KR20050023181A - A solar cell having buried type electrode and fabrication method thereof - Google Patents

A solar cell having buried type electrode and fabrication method thereof Download PDF

Info

Publication number
KR20050023181A
KR20050023181A KR1020030059670A KR20030059670A KR20050023181A KR 20050023181 A KR20050023181 A KR 20050023181A KR 1020030059670 A KR1020030059670 A KR 1020030059670A KR 20030059670 A KR20030059670 A KR 20030059670A KR 20050023181 A KR20050023181 A KR 20050023181A
Authority
KR
South Korea
Prior art keywords
conductive particles
solar cell
electrode
precursor
groove
Prior art date
Application number
KR1020030059670A
Other languages
Korean (ko)
Other versions
KR100971747B1 (en
Inventor
김대원
이규열
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020030059670A priority Critical patent/KR100971747B1/en
Publication of KR20050023181A publication Critical patent/KR20050023181A/en
Application granted granted Critical
Publication of KR100971747B1 publication Critical patent/KR100971747B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE: A solar cell with a buried-type electrode is provided to obtain process simplification and cost reduction by reducing number of high temperature process and a fabrication method thereof. CONSTITUTION: A metal electrode is formed within a groove(G) formed on a substrate(1). The metal electrode is formed by a heat treatment after burying conductive particles or a precursor thereof into the groove. The conductive particles or a precursor thereof have a diameter less than 1μm. The conductive particles or a precursor thereof have a diameter less than 1nm. The conductive particles comprise any one of Ag, Cu, Au, Ti, W, Ni, Cr, Mo, Pb, Pd and Pt.

Description

함몰전극형 태양전지 및 그 제조방법{A solar cell having buried type electrode and fabrication method thereof}A solar cell having buried type electrode and fabrication method

본 발명은 함몰전극형 태양전지 및 그 제조 방법에 관한 것으로, 더욱 상세하게는 저렴하고도 간단한 방법으로 함몰전극형 태양전지를 제조하는 방법에 관한 것이다.The present invention relates to a recessed electrode type solar cell and a method for manufacturing the same, and more particularly, to a method for manufacturing a recessed electrode type solar cell in a low cost and simple method.

함몰전극형 태양전지는 태양전지의 표면에 미세한 홈(groove)을 내고 홈 안에 전극을 형성한 구조를 가진다.The recessed electrode solar cell has a structure in which a fine groove is formed on the surface of the solar cell and an electrode is formed in the groove.

함몰전극형 태양전지는 스크린 인쇄법으로 전극을 형성하는 기존의 태양전지에 비해서 태양전지의 효율을 크게 높일 수 있지만 상대적으로 제조공정이 복잡하고, 섭씨 1000도에 가까운 고온에서 이루어지는 공정이 많기 때문에 일부 업체만이 단결정 실리콘 태양전지로 제품화하고 있는 실정이다. The recessed electrode type solar cell can greatly increase the efficiency of the solar cell compared to the conventional solar cell which forms the electrode by screen printing method, but the manufacturing process is relatively complicated and some processes are performed at high temperature near 1000 degrees Celsius. Only companies are commercializing monocrystalline silicon solar cells.

종래 함몰전극형 태양전지의 전극형성 방법은 미국특허 4,726,850호, 미국특허 4,748,130호, 미국특허 5,543,333호에 잘 나타나 있다. 이들 특허에 개시된 바와 같이, 종래에는 실리콘 기판의 표면에 레이저로 홈을 내고 그 홈 안에 금속전극을 형성한다. The electrode formation method of the conventional recessed electrode type solar cell is well shown in US Patent 4,726,850, US Patent 4,748,130, US Patent 5,543,333. As disclosed in these patents, conventionally, grooves are formed on the surface of a silicon substrate with a laser and metal electrodes are formed therein.

금속전극을 형성하는 첫 번째 방법은 도전성 페이스트(paste)를 스퀴지(squeegee)나 스크레이퍼(scraper)를 사용하여 채우는 방법이다. 두 번째 방법은 표면에 절연층을 형성하고, 절연층을 식각하여 홈을 형성한 후에, 전해 또는 무전해 도금법으로 홈 내부를 금속으로 채우는 것이다. 세 번째 방법은 두 번째 방법으로 금속을 일부 채운 후에, 웨이퍼를 용융된 금속에 담가 금속을 완전히 채우는 것이다.The first method of forming a metal electrode is to fill a conductive paste with a squeegee or a scraper. The second method is to form an insulating layer on the surface, etch the insulating layer to form a groove, and then fill the inside of the groove with metal by electrolytic or electroless plating. The third method is to partially fill the metal in the second method, and then immerse the wafer in the molten metal to completely fill the metal.

상술한 세 가지 방법 중에서 두 번째 방법이 가장 일반적이며, 실제 제품에서는 홈의 내부에 무전해 도금법으로 니켈(Ni)을 도포하고, 이어서 전해 도금법으로 구리(Cu)를 채우는 방법이 사용되고 있다.Among the three methods described above, the second method is the most common, and in actual products, nickel (Ni) is applied to the inside of the groove by electroless plating, and then copper (Cu) is filled by electroplating.

미국특허 4,748,130호에는 도전성 페이스트나 도금 방법으로 홈 내부를 매립하는 방법이 개시되어 있고, 미국특허 5,543,333호에는 광유기(photo induced) 무전해 도금으로 Ni층을 형성하고 그 위에 무전해 도금으로 Ag 또는 Cu를 형성하는 방법이 개시되어 있다.U.S. Patent No. 4,748,130 discloses a method for embedding the inside of a groove by a conductive paste or plating method, and U.S. Patent No. 5,543,333 forms a Ni layer by photo induced electroless plating and Ag or Ag on the electroless plating thereon. A method of forming Cu is disclosed.

그러나, 이러한 종래 방법들은 앞에서 언급한 바와 같이, 제조공정이 복잡하고, 섭씨 1,000도 가까운 고온에서 이루어지는 공정이 많기 때문에 일부 업체만이 단결정 실리콘 태양전지로 제품화하고 있는 실정이다. However, these conventional methods, as mentioned above, because the manufacturing process is complicated, and many processes are performed at a high temperature close to 1,000 degrees Celsius, only a few companies are commercializing single crystal silicon solar cells.

종래 기술에 따르면 대략 18단계를 거쳐 함몰전극을 제조한다. According to the prior art, the recessed electrode is manufactured in about 18 steps.

먼저, 실리콘 웨이퍼를 슬라이싱할 때 생긴 표면의 결함을 제거한(1단계) 후, 웨이퍼 표면에서의 빛 반사를 줄이기 위해 표면에 요철을 형성하도록 텍스처링하고(2단계), 웨이퍼 표면의 유기 및 무기 불순물을 제거하도록 웨이퍼를 세척한다(제3단계).First, the surface defects generated when slicing the silicon wafer are removed (step 1), and then textured to form irregularities on the surface to reduce light reflection on the wafer surface (step 2), and organic and inorganic impurities on the surface of the wafer are removed. The wafer is cleaned for removal (step 3).

다음, 웨이퍼 표면으로부터 인(P)을 확산하여(845℃, 10분) pn 접합을 형성하고(제4단계), 웨이퍼 표면 중 홈을 제외한 부분에서 식각 및 불순물 확산이 일어나지 않도록 방지하는 목적으로 웨이퍼의 전면 및 후면 모두의 표면을 습식산화(980℃, 2.5시간)시킨다(제5단계).Next, phosphorus (P) is diffused from the wafer surface (845 ° C., 10 minutes) to form a pn junction (step 4), and the wafer is prevented from etching and impurity diffusion in a portion of the wafer surface except for grooves. Wet oxidation (980 ° C., 2.5 hours) on both the front and rear surfaces of the step (step 5).

다음, 웨이퍼 표면에 레이저로 홈을 형성한 후(제6단계), 홈 형성 과정에서 생긴 잔류물 및 결함 부위를 제거하고(제7단계), 웨이퍼 표면의 유기 및 무기 불순물을 제거하도록 웨이퍼를 세척한다(제8단계).Next, after the grooves are formed on the wafer surface with a laser (step 6), residues and defects generated during the groove formation process are removed (step 7), and the wafer is cleaned to remove organic and inorganic impurities on the wafer surface. (Step 8)

다음, 금속전극과의 접촉저항을 줄이기 위해 홈 표면에 인을 고농도로 확산한 후(950℃, 1.5시간)(제9단계), 웨이퍼의 후면에 Al을 증착하여 후면 전극을 형성하고(제10단계), 열처리(980℃, 3시간)하여 후면전계(back surface field)를 형성한다(제11단계).Next, in order to reduce contact resistance with the metal electrode, phosphorus is diffused in high concentration on the groove surface (950 ° C., 1.5 hours) (step 9), and Al is deposited on the back surface of the wafer to form a back electrode (10th step). Step), heat treatment (980 ° C., 3 hours) to form a back surface field (step 11).

다음, 홈 안을 무전해 도금하기 위해 홈 표면에 형성된 산화막을 제거한 후(제12단계), 금속전극과의 접촉저항을 줄이기 위해 홈 표면에 Ni 무전해 도금을 수행하고(제13단계), 열처리하여 니켈 실리사이드층을 형성한다(제14단계). Next, after removing the oxide film formed on the groove surface to electrolessly plate the groove (step 12), Ni electroless plating is performed on the groove surface to reduce the contact resistance with the metal electrode (step 13), followed by heat treatment. A nickel silicide layer is formed (step 14).

다음, 웨이퍼와 Cu 전극 사이의 부착력을 향상시키기 위해 Ni 무전해 도금을 수행하고(제15단계), Cu 무전해 도금으로 Cu 전극을 형성한 후(제16단계), 모듈제조 공정에서 납땜이 잘 되도록 Cu 전극 위에 Ag층을 형성하고(제17단계), 전면 산화막이 방지방지막으로 기능하도록 두께를 최적화하기 위해 전면 산화막의 일부를 식각한다(제18단계).Next, Ni electroless plating is performed to improve adhesion between the wafer and the Cu electrode (step 15), and a Cu electrode is formed by Cu electroless plating (step 16), and then soldering is performed well in the module manufacturing process. An Ag layer is formed on the Cu electrode as much as possible (step 17), and a portion of the entire surface oxide film is etched to optimize the thickness so that the entire surface oxide film functions as a prevention film (step 18).

이 중에서 1000℃에 가까운 고온에서 이루어지는 공정은 이미터 확산하는 제4단계, 습식산화하는 제5단계, 홈 확산하는 제9단계, 열처리하는 제11단계 등이 있다.Among these processes, a process performed at a high temperature close to 1000 ° C. includes a fourth step of emitter diffusion, a fifth step of wet oxidation, a ninth step of groove diffusion, and an eleventh step of heat treatment.

따라서, 보다 간단하고도 저렴한 제조 공정으로, 특히 보다 적은 수의 고온공정을 거쳐 함몰전극형 태양전지를 제조하는 것이 요구되고 있다. Accordingly, there is a demand for manufacturing a recessed electrode type solar cell through a simpler and cheaper manufacturing process, in particular, through a smaller number of high temperature processes.

본 발명은 상기한 바와 같은 문제점을 해결하기 위한 것으로, 그 목적은 간단하고도 저렴한 방법으로 함몰전극형 태양전지를 제조하는 것이다.The present invention is to solve the problems as described above, the object is to produce a depression electrode type solar cell in a simple and inexpensive method.

본 발명의 다른 목적은 고온공정의 개수를 줄이는 것이다.Another object of the present invention is to reduce the number of high temperature processes.

상기한 바와 같은 목적을 달성하기 위하여, 본 발명에서는 기판에 홈을 형성하는 단계; 홈 내에 도전성 입자 또는 도전성 입자의 전구체를 매립하는 단계; 열처리하여 도전성 입자 또는 도전성 입자의 전구체를 융착시키는 단계를 포함하여 함몰전극형 태양전지를 제조한다.In order to achieve the above object, the present invention comprises the steps of forming a groove in the substrate; Embedding conductive particles or precursors of conductive particles in the grooves; Heat-treating to form conductive electrodes or precursors of conductive particles, thereby manufacturing a recessed electrode type solar cell.

이 때, 도전성 입자 또는 도전성 입자의 전구체는 1㎛ 이하의 입경을 가지고, 바람직하게는 1nm 이하의 입경을 가진다.At this time, the electroconductive particle or the precursor of electroconductive particle has a particle diameter of 1 micrometer or less, Preferably it has a particle diameter of 1 nm or less.

도전성 입자는 Ag, Cu, Au, Ti, W, Ni, Cr, Mo, Pb, Pd, Pt 중의 어느 하나를 포함하는 금속으로 이루어질 수도 있고, 전이금속 및 희토류금속 중의 어느 하나와 실리콘과의 화합물인 실리사이드(silicide)로 이루어질 수도 있다.The conductive particles may be made of a metal containing any one of Ag, Cu, Au, Ti, W, Ni, Cr, Mo, Pb, Pd, and Pt, and may be a compound of any one of transition metals and rare earth metals with silicon. It may be made of silicide.

도전성 입자의 전구체로는 산화은을 사용하여 150-250℃의 온도에서 30분-90분의 시간동안 열처리할 수 있다.The precursor of the conductive particles may be heat treated for 30 minutes to 90 minutes at a temperature of 150-250 ° C using silver oxide.

또한, 홈 내에 도전성 입자 또는 도전성 입자의 전구체를 매립하는 단계에서는, 기판의 상부에서 도전성 입자 또는 도전성 입자의 전구체를 뿌린 후, 홈의 내부를 제외한 기판 상면에 뿌려진 도전성 입자 또는 도전성 입자의 전구체를 브러쉬를 포함한 털이기구를 사용하여 제거하는 방법과, 노즐이 장착된 주입기를 사용하여 홈의 내부로 도전성 입자 또는 도전성 입자의 전구체를 주입하는 방법 중의 어느 한 방법을 사용할 수 있다.In the step of embedding the conductive particles or precursors of the conductive particles in the grooves, after spraying the conductive particles or precursors of the conductive particles from the upper portion of the substrate, the conductive particles or the precursors of the conductive particles sprayed on the upper surface of the substrate except the inside of the grooves are brushed Any one of a method of removing using a hair instrument including a method, and a method of injecting conductive particles or precursors of conductive particles into the groove using an injector equipped with a nozzle may be used.

이하, 본 발명에 따른 함몰전극형 태양전지 및 그 제조방법에 대해 상세히 설명한다.Hereinafter, a depressed electrode solar cell and a method of manufacturing the same according to the present invention will be described in detail.

본 발명에서는 도 1에 도시된 바와 같이, 기판(1)에 형성된 홈(G) 내에 금속 전극을 형성하는 함몰전극형 태양전지를 제조함에 있어서, 홈(G) 내에 도전성 입자 또는 도전성 입자의 전구체(precursor)(2)를 매립한 후 열처리함으로써 금속전극을 형성한다.In the present invention, as shown in Figure 1, in manufacturing a recessed electrode type solar cell to form a metal electrode in the groove (G) formed in the substrate 1, the conductive particles or precursors of the conductive particles in the groove (G) ( A metal electrode is formed by embedding the precursor) 2 and then heat treatment.

이 때, 도전성 입자 또는 도전성 입자의 전구체(2)로는 1㎛ 이하의 입경을 가지는 것을 사용하고, 바람직하게는 1nm 이하의 입경을 가지는 것을 사용한다.Under the present circumstances, as the electroconductive particle or the precursor 2 of electroconductive particle, what has a particle size of 1 micrometer or less is used, Preferably what has a particle size of 1 nm or less is used.

도전성 입자 또는 도전성 입자의 전구체 입경이 작을수록 융착에 필요한 열처리 온도가 더 낮아질 수 있고, 열처리 시간 또한 더 짧아질 수 있다.The smaller the particle size of the conductive particles or the precursor of the conductive particles, the lower the heat treatment temperature required for fusion, and the shorter the heat treatment time can be.

도전성 입자로는 Ag, Cu, Au, Ti, W, Ni, Cr, Mo, Pb, Pd, Pt 중의 어느 하나를 포함하는 금속을 사용할 수도 있고, 전이금속 및 희토류금속 중의 어느 하나와 실리콘과의 화합물인 실리사이드(silicide)를 사용할 수도 있다.As the conductive particles, a metal containing any one of Ag, Cu, Au, Ti, W, Ni, Cr, Mo, Pb, Pd, and Pt may be used, and any one of transition metals and rare earth metals with a silicon compound Phosphorus silicide can also be used.

다만, 금속의 경우 입경이 지나치게 작아질 경우 상온에서 서로 붙어버릴(응집) 위험이 있으므로, 이러한 상온 응집의 위험을 고려하여 입경을 조절하도록 한다.However, in the case of metal, if the particle size is too small, there is a risk of sticking to each other at room temperature (agglomeration), so that the particle size should be adjusted in consideration of the risk of room temperature aggregation.

열처리 온도 및 시간은 앞에서 언급한 것처럼 도전성 입자 또는 도전성 입자의 전구체 입경에 의해서도 좌우되지만, 도전성 입자 또는 도전성 입자의 전구체를 이루는 재료에 의해서도 결정된다.As mentioned above, the heat treatment temperature and time also depend on the conductive particles or the precursor particle diameter of the conductive particles, but are also determined by the material constituting the conductive particles or the precursor of the conductive particles.

예를 들어 도전성 입자의 전구체로서 산화은을 사용할 경우, 150-250℃의 온도에서 30분-90분의 시간동안 열처리하면 은이 환원 및 융착된다.For example, when silver oxide is used as the precursor of the conductive particles, the silver is reduced and fused when heat-treated at a temperature of 150-250 ° C. for 30 minutes to 90 minutes.

산화은(Ag2O)을 160℃ 이상으로 가열하면 산소가 떨어져 나가고 은이 된다. 또한, 산화은은 저온에서도 적절한 환원제를 첨가하면 쉽게 환원된다. 공기 중에서 산화은의 환원반응은 다음과 같은 화학식1로 표현된다.When the silver oxide (Ag 2 O) is heated to 160 ° C. or higher, oxygen is released to become silver. In addition, silver oxide is easily reduced by adding an appropriate reducing agent even at low temperatures. The reduction reaction of silver oxide in air is represented by the following formula (1).

2Ag2O → 4Ag + O2 2Ag 2 O → 4Ag + O 2

적절한 방법으로 산화은 미세입자를 만들고 그 미립자 상태에서 환원하면 은으로 되면서 입자가 서로 붙게 된다. 산화은 입자간의 융착이 일어나기 위해서는 산화은 입자의 크기가 충분히 작아야 한다. In a proper way, silver oxide makes fine particles, and when they are reduced in the form of silver, the particles become silver and stick together. In order for fusion between the silver oxide particles to occur, the size of the silver oxide particles must be small enough.

산화은 입자의 제조방법은 다음과 같다. 질산은 수용액에 수산화나트륨 수용액 한 방울을 떨어뜨려 잘 교반하면 다음의 화학식2에 의해 산화은이 석출된다. The production method of silver oxide particles is as follows. A drop of an aqueous sodium hydroxide solution is added to the aqueous solution of silver nitrate, followed by stirring. The silver oxide is precipitated by the following Chemical Formula 2.

2AgNO3 + 2NaOH → 2NaNO3 + Ag2O↓ + H2O 2AgNO 3 + 2NaOH → 2NaNO 3 + Ag 2 O ↓ + H 2 O

수용액을 여과지로 거르면 여과지에 미세한 산화은 입자가 남게 된다. 걸러진 산화은 입자를 증류수로 여러 번 세척한 후에 진공상태에서 건조하면 산화은 미세분말을 얻을 수 있다. Filtering the aqueous solution with filter paper leaves fine silver oxide particles on the filter paper. The filtered silver oxide particles are washed several times with distilled water and dried under vacuum to obtain fine silver oxide powder.

도전성 입자 또는 도전성 입자의 전구체를 홈 안에 매립하는 방법을 산화은의 경우로 예를 들어 도 2a 및 2b에 도시하였다.The method of embedding the conductive particles or the precursor of the conductive particles into the grooves is shown in FIGS. 2A and 2B in the case of silver oxide, for example.

도2a는 산화은 입자(2)를 실리콘 기판(1)의 홈(G)을 포함한 표면에 뿌린 후 브러쉬와 같은 털이기구(3)를 사용하여 홈(G)을 제외한 부분에 뿌려진 산화은 입자(2)를 제거하는 방법을 나타낸 것이며, 도2b는 산화은 입자(2)를 노즐을 장착한 주입기(4)를 사용하여 기판(1)의 홈(G)에 채우는 방법을 나타낸 것이다. 2A shows that silver oxide particles 2 are sprayed on the surface including the grooves G of the silicon substrate 1 and then sprayed on portions other than the grooves G by using a hair instrument 3 such as a brush. 2b shows a method of filling the grooves G of the substrate 1 with the injector 4 equipped with a nozzle.

이렇게 산화은 입자를 채운 후에는 열처리를 하여 산화은을 은으로 환원시킴과 동시에 용융시켜 고상의 은으로 융착시킨다.After the silver oxide particles are filled, heat treatment is performed to reduce the silver oxide to silver, and at the same time to melt and fuse the silver oxide into solid silver.

열처리는 150-200℃에서 30분-90분 정도 수행하는 것이 적당하며, 바람직하게는 200℃에서 1시간 동안 열처리한다.The heat treatment is suitably carried out at 150-200 ° C. for 30 minutes-90 minutes, preferably at 200 ° C. for 1 hour.

그러면, 상술한 전극형성 방법을 적용한 실리콘 태양전지 제조방법에 대해 산화은을 사용한 경우를 일 실시예로 하여 설명하며, 도 3a 내지 3d를 참조하여 설명하면 다음과 같다. Then, the case of using the silver oxide in the silicon solar cell manufacturing method to which the above-described electrode forming method is applied as an embodiment, will be described with reference to Figures 3a to 3d as follows.

먼저, 도 3a에 도시된 바와 같이, 기판(11)으로는 p형의 단결정 또는 다결정 실리콘 웨이퍼를 사용한다. 기판(11)의 전면에 레이저를 사용하여 홈(G)을 낸다. 웨이퍼를 슬라이싱(slicing)하고 레이저로 홈을 낼 때 웨이퍼 표면에는 많은 결함이 발생하는데 KOH와 같은 알칼리 수용액을 사용하여 결함부위를 제거할 수 있다. First, as shown in FIG. 3A, a p-type single crystal or polycrystalline silicon wafer is used as the substrate 11. The groove G is cut out on the front surface of the substrate 11 by using a laser. Many defects occur on the wafer surface when slicing and lasering the wafer. Alkali aqueous solutions such as KOH can be used to remove the defects.

이어서 표준 RCA 세정방법을 사용하여 기판(11)에 있는 유기 및 무기 불순물과 산화막을 제거한다. Subsequently, organic and inorganic impurities and oxide films on the substrate 11 are removed using a standard RCA cleaning method.

다음, 도 3b에 도시된 바와 같이, 홈(G)이 형성되어 있는 기판(11)의 전면에 인(phosphorous)을 확산하여 n형의 에미터(emitter)(12)를 형성한다. Next, as illustrated in FIG. 3B, phosphorous is diffused on the entire surface of the substrate 11 where the groove G is formed to form an n-type emitter 12.

다음, 도 3c에 도시된 바와 같이, 에미터 형성과정에서 웨이퍼 표면에 생긴 산화막을 불산(HF) 수용액으로 제거한 후에 산화은 미립자(13)로 홈(G)을 매립한다. Next, as shown in FIG. 3C, after the oxide film formed on the surface of the emitter is removed with an aqueous hydrofluoric acid (HF) solution, the grooves G are filled with the silver oxide fine particles 13.

다음, 도 3d에 도시된 바와 같이, 산화은 입자가 채워진 웨이퍼를 200℃에서 1시간 정도 열처리하면 산화은 미립자가 환원 및 융착하여 홈 안에 은(Ag) 전극(14)이 형성된다.Next, as shown in FIG. 3D, when the wafer filled with silver oxide particles is heat-treated at 200 ° C. for about 1 hour, the silver oxide fine particles are reduced and fused to form a silver (Ag) electrode 14 in the groove.

이어서, 은 전극이 형성된 전면에 반사방지막(15)을 증착한다. Subsequently, the antireflection film 15 is deposited on the entire surface where the silver electrode is formed.

반사방지막으로는 산화티탄(TiO2), 실리콘 질화막 등이 사용될 수 있으나 실리콘 웨이퍼에 있는 결함을 부동화(passivation)하는 것이 가능한 수소화된 실리콘 질화막(hydrogenated silicon nitride, a-SiNx:H)이 바람직하다. 수소화된 실리콘 질화막은 일반적으로 플라즈마 화학기상증착법(Plasma Chemical Vapor Deposition)으로 만들 수 있다.Titanium oxide (TiO 2 ), a silicon nitride film or the like may be used as the anti-reflection film, but a hydrogenated silicon nitride (a-SiNx: H) capable of passivating defects in the silicon wafer is preferable. Hydrogenated silicon nitride film can generally be made by plasma chemical vapor deposition (Plasma Chemical Vapor Deposition).

후면전계(Back Surface Field)의 형성과 함께 후면전극을 형성하는 방법으로는 알루미늄 유도 결정화(Aluminum Induced Crystallization)나 레이저-연소 컨택(Laser-Fired Contact(Proceedings of the 29th IEEE Photovoltaic Specialists Conference, pp.130-133)과 같은 저온 공정이 바람직하다. 본 실시예에서는 알루미늄 유도 결정화법을 적용하였으며 상세한 방법은 대한민국 공개특허 2001-0050318호에 잘 기술되어 있다.As a method of forming the back electrode together with the formation of the back surface field, aluminum induced crystallization or laser-fired contact (proceedings of the 29th IEEE Photovoltaic Specialists Conference, pp. 130) A low temperature process such as -133) is preferred In this embodiment, aluminum induction crystallization is applied, and the detailed method is well described in Korean Patent Laid-Open Publication No. 2001-0050318.

상술한 바와 같이, 본 발명에 따르면, 레이저 그루빙(laser grooving), 손상(saw damage) 제거, 기판 세척, 이미터 확산(875℃, 30분), 산화막 제거, 산화은 매립, 열처리, 반사방지막 증착, 후면 Al/a-Si 증착, 열처리(500℃, 2시간), Ag 이멀젼(immersion)의 대략 11단계를 거친다.As described above, according to the present invention, laser grooving, saw damage removal, substrate cleaning, emitter diffusion (875 ° C., 30 minutes), oxide removal, silver oxide buried, heat treatment, antireflection film deposition After about 11 steps, back Al / a-Si deposition, heat treatment (500 ° C., 2 hours), Ag immersion.

이것은 보통 18단계를 거치는 종래 기술에 비해 대폭 간소화된 것이고, 특히 1000℃에 가까운 고온공정이 1개로 대폭 줄었다.This is significantly simplified compared to the prior art, which usually goes through 18 steps, especially one high temperature process close to 1000 ° C.

상기한 바와 같이, 본 발명에 따르면 종래기술에 비하여 제조공정이 간소화되므로 제조원가를 절감하는 효과가 있다.As described above, according to the present invention, the manufacturing process is simplified compared to the prior art, thereby reducing the manufacturing cost.

특히, 고온 공정이 대폭 감소되기 때문에, 열부하(thermal budget)에 취약한 다결정 실리콘 태양전지에 적용 가능한 효과가 있다.In particular, since the high temperature process is greatly reduced, there is an effect that can be applied to polycrystalline silicon solar cells vulnerable to thermal budget.

도 1은 본 발명에 따른 함몰전극형 태양전지의 제조방법을 도시한 단면도이고, 1 is a cross-sectional view showing a manufacturing method of a recessed electrode solar cell according to the present invention;

도 2a 및 2b는 본 발명에 따라 산화은 입자를 홈 안에 채우는 방법을 도시한 단면도이며, 2A and 2B are cross-sectional views illustrating a method for filling silver oxide particles into grooves according to the present invention;

도 3a 내지 3d는 본 발명의 일 실시예에 따른 함몰전극형 태양전지 제조방법을 그 공정 순서에 따라 도시한 단면도이다.3A to 3D are cross-sectional views illustrating a method of manufacturing a recessed electrode solar cell according to an exemplary embodiment of the present invention according to a process sequence thereof.

Claims (11)

기판에 형성된 홈 내에 형성된 금속 전극을 포함하고, 상기 금속 전극은 상기 홈의 내부에 도전성 입자 또는 도전성 입자의 전구체(precursor)를 매립한 후 열처리함으로써 형성된 것인 함몰전극형 태양전지.And a metal electrode formed in a groove formed in the substrate, wherein the metal electrode is formed by embedding conductive particles or a precursor of conductive particles in the groove and then heat-treating the same. 제 1 항에 있어서,The method of claim 1, 상기 도전성 입자 또는 도전성 입자의 전구체는 1㎛ 이하의 입경을 가지는 함몰전극형 태양전지.The electroconductive particle or the precursor of electroconductive particle is a recessed electrode type solar cell which has a particle diameter of 1 micrometer or less. 제 1 항에 있어서,The method of claim 1, 상기 도전성 입자 또는 도전성 입자의 전구체는 1nm 이하의 입경을 가지는 함몰전극형 태양전지.The electroconductive particle or the precursor of electroconductive particle is a recessed electrode type solar cell which has a particle diameter of 1 nm or less. 제 1 항에 있어서,The method of claim 1, 상기 도전성 입자는 Ag, Cu, Au, Ti, W, Ni, Cr, Mo, Pb, Pd, Pt 중의 어느 하나를 포함하는 금속으로 이루어지는 함몰전극형 태양전지.The electroconductive particle is a recessed electrode type solar cell which consists of metal containing any one of Ag, Cu, Au, Ti, W, Ni, Cr, Mo, Pb, Pd, and Pt. 제 1 항에 있어서,The method of claim 1, 상기 도전성 입자는 전이금속 및 희토류금속 중의 어느 하나와 실리콘과의 화합물인 실리사이드(silicide)로 이루어지는 함몰전극형 태양전지.The electroconductive particle is a recessed electrode type solar cell which consists of a silicide which is a compound of any of transition metal and a rare earth metal, and silicon. 제 1 항에 있어서,The method of claim 1, 상기 도전성 입자의 전구체는 산화은인 함몰전극형 태양전지.The precursor of the electroconductive particle is a silver oxide depression-type electrode solar cell. 제 5 항에 있어서, The method of claim 5, wherein 상기 열처리는 150-250℃의 온도에서 30분-90분의 시간동안 수행하는 함몰전극형 태양전지.The heat treatment is a depressed electrode solar cell that is carried out for a time of 30 minutes-90 minutes at a temperature of 150-250 ℃. 제 1 항에 있어서,The method of claim 1, 상기 홈과 금속 전극의 계면에 형성된 이미터를 더 포함하는 함몰전극형 태양전지.Recessed electrode type solar cell further comprises an emitter formed at the interface between the groove and the metal electrode. 기판에 홈을 형성하는 단계;Forming a groove in the substrate; 상기 홈 내에 도전성 입자 또는 도전성 입자의 전구체를 매립하는 단계; 및Embedding conductive particles or precursors of conductive particles in the grooves; And 열처리하여 상기 도전성 입자 또는 도전성 입자의 전구체를 융착시키는 단계Heat-treating to fuse the conductive particles or precursors of the conductive particles 를 포함하는 함몰전극형 태양전지의 제조방법.Method of manufacturing a depressed electrode solar cell comprising a. 제 9 항에 있어서,The method of claim 9, 상기 도전성 입자 전구체로서 1㎛ 이하의 입경을 가지는 산화은을 사용하고, 상기 열처리는 150-250℃의 온도에서 30분-90분의 시간동안 수행하는 함몰전극형 태양전지의 제조방법. Using a silver oxide having a particle diameter of 1㎛ or less as the conductive particle precursor, the heat treatment is performed for a time of 30 minutes-90 minutes at a temperature of 150-250 ℃. 제 9 항에 있어서, 상기 홈 내에 도전성 입자 또는 도전성 입자의 전구체를 매립하는 단계에서는, The method of claim 9, wherein in the step of embedding the conductive particles or the precursor of the conductive particles in the groove, 상기 기판의 상부에서 도전성 입자 또는 도전성 입자의 전구체를 뿌린 후, 상기 홈의 내부를 제외한 기판 상면에 뿌려진 도전성 입자 또는 도전성 입자의 전구체를 브러쉬를 포함한 털이기구를 사용하여 제거하는 방법과,After spraying the conductive particles or the precursor of the conductive particles from the upper portion of the substrate, a method of removing the conductive particles or precursors of the conductive particles sprayed on the upper surface of the substrate except the inside of the groove using a hair instrument including a brush, 노즐이 장착된 주입기를 사용하여 상기 홈의 내부로 도전성 입자 또는 도전성 입자의 전구체를 주입하는 방법Method of injecting conductive particles or precursors of conductive particles into the grooves using an injector equipped with a nozzle 중의 어느 한 방법을 사용하는 함몰전극형 태양전지의 제조방법.  The manufacturing method of a depression electrode solar cell using any one of the methods.
KR1020030059670A 2003-08-27 2003-08-27 A solar cell having buried type electrode and fabrication method thereof KR100971747B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030059670A KR100971747B1 (en) 2003-08-27 2003-08-27 A solar cell having buried type electrode and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030059670A KR100971747B1 (en) 2003-08-27 2003-08-27 A solar cell having buried type electrode and fabrication method thereof

Publications (2)

Publication Number Publication Date
KR20050023181A true KR20050023181A (en) 2005-03-09
KR100971747B1 KR100971747B1 (en) 2010-07-21

Family

ID=37230915

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030059670A KR100971747B1 (en) 2003-08-27 2003-08-27 A solar cell having buried type electrode and fabrication method thereof

Country Status (1)

Country Link
KR (1) KR100971747B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101544488B1 (en) * 2013-12-18 2015-08-17 한국원자력연구원 Mount board for surface mount and method of mounting the same of semiconductor sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446597B1 (en) * 1997-05-12 2005-06-07 삼성전자주식회사 Method of manufacturing recessed electrode type solar cell
KR20020026019A (en) * 2000-09-30 2002-04-06 김충섭 Method for making super-fine metal powders
JP2006128156A (en) * 2004-10-26 2006-05-18 Canon Inc Embedded electrode type solar battery and its manufacturing method

Also Published As

Publication number Publication date
KR100971747B1 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
KR101241617B1 (en) Solar cell and method of manufacturing the same
TWI496312B (en) Improved metallisation method for silicon solar cells
JP5649580B2 (en) Manufacturing method of solar cell
JPH10233518A (en) Solar cell and its manufacturing method, and manufacturing method of semiconductor device
CN102232245B (en) Method for producing a metal contact on a semiconductor substrate provided with a coating
WO2010119512A1 (en) Photovoltaic device and method for manufacturing the same
US20100243059A1 (en) Solar battery cell
WO2014192083A1 (en) Solar battery cell, method for producing same, and solar battery module
KR20060125887A (en) Buried-contact solar cells with self-doping contacts
JP2008153670A (en) Method for manufacturing photovoltaic cell
CN104011882A (en) Methods of manufacturing solar cell devices
JP2009533864A (en) Solar cell and method for manufacturing the same
JP2004266023A (en) Solar battery and method of manufacturing the same
JP2010123859A (en) Solar battery element and production process of solar battery element
US20130199606A1 (en) Methods of manufacturing back surface field and metallized contacts on a solar cell device
US8962381B2 (en) Method for manufacturing a solar cell and a solar cell manufactured according to this method
JP2010129872A (en) Solar battery element
CN102473648A (en) Surface treatment of silicon
JP2014522545A (en) A printable medium that contains metal particles and causes etching, and more specifically creates a contact with silicon during solar cell production.
JP2000323735A (en) Photovoltaic device and fabrication thereof
JP4486622B2 (en) Manufacturing method of solar cell
JPWO2009157053A1 (en) Photovoltaic device and manufacturing method thereof
KR20130059320A (en) Solar cell with dielectric back reflective coating and method for the production thereof
JP2016139762A (en) Method of manufacturing solar cell element
JP2005167291A (en) Solar cell manufacturing method and semiconductor device manufacturing method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee