KR20070040871A - Metal doped shell shaped carbon particles and preparing process thereof - Google Patents

Metal doped shell shaped carbon particles and preparing process thereof Download PDF

Info

Publication number
KR20070040871A
KR20070040871A KR1020050096356A KR20050096356A KR20070040871A KR 20070040871 A KR20070040871 A KR 20070040871A KR 1020050096356 A KR1020050096356 A KR 1020050096356A KR 20050096356 A KR20050096356 A KR 20050096356A KR 20070040871 A KR20070040871 A KR 20070040871A
Authority
KR
South Korea
Prior art keywords
carbon particles
metal
gas
doped
shell
Prior art date
Application number
KR1020050096356A
Other languages
Korean (ko)
Other versions
KR100729154B1 (en
Inventor
양상선
피키차 피터
김영정
최만수
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to KR1020050096356A priority Critical patent/KR100729154B1/en
Publication of KR20070040871A publication Critical patent/KR20070040871A/en
Application granted granted Critical
Publication of KR100729154B1 publication Critical patent/KR100729154B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/121Coherent waves, e.g. laser beams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties

Abstract

본 발명은 금속-도핑된 쉘 형상의 탄소입자 및 이의 제조방법에 관한 것으로서, 본 발명에 따른, 평면 및 곡면 흑연화 층상구조가 연결된 복수개 층으로 이루어지며 내부 중심이 비어있는 탄소입자에 금속이 도핑된 쉘 형상 탄소입자는 종래의 탄소입자에 비해 전기적 및 자기적 특성이 향상됨으로써 자기기록매체, 생체물질, 전계방출소자, 나노유체, 초전도 물질 등의 다양한 분야에서 유용하게 이용될 수 있다.The present invention relates to metal-doped shell-shaped carbon particles and a method of manufacturing the same, comprising a plurality of layers connected to planar and curved graphitized layered structures according to the present invention and doped with metals having empty internal centers. The shell-shaped carbon particles have improved electrical and magnetic properties compared to the conventional carbon particles, and thus may be usefully used in various fields such as magnetic recording media, biomaterials, field emission devices, nanofluids, and superconducting materials.

Description

금속 도핑된 쉘 형상 탄소입자 및 이의 제조 방법 {METAL DOPED SHELL SHAPED CARBON PARTICLES AND PREPARING PROCESS THEREOF}Metal-doped shell-shaped carbon particles and a method of manufacturing the same {METAL DOPED SHELL SHAPED CARBON PARTICLES AND PREPARING PROCESS THEREOF}

도 1은 종래의 비정질 숯 입자(amorphous carbon particles)의 형상을 나타내고,1 shows the shape of conventional amorphous carbon particles (amorphous carbon particles),

도 2는 종래의 흑연(graphite) 입자의 형상을 나타내며,Figure 2 shows the shape of the conventional graphite (graphite) particles,

도 3은 종래의 카본 나노튜브(nanotube)의 형상을 나타내고,Figure 3 shows the shape of a conventional carbon nanotube (nanotube),

도 4는 종래의 카본 플러린(fullerene)의 형상을 나타내며,Figure 4 shows the shape of a conventional carbon fullerene (fullerene),

도 5는 본 발명에 따른 금속-도핑된 쉘 형상 탄소입자의 제조에 사용된 장치의 한 예를 나타내고, 5 shows an example of an apparatus used for the production of metal-doped shell-shaped carbon particles according to the present invention,

도 6은 본 발명의 실시예에서 제조된 철(Fe)-도핑된 쉘 형상 탄소입자의 저배율과 고배율에서 투과 전자 현미경(TEM) 사진을 나타내며,FIG. 6 shows transmission electron microscopy (TEM) images at low and high magnifications of iron (Fe) -doped shell-shaped carbon particles prepared in Examples of the present invention.

도 7은 실시예에서 제조된 철(Fe)-도핑된 쉘 형상 탄소입자의 X-선 회절 분석 결과(a) 및 라만 분광 분석(raman spectroscopy) 결과(b)이고,FIG. 7 shows X-ray diffraction analysis results (a) and Raman spectroscopy results (b) of the iron (Fe) -doped shell-shaped carbon particles prepared in Examples.

도 8은 실시예에서 제조된 철(Fe)-도핑된 쉘 형상 탄소입자의 전자 상자성 공명 분석(electron paramagnetic resonance; EPR) 및 자기적 특성 분석(superconducting quantum interference device; SQUID) 결과이며,FIG. 8 shows the results of electron paramagnetic resonance (EPR) and superconducting quantum interference device (SQUID) of iron (Fe) -doped shell-shaped carbon particles prepared in Examples.

도 9는 실시예에서 제조된 철(Fe)-도핑된 쉘 형상 탄소입자의 전계 전자방출(field electron emission) 실험 결과이며,FIG. 9 is a field electron emission test result of iron (Fe) -doped shell-shaped carbon particles prepared in Example.

도 10은 실시예에서 제조된 백금(Pt)-도핑된 쉘 형상 탄소입자의 투과 전자 현미경 사진(a) 및 X-선 회절 분석 결과(b)이고,10 is a transmission electron micrograph (a) and an X-ray diffraction analysis (b) of the platinum (Pt) -doped shell-shaped carbon particles prepared in Example,

도 11은 실시예에서 제조된 망간(Mn)-도핑된 쉘 형상 탄소입자의 투과 전자 현미경 사진(a) 및 자기적 특성 분석 결과(b)이며,11 is a transmission electron micrograph (a) and a magnetic property analysis result (b) of the manganese (Mn) -doped shell-shaped carbon particles prepared in Example,

도 12는 실시예에서 제조된 루비듐(Rb)-도핑된 쉘 형상 탄소입자의 투과 전자 현미경 사진(a) 및 자기적 특성 분석 결과(b)를 나타낸다.12 shows transmission electron micrographs (a) and magnetic characterization results (b) of rubidium (Rb) -doped shell-shaped carbon particles prepared in Examples.

<도면의 주요 부분에 대한 설명>Description of the main parts of the drawing

1 : 질소(N2)가스 탱크 2 : 아세틸렌(C2H2) 가스 탱크1: nitrogen (N 2 ) gas tank 2: acetylene (C 2 H 2 ) gas tank

3 : 초음파 분무기(ultrasonic nebulizer)3: ultrasonic nebulizer

4 : 금속 유기물 전구체 용액(metalorganic precursor solution)4: metalorganic precursor solution

5 : 금속 유기물 전구체 액적+아세틸렌 가스5: metal organic precursor droplet + acetylene gas

6 : 압축공기 7 : 버너(burner)6: compressed air 7: burner

8 : CO2 레이저8: CO 2 laser

9 : CO2 레이저 빔(beam) 차폐기(stopper)9: CO 2 laser beam stopper

10 : 금속-도핑된 쉘 형상 탄소입자 10: metal-doped shell-shaped carbon particles

본 발명은 금속-도핑된 쉘 형상의 탄소입자 및 이의 제조 방법에 관한 것이다.The present invention relates to metal-doped shell-shaped carbon particles and a method for producing the same.

기존의 탄소입자로는 비정질 숯(amorphous soot), 흑연(graphite), 나노튜브(nanotube), 플러린(fullerene) 등이 있다. 이들 중, 숯은 결정성이 없고 물리, 화학적으로 불안정하고(도 1 참조), 흑연은 판상 결정을 가지고 있으나 종방향으로 강도와 전기 및 열의 전도도 등이 좋지 않다(도 2 참조). 또한, 다양한 카본 나노튜브(도 3 참조)는 그 구조의 비틀린 정도에 따라서 도체나 반도체의 성질을 가지며 준 일차원적 구조를 가지고 있어, 특이한 양자효과를 보이는 나노 구조체로서 이론적으로 저온에서는 저항 없이 전류를 보낼 수도 있고 온도가 낮아질수록 증가되는 반자성 특성(diamagnetism)을 나타내며, 전기적으로는 전계 전자방출 소자로 사용되고 있으나, 전자방출의 지속적 안정성이 문제가 되고 있다. 또한, 도 4에 나타낸 바와 같은 구조의 플러린은 탄소원자 60개 또는 70개로 구성된 축구공 모양의 분자로 된 물질로서 1985년에 발견된 이후에 열적 안정성, 반도체성 또는 초전기 전도성 등이 보고되고 있으나 제조가 용이치 않아 보편화되지는 않고 있다.Conventional carbon particles include amorphous char (amorphous soot), graphite (graphite), nanotube (nanotube), fullerene (fullerene). Among them, charcoal is crystalline and physically and chemically unstable (see FIG. 1), and graphite has plate crystals, but its strength and electrical and thermal conductivity are not good in the longitudinal direction (see FIG. 2). In addition, various carbon nanotubes (see FIG. 3) have a semi-dimensional structure with conductor or semiconductor properties depending on the degree of distortion of the structure, and exhibit a unique quantum effect. It can be sent and exhibits diamagnetism, which increases with decreasing temperature, and is electrically used as a field electron-emitting device, but the continuous stability of electron emission has become a problem. In addition, fullerene having a structure as shown in FIG. 4 is a material of a soccer ball-shaped molecule composed of 60 or 70 carbon atoms, and since it was discovered in 1985, thermal stability, semiconductivity, or superelectric conductivity has been reported. However, it is not easy to manufacture and is not popularized.

상기와 같이 이들 종래의 탄소입자들은 열적 안정성이나 물리, 화학적 특성면에서 많은 단점을 보이고 있으며 보편화에 문제가 되고 있는 실정이다.As described above, these conventional carbon particles show many disadvantages in terms of thermal stability, physical and chemical properties, and become a problem in generalization.

따라서, 본 발명의 목적은 종래의 탄소입자에 비해 물리, 화학적 특성이 향상된 새로운 구조의 금속이 도핑된 탄소입자를 제공하는 것이다.Accordingly, it is an object of the present invention to provide a carbon-doped carbon particles having a new structure with improved physical and chemical properties compared to conventional carbon particles.

상기 목적을 달성하기 위하여, 본 발명에서는 평면 및 곡면 흑연화 층상구조가 연결된 복수개 층으로 이루어지며 내부 중심이 비어있는 탄소입자에 금속이 도핑된 쉘 형상 탄소입자를 제공한다.In order to achieve the above object, the present invention provides a shell-shaped carbon particles doped with a metal to the carbon particles having a plurality of layers connected to the planar and curved graphitized layer structure and the hollow inner center.

또한, 본 발명에서는 a) 금속 함유 전구체 물질을 포함하는 탄화수소 가스를 버너내부로 공급하여 점화시키는 단계, b) 상기 점화된 화염에 레이저를 조사하는 단계를 포함하는, 금속-도핑된 쉘 형상 탄소입자의 제조 방법을 제공한다.In addition, the present invention includes a) supplying a ignition by supplying a hydrocarbon gas containing a metal-containing precursor material into the burner, b) irradiating a laser to the ignited flame, metal-doped shell-shaped carbon particles It provides a method for producing.

이하 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 탄소입자를 평면 및 곡면 흑연화 층상 구조가 연결된 복수 층의 속이 빈 쉘 형상으로 제조하되 다양한 금속을 도핑함을 특징으로 한다. 따라서, 본 발명의 금속 도핑된 탄소입자는 도핑된 금속 성분의 종류에 따라 또는 기지 조직인 탄소와의 상호 작용에 의해서 다양한 자기적 특성 및 전기적 특성과 종래의 탄소입자에서 발견되지 않은 새로운 특성들을 갖는다.The present invention is characterized in that the carbon particles are manufactured in a hollow shell shape of a plurality of layers in which planar and curved graphitized layered structures are connected, but doped with various metals. Accordingly, the metal-doped carbon particles of the present invention have various magnetic and electrical properties and new properties not found in conventional carbon particles depending on the type of the doped metal component or by interaction with the carbon which is a known structure.

본 발명에 있어서 탄소입자에 도핑될 수 있는 금속은 스칸듐, 타이타늄, 바나듐, 크롬, 망간, 철, 코발트, 니켈, 구리, 아연 등의 전이금속, 금, 은, 백금, 이리듐 등의 귀금속, 리튬, 나트륨, 칼륨, 루비듐, 세슘, 프란슘 등의 알칼리 금속 및 이들의 혼합물을 들 수 있다.In the present invention, the metal which can be doped to the carbon particles is a transition metal such as scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, precious metals such as gold, silver, platinum, iridium, lithium, Alkali metals, such as sodium, potassium, rubidium, cesium, and francium, and mixtures thereof are mentioned.

본 발명에 있어서 탄소 입자에 도핑되는 금속 도핑량은 약 1~50,000 ppm 범위 정도이며, 사용되는 입자 용도에 따라 도핑량이 달라질 수 있다. In the present invention, the amount of metal doping to the carbon particles is in the range of about 1 to 50,000 ppm, and the amount of doping may vary depending on the use of the particles.

본 발명에 의한 금속-도핑된 쉘 형상 탄소입자는 구형에 가까운 것이 바람직하며 1nm 내지 500㎛의 입경을 가질 수 있다.The metal-doped shell-shaped carbon particles according to the present invention preferably have a spherical shape and may have a particle diameter of 1 nm to 500 µm.

본 발명의 금속-도핑된 쉘 형상의 탄소입자의 제조는 예를 들면 다음과 같이 수행될 수 있다. The preparation of the metal-doped shell-shaped carbon particles of the present invention can be performed, for example, as follows.

구체적으로 살펴보면, 먼저, 도핑할 금속을 함유하는 전구체를 액적 형태 또는 기체 형태로 전환시킨다. 액적 형태의 금속 함유 전구체는 도핑할 금속을 함유하는 유기화합물을 용매에 녹인 다음 생성된 용액을 통상의 방법, 예를 들면 초음파 분무기에 의해 제조될 수 있으며, 기체 형태의 금속 함유 전구체는 통상의 방법, 예를 들면 아이언 펜타 카보닐 등의 금속 화합물을 버블링 방법으로 기화시켜 얻을 수 있다.Specifically, first, the precursor containing the metal to be doped is converted into droplet form or gas form. Metal-containing precursors in the form of droplets can be prepared by dissolving an organic compound containing the metal to be doped in a solvent and then the resulting solution by conventional methods, for example by an ultrasonic nebulizer, wherein the metal-containing precursors in gaseous form are conventional methods. For example, metal compounds, such as iron pentacarbonyl, can be obtained by vaporizing by a bubbling method.

상기 금속 함유 전구체 물질을 탄소 전구체인 탄화수소가스와 함께 운송가스에 의해, 버너의 중심부로 공급하여 점화시킨다(단계 (a)). 이때, 점화된 화염의 주변부로는 전구체와 외기와의 화학 반응을 억제하기 위한 차단 가스를 도입하는 것이 바람직하며, 화염을 안정시키기 위해 압축 공기를 공급한다. 이때 차단 가스로는 질소 또는 아르곤 등의 불활성 기체가 사용될 수 있다.The metal-containing precursor material is supplied to the central portion of the burner by the transport gas together with the hydrocarbon gas which is the carbon precursor and ignited (step (a)). At this time, it is preferable to introduce a blocking gas to suppress the chemical reaction between the precursor and the outside air to the peripheral portion of the ignited flame, and supply compressed air to stabilize the flame. In this case, an inert gas such as nitrogen or argon may be used as the blocking gas.

상기 전구체 운반 기체로는 질소, 헬륨 또는 아르곤 등이 사용될 수 있으며, 탄화수소가스로는 아세틸렌 가스, 에틸렌 가스 또는 메탄가스 등이 사용될 수 있으 며, 바람직하게는 아세틸린 가스가 좋다. Nitrogen, helium or argon may be used as the precursor carrier gas, and acetylene gas, ethylene gas or methane gas may be used as the hydrocarbon gas, and acetylene gas is preferable.

본 발명에 사용되는 금속을 함유하는 전구체 화합물의 대표적인 예로는, 전이금속을 도핑하기 위한 화합물로서 아이언 아세틸 아세토네이트, 아이언 펜타 카보닐, 망간 아세틸 아세토네이트, 망간클로라이드, 코발트 아세틸 아세토네이트 및 이들의 혼합물을 들 수 있고, 귀금속을 도핑하기 위한 화합물로서 플래티늄 아세틸 아세토네이트, 플래티늄 클로라이드, 골드 클로라이드 및 이들의 혼합물을 들 수 있으며, 알칼리 금속을 도핑하기 위한 화합물로서 루비듐 아세틸 아세토네이트, 포타슘 클로라이드 및 이들의 혼합물을 들 수 있고, 이에 대한 용매로는 물, 에탄올 또는 메탄올 등을 들 수 있다. Representative examples of the metal-containing precursor compounds used in the present invention include iron acetyl acetonate, iron penta carbonyl, manganese acetyl acetonate, manganese chloride, cobalt acetyl acetonate and mixtures thereof as compounds for doping transition metals. The compounds for doping the noble metals include platinum acetyl acetonate, platinum chloride, gold chloride and mixtures thereof, and the compounds for doping alkali metals include rubidium acetyl acetonate, potassium chloride and mixtures thereof. Examples thereof include water, ethanol or methanol.

본 발명에서, 금속 함유 전구체 물질과 탄화수소 가스를 버너내부로 공급하는 데 있어서, 탄화 수소가스 1 lpm(liter per minute)당 금속 함유 전구체 물질을 포함하는 운송가스를 250 SCCM(standard cubic centimeter per minute) 이하의 양으로 흘려주는 것이 바람직하다.In the present invention, in supplying the metal-containing precursor material and the hydrocarbon gas into the burner, a transport gas including the metal-containing precursor material per 1 lpm (liter per minute) of hydrocarbon gas is supplied to 250 standard cubic centimeter per minute (SCCM). It is preferable to flow in the following amounts.

상기와 같이 혼합 전구체가 도입된 화염에 고출력의 레이저, 바람직하게는 CO2 레이저를 조사하여(단계 (b)), 본 발명에 따른 금속이 도핑된 탄소입자를 제조할 수 있다. As described above, by irradiating a flame having a mixed precursor introduced therein with a high power laser, preferably a CO 2 laser (step (b)), carbon particles doped with metal according to the present invention may be prepared.

상기와 같은 레이저 조사에 의하면, 탄소 전구체가 금속 함유 전구체와 화학 반응하여 탄소 원자가 결정성을 갖는 금속이 도핑된 쉘 형상을 갖게된다. According to the laser irradiation as described above, the carbon precursor chemically reacts with the metal-containing precursor to have a shell shape doped with a metal having carbon crystallinity.

이와 같이, 본 발명에 따르면 높은 생산성으로 쉘 형상 탄소입자에 금속 성 분을 도핑할 수 있어 다양한 특성이 요구되는 탄소입자 제조에 유용하게 이용될 수 있다.As described above, according to the present invention, the shell-like carbon particles can be doped with high productivity, and thus can be usefully used for preparing carbon particles having various characteristics.

이하, 하기 실시예에 의하여 본 발명을 좀더 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.

실시예 1: 철-도핑된 쉘 형상의 탄소입자의 제조 Example 1 Preparation of Iron-Doped Shell Shaped Carbon Particles

도 5에 나타낸 바와 같은 장치에서, 아이언 아세틸 아세토네이트 20 g 을 에틸 알콜 1000 ml에 용해시켜 금속 화합물 전구체 용액(4)를 얻었다. 초음파 분무기(3)에 의해 상기 금속 전구체 용액의 액적을 만든 후, 아세틸렌가스(2)를 1 lpm의 유량으로 주입하고 상기 액적의 운반기체로서 질소가스(1)를 각각 50, 100, 150, 200, 250 SCCM의 유량으로 주입하여 혼합 전구체(5)를 버너의 내부 노즐을 통해서 운송하였다. 이때 혼합가스 전구체 및 탄화가스가 외기와 같은 반응하는 것을 억제하기 위해 버너의 외부 노즐을 통해 차단가스로서의 질소를 2.5 lpm의 유량으로 공급하였다. 형성된 탄소입자를 함유하는 화염에 2.8×104 W/㎠의 강도를 갖는 CO2 레이저(8)를 조사하여 평균 입경이 100nm이고 철이 각각 122, 187, 224, 715, 2162 ppm도핑된 쉘 형상의 탄소입자(10)를 제조하였다.In the apparatus as shown in Fig. 5, 20 g of iron acetyl acetonate was dissolved in 1000 ml of ethyl alcohol to obtain a metal compound precursor solution (4). After making droplets of the metal precursor solution by the ultrasonic nebulizer 3, acetylene gas 2 was injected at a flow rate of 1 lpm, and nitrogen gas 1 as the carrier gas of the droplets was 50, 100, 150, 200, respectively. The mixture precursor 5 was transported through the internal nozzle of the burner by injection at a flow rate of 250 SCCM. At this time, in order to suppress the reaction of the mixed gas precursor and the carbonized gas such as outside air, nitrogen as a blocking gas was supplied at a flow rate of 2.5 lpm through an external nozzle of the burner. The flame containing the formed carbon particles was irradiated with a CO 2 laser (8) having an intensity of 2.8 × 10 4 W / cm 2 to obtain a shell shape of an average particle diameter of 100 nm and iron of 122, 187, 224, 715, and 2162 ppm, respectively. Carbon particles 10 were prepared.

실시예 2: 백금-도핑된 쉘 형상의 탄소입자의 제조 Example 2 Preparation of Platinum-doped Shell Shaped Carbon Particles

플래티늄 아세틸 아세토네이트 20 g 을 에틸 알콜 1000 ml에 용해시킨 유기물 전구체 용액을 사용하고, 운반기체로서 질소가스(1)를 150 SCCM을 사용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 입경이 100nm인 백금-도핑된 쉘 형상의 탄소입자를 제조하였다.Platinum having a particle size of 100 nm in the same manner as in Example 1, except that 20 g of platinum acetyl acetonate was dissolved in 1000 ml of ethyl alcohol, and 150 SCCM of nitrogen gas (1) was used as a carrier gas. Doped shell-shaped carbon particles were prepared.

실시예 3: 망간-도핑된 쉘 형상의 탄소입자의 제조 Example 3 Preparation of Manganese-Doped Shell Shaped Carbon Particles

망간 아세틸 아세토네이트 20 g 을 에틸 알콜 1000 ml에 용해시킨 유기물 전구체 용액을 사용하고, 운반기체로서 질소가스(1)를 150 SCCM을 사용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 입경이 100nm인 망간-도핑된 쉘 형상의 탄소입자를 제조하였다.Manganese having a particle size of 100 nm in the same manner as in Example 1, except that 20 g of manganese acetyl acetonate was dissolved in 1000 ml of ethyl alcohol, and 150 SCCM of nitrogen gas (1) was used as a carrier gas. Doped shell-shaped carbon particles were prepared.

실시예 4: 루비듐-도핑된 쉘 형상의 탄소입자의 제조 Example 4 Preparation of Rubidium-Doped Shell Shaped Carbon Particles

루비듐 아세틸 아세토네이트 20 g 을 에틸 알콜 1000 ml에 용해시킨 유기물 전구체 용액을 사용하고, 운반기체로서 질소가스(1)를 150 SCCM를 사용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 입경이 100nm인 루비듐-도핑된 쉘 형상의 탄소입자를 제조하였다.Rubidium having a particle diameter of 100 nm in the same manner as in Example 1, except that 20 g of rubidium acetyl acetonate was dissolved in 1000 ml of ethyl alcohol, and 150 SCCM of nitrogen gas (1) was used as a carrier gas. Doped shell-shaped carbon particles were prepared.

비교예 1 : 순수한 쉘 형상의 탄소입자 제조 Comparative Example 1 Preparation of Pure Shell Shaped Carbon Particles

수소를 1.0 lpm 유량으로 공급하고 산소/질소 혼합기를 1:1의 몰비로 혼합하 여 1.0 lpm의 유량으로 공급하여 수소/산소 확산 화염을 형성시켰다. 여기에 아세틸렌 가스를 0.1 lpm의 유량 또는 7.0 g/hr의 질량 유량을 공급하여 상기 화염과 접촉시켜 매연 전구체를 생성시켰다. 이때 화염과 아세틸렌 사이에 차단가스 노즐을 두어 차단가스인 질소를 0.35 lpm의 유량으로 공급하였다. 상기 매연 전구체에 2.2×104 W/㎠의 강도를 갖는 CO2 레이저를 조사하여 순수 쉘 형상의 탄소입자를 제조하였다(대한민국 공개 특허 제2002-66443호 참조).Hydrogen was supplied at a flow rate of 1.0 lpm and oxygen / nitrogen mixers were mixed at a molar ratio of 1: 1 and fed at a flow rate of 1.0 lpm to form a hydrogen / oxygen diffusion flame. Acetylene gas was supplied thereto at a flow rate of 0.1 lpm or a mass flow rate of 7.0 g / hr to contact the flame to produce a soot precursor. At this time, a blocking gas nozzle was placed between the flame and acetylene to supply nitrogen, which is a blocking gas, at a flow rate of 0.35 lpm. The soot precursor was irradiated with a CO 2 laser having an intensity of 2.2 × 10 4 W / cm 2 to prepare pure shell-shaped carbon particles (see Korean Patent Publication No. 2002-66443).

비교예 2 : 비정질 숯(soot) 제조 Comparative Example 2 : Preparation of amorphous char

운반기체로서 질소가스를 400 SSCM으로 공급한 것을 제외하고 실시예 2와 동일한 방법으로 제조하였다. It was prepared in the same manner as in Example 2 except that nitrogen gas was supplied as 400 SSCM as a carrier gas.

시험예 1: 철(Fe)-도핑된 쉘 형상의 탄소입자의 구조적, 물리적 특성 시험Test Example 1 Structural and Physical Properties of Iron (Fe) -Doped Shell Carbon Particles

상기 실시예 1에서 제조된 철-도핑된 쉘 형상의 탄소입자의 구조적 특징을 알아보기 위하여, 투과 전자 현미경(Jeol사, JEM-3000F) 사진을 도 6에 나타내었고, 철의 도핑량을 변화시킨 쉘 형상의 탄소입자와 비교예 1의 금속이 도핑되지 않은 순수한 쉘 형상의 탄소입자를 비교한 에너지 분산 X-선 분광법(EDS: Energy Dispersive X-ray Spectroscopy, Oxford사) 결과(a) 및 라만(Raman) 분광 분석(Jobin Yvon사, LabRamHR) 결과(b)를 도 7에 나타내었다.In order to examine the structural characteristics of the iron-doped shell-shaped carbon particles prepared in Example 1, a transmission electron microscope (Jeol, JEM-3000F) photograph is shown in Figure 6, the amount of iron doping (A) and Raman (Energy Dispersive X-ray Spectroscopy, Oxford, Inc.) comparing the shell-shaped carbon particles with those of the pure shell-shaped carbon particles doped with the metal of Comparative Example 1 Raman) spectroscopic analysis (Jobin Yvon, LabRamHR) results (b) are shown in FIG.

도 6에서 알 수 있는 바와 같이, 실시예 1에 의한 탄소입자는 평면 및 곡면 흑연화 층상구조가 연결된 복수 층의 속이 빈 구형에 가까운 쉘 형상의 탄소입자에 철이 도핑된 구조임을 확인 할 수 있었다.As can be seen in Figure 6, the carbon particles according to Example 1 was confirmed that the iron-doped structure of the shell-shaped carbon particles close to the hollow sphere of the plurality of layers connected to the planar and curved graphitized layer structure.

또한, 도 7(a)의 XRD결과에서 확인할 수 있는 바와 같이, 결정화가 잘 된 흑연의 (002)와 (101)면에 해당하는 회절 피크가 뚜렷이 나타나는 것을 확인할 수 있었고, 도 7(b)의 라만 분석 결과에서는 탄소 결합의 비정질성과 연관된 D 피크는 변동이 없으나 결정성과 연관된 G 피크는 철의 도핑량이 증가함에 따라 피크의 이동 폭이 증가함을 보여 흑연상 결정 구조내에 철이 도핑되었음을 간접적으로 알 수 있었다.In addition, as can be seen from the XRD results of FIG. 7 (a), it was confirmed that diffraction peaks corresponding to the (002) and (101) planes of the well-crystallized graphite were clearly seen. The Raman analysis shows that the D peak associated with the amorphousness of the carbon bond remains unchanged, but the G peak associated with the crystallinity shows that the doping of the iron increases with increasing iron doping, indicating that iron is doped in the graphite crystal structure. there was.

상기 실시예 1에서 제조된 철-도핑된 쉘 형상의 탄소입자의 자기적 특성을 알아보기 위하여 전자 상자성 공명(electron paramagnetic resonance; EPR, ESP-300S, Bruker사) 및 SQUID(superconducting quantum interference device, MPMS-7, Quantum Design사) 분석한 결과를 도 8에 나타내었고, 이를 기존의 탄소나노튜브 및 비교예 1에 따른, 금속이 도핑되지 않은 쉘 형상의 탄소입자와 비교한 전계전자 방출(field emission tester) 결과를 도 9에 나타내었다.Electron paramagnetic resonance (EPR, ESP-300S, Bruker, Inc.) and superconducting quantum interference device (MPMS) to investigate the magnetic properties of the iron-doped shell-shaped carbon particles prepared in Example 1 -7, Quantum Design) analysis results are shown in Figure 8, and compared with the conventional carbon nanotubes and Comparative Example 1, the field emission tester compared to the carbon particles of the metal-doped shell shape (field emission tester) ) Results are shown in FIG. 9.

도 8에서 알 수 있는 바와 같이, 실시예 1의 철-도핑된 쉘 형상의 탄소입자는 철 이온이 탄소 결정 구조 사이에서 +3가를 가지고 도핑되어 있음을 확인 할 수 있었다. 일반적인 탄소 동소체는 흑연과 나노튜브가 반자성 특성을, 플러렌과 다이아몬드가 비자성(non-magnetic) 특성을 나타내는데 비해 철-도핑된 쉘 형상의 탄소입자는 이들과 구별되는 독특한 자기적 성질을 나타낸다. 즉, 철-도핑된 쉘 형상 탄소입자는 온도에 따라서 약 20 K을 기준으로 강자성과 상자성을 보였으며, 외부 자기장에 따라서 도핑된 철 이온의 분포 또는 기지조직인 탄소와 상호 작용에 의하여 상자성(paramagnetism), 강자성(hard-ferromagnetism) 및 연자성(soft-ferromagnetism)이 혼합된 독특한 자기적 특성을 보였다. 이러한 자기적 특성은 해당 특성을 필요로 하는 기록매체나 자성유체 및 생체 분야 등에 이용될 수 있다.As can be seen in Figure 8, the iron-doped shell-shaped carbon particles of Example 1 was confirmed that the iron ions are doped with a + trivalent between the carbon crystal structure. Typical carbon allotrope has diamagnetic properties of graphite and nanotubes, and non-magnetic properties of fullerene and diamond, whereas iron-doped shell carbon particles exhibit unique magnetic properties. In other words, the iron-doped shell-shaped carbon particles showed ferromagnetic and paramagnetic properties based on about 20 K depending on the temperature, and paramagnetism due to the distribution of doped iron ions according to the external magnetic field or interaction with carbon, which is a matrix structure. Its unique magnetic properties are a mixture of hard-ferromagnetism and soft-ferromagnetism. Such magnetic properties may be used for recording media, magnetic fluids, and biological fields that require the properties.

도 9에 나타낸 철-도핑된 쉘 형상의 탄소입자의 전계 전자방출 실험결과에서는 전계 전자 방출 임계치가 2 V/μm이하로, 정렬된 카본 나노튜브(CNTs)보다도 낮은 수치를 보였고, 전계 전자방출 전류 밀도는 비교예 1의 금속이 도핑되지 않은 쉘 형상의 탄소입자(SCNPs)나 카본 나노튜브에 비해서는 3배 이상 높았으며, 전자 방출의 장시간 안정성도 우수하여 전계 전자 방출 소자로서 우수한 특성을 보인다.In the field electron emission test results of the iron-doped shell-shaped carbon particles shown in FIG. 9, the field electron emission threshold was 2 V / μm or less, which was lower than that of the aligned carbon nanotubes (CNTs), and the field electron emission current. The density was three times higher than that of the shell-shaped carbon particles (SCNPs) or carbon nanotubes which are not doped with the metal of Comparative Example 1, and have excellent long-term stability of electron emission, thus exhibiting excellent characteristics as a field electron emission device.

시험예 2: 백금(Pt)-도핑된 쉘 형상의 탄소입자의 구조적 특성 시험Test Example 2: Structural Characterization of Platinum (Pt) -Doped Shell Shaped Carbon Particles

상기 실시예 2에서 제조된 백금-도핑된 쉘 형상의 탄소입자의 구조적 특징을 알아보기 위하여, 투과 전자 현미경(TEM) 사진 및 EDS 분석(a)과 X-선 회절 분석 결과(b)를 도 10에 나타내었다. In order to examine the structural characteristics of the platinum-doped shell-shaped carbon particles prepared in Example 2, transmission electron microscopy (TEM) images and EDS analysis (a) and X-ray diffraction analysis results (b) are shown in FIG. 10. Shown in

도 10(a)의 TEM 사진 및 EDS 분석 결과에서 알 수 있는 바와 같이, 쉘 형상의 탄소입자에 백금이 도핑되었음을 확인 할 수 있었고, 도 10(b)의 XRD 결과에서 확인할 수 있는 바와 같이, 흑연의 (002)와 (101) 면에 해당하는 피크가 뚜렷이 나타나, 결정성이 우수함을 확인할 수 있었다. 이러한 백금-도핑된 쉘 형상의 탄소 입자는 촉매, 연료 전지 등의 분야에 적용될 수 있다.As can be seen from the TEM image and the EDS analysis result of FIG. 10 (a), it was confirmed that platinum was doped into the shell-shaped carbon particles, and as can be seen from the XRD results of FIG. 10 (b), graphite The peaks corresponding to the (002) and (101) planes were clearly seen, and it was confirmed that the crystallinity was excellent. Such platinum-doped shell-shaped carbon particles may be applied to fields such as catalysts and fuel cells.

시험예 3: 망간(Mn)-도핑된 쉘 형상의 탄소입자의 구조적, 물리적 특성 시험Test Example 3 Structural and Physical Properties of Manganese (Mn) -doped Shell Carbon Particles

상기 실시예 3에서 제조된 망간-도핑된 쉘 형상의 탄소입자의 투과 전자 현미경 사진(a) 및 자기적 특성 분석 결과(b)를 도 11에 나타내었다. A transmission electron micrograph (a) and a magnetic property analysis result (b) of the manganese-doped shell-shaped carbon particles prepared in Example 3 are shown in FIG. 11.

도 11에서 알 수 있는 바와 같이, 쉘 형상의 탄소입자에 망간이 도핑되었음을 확인 할 수 있었고, 상기 망간 도핑된 탄소입자의 자기적 특성을 분석하기 위해, 외부 자기장을 100G로 고정하여 온도 변화에 따른 ZFC(zero field cooling)곡선과 FC(field cooling) 곡선을 살펴본 결과, 기존의 망간에서 볼 수 없었던 독특한 자기적 특성을 보임을 확인할 수 있었다. As can be seen in Figure 11, it was confirmed that the manganese doped in the shell-shaped carbon particles, in order to analyze the magnetic properties of the manganese-doped carbon particles, by fixing the external magnetic field to 100G according to the temperature change Examining the ZFC (zero field cooling) and FC (field cooling) curves, it can be seen that it exhibits unique magnetic characteristics not seen in the existing manganese.

시험예 3: 루비듐(Rb)-도핑된 쉘 형상의 탄소입자의 구조적, 물리적 특성 시험Test Example 3: Structural and physical property test of rubidium (Rb) -doped shell-shaped carbon particles

상기 실시예 4에서 제조된 망간-도핑된 쉘 형상의 탄소입자의 투과 전자 현미경 사진(a) 및 자기적 특성 분석 결과(b)를 도 12에 나타내었다. The transmission electron micrograph (a) and the magnetic property analysis result (b) of the manganese-doped shell-shaped carbon particles prepared in Example 4 are shown in FIG. 12.

도 12에서 알 수 있는 바와 같이, 쉘 형상의 탄소입자에 루비듐이 도핑되었음을 확인 할 수 있었고, 탄소입자에 루비듐이 도핑됨으로써 알칼리 금속이 탄소와 상호 작용할 때 보일 수 있는 초전도 특성의 가능성을 확인 할 수 있었다.As can be seen in Figure 12, it was confirmed that the rubidium is doped to the shell-shaped carbon particles, it is possible to confirm the possibility of the superconducting properties that can be seen when the alkali metal interacts with carbon by doping rubidium to the carbon particles. there was.

이와 같이, 본 발명에 의한 금속-도핑된 쉘 형상의 탄소입자는 도핑되는 금속의 종류에 따라 또는 기지 조직인 탄소와의 상호 작용에 의해서 종래의 탄소입자와 구별되는 새로운 특성을 보이거나 향상된 전기적, 자기적 특성을 보이므로, 자 기기록매체, 생체물질, 전계방출소자, 나노유체, 초전도 물질 등의 다양한 분야에 유용하게 이용될 수 있다.As described above, the metal-doped shell-shaped carbon particles according to the present invention exhibit new characteristics that are distinguished from the conventional carbon particles according to the type of metal to be doped or by interaction with carbon, which is a known structure, or have improved electrical and magnetic properties. Due to its properties, it can be usefully used in various fields such as magnetic recording media, biomaterials, field emission devices, nanofluids, and superconducting materials.

Claims (11)

평면 및 곡면 흑연화 층상구조가 연결된 복수개 층으로 이루어지며 내부 중심이 비어있는 탄소입자에 금속이 도핑된 쉘 형상 탄소입자.Shell-shaped carbon particles composed of a plurality of layers connected with planar and curved graphitized layered structures and doped with metal to carbon particles with empty internal centers. 제1항에 있어서,The method of claim 1, 금속이 전이 금속, 귀금속 또는 알칼리 금속 또는 이들의 조합인 것을 특징으로 하는 탄소입자.Carbon particles, characterized in that the metal is a transition metal, a noble metal or an alkali metal or a combination thereof. 제1항에 있어서,The method of claim 1, 평균 입경이 1 nm 내지 500 ㎛인 것을 특징으로 하는 탄소입자.Carbon particles, characterized in that the average particle diameter is 1 nm to 500 ㎛. a) 금속 함유 전구체 물질을 포함하는 탄화수소 가스를 버너내부로 공급하여 점화시키는 단계, a) supplying a hydrocarbon gas comprising a metal containing precursor material into the burner to ignite, b) 상기 점화된 화염에 레이저를 조사하는 단계b) irradiating a laser to the ignited flame 를 포함하는, 금속이 도핑된 쉘 형상 탄소입자의 제조 방법.Method of producing a shell-shaped carbon particles doped with a metal. 제4항에 있어서, The method of claim 4, wherein 금속 함유 전구체 물질이 아이언 아세틸 아세토네이트, 아이언 펜타 카보닐, 망간 아세틸 아세토네이트, 망간클로라이드, 코발트 아세틸 아세토네이트, 플래티늄 아 세틸 아세토네이트, 플래티늄 클로라이드, 골드 클로라이드, 루비듐 아세틸 아세토네이트, 포타슘 클로라이드 및 이들의 혼합물 중에서 선택된 것임을 특징으로 하는 방법.Metal-containing precursor materials include iron acetyl acetonate, iron penta carbonyl, manganese acetyl acetonate, manganese chloride, cobalt acetyl acetonate, platinum acetyl acetonate, platinum chloride, gold chloride, rubidium acetyl acetonate, potassium chloride and their Characterized in that it is selected from the mixtures. 제4항에 있어서, 금속 함유 전구체 물질이 액적 또는 기체 형태로 공급되는 것을 특징으로 하는 방법.The method of claim 4, wherein the metal containing precursor material is supplied in the form of droplets or gases. 제4항에 있어서,The method of claim 4, wherein 탄화수소 가스가 아세틸렌 가스, 에틸렌 가스 또는 메탄가스인 것을 특징으로 하는 방법.The hydrocarbon gas is acetylene gas, ethylene gas or methane gas. 제4항에 있어서,The method of claim 4, wherein (a)단계에서, 탄화 수소가스 1 lpm(liter per minute)당 금속 함유 전구체 물질을 포함하는 운송가스를 250 SCCM(standard cubic centimeter per minute) 이하의 양으로 공급함을 특징으로 하는 방법.In step (a), the transport gas containing the metal-containing precursor material per 1 liter (liter per minute) of hydrocarbon gas is supplied in an amount of 250 SCCM (standard cubic centimeter per minute) or less. 제4항에 있어서,The method of claim 4, wherein (a)단계에서, 금속 함유 전구체 물질과 탄화수소 가스의 혼합 전구체와 외기와의 화학 반응을 억제하기 위해 차단 가스를 도입하는 것을 특징으로 하는 방법.In step (a), a blocking gas is introduced to suppress a chemical reaction between the mixed precursor of the metal-containing precursor material and the hydrocarbon gas and the outside air. 제9항에 있어서,The method of claim 9, 차단가스가 질소 가스 또는 아르곤 가스임을 특징으로 하는 방법.And the blocking gas is nitrogen gas or argon gas. 제4항에 있어서,The method of claim 4, wherein 레이저가 CO2 레이저임을 특징으로 하는 방법.Wherein the laser is a CO 2 laser.
KR1020050096356A 2005-10-13 2005-10-13 Metal doped shell shaped carbon particles and preparing process thereof KR100729154B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050096356A KR100729154B1 (en) 2005-10-13 2005-10-13 Metal doped shell shaped carbon particles and preparing process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050096356A KR100729154B1 (en) 2005-10-13 2005-10-13 Metal doped shell shaped carbon particles and preparing process thereof

Publications (2)

Publication Number Publication Date
KR20070040871A true KR20070040871A (en) 2007-04-18
KR100729154B1 KR100729154B1 (en) 2007-06-19

Family

ID=38176417

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050096356A KR100729154B1 (en) 2005-10-13 2005-10-13 Metal doped shell shaped carbon particles and preparing process thereof

Country Status (1)

Country Link
KR (1) KR100729154B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160103674A (en) * 2015-02-25 2016-09-02 성균관대학교산학협력단 Superconductivity composite and preparing method of the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9343750B2 (en) 2012-06-26 2016-05-17 Samsung Sdi Co., Ltd. Supporter for fuel cell, and electrode for fuel cell, membrane-electrode assembly for a fuel cell, and fuel cell system including same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676265B2 (en) * 1990-09-29 1994-09-28 工業技術院長 Method for producing surface-coated carbon material
US5300203A (en) 1991-11-27 1994-04-05 William Marsh Rice University Process for making fullerenes by the laser evaporation of carbon
KR100450028B1 (en) * 2002-04-03 2004-09-24 (주) 나노텍 Method And Apparatus For Synthesis Of Single-walled Carbon Nanotubes Through Explosion Of Hydrocarbon Compounds
KR100583610B1 (en) * 2003-03-07 2006-05-26 재단법인서울대학교산학협력재단 Febrication method of transition metal oxide/carbon nanotube composite
KR20050117961A (en) * 2004-06-12 2005-12-15 (주)나노클러스터 Noblemetal nano particles coated carbonaceous materials and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160103674A (en) * 2015-02-25 2016-09-02 성균관대학교산학협력단 Superconductivity composite and preparing method of the same

Also Published As

Publication number Publication date
KR100729154B1 (en) 2007-06-19

Similar Documents

Publication Publication Date Title
KR101262827B1 (en) Carbon nanotubes functionalized with fullerenes
US11801494B2 (en) Method for preparing single-atom catalyst supported on carbon support
Fominykh et al. Rock salt Ni/Co oxides with unusual nanoscale‐stabilized composition as water splitting electrocatalysts
De Jong et al. Carbon nanofibers: catalytic synthesis and applications
Dong et al. Scalable dealloying route to mesoporous ternary CoNiFe layered double hydroxides for efficient oxygen evolution
Kumar et al. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production
US7704482B2 (en) Process for producing carbon nanotube and catalyst for carbon nanotube production
RU2579075C2 (en) Carbon nanostructures and meshes obtained by chemical precipitation from steam phase
KR100917697B1 (en) Transition metal-carbon nitride nanotube hybrids catalyst, fabrication method thereof and method for producing hydrogen using the same
Chung et al. A simple synthesis of nitrogen-doped carbon micro-and nanotubes
Zheng et al. Carbon nano-onions: large-scale preparation, functionalization and their application as anode material for rechargeable lithium ion batteries
KR20020042673A (en) Carbonaceous material for hydrogen storage and method for preparing the same, and cell and fuel cell
KR20030071352A (en) Carbon nano particle having novel structure and properties
JPH11116218A (en) Production of single layered nanotube
CN1768002B (en) Method of preparing carbon nanotube from liquid phased-carbon source
Dhand et al. Synthesis and comparison of different spinel ferrites and their catalytic activity during chemical vapor deposition of polymorphic nanocarbons
Golubtsov et al. Mono-, Bi-, and trimetallic catalysts for the synthesis of multiwalled carbon nanotubes based on iron subgroup metals
Lim et al. A critical review of heterogeneous catalyst design for carbon nanotubes synthesis: Functionalities, performances, and prospects
Aluha et al. Synthesis of nano-catalysts by induction suspension plasma technology (SPS) for Fischer–Tropsch reaction
Wang et al. Structure-activity relationship of defective electrocatalysts for nitrogen fixation
Lobiak et al. Structure, functional composition and electrochemical properties of nitrogen-doped multi-walled carbon nanotubes synthesized using Co–Mo, Ni–Mo and Fe–Mo catalysts
KR100729154B1 (en) Metal doped shell shaped carbon particles and preparing process thereof
Shlyakhova et al. Catalytic synthesis of carbon nanotubes using Ni-and Co-doped calcium tartrates
US20060008404A1 (en) Hetero-nanocapsule and method of preparing the same
KR101094454B1 (en) Method of fabricating catalysts and synthesizing carbon nanotubes

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110607

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee