JP5194729B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP5194729B2
JP5194729B2 JP2007294305A JP2007294305A JP5194729B2 JP 5194729 B2 JP5194729 B2 JP 5194729B2 JP 2007294305 A JP2007294305 A JP 2007294305A JP 2007294305 A JP2007294305 A JP 2007294305A JP 5194729 B2 JP5194729 B2 JP 5194729B2
Authority
JP
Japan
Prior art keywords
lead
amount
negative electrode
electrode plate
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007294305A
Other languages
Japanese (ja)
Other versions
JP2008277244A (en
Inventor
耕二 木暮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Kobe Electric Machinery Co Ltd
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2007294305A priority Critical patent/JP5194729B2/en
Publication of JP2008277244A publication Critical patent/JP2008277244A/en
Application granted granted Critical
Publication of JP5194729B2 publication Critical patent/JP5194729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は鉛蓄電池の負極板の改良に関するものである。   The present invention relates to an improvement of a negative electrode plate of a lead storage battery.

鉛蓄電池の負極活物質には従来から数種類の添加剤が負極ペースト錬合時に添加されている。このうち、有機エキスパンダとして通常添加されているリグニンは負極活物質防縮剤として機能しており、鉛粒子に吸着して充電時に鉛が凝集するのを抑える効果がある。リグニンには、その官能基や量、分子量、立体構造により入力性能や出力性能に優れた様々なリグニンが報告されている。しかし、近年、エンジン始動と停止が繰り返されるいわゆるアイドリングストップ車のような使用形態で鉛蓄電池が使用されると、常に充電性不足状態に陥っているため、早期に寿命の低下を招いてしまうことが知られている。このことを防ぐため、特に入力性能を向上させる特許文献1のような方法が最近試みられてきた。   Conventionally, several types of additives have been added to the negative electrode active material of a lead storage battery during negative electrode paste refining. Of these, lignin, which is usually added as an organic expander, functions as a negative electrode active material shrinking agent, and has the effect of adsorbing to lead particles and suppressing the aggregation of lead during charging. Various lignins having excellent input performance and output performance due to their functional group, amount, molecular weight, and steric structure have been reported for lignin. However, in recent years, when lead-acid batteries are used in a form of use such as a so-called idling stop vehicle in which the engine is started and stopped repeatedly, the battery is always in a state of insufficient chargeability, leading to an early decrease in life. It has been known. In order to prevent this, a method such as Patent Document 1 for improving input performance has been recently attempted.

一方で鉛蓄電池の高温特性、高率放電特性に優れた有機エキスパンダとしてして特許文献2ではナフタレンスルホン酸ホルマリン縮合物、またはその誘導体を使用することが記載されている。
また、特許文献3ではビスフェノール類とホルムアルデヒド縮合物を併せて添加することで性能向上を狙っている。
On the other hand, Patent Document 2 describes the use of naphthalene sulfonic acid formalin condensate or a derivative thereof as an organic expander excellent in high temperature characteristics and high rate discharge characteristics of a lead storage battery.
Patent Document 3 aims to improve performance by adding bisphenols and formaldehyde condensate together.

特願2001―119274号公報Japanese Patent Application No. 2001-119274 特開平4−65062号公報JP-A-4-65062 特開平11−121008号公報JP-A-11-121008

しかし、このように高温特性、高率放電特性に優れている有機エキスパンダは有機性硫黄(スルホニル基)が多く存在しているため、充電時のPb2+が還元されて析出する際に電析面の活性点つまり充電初期にPb2+が析出する部分を覆って結晶成長を抑制することや、有機エキスパンダ自体、分解し難くなるため、活物質中での反応性が低下してしまう。そのため鉛蓄電池の入力性能が大きく低下してしまうことが知られている。 However, organic expanders with excellent high-temperature characteristics and high-rate discharge characteristics have a large amount of organic sulfur (sulfonyl group), so that when Pb 2+ during charging is reduced and deposited, Since the active point of the analysis surface, that is, the portion where Pb 2+ precipitates at the initial stage of charging is covered, the crystal growth is suppressed, and the organic expander itself is difficult to decompose, so the reactivity in the active material is reduced. . Therefore, it is known that the input performance of the lead storage battery is greatly deteriorated.

また、高率放電特性を向上させるためナフタレンスルホン酸ホルマリン縮合物を負極板に添加することで入力性能は大きく低下してしまう。これはナフタレンスルホン酸ホルマリン縮合物が鉛に強く吸着してしまうことから、充電時に電解液の硫酸と硫酸鉛の接触面積が低下することによる鉛への還元反応が低下してしまうためである。   In addition, the input performance is greatly reduced by adding naphthalenesulfonic acid formalin condensate to the negative electrode plate in order to improve the high rate discharge characteristics. This is because the naphthalene sulfonic acid formalin condensate is strongly adsorbed to lead, so that the reduction reaction to lead due to the decrease in the contact area between sulfuric acid and lead sulfate in the electrolyte during charging is reduced.

本発明では、ナフタレンスルホン酸の誘導体をペースト中に混ぜ込んで作製した負極板表面上に、ビスフェノール類化合物を存在させた負極板、つまり2種の異なる有機エキスパンダを異なる添加方法で極板に存在させることで、それぞれの添加剤が各性能に効率よく効果を発揮できることができ、入力性能の低下を抑えたまま、高率放電特性が向上した鉛蓄電池を提供することができる。   In the present invention, a negative electrode plate in which a bisphenol compound is present on the surface of a negative electrode plate prepared by mixing a naphthalenesulfonic acid derivative in a paste, that is, two different organic expanders are added to the electrode plate by different addition methods. By making it exist, each additive can exhibit an effect efficiently for each performance, and can provide the lead acid battery which improved the high rate discharge characteristic, suppressing the fall of input performance.

さらに、カーボンを添加することで入力性能を高めることができるので、上記添加方法に加え、カーボン粉末量を増量することで入力性能のさらなる向上が図れる。   Furthermore, since the input performance can be improved by adding carbon, the input performance can be further improved by increasing the amount of carbon powder in addition to the above-described addition method.

本発明により鉛蓄電池の入力性能、高率放電性能が向上し、その結果、鉛蓄電池の入力性能の低下をすることなく出力特性が向上し、様々な用途に耐えうる鉛蓄電池を提供する。   According to the present invention, the input performance and high-rate discharge performance of a lead storage battery are improved, and as a result, the output characteristics are improved without degrading the input performance of the lead storage battery, and a lead storage battery that can withstand various uses is provided.

以下具体例をあげ、本発明を更に詳しく説明するが、発明の主旨を越えない限り、本発明は実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the present invention is not limited to the examples unless it exceeds the gist of the invention.

以下、本発明の実施例を比較例と共に詳述する。
(負極板の作製)
(実施例1)
鉛粉1.00kgに0.1重量%のナフタレンスルホン酸ホルマリン縮合物と0.2重量%のカーボン粉末と1.0重量%の硫酸バリウム、およびグラスファイバ(カットファイバ)を0.1重量%添加した後、混練機にて10分間混練した。次に、ペースト水分量が鉛粉に対して12重量%になるように水を加えた後、10分間混練した。その後、硫酸濃度が13重量%になるよう希硫酸(比重1.26、20℃換算)を添加した後、混練を10分間続けることにより負極活物質ペーストを作製した。この負極活物質ペースト50gを鉛−カルシウム合金の格子体からなる集電体に充填した後、温度50℃,湿度95%の恒温槽中に18時間放置することにより熟成してから、温度60℃で16時間乾燥させ、未化成の乾燥負極板を作製した。
Examples of the present invention will be described in detail below together with comparative examples.
(Preparation of negative electrode plate)
Example 1
0.1% by weight of 0.1% by weight naphthalenesulfonic acid formalin condensate, 0.2% by weight carbon powder, 1.0% by weight barium sulfate, and glass fiber (cut fiber) to 1.00 kg of lead powder After the addition, the mixture was kneaded for 10 minutes with a kneader. Next, water was added so that the moisture content of the paste was 12% by weight with respect to the lead powder, and then kneaded for 10 minutes. Thereafter, dilute sulfuric acid (specific gravity 1.26, converted to 20 ° C.) was added so that the sulfuric acid concentration became 13% by weight, and then kneading was continued for 10 minutes to prepare a negative electrode active material paste. After filling this negative electrode active material paste 50 g into a current collector made of a lead-calcium alloy lattice, the paste was aged by standing in a constant temperature bath at a temperature of 50 ° C. and a humidity of 95% for 18 hours, and then at a temperature of 60 ° C. And dried for 16 hours to produce an unformed dry negative electrode plate.

この後、上記手法により作製した未化成の乾燥負極板を水中に1分間浸漬した後、ビスフェノールスルホン酸ポリマー5%水溶液をスポイトなどを用いて滴下し、極板表面上に存在させるようにしてから乾燥させた極板を実施例1とした。このときのナフタレンスルホン酸ホルマリン縮合物とビスフェノールスルホン酸ポリマーは同量になるようにした。極板中の有機エキスパンダの総量は負極の鉛粉量に対して0.2重量%となる。After that, after the unformed dry negative electrode plate produced by the above method is immersed in water for 1 minute, a 5% aqueous solution of bisphenolsulfonic acid polymer is dropped using a dropper or the like so that it is present on the surface of the electrode plate. The dried electrode plate was taken as Example 1. At this time, the amount of naphthalene sulfonic acid formalin condensate and bisphenol sulfonic acid polymer was the same. The total amount of organic expander in the electrode plate is 0.2% by weight with respect to the amount of lead powder in the negative electrode.

極板表面上に有機エキスパンダを存在させる方法は、有機エキスパンダ水溶液を霧吹きなどにより定量噴霧する方法でも同様な効果が得られる。また、未化成負極板を水中に浸漬することで、一度極板内部の空孔を水で埋めることによりに有機エキスパンダが極板内部に入り込まず、表面にのみ存在させることが可能である。The same effect can be obtained by causing the organic expander to exist on the surface of the electrode plate by quantitatively spraying an organic expander aqueous solution by spraying or the like. Further, by immersing the unformed negative electrode plate in water, the organic expander can be allowed to exist only on the surface without once entering the electrode plate by filling the holes inside the electrode plate with water once.

この後、上記手法により作製した未化成の乾燥負極板を、水中に1分間浸漬した後、ナフタレンスルホン酸ホルマリン縮合物5%水溶液をスポイトなどを用いて滴下し、極板表面上に前記ナフタレンスルホン酸ホルマリン縮合物と同量存在させるようにしてから乾燥させた極板を比較例1とした。   Thereafter, the unformed dry negative electrode plate produced by the above method is immersed in water for 1 minute, and then a 5% aqueous solution of naphthalene sulfonic acid formalin condensate is dropped using a dropper or the like, and the naphthalene sulfone on the surface of the electrode plate. The electrode plate which was made to exist in the same amount as the acid formalin condensate and then dried was designated as Comparative Example 1.

比較例2は鉛粉1.00kgに0.1重量%のビスフェノールスルホン酸ポリマーと0.2重量%のカーボン粉末と1.0重量%の硫酸バリウム、およびグラスファイバ(カットファイバ)を0.1重量%添加した後、混練機にて10分間混練した。次に、ペースト水分量が鉛粉に対して12重量%になるように水を加えた後、10分間混練した。その後、硫酸濃度が13重量%になるよう希硫酸(比重1.26、20℃換算)を添加した後、混練を10分間続けることにより負極活物質ペーストを作製した。この負極活物質ペースト50gを鉛−カルシウム合金の格子体からなる集電体に充填した後、温度50℃、湿度95%の恒温槽中に18時間放置することにより熟成してから、温度60℃で16時間乾燥させ、未化成の乾燥負極板を作製した。   In Comparative Example 2, 0.1% by weight of bisphenolsulfonic acid polymer, 0.2% by weight of carbon powder, 1.0% by weight of barium sulfate, and glass fiber (cut fiber) were added to 1.00 kg of lead powder. After adding wt%, the mixture was kneaded for 10 minutes in a kneader. Next, water was added so that the moisture content of the paste was 12% by weight with respect to the lead powder, and then kneaded for 10 minutes. Thereafter, dilute sulfuric acid (specific gravity 1.26, converted to 20 ° C.) was added so that the sulfuric acid concentration became 13% by weight, and then kneading was continued for 10 minutes to prepare a negative electrode active material paste. The negative electrode active material paste 50g was filled in a current collector made of a lead-calcium alloy lattice, and then left to stand for 18 hours in a constant temperature bath at a temperature of 50 ° C and a humidity of 95%. And dried for 16 hours to produce an unformed dry negative electrode plate.

この後、上記手法により作製した未化成の乾燥負極板を水中に1分間浸漬した後、ビスフェノールスルホン酸ポリマー5%水溶液をスポイトなどを用いて滴下し、極板表面上に前記ビスフェノールスルホン酸ポリマーと同量存在させるようにしてから乾燥させた
極板を比較例2とした。
Thereafter, the unformed dry negative electrode plate produced by the above method is immersed in water for 1 minute, and then a 5% aqueous solution of bisphenol sulfonic acid polymer is dropped using a dropper or the like, and the bisphenol sulfonic acid polymer and The electrode plate that was dried after the same amount was present was designated as Comparative Example 2.

上記手法により作製した乾燥負極板中に存在する有機エキスパンダ総量は負極の鉛粉量に対して0.2重量%とした。
(正極板の作製)
1.0kg鉛粉に対して13重量%の希硫酸(比重1.26、20℃換算)と12重量%の水とを混練して正極活物質ペーストを作製した。次に、正極活物質ペースト67gを鉛−カルシウム合金の格子体からなる集電体に充填し、温度50℃、湿度95%中に18時間放置して熟成し、温度60℃で16時間放置して乾燥させ、未化成正極板を製造した。
(電池の組立・化成)
ガラス繊維からなるセパレータを介して、1枚の未化成負極板と2枚の未化成正極板とではさみこんだ構成の2V単板電池を組立てた。この未化成電池を1.0Aで15時間、化成した後、電解液を排出し、再び比重1.28(20℃換算)の希硫酸電解液を注入して完成とした。
(評価方法1)
上記方法にて組立てた2V単板電池について入力性能および高率放電性能を調べた。入力性能は電池の充電状態(SOC)が90%になった状態、つまり満充電状態から電池容量の10%を放電した電池を2.33Vの定電圧充電した際の5秒目電流値で評価した。このときの電流値が大きいほど初期の充電容量が高く、入力性能が良い電池といえる。また、高率放電性能はは6C電流で放電した時の電池電圧が1.0Vに達するまでの放電持続時間により評価した。この結果を表1に示す。
The total amount of organic expander present in the dry negative electrode plate produced by the above method was 0.2% by weight with respect to the amount of lead powder of the negative electrode.
(Preparation of positive electrode plate)
A positive electrode active material paste was prepared by kneading 13 wt% dilute sulfuric acid (specific gravity 1.26, converted to 20 ° C.) and 12 wt% water with respect to 1.0 kg lead powder. Next, 67 g of a positive electrode active material paste is filled in a current collector made of a lead-calcium alloy lattice, left to mature in a temperature of 50 ° C. and a humidity of 95% for 18 hours, and left at a temperature of 60 ° C. for 16 hours. And dried to produce an unformed positive electrode plate.
(Battery assembly and formation)
A 2V single plate battery having a structure sandwiched between one unformed negative electrode plate and two unformed positive electrode plates was assembled through a glass fiber separator. After forming this unformed battery at 1.0 A for 15 hours, the electrolytic solution was discharged, and a dilute sulfuric acid electrolytic solution having a specific gravity of 1.28 (converted to 20 ° C.) was injected again to complete.
(Evaluation method 1)
The input performance and high rate discharge performance of the 2V single plate battery assembled by the above method were examined. Input performance is evaluated with the current value at the 5th second when the battery is discharged at a constant voltage of 2.33 V when the battery is 90% charged (SOC), that is, when 10% of the battery capacity is discharged from the fully charged state. did. The larger the current value at this time, the higher the initial charge capacity, and the better the input performance. The high rate discharge performance was evaluated by the discharge duration until the battery voltage reached 1.0 V when discharged at 6 C current. The results are shown in Table 1.

Figure 0005194729
Figure 0005194729


比較例1、比較例2ではともに入力性能、出力性能どちらかを極端に増加させることが可能であるが、一方の性能低下を招いてしまう。

In both Comparative Example 1 and Comparative Example 2, either the input performance or the output performance can be drastically increased, but one of the performances is degraded.

本発明では同種の有機エキスパンダを同量で比較しても従来例の入力、出力の合計を上回る結果を得た。また、ビスフェノールスルホン酸ポリマーとナフタレンスルホン酸ホルマリン縮合物の合計添加量は、負極の鉛粉量に対して通常のリグニン添加量範囲である0.1重量%より少ないと添加剤の効果が発現せず、0.4重量%より多いと過剰な添加剤が充放電反応を阻害する。よって、負極の鉛粉量に対して合計添加量が0.1より多く0.4重量%より小さいと添加量が最適となる。   In the present invention, even when the same type of organic expander was compared in the same amount, a result exceeding the total input and output of the conventional example was obtained. Further, if the total addition amount of the bisphenol sulfonic acid polymer and the naphthalene sulfonic acid formalin condensate is less than 0.1% by weight, which is the usual range of lignin addition amount, with respect to the amount of lead powder of the negative electrode, the effect of the additive is exhibited. If more than 0.4% by weight, the excessive additive inhibits the charge / discharge reaction. Therefore, when the total addition amount is more than 0.1 and less than 0.4% by weight with respect to the amount of lead powder of the negative electrode, the addition amount is optimum.

なお、上述した本発明の効果は、鉛蓄電池の用途や形状等に限定されることなく発揮さ る。
(評価方法2)
前記評価方法1で、負極に添加するカーボン粉末量を、負極の鉛粉量に対して0.1重量%から2.4重量%まで変化させて、表1と同様の試験を実施した。その結果を図1に示す。これより、従来の入力性能を=100としたときに、カーボン粉末添加量が0.2重量%以上2.0重量%で100以上となることが分かる。カーボン粉末添加量が0.2重量%より少ないとカーボンの効果が発現せず、また、2.0重量%より多いと、式鉛蓄電池の場合では、かさ高いカーボンによって活物質間の接触面積が低下するため、入力性能が低下すると考えられる。密閉式鉛蓄電池などカーボン増量しても極板の耐久性の影響が小さければ、カーボン添加量は0.2重量%以上8.0重量%まで増量しても入力性能向上に効果が期待できる。
Note that the effect of the present invention described above, Ru is Ku exerted such that are limited to applications, the shape, etc., of the lead-acid battery.
(Evaluation method 2)
In the evaluation method 1, the same test as in Table 1 was performed by changing the amount of carbon powder added to the negative electrode from 0.1 wt% to 2.4 wt% with respect to the amount of lead powder of the negative electrode. The result is shown in FIG. From this, it can be seen that when the conventional input performance is set to 100, the amount of carbon powder added is 0.2 or more and 2.0 or more, and becomes 100 or more. When the amount of carbon powder added is less than 0.2% by weight, the effect of carbon is not exhibited. When the amount added is more than 2.0% by weight, in the case of a liquid lead-acid battery, the contact area between the active materials due to the bulky carbon. Therefore, it is considered that the input performance is degraded. If the influence of the durability of the electrode plate is small even if the amount of carbon such as a sealed lead-acid battery is increased, the effect of improving the input performance can be expected even if the amount of carbon added is increased from 0.2% by weight to 8.0% by weight.

よって、カーボン粉末量は、液式鉛蓄電池の場合は負極の鉛粉量に対して0.2重量%以上2.0重量%以下、密閉式鉛蓄電池の場合は0.2重量%以上8.0重量%以下で入力性能向上に効果があることが分かる。   Therefore, the amount of carbon powder is 0.2 wt% or more and 2.0 wt% or less with respect to the amount of lead powder of the negative electrode in the case of liquid lead acid battery, and 0.2 wt% or more in the case of sealed lead acid battery. It can be seen that 0% by weight or less is effective in improving input performance.

カーボン粉末添加量と入力性能の比較図である。It is a comparison figure of carbon powder addition amount and input performance.

Claims (5)

鉛粉を主成分とするペースト状活物質を、鉛合金製の集電体に充填して作製するペースト式負極板を用いる液式鉛蓄電池において、前記ペーストに有機エキスパンダであるナフ タレンスルホン酸ホルマリン縮合物を添加し、且つ、極板表面上に有機エキスパンダであるビスフェノールスルホン酸ポリマーが存在していることを特徴とする鉛蓄電池。The paste active material mainly composed of lead powder, in a liquid-type lead-acid battery using a paste-type negative electrode plate making filled into a current collector made of lead alloy, naphthoquinone array type sulfonic acid is an organic expander to said paste A lead acid battery characterized in that a formalin condensate is added and a bisphenolsulfonic acid polymer as an organic expander is present on the surface of the electrode plate. ペースト中及び極板表面上の有機エキスパンダの合計添加量は、負極の鉛粉量に対して0.1重量%より多く0.4重量%より少ないことを特徴とする請求項1記載の鉛蓄電池。  2. The lead according to claim 1, wherein the total amount of organic expander added in the paste and on the surface of the electrode plate is more than 0.1 wt% and less than 0.4 wt% with respect to the amount of lead powder in the negative electrode. Storage battery. 前記ペーストに、さらにカーボン粉末を添加したことを特徴とする請求項1又は2記載の鉛蓄電池。  The lead acid battery according to claim 1, wherein carbon powder is further added to the paste. 前記カーボン粉末量は、負極の鉛粉量に対して0.2重量%以上2.0重量%以下であり、かつ前記鉛蓄電池が液式鉛蓄電池であることを特徴とする請求項3記載の鉛蓄電池。  The amount of the carbon powder is 0.2 wt% or more and 2.0 wt% or less with respect to the amount of lead powder of the negative electrode, and the lead storage battery is a liquid lead storage battery. Lead acid battery. 前記カーボン粉末量は、負極の鉛粉量に対して0.2重量%以上8.0重量%以下であり、かつ前記鉛蓄電池が密閉式鉛蓄電池であることを特徴とする請求項3記載の鉛蓄電池。  The amount of the carbon powder is 0.2 wt% or more and 8.0 wt% or less with respect to the amount of lead powder of the negative electrode, and the lead storage battery is a sealed lead storage battery. Lead acid battery.
JP2007294305A 2007-04-06 2007-11-13 Lead acid battery Active JP5194729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007294305A JP5194729B2 (en) 2007-04-06 2007-11-13 Lead acid battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007100816 2007-04-06
JP2007100816 2007-04-06
JP2007294305A JP5194729B2 (en) 2007-04-06 2007-11-13 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2008277244A JP2008277244A (en) 2008-11-13
JP5194729B2 true JP5194729B2 (en) 2013-05-08

Family

ID=40054947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007294305A Active JP5194729B2 (en) 2007-04-06 2007-11-13 Lead acid battery

Country Status (1)

Country Link
JP (1) JP5194729B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2012010082A (en) * 2010-03-01 2012-09-12 Shin Kobe Electric Machinery Lead storage battery.
JP5531855B2 (en) * 2010-08-18 2014-06-25 新神戸電機株式会社 Negative electrode plate for lead storage battery and lead storage battery using this negative electrode plate
JP5598368B2 (en) * 2011-02-17 2014-10-01 株式会社Gsユアサ Lead acid battery and negative electrode active material thereof
WO2013005733A1 (en) * 2011-07-05 2013-01-10 株式会社Gsユアサ Flooded lead-acid battery
WO2013031263A1 (en) * 2011-09-01 2013-03-07 新神戸電機株式会社 Lead storage cell
WO2015079631A1 (en) 2013-11-29 2015-06-04 株式会社Gsユアサ Lead-acid battery
JP6528436B2 (en) * 2015-02-12 2019-06-12 株式会社Gsユアサ Lead storage battery, negative electrode plate thereof and method of manufacturing lead storage battery
JP7093788B2 (en) * 2017-11-14 2022-06-30 昭和電工マテリアルズ株式会社 Lead-acid battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3992336B2 (en) * 1997-10-13 2007-10-17 株式会社ジーエス・ユアサコーポレーション Negative electrode for lead acid battery
JPH11250913A (en) * 1998-03-02 1999-09-17 Aisin Seiki Co Ltd Lead-acid battery
JP4396527B2 (en) * 2005-01-11 2010-01-13 新神戸電機株式会社 Lead acid battery

Also Published As

Publication number Publication date
JP2008277244A (en) 2008-11-13

Similar Documents

Publication Publication Date Title
JP5194729B2 (en) Lead acid battery
JP4134722B2 (en) NEGATIVE ELECTRODE ACTIVE MATERIAL, PROCESS FOR PRODUCING THE SAME, AND Pb
JP5066825B2 (en) Lead acid battery
JP5219360B2 (en) Lead acid battery
JP2006196191A (en) Lead-acid battery
JPH11250913A (en) Lead-acid battery
JP6413703B2 (en) Lead acid battery and negative electrode plate thereof
JP2017183283A (en) Positive electrode plate for lead storage battery, lead storage battery using the same, and method for manufacturing positive electrode plate for lead storage battery
JP2003123760A (en) Negative electrode for lead-acid battery
JP2010192257A (en) Manufacturing method of lead-acid battery, and paste type negative electrode plate for lead-acid battery
JP2008243493A (en) Lead acid storage battery
JP5396216B2 (en) Lead acid battery
JP2000251896A (en) Lead-acid battery and its manufacture
JP2016162612A (en) Control valve type lead storage battery
JP5637503B2 (en) Lead acid battery
JP2008071717A (en) Method of chemical conversion of lead-acid battery
JP2004327299A (en) Sealed lead-acid storage battery
JP2002100347A (en) Lead-acid battery
JP2012199026A (en) Negative electrode active material paste, lead acid battery and method for manufacturing lead acid battery
JP2019053998A (en) Lead acid storage battery
JP6649690B2 (en) Lead storage battery
JP6775764B2 (en) Lead-acid battery
JP2009129725A (en) Lead storage battery
JP7493329B2 (en) Lead-acid battery
JP5708959B2 (en) Lead acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5194729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250