어졌음을 보여주는 비교 사진도. Figure 3 is a comparison photograph showing that the size of the active material crystal grains is reduced in accordance with an embodiment of the present invention.

본 발명은 축전지에 관한 것으로, 특히 납축전지의 양극판을 제조하는 방법에 관한 것이다. TECHNICAL FIELD The present invention relates to a storage battery, and more particularly, to a method of manufacturing a positive electrode plate of a lead storage battery.

축전기는 크게 납축전지와 알칼리 축전지로 구분할 수 있으며, 그중 납축전지는 전기화학반응을 이용하는 축전지로서 현재 가장 널리 사용되고 있다. 납축전 지의 전해액으로는 비중이 약 1.2정도인 묽은 황산용액을 사용하며, 그 속의 양극판이 과산화납으로, 음극판이 납으로 된 활물질을 사용한다. 이러한 납축전지는 자동차의 전기장치, 잠수함의 전력장치, 병원이나 하수처리설비에 비상전력장치 등으로 폭넓게 사용되고 있다. Capacitors can be broadly divided into lead acid batteries and alkaline batteries, and lead acid batteries are the most widely used batteries as an electrochemical reaction. Dilute sulfuric acid solution with a specific gravity of about 1.2 is used as an electrolyte for lead-acid batteries, and an active material in which the positive electrode plate is lead peroxide and the negative electrode plate is lead is used. Such lead acid batteries are widely used as electric devices for automobiles, power devices for submarines, emergency power devices for hospitals and sewage treatment facilities.

상기와 같은 납축전지의 양극판은 납산화물의 분말을 묽은 황산과 함께 혼합한 페이스트(paste)로 도장하여 제조된 것으로, 보다 구체적으로는 하기와 같은 절차를 통해서 제조완성되어진다. The positive electrode plate of the lead acid battery as described above is manufactured by coating a paste of powder of lead oxide mixed with dilute sulfuric acid, and more specifically, manufacturing is completed through the following procedure.

먼저 납과 산화납의 미세한 분말들로 구성된 연분을 물, 황산과 함께 혼합 및 반죽하여 활물질을 만들고, 만들어진 활물질을 납 혹은 납합금으로 이루어진 격자형태의 집전체에 도포한 후 일정시간 숙성 및 건조해 숙성활물질을 만든 다음, 전기를 흘려서 활물질을 이산화납으로 변환시키줌으로써 양극판을 제조하게된다. First, the lead powder composed of fine powders of lead and lead oxide is mixed and kneaded with water and sulfuric acid to make an active material, and the active material is applied to a grid-shaped current collector made of lead or lead alloy, and then aged and dried for a certain time. After making the active material, a positive electrode plate is manufactured by converting the active material into lead dioxide by flowing electricity.

상기에서 숙성활물질을 만드는 숙성방법은 60℃이하에서 숙성을 실행하는 저온숙성법과 80℃이상에서 숙성을 실행하는 고온숙성법 두가지가 있다. 저온숙성법으로 숙성하는 경우에는 삼염기황산납(tribasic lead sulfate; 3PbOㆍPbSO4ㆍH2O)이 주로 형성되고, 고온숙성법으로 숙성하는 경우에는 사염기황산납(tetrabasic lead sulfate; 4PbOㆍPbSO4)이 주로 형성된다.There are two methods of aging to make the aging active material is a low temperature aging method to perform the ripening at 60 ℃ or less and a high temperature aging method to perform the ripening at 80 ℃ or more. Tribasic lead sulfate (3PbO.PbSO 4 ㆍ H 2 O) is mainly formed when it is aged by low temperature aging, and tetrabasic lead sulfate (4PbO. PbSO 4 ) is mainly formed.

예전부터 저온숙성법이 많이 사용되어 왔으나, 저온숙성법 이용시 형성되는 삼염기황산납은 그 입자가 5㎛안팎의 아주 미세한 크기로 이루어지므로 그로부터 화성되어 생성되는 활물질은 그 표면적이 크긴 하지만 입자간 결합력이 약하여 수 명이 짧다는 단점이 있고, 더욱이 그 숙성시간이 적어도 15시간이상으로 매우 길다는 단점이 있었다. 그에 따라 숙성활물질을 만드는 숙성방법은 저온숙성법에서부터 고온숙성법으로 점차적으로 대체되고 있는 실정이다. Although the low temperature aging method has been used a lot, the lead tribasic sulphate formed during the low temperature aging method has a very fine size of about 5 μm. It is weak and has the disadvantage of short life, and furthermore, its maturation time is at least 15 hours or more has a disadvantage. Accordingly, the aging method for making the aging active material is gradually replaced by the low temperature aging method.

고온숙성법으로 사염기황산납을 생성하여 제작한 납축전지의 수명성능은 저온숙성법으로 삼염기황산납을 생성하여 제작한 납축전지의 수명성능보다는 일반적으로 더 우수하다. 그러나 고온숙성에 의해 형성된 사염기황산납은 그 폭이 20㎛이상의 큰 입자형태로 형성되므로 화성과정에서 이산화납으로 변하는 비율(이하 "화성효율"이라 함)을 낮아지게하여 결국 사용 초기 성능을 떨어뜨리게 하는 문제가 있다. 특히 납축전지가 자동차 시동용으로 사용하는 경우에는 이는 큰 문제점이 되기 때문에 차량 시동용 납축전지 제작시 숙성방법은 아직까지도 저온숙성법을 사용한다. The life performance of lead acid batteries produced by the production of lead tetrabasic sulfate by the high temperature aging method is generally superior to the life performance of lead acid batteries produced by the production of lead tribasic sulfate by the low temperature aging method. However, since the lead tetrabasic sulfate formed by high temperature aging is formed in the form of large particles having a width of 20 μm or more, the rate of conversion to lead dioxide during the chemical conversion process (hereinafter referred to as “chemical conversion efficiency”) is lowered, which in turn lowers initial performance. There is a problem that causes it. In particular, when the lead acid battery is used for starting a car, this becomes a big problem. Thus, the aging method for manufacturing a lead acid battery for starting a vehicle still uses a low temperature aging method.

사염기황산납의 화성효율을 높이기 위한 여러가지 방법이 다각도로 강구되고 있는데, 그 일 예로는 첨가물을 사용하여 사염기황산납의 입자크기를 줄이는 방법과 화성 전류공급 방식을 변경하는 방법이 있다.Various methods for increasing the chemical conversion efficiency of lead tetrasulphate tetrachloride have been devised in various angles. For example, additives may be used to reduce the particle size of lead tetrasulphate tetrachloride and to change the chemical current supply method.

상기 첨가물을 사용하여 사염기황산납의 입자크기를 줄이는 방법에서의 사용 첨가물은 금속염이나 유기물 종류이다. 이러한 첨가물의 일 예로서 다양한 알킬기를 갖는 유기황산염 또는 유기황산을 채택하여 첨가를 하게되면, 사염기황산납의 입자크기 감소에 효과가 뛰어나고, 특히 탄소수가 8개 미만인 알킬기를 갖는 유기황산을 첨가물로 사용하게 되면 그 효과가 더욱 뛰어나지만, 가격이 매우 높다는 단점이 있다. 비록 탄소수가 12개인 도데실황산 또는 도데실황산나트륨은 범용 계 면활성제로 가격이 저렴하여 사염기황산납의 입자크기를 줄이는 첨가물로 사용될 수 있으나, 이렇게 제작된 납축전지는 납축전지 수명이 단축되고 화성 시에 다량의 거품이 발생하는 문제가 있었다. The additive used in the method of reducing the particle size of lead tetrabasic sulfate using the above additive is a metal salt or a kind of organic substance. When an organic sulfate or an organic sulfuric acid having various alkyl groups is added as an example of such an additive, it is effective in reducing particle size of lead tetrabasic sulfate, and in particular, organic sulfuric acid having an alkyl group having less than 8 carbon atoms is used as an additive. The effect is better, but the price is very high. Although dodecyl sulfate or sodium dodecyl sulfate having 12 carbon atoms can be used as an additive to reduce the particle size of lead tetrabasic sulfate because of its low price as a general purpose surfactant, the lead acid battery manufactured in this way shortens the lead acid battery life and There was a problem that a large amount of bubbles in the.

한편 활물질 혼합 및 반죽단계에 전체 연분의 5 내지 10 중량%의 이산화납 분말을 첨가하여 화성 효율을 증대시키는 방법이 있으나, 이산화납 분말을 얻는 방법이 화성된 극판 또는 폐극판으로부터 채취한 활물질을 분리, 건조, 분쇄단계를 거치거나, 활물질 반죽을 숙성 건조 후 화성을 거치고 이를 다시 분쇄하여 확보하여야 하므로 많은 공정 단계들을 거쳐야하고 화성효율 증대를 위해 많은 양의 이산화납 분말이 요구되는 단점이 있었다.On the other hand, there is a method of increasing the chemical conversion efficiency by adding 5 to 10% by weight of lead dioxide powder of the total lead in the mixing and kneading of the active material, but the method of obtaining lead dioxide powder is separated from the active material collected from the electrode plate or the closed electrode plate After drying, pulverizing, or aging the active material batter, the chemistry must be dried and then crushed again to ensure the process, and a large amount of lead dioxide powder is required to increase the chemical conversion efficiency.

따라서 본 발명의 목적은 저온숙성법이 아닌 고온숙성법을 이용하면서도 사염기황산납의 화성효율 향상과 아울러 축전지의 초기성능도 향상되게 하는 납축전지의 양극판 제조방법을 제공하는데 있다. Accordingly, an object of the present invention is to provide a method for producing a positive electrode plate of a lead acid battery, which improves the chemical conversion efficiency of lead tetrabasic sulfate while improving the initial performance of a storage battery while using a high temperature aging method rather than a low temperature aging method.

본 발명의 다른 목적은 기존의 산화납을 사용하여 제작한 양극판에 비해 숙성효율, 화성효율 및 초기성능, 내구력이 향상되도록 양극판을 제조할 수 있도록 하는 납축전지의 양극판 제조방법을 제공하는데 있다. Another object of the present invention is to provide a positive electrode plate manufacturing method of a lead-acid battery to be able to manufacture a positive electrode plate to improve the aging efficiency, chemical conversion efficiency and initial performance, and durability compared to the conventional positive electrode plate made using lead oxide.

상기한 목적에 따라 본 발명은, 납축전지 양극판을 제조하는 방법에 있어서, 납과 산화납의 미세한 분말들로 구성된 연분을 물, 황산과 함께 사염기황산납 분말을 첨가하여 혼합 및 반죽하여 페이스트를 만드는 단계와, 상기 페이스트를 격자형 태의 집전체에 도포한 후 일정시간 숙성 및 건조해 사염기황산납이 함유된 숙성 활물질을 만드는 단계와, 상기 숙성 활물질에 전기를 흘려주어 숙성 활물질을 이산화납으로 변환시키는 화성단계로 이루어짐을 특징으로 한다. According to the above object, the present invention, in the method for producing a lead acid battery positive electrode plate, the lead powder consisting of fine powders of lead and lead oxide is mixed and kneaded by adding lead tetrachloride powder with water and sulfuric acid to make a paste Step, after applying the paste to a lattice-like current collector for a certain period of time to produce a aged active material containing lead tetrachloride sulfate, and to pass the electricity to the aged active material to convert the aged active material to lead dioxide It is characterized by consisting of a Mars step.

또한 본 발명은, 상기 사염기황산납 분말을 전체 연분의 0.1 내지 3 중량% 로 첨가함을 특징으로 한다. In addition, the present invention is characterized in that the lead tetrabasic sulfate powder is added at 0.1 to 3% by weight of the total lead.

이하 본 발명의 바람직한 실시 예를 첨부한 도면을 참조하여 상세히 설명한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명의 실시 예에서는 납축전지의 양극판을 제조시 숙성활물질을 만드는 숙성방법을 고온숙성법으로 이용하되 그에 따른 사염기황산납의 화성효율과 초기성능이 저온숙성법 이용시 삼염기황산납에 비해 떨어지는 단점을 해결하도록 구현한다. 이를 위해 본 발명에서는 사염기황산납을 혼합 숙성할 때 사염기황산납 분말을 첨가혼합하여 화성효율과 초기성능을 향상 및 부수적으로 수명까지도 향상되게 한다. In the embodiment of the present invention using the aging method for making the aging active material in the production of the positive electrode plate of the lead-acid battery as a high temperature aging method, the conversion efficiency and initial performance of the lead tetrachloride sulfate compared to the lead tribasic sulphate when using the low temperature aging method Implement to solve To this end, in the present invention, when mixing and aging lead tetrabasic sulfate, the addition of lead tetrabasic sulfate powder is mixed to improve the chemical conversion efficiency and initial performance, and consequently the life.

본 발명의 실시 예에서는 하기와 같은 (a)∼(c)단계를 거쳐서 납축전지의 양극판을 제조하되, (a)단계에서의 혼합시 사염기황산납 분말을 첨가하여 혼합하여 사염기황산납의 입자크기를 줄이게 한 것이다. In the embodiment of the present invention, the positive electrode plate of the lead acid battery is manufactured through the following steps (a) to (c), but the lead tetrachloride sulfate powder is mixed by adding lead tetrachloride powder during mixing in step (a). The size is reduced.

즉, 본 발명은 납과 산화납의 미세한 분말들로 구성된 연분을 물, 황산과 함께 혼합 및 반죽하여 페이스트(paste)를 만드는 (a)단계와, 상기 페이스트를 납 또 는 납합금으로 이루어진 격자형태의 집전체에 도포한 후 일정시간 숙성 및 건조를 통해 사염기황산납이 함유된 숙성 활물질을 가진 극판을 만드는 (b)단계와, 그리고 전기를 흘려주어 이 숙성 활물질을 이산화납으로 변환시키는 화성단계인 (c)단계로 이루어지는 납축전지 양극판을 제조하는데, (a)단계에서의 혼합시 전체 연분의 0.1 내지 3 중량%의 사염기황산납 분말이 첨가되도록 한 것이다. That is, the present invention (a) step of making a paste by mixing and kneading the fine powder consisting of fine powders of lead and lead oxide with water and sulfuric acid, and the paste in the form of a lattice of lead or lead alloy (B) a step of making an electrode plate with a aging active material containing lead tetrabasic sulfate through aging and drying for a certain period of time after coating on the current collector, and converting the aging active material into lead dioxide by flowing electricity. A lead-acid battery positive electrode plate comprising the step (c) is prepared, and in the mixing step (a), 0.1 to 3% by weight of lead tetrabasic sulphate powder is added.

본 발명의 실시 예에 따라 혼합과 반죽하여 페이스트를 만드는 (a)단계에서 투입되는 사염기황산납 분말은 하기와 같은 과정을 통해서 마련된다. Lead tetrachloride sulfate supplied in step (a) of mixing and kneading according to an embodiment of the present invention to prepare a paste is provided through the following process.

즉, 연분에 물과 황산을 혼합하여 만든 반죽을 70~100℃, 상대습도 80~100%의 환경 하에서 1~24시간 숙성 후 일정 온도에서 건조시켜서 고형의 사염기황산납을 만들고, 그후 평균입도 0.1~20㎛의 크기로 분쇄함으로써 극판 제조시 쉽게 섞일 수 있도록 분말형태의 사염기황산납 분말을 얻는다.In other words, the dough made by mixing water and sulfuric acid in the lead powder is aged for 1 to 24 hours in an environment of 70 to 100 ° C. and a relative humidity of 80 to 100%, and then dried at a constant temperature to make solid tetrachloride lead, and then the average particle size. By grinding to a size of 0.1 ~ 20㎛ lead tetrabasic sulphate powder in powder form so that it can be easily mixed during the production of the electrode plate.

상기의 사염기황산납 분말은 사염기황산납이 80~100중량%로 구성되어야 하며, 활물질 혼합 시에 전체 연분의 0.1 내지 3 중량%를 첨가하는 것이 바람직하다. The lead tetrachloride sulfate powder should be composed of 80 to 100% by weight of lead tetrasulphate, and preferably 0.1 to 3% by weight of the total lead when the active material is mixed.

상기한 (a)단계에서의 혼합시 첨가된 사염기황산납 분말은 활물질에 골고루 분포되어 (b)단계에서 이루어지는 극판의 숙성시 사염기황산납의 결정을 성장시켜주는 핵제의 역할을 함으로써 활물질의 사염기황산납의 결정이 극판 전체에 골고루 형성되도록 해준다. 아울러 사염기황산납 결정의 크기를 줄여주는 역할과 결정의 성장 속도를 빠르게 만들어 주는 역할도 담당한다.The lead tetrachloride sulfate added during the mixing in step (a) is evenly distributed in the active material and serves as a nucleating agent to grow crystals of lead tetrachloride sulfate during aging of the electrode plate made in step (b). The crystals of lead sulphate are evenly formed throughout the plate. It also plays a role in reducing the size of lead tetrachloride crystals and in speeding up the growth of crystals.

본원 발명자는 본 발명의 실시 예에 따라 제조된 숙성 활물질을 주사전자현미경으로 확인하여, 활물질의 사염기황산납 결정 입자 크기가 줄어든 것과 그 분포 가 상대적으로 골고루 형성된 것을 확인할 수 있었다. The inventors of the present invention confirmed the aged active material prepared according to the embodiment of the present invention with a scanning electron microscope, and it was confirmed that the size of lead tetrabasic sulfate sulfate particles of the active material was reduced and its distribution was relatively evenly formed.

도 1 및 도 2에서는 본 발명의 실시 예에 따른 사염기황산납분말을 적용한 것과 적용하지 않는 것의 숙성 활물질에 대한 주사전자 현미경 사진을 보여주고 있다. 도 1은 사염기황산납 분말을 적용하지 않은 현미경 사진이고, 도 2는 사염기 황산납을 적용한 숙성활물질 사진이다. 그리고 도 3은 본 발명의 실시 예에 따라 활물질 결정입자의 크기가 감소되어졌음을 보여주는 비교 사진도이다. 1 and 2 show scanning electron micrographs of the aged active material with and without the use of the lead tetrabasic sulfate powder according to the embodiment of the present invention. 1 is a micrograph without the lead tetrabasic sulphate powder, Figure 2 is a photograph of the aging active material applied with the tetrabasic lead sulphate. 3 is a comparative photograph showing that the size of the active material crystal grains is reduced according to an embodiment of the present invention.

도 1와 도 2간의 대비와 도 3내에서의 대비 비교에서 알 수 있듯이, 본 발명의 실시 예에 따라 사염기황산납 분말이 적용되었던 숙성 활물질의 결정 입자 크기가 크게 줄어들었음을 확인할 수 있다. As can be seen from the comparison between FIG. 1 and FIG. 2 and the contrast in FIG. 3, it can be seen that the crystal grain size of the aged active material to which the lead tetrabasic sulfate powder was applied according to the embodiment of the present invention was greatly reduced.

본 발명의 실시 예에 따라 결정입자 크기가 감소됨에 따라 화성효율이 증대되어 필요한 전기량이 감소되어 화성에 필요한 에너지 비용의 절감, 필요 시간의 단축 그에 따른 활물질에 대한 전기적 충격의 감소에 따른 극판 내구력이 증가한다. 또한, 극판의 총 반응 표면적의 증대로 인해 성능의 향상과 입자간의 결합 영역의 증대로 내구력이 증가한다.According to an embodiment of the present invention, as the crystal grain size is reduced, the chemical conversion efficiency is increased, and thus the amount of electricity required is reduced, thereby reducing the energy cost required for chemical conversion and shortening the required time. Increases. In addition, the durability increases due to the improvement of the performance and the increase of the bonding area between the particles due to the increase of the total reaction surface area of the electrode plate.

하기에서는 본 발명의 실시 예를 증명확인하기 위한 실제 실험 예이다. In the following is an actual experimental example for verifying the embodiment of the present invention.

<실험예>Experimental Example

바톤포트(Barton Pot) 방식으로 제조한 연분에 사염기황산납 분말, 물 및 비중 1.4의 희석황산과 기타 첨가제를 통상의 자동차용 축전지에 사용하는 배합비로 혼합하였다. 이 혼합물을 통상의 자동차용 축전지에 사용하는 납합금으로 된 기판 (집전체)에 도포한 후, 일정시간의 스티밍(Steaming) 처리와 숙성 및 건조를 실시한 후 분석을 하였는 바, 그 결과는 하기 표 1과 같다. Lead tetrabasic sulphate powder, water and dilute sulfuric acid having a specific gravity of 1.4 and other additives were mixed in a blend prepared in a Barton Pot method at a compounding ratio used in a conventional automotive battery. The mixture was applied to a lead alloy substrate (current collector) used in ordinary automotive storage batteries, and then subjected to steaming treatment, aging and drying for a predetermined time, and analyzed. Table 1 is as follows.

연분대비 사염기황산납 분말 첨가량(%) Lead Tetrasulphate Powder Addition (%) 숙성 극판 특성Aging Plate Characteristics 사염기황산납 입자 폭 (㎛)Lead Tetrachloride Sulphate Particle Width (㎛) BET 표면적 (㎡/g)BET surface area (㎡ / g) 0.10.1 5.25.2 5.45.4 1.01.0 3.53.5 5.85.8 2.02.0 1.91.9 0.60.6 5.05.0 1.91.9 0.60.6

< 연분대비 사염기황산납 분말 첨가량에 따른 숙성 극판의 특성 변화 ><Changes in Characteristics of Aged Plates with Lead Tetrachloride Sulphate Powders

표 1에서 확인할 수 있듯이, 연분대비 사염기 황산납 분말의 첨가량이 2.0%를 넘어서게 되면 사염기황산납 입자폭이 감소되는 것이 거의 한계에 다다르며 5.0%이상을 초과하게 되면 더 이상 상기 입자폭이 감소되지 않음을 확인할 수 있다. 그러므로 연분대비 사염기 황산납 분말의 첨가량은 0.1~3.0%가 바람직하다. As can be seen from Table 1, when the added amount of lead tetrabasic sulfate powder over the annual content exceeds 2.0%, the lead tetrabasic sulfate width is almost reduced, and when the content exceeds 5.0%, the particle width no longer exists. It can be seen that it is not reduced. Therefore, the addition amount of tetrabasic lead sulfate powder relative to lead is preferably 0.1 to 3.0%.

그리고 각각의 극판을 양극 7매, 음극 6매 및 다공성 폴리에틸렌 격리판으로 구성하여 희석황산으로 침지시킨 후 일정 전기량으로 화성시킨 후 성분을 분석하였는데, 그 결과는 하기 표 2와 같다.Each electrode plate was composed of seven positive electrodes, six negative electrodes, and a porous polyethylene separator, immersed in dilute sulfuric acid, and then chemically formulated with a predetermined amount of electricity. The results are shown in Table 2 below.

투입 화성 전기량 Input Mars Electricity 초기 보유 용량(min.)Initial retention capacity (min.) 0% 첨가품0% additive 0.1% 첨가품0.1% additive 2.0% 첨가품2.0% additive 237Ah237Ah 138.1138.1 141.9141.9 143.2143.2 216Ah216Ah 122.6122.6 137.3137.3 139.7139.7

상기 표 2에서 볼 수 있듯이 본 발명에 따른 사염기 황산납 분말 첨가품은 비첨가품에 비해서 화성효율 및 초기성능이 향상됨을 확인할 수 있다. As can be seen in Table 2, the tetrabasic lead sulfate powder additive according to the present invention can be confirmed that the chemical conversion efficiency and initial performance is improved compared to the non-additive.

상술한 본 발명의 설명에서는 구체적인 실시 예에 관해 설명하였으나, 여러 가지 변형이 본 발명의 범위에서 벗어나지 않고 실시할 수 있다. 따라서 본 발명의 범위는 설명된 실시 예에 의하여 정할 것이 아니고 특허청구범위와 특허청구범위의 균등한 것에 의해 정해 져야 한다. In the above description of the present invention, specific embodiments have been described, but various modifications may be made without departing from the scope of the present invention. Therefore, the scope of the present invention should not be defined by the described embodiments, but should be determined by the equivalent of claims and claims.

상술한 바와 같이 본 발명은 납축전지의 양극판을 제조시 숙성방법을 저온숙성법이 아닌 고온숙성법을 이용하면서도 사염기황산납의 화성효율 향상과 아울러 축전지의 초기성능도 향상되게 하며 납축전지의 수명 및 내구력도 향상되게 하는 장점이 있다. As described above, the present invention uses the high temperature aging method, not the low temperature aging method, in the production of the positive electrode plate of the lead acid battery, while improving the chemical conversion efficiency of lead tetrachloride, and also improves the initial performance of the battery. Durability also has an advantage to be improved.

Claims (4)

납축전지 양극판을 제조하는 방법에 있어서, In the method for producing a lead acid battery positive electrode plate, 납과 산화납의 미세한 분말들로 구성된 연분을 물, 황산과 함께 사염기황산납 분말을 첨가하여 혼합 및 반죽하여 페이스트를 만드는 단계와, Making a paste by mixing and kneading a lead composed of fine powders of lead and lead oxide with water and sulfuric acid, adding lead tetrabasic sulfate powder; 상기 페이스트를 격자형태의 집전체에 도포한 후 일정시간 숙성 및 건조해 사염기황산납이 함유된 숙성 활물질을 만드는 단계와, Applying the paste to a lattice-shaped current collector and then aging and drying for a predetermined time to make a aging active material containing lead tetrabasic sulfate; 상기 숙성 활물질에 전기를 흘려주어 숙성 활물질을 이산화납으로 변환시키는 화성단계로 이루어짐을 특징으로 하는 납축전지 양극판 제조방법.A method of manufacturing a lead acid battery positive electrode plate, characterized in that made of a chemical conversion step of converting the aged active material into lead dioxide by flowing electricity to the aged active material. 제1항에 있어서, 상기 사염기황산납 분말을 전체 연분의 0.1 내지 3 중량% 로 첨가함을 특징으로 하는 납축전지 양극판의 제조방법.The method for manufacturing a lead acid battery positive electrode plate according to claim 1, wherein the lead tetrabasic sulfate powder is added at 0.1 to 3% by weight of the total lead. 제1항 또는 제2항에 있어서, 상기 사염기황산납 분말은 사염기황산납이 80 내지 100 중량%로 구성되고, 평균입도가 0.1 내지 20㎛임을 특징으로 하는 납축전지 양극판 제조방법. The method of claim 1, wherein the lead tetrachloride sulfate powder is composed of 80 to 100 wt% of lead tetrabasic sulfate, and has an average particle size of 0.1 to 20 μm. 제3항에 있어서, 상기 사염기 황산납 분말은, 연분에 물과 황산을 혼합하여 만든 반죽을 70~100℃, 상대습도 80~100%의 환경 하에서 1~24시간 숙성 후 일정 온도에서 건조시켜서 고형의 사염기황산납을 만들고, 그후 0.1~20㎛의 크기로 분쇄하여서 얻음을 특징으로 하는 납축전지 양극판 제조방법. 4. The method of claim 3, wherein the tetrabasic lead sulfate powder is dried at a constant temperature after aging for 1 to 24 hours in an environment of 70-100 ° C. and a relative humidity of 80 to 100% by mixing water and sulfuric acid in a soft powder. A method for producing a lead-acid battery positive electrode plate, characterized in that it is obtained by making a solid tetrabasic lead sulfate and then grinding it into a size of 0.1-20 μm.
KR1020060128995A 2006-12-15 2006-12-15 Method for manufacturing positive plate 0f storage battery KR20080055533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060128995A KR20080055533A (en) 2006-12-15 2006-12-15 Method for manufacturing positive plate 0f storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060128995A KR20080055533A (en) 2006-12-15 2006-12-15 Method for manufacturing positive plate 0f storage battery

Publications (1)

Publication Number Publication Date
KR20080055533A true KR20080055533A (en) 2008-06-19

Family

ID=39802349

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060128995A KR20080055533A (en) 2006-12-15 2006-12-15 Method for manufacturing positive plate 0f storage battery

Country Status (1)

Country Link
KR (1) KR20080055533A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101009300B1 (en) * 2002-06-28 2011-01-18 화이어플라이 에너지 인코포레이티드 Battery Including Carbon Foam Current Collectors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101009300B1 (en) * 2002-06-28 2011-01-18 화이어플라이 에너지 인코포레이티드 Battery Including Carbon Foam Current Collectors

Similar Documents

Publication Publication Date Title
EP2901515B1 (en) Method of making active material compositions comprising high surface area carbonaceous materials
JP7326588B2 (en) Cobalt-free layered positive electrode material, manufacturing method thereof, positive electrode sheet, and lithium ion battery
WO2017000219A1 (en) Doped conductive oxide and improved electrochemical energy storage device polar plate based on same
JP4505464B2 (en) Battery paste materials and methods
CN105280916B (en) Lead-acid accumulator is internalized into conjunction cream
JP2008098009A (en) Cathode plate for lead-acid battery
Wang et al. Mechano-chemical synthesis of high-stable PbO@ C composite for enhanced performance of lead-carbon battery
CN108807969A (en) A method of reducing layered cathode material of lithium ion battery surface residual alkali
JP5194729B2 (en) Lead acid battery
Kosacki et al. The effect of various graphite additives on positive active mass utilization of the lead-acid battery
CN105489888A (en) Lead-acid storage battery positive electrode lead paste prepared from beta-lead monoxide powder
JP2010192257A (en) Manufacturing method of lead-acid battery, and paste type negative electrode plate for lead-acid battery
KR101775335B1 (en) Manufacturing method of positive grid for lead-acid battery
JP2009187776A (en) Control valve type lead-acid storage battery
KR102518691B1 (en) An electrode active material, an anode including the same, a second battery including the same, the fabrication method of the electrode active material
KR20080055533A (en) Method for manufacturing positive plate 0f storage battery
CN111048777B (en) High-porosity EVF series lead storage battery positive electrode lead plaster and plaster mixing method thereof
JP2008071717A (en) Method of chemical conversion of lead-acid battery
CN109301187B (en) Carbon-coated SnO applied to lithium ion battery cathodexPreparation method of quantum dot/graphene composite
KR100250866B1 (en) A method for preparing anode plate of lead storage battery
KR100266132B1 (en) A method for preparing anode plate of lead storage battery
JP2003077468A (en) Manufacturing method of nickel electrode material
JP4066509B2 (en) Manufacturing method of lead acid battery
RU2360329C1 (en) Method of active material production for negative electrode in alkali ni-cd battery
JPH11162456A (en) Lead-acid battery

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application