KR20070071960A - Polymer nanocomposite with carbon nanotubes and their preparation method - Google Patents

Polymer nanocomposite with carbon nanotubes and their preparation method Download PDF

Info

Publication number
KR20070071960A
KR20070071960A KR1020050135834A KR20050135834A KR20070071960A KR 20070071960 A KR20070071960 A KR 20070071960A KR 1020050135834 A KR1020050135834 A KR 1020050135834A KR 20050135834 A KR20050135834 A KR 20050135834A KR 20070071960 A KR20070071960 A KR 20070071960A
Authority
KR
South Korea
Prior art keywords
polymer
cnt
nanocomposite
cnts
carbon nanotubes
Prior art date
Application number
KR1020050135834A
Other languages
Korean (ko)
Inventor
김백진
김은선
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020050135834A priority Critical patent/KR20070071960A/en
Publication of KR20070071960A publication Critical patent/KR20070071960A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/08Butenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Abstract

Provided are a polymer nanocomposite containing CNT(carbon nanotube) which is free from the phase separation within matrix and is excellent in mechanical properties, and a method for preparing the polymer nanocomposite containing CNT. The polymer nanocomposite containing CNT(carbon nanotube) comprises about 0.1-10 wt% of the carbon nanotube treated by ultrasonication. Preferably the polymer is poly(1-butene); and the carbon nanotube is a multi-walled carbon nanotube or a single-walled carbon nanotube. The method comprises the steps of treating a carbon nanotube by ultrasonication in an apolar organic solvent; and mixing it with the polymer dissolved in an apolar solvent. Preferably the apolar organic solvent is toluene.

Description

탄소나노튜브를 포함하는 고분자 나노복합체 및 그의 제조 방법{Polymer Nanocomposite with Carbon Nanotubes and Their Preparation Method}Polymer Nanocomposite with Carbon Nanotubes and Their Preparation Method

도 1 내지 4는 본원 실시예에 따라 제조된 PB-1/CNT 나노복합체에서, CNT의 함량을 달리함에 따른 PB-1 매트릭스 내 CNT(Carbon Nanotubes)의 분산성을 보여주는 FE-SEM 사진이고,1 to 4 are FE-SEM photographs showing the dispersibility of CNTs (Carbon Nanotubes) in the PB-1 matrix according to the content of CNTs in the PB-1 / CNT nanocomposites prepared according to the present example.

도 5 내지 7은 각각, 본원 실시예 1 내지 4에서 제조된 PB-1 수지 및 PB-1/CNT 나노복합체의 CNT 함량에 따른 인장강도, 인장 모듈로스 및 굴곡 모듈러스를 나타내는 그래프이다.5 to 7 are graphs showing tensile strength, tensile modulus, and flexural modulus according to CNT content of PB-1 resin and PB-1 / CNT nanocomposite prepared in Examples 1 to 4, respectively.

본 발명은 탄소나노튜브(CNT: Carbon Nanotubes)를 포함하는 고분자 나노복합체 및 그 제조 방법에 관한 것으로서, 구체적으로는, 폴리(1-부텐)(PB-1:Poly(1-butene)) 수지에 용액복합화(Solution Mixing) 방법에 의해 초음파 처리된 CNT를 첨가함으로써 PB-1 매트릭스 내에 CNT가 나노스케일로 분산되어 열 안정성, 굴곡강 도 등의 기계적 물성이 향상된 PB-1/CNT 나노복합체의 제공 및 그 제조 방법에 관한 것이다.The present invention relates to a polymer nanocomposite containing carbon nanotubes (CNT: Carbon Nanotubes) and a method for producing the same, specifically, to a poly (1-butene) (PB-1: Poly (1-butene)) resin Providing PB-1 / CNT nanocomposites with improved mechanical properties such as thermal stability and bending strength by dispersing CNTs nanoscale in PB-1 matrix by adding CNTs sonicated by Solution Mixing method and The manufacturing method is related.

종래 고분자 수지의 기계적 물성을 개선할 목적으로 충진제의 첨가를 통한 많은 연구가 진행되어 왔다. 그러나, 이 경우 대부분의 충진제들이 고가이고, 개선에 필요한 충진제의 양이 너무 많거나, 경우에 따라서는 수지와 함께 가공하는데 문제점이 있었다.Many studies have been conducted through the addition of fillers for the purpose of improving the mechanical properties of conventional polymer resins. However, in this case, most of the fillers are expensive, and the amount of filler required for improvement is too high, or in some cases there is a problem in processing with the resin.

이에, 기존의 충진제 대신 CNT를 첨가하여 기계적 물성을 향상시킬 수 있는 고분자-CNT 나노복합체 제조에 관한 연구 또한 진행되어 왔으며, 주로 행해지는 고분자-CNT 나노복합체의 제조방법으로는 CNT를 고분자 모노머(Monomer)와 혼합한 후 in-situ 중합시키는 방법, 고분자를 용제에 용해시켜 CNT와 혼합하는 용액혼합법, 및 고전단력 하에서 고분자를 용융시키면서 CNT와 혼합하는 용융혼합법 등이 있다.Thus, studies on the preparation of polymer-CNT nanocomposites that can improve mechanical properties by adding CNTs instead of conventional fillers have been conducted. The method of preparing polymer-CNT nanocomposites is mainly performed by using CNT as a polymer monomer. ), A method of in-situ polymerization, a solution mixing method of dissolving a polymer in a solvent and mixing with CNTs, and a melt mixing method of mixing the polymer with CNT while melting the polymer under high shear force.

그러나, CNT는 실제 1000 이상의 종횡비(Aspect ratio)를 가짐으로 인하여 고분자 내에서의 분산이 용이하지 않으며, 또한 표면 화학적 성질로 인하여 고분자 매트릭스와의 상용성이 떨어질 경우 상분리, 응집, 및 낮은 분산성 등으로 인해 접착성 및 기계적 물성을 향상시키는 데 한계가 있었다. However, CNTs are not easy to disperse in the polymer due to the aspect ratio of 1000 or more, and when the compatibility with the polymer matrix becomes poor due to the surface chemistry, phase separation, coagulation, and low dispersibility, etc. Due to this, there was a limit in improving adhesion and mechanical properties.

본원 발명자 등은 상기와 같은 문제를 해결하기 위하여, 고분자 매트릭스 내에 높은 분산성을 가지도록 CNT를 분산시킴으로써 기계적 물성이 향상되는 고분자-CNT 나노복합체를 제조하기 위해 예의 노력한 결과, CNT를 초음파 처리한 후 고분자와 혼합하여 나노복합체를 제조함으로써 상기한 종래 기술 상의 문제점을 해결할 수 있음을 발견하고 본 발명을 완성하였다. In order to solve the above problems, the inventors of the present invention have made efforts to produce polymer-CNT nanocomposites whose mechanical properties are improved by dispersing CNTs to have high dispersibility in a polymer matrix, and then, after ultrasonication of CNTs. The present invention has been completed by finding that the above-mentioned problems in the prior art can be solved by preparing a nanocomposite by mixing with a polymer.

따라서, 본 발명은 고분자 매트릭스 내 분산성이 향상됨으로 인하여 기계적 물성이 개선된 고분자-CNT 나노복합체를 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide a polymer-CNT nanocomposite having improved mechanical properties due to improved dispersibility in the polymer matrix.

본 발명은 특히, 기계적 물성이 향상된 폴리(1-부텐)/CNT 나노복합체를 제공하는 것을 목적으로 한다. In particular, an object of the present invention is to provide a poly (1-butene) / CNT nanocomposite having improved mechanical properties.

본 발명은 또한, 초음파 처리된 CNT를 고분자 수지와 혼합하는 것을 포함하는 기계적 물성이 향상되는 고분자-CNT 나노복합체의 제조방법을 제공하는 것을 그 목적으로 한다.Another object of the present invention is to provide a method for producing a polymer-CNT nanocomposite having improved mechanical properties including mixing CNTs sonicated with a polymer resin.

본 발명은 특히, 초음파 처리된 CNT를 용매에 첨가하여용 액화하여 고분자 수지와 혼합하는 것을 포함하는 기계적 물성이 향상된 고분자-CNT 나노복합체의 제조방법을 제공하는 것을 그 목적으로 한다.In particular, an object of the present invention is to provide a method for producing a polymer-CNT nanocomposite having improved mechanical properties, including adding a sonicated CNT to a solvent to liquefy and mix with a polymer resin.

더욱 특히, 본 발명은 초음파 처리된 CNT를 용매에 녹인 폴리(1-부텐) 수지와 혼합하는 것을 포함하는 기계적 물성이 향상된 PB-1/CNT 나노복합체의 제조방법을 제공하는 것을 그 목적으로 한다. More particularly, an object of the present invention is to provide a method for producing PB-1 / CNT nanocomposites with improved mechanical properties, including mixing CNTs sonicated with a poly (1-butene) resin dissolved in a solvent.

본 발명의 첫번째 양태에서는, 초음파 처리된 CNT를 포함하는 고분자-CNT 나노복합체를 제공한다. In a first aspect of the invention, there is provided a polymer-CNT nanocomposite comprising sonicated CNTs.

본원 발명에 따른 고분자-CNT 나노복합체를 구성하는 고분자의 종류는 특별 히 제한되지 않고 목적하는 용도에 따라 알려진 적절한 종류의 고분자를 선택하여 사용할 수 있으나, 바람직한 한 양태로서, 본원 실시예에서 구체적으로 예시한 바와 같이, 폴리(1-부텐) 수지 등을 사용하여 유리하게 제조할 수 있다. The type of the polymer constituting the polymer-CNT nanocomposite according to the present invention is not particularly limited and may be selected and used as an appropriate type of polymer known according to the intended use, but as a preferred embodiment, specifically illustrated in the present embodiment As mentioned, it can be advantageously produced using poly (1-butene) resin or the like.

특히 바람직한 한 양태로서, 본원 발명의 실시예에서 사용한 PB-1은 1-부텐을 단량체로 하여 중합된 반결정성(semicrystalline) 고분자로서, 바람직하게, 당해 분야에서 잘 알려진 바와 같이, 1-부텐을 지글러-나타(Ziegler-Natta) 촉매 등을 이용하여 중합한 PB-1을 사용할 수 있다. In one particularly preferred embodiment, PB-1 used in the examples of the present invention is a semicrystalline polymer polymerized with 1-butene as monomer, preferably Ziegler 1-butene, as is well known in the art. PB-1 polymerized using a Ziegler-Natta catalyst can be used.

본원 발명에서 사용될 수 있는 CNT는 육각형의 벌집무늬 튜브구조를 가진다. CNTs that can be used in the present invention have a hexagonal honeycomb tube structure.

고분자-CNT 나노복합체에 사용될 수 있는 CNT는 크게 단일벽 탄소나노튜브(Single-walled Carbon Nanotubes)와 다중벽 탄소나노튜브(Multi-walled Carbon Nanotubes)로 구분할 수 있으며, 본원 발명에서는 “일진나노텍(Iljin Nanotech)”에서 생산되어 상품명 “CM-95”로서 판매되고 있는 다중벽 탄소나노튜브(Multi-walled Carbon Nanotubes)를 사용하여 고분자-CNT 나노복합체를 제조하였으나, 본원 발명에 따른 고분자-CNT 나노복합체의 제조를 위한 CNT의 종류는 이에 제한되는 것은 아니다.CNTs that can be used in polymer-CNT nanocomposites can be broadly classified into single-walled carbon nanotubes and multi-walled carbon nanotubes, and in the present invention, “Iljin nanotech (Iljin) Nanotech) ”and manufactured polymer-CNT nanocomposites using multi-walled carbon nanotubes sold under the trade name“ CM-95 ”, but the polymer-CNT nanocomposites of the present invention The type of CNT for production is not limited thereto.

본 발명의 다른 양태에서는 또한 상기한 고분자/CNT 나노복합체의 제조방법을 제공하는데, 이는 비극성 유기 용매에 일정량의 CNT를 넣고 상온 보다 높은 온도로 가열하면서 초음파 처리하고, 그로부터 CNT를 분리하여 또한 비극성 유기 용매에 녹인 PB-1에 투입하여 잘 섞일 수 있도록 교반한 후, 이로부터 얻어지는 혼합물을 메탄올 등 유기용매에 재침전 및 건조시키는 단계를 포함하여 구성된다. Another aspect of the present invention also provides a method for preparing the polymer / CNT nanocomposite as described above, in which a certain amount of CNTs is added to a nonpolar organic solvent and sonicated while heating to a temperature higher than room temperature, and the CNTs are separated therefrom and furthermore non-polar organic After the mixture is added to PB-1 dissolved in a solvent and stirred to mix well, the mixture obtained therefrom is reprecipitated and dried in an organic solvent such as methanol.

상기 방법에서, CNT 및 PB-1을 녹이기 위한 비극성 유기 용매로는 톨루엔,자일렌 등을 사용할 수 있으며, 이들을 단독 또는 2 종 이상을 혼합하여 사용할 수도 있다. 바람직한 한 양태로서 상기 용매로서 톨루엔을 사용하는 경우, 약 50℃ 정도로 가열하면서 초음파 처리할 수 있다. 초음파 처리 조건은 CNT의 양 및 온도 등에 따라 달라질 수 있으나, 약 100~300W 사이의 범위에서 1~10 시간 사이에서 적절히 선택하여 수행할 수 있다. 톨루엔을 사용하여 50℃ 정도에서 초음파 처리하는 경우, CNT 양의 약 3 배 이상의 톨루엔에 CNT를 첨가한 후 약 200W로 약 4 시간 정도 처리하는 것이 바람직하다.In the above method, toluene, xylene, or the like may be used as the nonpolar organic solvent for dissolving CNT and PB-1, and these may be used alone or in combination of two or more thereof. When toluene is used as the solvent as a preferred embodiment, it can be sonicated while heating at about 50 ° C. The sonication conditions may vary depending on the amount and temperature of the CNTs, but may be appropriately selected from 1 to 10 hours in the range of about 100 to 300W. When ultrasonication is performed at about 50 ° C. using toluene, it is preferable to add CNT to about 3 times or more of toluene of the amount of CNTs, and then treat it at about 200 W for about 4 hours.

이하, 하기의 실시예를 통하여 본 발명을 더욱 상세히 설명하지만, 본 발명의 범위가 실시예에 한정된 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited to the examples.

[실시예1 내지 4][Examples 1 to 4]

CNTCNT 의 혼합비율에 따른 물성의 변화 측정Of physical properties with mixing ratio of

실시예 1 내지 4에서는 일진나노텍 사의 다중벽 탄소나노튜브(Multi-walled Carbon Nanotubes)인 CM-95를 PB-1 수지에 첨가하여 PB-1/CNT 나노복합체를 제조하였다. 이 때, 실시예 1에서는 비교를 위하여 CNT를 포함하지 않는 PB-1으로만 이루어진 수지를 제조하였고, 실시예 2 내지 4에서는 각각, PB-1과 CM-95의 총 중량을 기준으로, 1, 3 및 5 중량%의 초음파 처리된 CM-95를 포함하는 나노복합체를 제조하였다.In Examples 1 to 4, CM-95, which is a multi-walled carbon nanotubes manufactured by Iljin Nanotech, was added to the PB-1 resin to prepare a PB-1 / CNT nanocomposite. At this time, in Example 1 was prepared a resin consisting of only PB-1 does not contain a CNT for comparison, in Examples 2 to 4, based on the total weight of PB-1 and CM-95, 1, Nanocomposites were prepared comprising 3 and 5 wt% sonicated CM-95.

나노복합체의 제조방법은, 먼저 CM-95를 톨루엔을 포함하고 있는 소니케이터에 넣고 약 50℃ 정도로 가열하면서 200W에서 4 시간 동안 초음파 처리한다. 그리고 이와 별도로, 1-부텐을 모노머로 하여 지글러-나타 촉매를 사용하여 중합한 PB-1을 톨루엔에 넣고 용해시킨 후, 여기에 상기 초음파 처리된 CM-95를 각각 하기 표1에 기재된 것과 같은 비율로 첨가하여 잘 혼합하였다. 그 후, 형성된 고형물을 메탄올에 재침전시키고 여과하여 PB-1/CNT 나노복합체를 제조하였다. In the method of manufacturing a nanocomposite, first, CM-95 is placed in a sonicator containing toluene and sonicated at 200W for 4 hours while heating at about 50 ° C. Separately, PB-1 polymerized using a Ziegler-Natta catalyst was dissolved in toluene by dissolving 1-butene as a monomer, and the sonicated CM-95 was added to the same ratio as shown in Table 1 below. And mixed well. Thereafter, the formed solid was reprecipitated in methanol and filtered to prepare a PB-1 / CNT nanocomposite.

제조된 PB-1 수지 및 나노복합체들은 핫 프레스(Hot Press)를 사용하여 시트로 제작한 후, UTM 4204 Lloyd Instruments Ltd. U. K. 기기를 사용하여 ASTM D 638-01 과 ASTM-D-790 시험방법으로 굴곡강도, 모듈러스 등을 측정하고, 그 결과를 하기 표1에 기재하였다.The prepared PB-1 resins and nanocomposites were fabricated into sheets using a hot press, and then UTM 4204 Lloyd Instruments Ltd. Flexural strength, modulus, etc. were measured by the test methods ASTM D 638-01 and ASTM-D-790 using a U. K. instrument, and the results are shown in Table 1 below.

구분division 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 PB-1(중량%)PB-1 (% by weight) 100100 9999 9797 9595 CM-95(중량%)CM-95 (wt%) -- 1One 33 55 굴곡강도(MPa)Flexural Strength (MPa) 28.3928.39 28.3928.39 30.7430.74 32.9332.93 굴곡모듈러스(MPa)Flexural Modulus (MPa) 523523 490.4490.4 567567 644644 인장모듈러스(MPa)Tensile Modulus (MPa) 455.6455.6 439.5439.5 627627 657657

상기 표로부터 알 수 있는 바와 같이, 본원 발명의 방법에 따라 제조된 나노복합체는 CNT를 포함하지 않는 PB-1 수지에 비하여 CNT의 함량이 증가할수록 굴곡강도, 굴곡모듈러스 및 인장모듈러스 등의 기계적 특성이 증가함을 확인할 수 있다. As can be seen from the above table, the nanocomposites prepared according to the method of the present invention have mechanical properties such as flexural strength, flexural modulus and tensile modulus as the content of CNT increases as compared to PB-1 resin containing no CNT. You can see the increase.

한편, 상기 실시예 2 및 4에서 제조된 나노복합체 내 CM-95의 혼합 비율에 따른 분산성을 FEI Company의 SIRION FE-SEM을 이용하여 10 kV 의 가속 전위에서 실시하여 직접 확인하였으며, 그 결과를 도 1 내지 4에 나타내었다. On the other hand, the dispersibility according to the mixing ratio of CM-95 in the nanocomposites prepared in Examples 2 and 4 was directly confirmed by performing at an acceleration potential of 10 kV using SIRION FE-SEM of FEI Company, the results 1 to 4 are shown.

도 1은 실시예 2에 따라 제조된 PB-1/CM-95 나노복합체의 FE-SEM 사진으로, PB-1 매트릭스 내에 CM-95가 작은 클러스터를 형성하며 나노스케일로 분산되어 있음을 확인 할 수 있다.1 is an FE-SEM photograph of the PB-1 / CM-95 nanocomposite prepared according to Example 2, where CM-95 forms small clusters in the PB-1 matrix and is dispersed in nanoscale. have.

도 2는 실시예 3에 따라 제조된 PB-1/CNT 나노복합체의 FE-SEM 사진으로, PB-1 매트릭스 내에 CM-95가 작은 클러스터를 형성하며 나노스케일로 분산되어 있음을 확인 할 수 있고, 이는 도 1의 나노복합체 사진과 비교할 때 CM-95의 클러스터들이 더 골고루 잘 분산되어 있음을 확인할 수 있었다.FIG. 2 is an FE-SEM photograph of the PB-1 / CNT nanocomposite prepared according to Example 3, where CM-95 forms small clusters in the PB-1 matrix and is dispersed in nanoscale. This confirms that the clusters of CM-95 are more evenly dispersed when compared with the nanocomposite photograph of FIG. 1.

도 3과 4는 실시예 4에 따라 제조된 나노복합체의 FE-SEM 사진으로, PB-1 매트릭스 내에 CM-95의 작은 클러스터가 여러 부분에 걸쳐 균일하게 퍼져 있음을 확인하였고, CNT 함량을 증가시켰을 때도 CM-95가 잘 분산됨을 확인할 수 있었다.3 and 4 are FE-SEM photographs of the nanocomposites prepared according to Example 4, confirming that small clusters of CM-95 are uniformly spread throughout the PB-1 matrix, and that the CNT content may be increased. At this time, the CM-95 was well dispersed.

도 5 내지 7은 상기 실시예 1 내지 4에서 제조된 PB-1 수지 및 PB-1/CM-95 나노복합체의 인장강도 및 모듈러스 등 기계적 특성을 비교하여 나타낸 그래프로서, 이들 그래프로부터 알 수 있는 바와 같이, 본 발명에 따라 제조된 PB-1/CM-95 나노복합체의 기계적 물성은 CNT의 함량이 증가할수록 증가됨을 알 수 있다. 5 to 7 are graphs showing mechanical properties such as tensile strength and modulus of the PB-1 resin and PB-1 / CM-95 nanocomposite prepared in Examples 1 to 4, and can be seen from these graphs. Likewise, it can be seen that the mechanical properties of the PB-1 / CM-95 nanocomposites prepared according to the present invention increase as the content of CNT increases.

이상 충분히 설명하고 입증한 바와 같이, 본원 발명은 종래 고분자 수지 내 에 CNT를 도입하는 경우 CNT의 표면 화학적 성질로 인해 발생하였던 매트릭스 내에서의 상분리, 응집, 낮은 분산성 및 낮은 접착성 등의 문제가 발생하지 않고, 결과 제조된 고분자/CNT 나노복합체의 기계적 물성 또한 우수한 새로운 고분자/CNT 나노복합체의 제조방법 및 그와 같이 우수한 기계적 물성을 갖는 고분자/CNT 나노복합체를 제공하였다.As described above and fully demonstrated, the present invention provides problems such as phase separation, agglomeration, low dispersibility, and low adhesion in the matrix, which are caused by the surface chemistry of the CNT when the CNT is introduced into the polymer resin. There was provided a new method of producing a new polymer / CNT nanocomposite and excellent mechanical properties of the resulting polymer / CNT nanocomposite without the occurrence of the polymer / CNT nanocomposite.

한편, 상기 실시예에서는 고분자로서 PB-1을 사용한 경우만을 구체적으로 예시하였으나, 본원 발명에서와 같은 방법으로 CNT를 미리 초음파 처리한 후, 이를 용액법에 의해 고분자와 혼합, 분산시킴으로써 나노복합체를 제조하는 것은 PB-1 외의 다른 고분자에 대해서도 동일하게 적용할 수 있을 것임을 당해 분야에서 통상의 지식을 가진 기술자라면 충분히 이해할 수 있을 것이다. 이 때에도 역시, 상기한 바와 같은 종래 기술상의 문제 없이, 우수한 기계적 물성을 가지는 고분자/CNT 나노복합체를 제조할 수 있을 것이라는 점도 충분히 이해할 수 있을 것이다. Meanwhile, in the above embodiment, only the case where PB-1 was used as the polymer was specifically illustrated, but after the CNTs were pre-sonicated in the same manner as in the present invention, the nanocomposite was prepared by mixing and dispersing the same with the polymer by a solution method. Those skilled in the art will fully understand that the same applies to other polymers other than PB-1. In this case, too, it will be fully understood that the polymer / CNT nanocomposite having excellent mechanical properties can be prepared without the problems of the prior art as described above.

따라서, 본 발명은 상기 기재된 실시예를 중심으로 상세히 설명되었지만, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 본원 발명의 범위에 속하는 것도 당연한 것이다.Therefore, while the present invention has been described in detail with reference to the embodiments described above, it will be apparent to those skilled in the art that various modifications and variations are possible within the scope and spirit of the present invention, and such variations and modifications fall within the scope of the present invention. It is also natural.

Claims (10)

초음파 처리된 탄소나노튜브(CNT)를 포함하는 고분자-CNT 나노복합체.Polymer-CNT nanocomposite comprising ultrasonicated carbon nanotubes (CNT). 제 1 항에 있어서, 상기 고분자가 폴리(1-부텐)(PB-1)인 나노복합체.The nanocomposite of claim 1, wherein the polymer is poly (1-butene) (PB-1). 제 1 항 또는 제 2항에 있어서, 상기 CNT는 다중벽 탄소나노튜브(Multi-walled Carbon Nanotubes) 또는 단일벽 탄소나노튜브(Single-walled Carbon Nanotubes) 나노복합체. The nanocomposite of claim 1 or 2, wherein the CNTs are multi-walled carbon nanotubes or single-walled carbon nanotubes. 제 3 항에 있어서, 상기 CNT는 다중벽 탄소나노튜브인 나노복합체.The nanocomposite of claim 3, wherein the CNTs are multi-walled carbon nanotubes. 제 1 항 또는 제 2 항에 있어서, CNT는 CNT와 고분자의 총 중량을 기준으로 약 0.1 중량% 내지 10 중량%의 범위 내로 포함되는 나노복합체. The nanocomposite of claim 1 or 2, wherein the CNT is included in the range of about 0.1% to 10% by weight based on the total weight of the CNT and the polymer. 비극성 유기 용매 내에서 CNT를 초음파 처리한 후, 이를 비극성 용매에 녹인 고분자와 혼합하는 것을 포함하는 고분자-CNT 나노복합체의 제조 방법.A method for producing a polymer-CNT nanocomposite comprising ultrasonicating CNTs in a nonpolar organic solvent and mixing them with a polymer dissolved in a nonpolar solvent. 제 6 항에 있어서, 초음파 처리한 CNT와 고분자를 혼합하여 교반한 후, 이를 메탄올로 재침전하는 단계를 포함하는 방법. 7. The method of claim 6, comprising mixing and stirring the sonicated CNTs and polymer, followed by reprecipitation with methanol. 제 6 항 또는 제 7 항에 있어서, 상기 고분자는 폴리(1-부텐)인 방법. 8. The method of claim 6 or 7, wherein said polymer is poly (1-butene). 제 6 항 또는 제 7 항에 있어서, 상기 비극성 유기 용매는 톨루엔인 방법.The method of claim 6 or 7, wherein the nonpolar organic solvent is toluene. 제 9 항에 있어서, 50℃의 온도에서 200W로 1~5 시간 동안 초음파 처리하는 방법. 10. The method of claim 9, which is sonicated at 200W for 1-5 hours at a temperature of 50 ° C.
KR1020050135834A 2005-12-30 2005-12-30 Polymer nanocomposite with carbon nanotubes and their preparation method KR20070071960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050135834A KR20070071960A (en) 2005-12-30 2005-12-30 Polymer nanocomposite with carbon nanotubes and their preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050135834A KR20070071960A (en) 2005-12-30 2005-12-30 Polymer nanocomposite with carbon nanotubes and their preparation method

Publications (1)

Publication Number Publication Date
KR20070071960A true KR20070071960A (en) 2007-07-04

Family

ID=38507055

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050135834A KR20070071960A (en) 2005-12-30 2005-12-30 Polymer nanocomposite with carbon nanotubes and their preparation method

Country Status (1)

Country Link
KR (1) KR20070071960A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100956405B1 (en) * 2007-08-24 2010-05-06 고려대학교 산학협력단 A pre-treatment method of carbon nanotube for carbon nanotube/polymer composites, a manufacturing method for carbon nanotube/polymenr composites, and carbon nanotube/polymenr composites using the pretreatment method of carbon nanotue
KR101457253B1 (en) * 2007-08-16 2014-10-31 에어버스 오퍼레이션즈 리미티드 Method and apparatus for manufacturing a component from a composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101457253B1 (en) * 2007-08-16 2014-10-31 에어버스 오퍼레이션즈 리미티드 Method and apparatus for manufacturing a component from a composite material
KR100956405B1 (en) * 2007-08-24 2010-05-06 고려대학교 산학협력단 A pre-treatment method of carbon nanotube for carbon nanotube/polymer composites, a manufacturing method for carbon nanotube/polymenr composites, and carbon nanotube/polymenr composites using the pretreatment method of carbon nanotue

Similar Documents

Publication Publication Date Title
Sahoo et al. Effect of functionalized carbon nanotubes on molecular interaction and properties of polyurethane composites
Kumar et al. Studies of nanocomposites based on carbon nanomaterials and RTV silicone rubber
Noguchi et al. Cellulose nanofiber/elastomer composites with high tensile strength, modulus, toughness, and thermal stability prepared by high-shear kneading
US7265175B2 (en) Flame retardant nanocomposite
Tong et al. Surface modification of single‐walled carbon nanotubes with polyethylene via in situ Ziegler–Natta polymerization
Raimondo et al. Multifunctionality of structural nanohybrids: The crucial role of carbon nanotube covalent and non-covalent functionalization in enabling high thermal, mechanical and self-healing performance
Liu et al. Noncovalent functionalization of carbon nanotube using poly (vinylcarbazole)‐based compatibilizer for reinforcement and conductivity improvement in epoxy composite
Cao et al. The enhanced mechanical properties of a covalently bound chitosan‐multiwalled carbon nanotube nanocomposite
Menner et al. Nanocomposite foams obtained by polymerization of high internal phase emulsions
KR100895696B1 (en) A Method for Preparation of Silicone Rubber/Carbon Nanotube Composites with Electrical Insulating Properties
Gupta et al. Nanotailoring of sepiolite clay with poly [styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene]: structure–property correlation
Guo et al. TPU/PLA nanocomposites with improved mechanical and shape memory properties fabricated via phase morphology control and incorporation of multi‐walled carbon nanotubes nanofillers
KR20130068436A (en) Multiple film based on epoxy resin having carbon nanoparticles and process for producing the same
George et al. Influence of matrix polarity on the properties of ethylene vinyl acetate–carbon nanofiller nanocomposites
KR101471577B1 (en) Nanocomposite preparation by mechanochemical covalent functionalization of carbon nanotubes with polymer for enhanced mechanical strength
Bansod et al. Development and characterization of graphitic carbon nitride as nonblack filler in natural rubber composites
Bazireh et al. Polythiophene-coated multi-walled carbon nanotube-reinforced epoxy nanocomposites for enhanced mechanical, electrical and thermal properties
KR20070071960A (en) Polymer nanocomposite with carbon nanotubes and their preparation method
Liu et al. Modification of MWNTs by the combination of Li-TFSI and MAPP: Novel strategy to high performance PP/MWNTs nanocomposites
Zhang et al. Preparation and characterization of alkylated carbon nanotube/polyimide nanocomposites
Liu et al. Hyperbranched polytriazine grafted reduced graphene oxide and its application
Mallakpour et al. Rapid and green functionalization of multi-walled carbon nanotubes by glucose: structural investigation and the preparation of dopamine-based poly (amide-imide) composites
Hu et al. Morphological effect of fillers on graphite reinforced polydicyclopentadiene based composites
Lim et al. Ternary Poly (styrene‐co‐acrylonitrile)/Poly (vinyl chloride) Blend Composites with Multi‐Walled Carbon Nanotubes and Enhanced Physical Characteristics
Yan et al. Synthesis and properties of homogeneously dispersed polyamide 6/MWNTs nanocomposites via simultaneous in situ anionic ring‐opening polymerization and compatibilization

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20090717

Effective date: 20100929