KR20050020885A - Polyethylene terephthalate fibers using stress-strain curve, and process for preparing the same - Google Patents

Polyethylene terephthalate fibers using stress-strain curve, and process for preparing the same Download PDF

Info

Publication number
KR20050020885A
KR20050020885A KR1020030058355A KR20030058355A KR20050020885A KR 20050020885 A KR20050020885 A KR 20050020885A KR 1020030058355 A KR1020030058355 A KR 1020030058355A KR 20030058355 A KR20030058355 A KR 20030058355A KR 20050020885 A KR20050020885 A KR 20050020885A
Authority
KR
South Korea
Prior art keywords
yarn
polyethylene terephthalate
stress
poy
strain curve
Prior art date
Application number
KR1020030058355A
Other languages
Korean (ko)
Other versions
KR100492337B1 (en
Inventor
권익현
최수명
이기환
배종석
주시환
주윤명
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR10-2003-0058355A priority Critical patent/KR100492337B1/en
Publication of KR20050020885A publication Critical patent/KR20050020885A/en
Application granted granted Critical
Publication of KR100492337B1 publication Critical patent/KR100492337B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/084Heating filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/096Humidity control, or oiling, of filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/02Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/48Tyre cords
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/224Selection or control of the temperature during stretching
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/22Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
    • D02J1/228Stretching in two or more steps, with or without intermediate steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PURPOSE: A manufacturing method of polyethylene terephthalate multi-filament yarn having high strength, low shrinkage and 2.5-8denier of single yarn fineness is characterized by controlling a stress-strain curve and fine-structure of partially oriented yarn(POY) to increase drawability on a drawing step and being capable of manufacturing a treated cord having excellent dimensional stability and strength. The multi-filaments are useful for a tire and an industrial belt. CONSTITUTION: Polyethylene terephthalate multi-filament yarn is obtained by the steps of: (A) extruding spun yarn containing over 85mol% of ethylene terephthalate unit and having 0.90-1.2 of inherent viscosity at 290-310deg.C; (B) passing the melted and spun yarn through a delay cooling zone, followed by quenching and solidifying the melted and spun yarn; (C) winding the partially oriented yarn(POY) at spinning velocity making birefringence to 0.05-0.08; and then (D) multi-drawing the wound yarn in total draw ratio of under 2.0. The POY has a stress-strain curve elongating the yarn at 0.5g/d of inherent stress on under 5%, having 20-100g/d of inherent modulus and elongating the yarn at 3.5g/d of stress on over 100%. The polyethylene terephthalate yarn has a stress-strain curve elongating the yarn at 2.0g/d of inherent stress on under 3%, having 50-150g/d of inherent modulus, elongating the yarn at 6.0g/d of stress on under 8% and elongating the yarn from at least 8.0g/d of tensile strength till the yarn is cut. The polyethylene terephthalate yarn has (1) 0.8-1.0 of inherent viscosity, (2) over 8.0g/d of strength, (3) over 10% of elongation, (4) over 0.20 of birefringence, (5) 1.385-1.395 of density and (6) 3-5% of shrinkage.

Description

힘-변형곡선을 이용한 폴리에틸렌테레프탈레이트 섬유 및 이의 제조방법{ Polyethylene terephthalate fibers using stress-strain curve, and process for preparing the same} Polyethylene terephthalate fibers using stress-strain curve, and process for preparing the same}

본 발명은 타이어의 섬유 보강재로서 특히 유용한, 높은 모듈러스(modulus) 및 낮은 수축율(shrinkage)을 갖는 개선된 폴리에스테르 멀티필라멘트사에 관한 것으로, 본 발명의 사는 우수한 치수안정성(dimensional stability) 및 강도(tenacity)를 갖는 처리 코드(treated cord)를 제공한다.The present invention relates to an improved polyester multifilament yarn having high modulus and low shrinkage, which is particularly useful as a fiber reinforcement of a tire, wherein the yarn of the present invention has excellent dimensional stability and tenacity. Provides a treated cord with

폴리에스테르 섬유는 광범위하게 사용되고 있는 섬유 중의 하나로서, 고강력 폴리에스테르 섬유는 고무 보강용 타이어 코드, 좌석 벨트, 콘베이어 벨트, V-벨트 및 호우스(hose) 등을 포함하는 다양한 산업적인 용도에 많이 사용되고 있으며, 특히 고무 타이어의 섬유 보강재로 적용하기 위해 라텍스 처리 및 열 처리를 통해 처리 코드로 전환되는 경우 우수한 치수안정성 및 강도가 요구되고 있다.Polyester fiber is one of the widely used fibers, and high strength polyester fiber is widely used in a variety of industrial applications including rubber cord reinforcement tire cords, seat belts, conveyor belts, V-belts and hoses. It is being used, especially when converted to a treatment cord through latex treatment and heat treatment to apply as a fiber reinforcement of rubber tires, excellent dimensional stability and strength is required.

미국 특허 제 4,101,525 호(데이비스 등) 및 미국 특허 제 4,491,657 호(사이또 등)는 높은 초기 모듈러스 및 낮은 수축율을 갖는 산업용 폴리에스테르 멀티필라멘트사를 개시한다. 그러나, 이들 특허에 개시된 원사(原絲)는 처리 코드로 전환되는 경우 강도가 감소하여 타이어 코드로서 요구되는 특성을 만족하지 못하는 것으로 알려져 있다.US Pat. No. 4,101,525 (Davis et al.) And US Pat. No. 4,491,657 (Cyto et al.) Disclose industrial polyester multifilament yarns having high initial modulus and low shrinkage. However, it is known that the yarns disclosed in these patents do not satisfy the characteristics required as tire cords due to a decrease in strength when converted into treatment cords.

따라서, 멀티필라멘트 폴리에스테르 섬유의 강도를 높이는 방법으로, 미국 특허 제 4,690,866 호에서는 1.2 이상의 높은 고유점도(I.V.)를 갖는 폴리에스테르 칩을 사용하여 방사하는 방법을 제안하였다. 이와 같이 칩의 점도를 높이면 방사장력을 증가시켜 미연신사의 배향 및 결정과 결정을 연결해 주는 타이 체인(tie chain)의 형성을 증가시킴으로써 처리 코드로 전환시 우수한 강도를 나타낼 수 있다. 그러나, 이 방법에서 사용한 높은 고유점도의 폴리에스테르는 고상중합시 표면과 중심 부분의 고유점도 차이가 심해 용융방사하는 경우 점도 불균일에 의해 방사성이 저하되고 필라멘트 컷(cut)이 발생하여 공정성 및 외관이 불량해질 뿐만 아니라, 높은 온도로 용융방사시켜야 하기 때문에 열분해 및 가수분해 등이 발생하여 실제로 방사된 섬유는 칩이 갖는 만큼 높은 점도를 갖지 않는다는 문제점이 있다. Therefore, as a method of increasing the strength of multifilament polyester fibers, US Patent No. 4,690,866 proposes a method of spinning using polyester chips having a high intrinsic viscosity (I.V.) of 1.2 or more. Increasing the viscosity of the chip increases the orientation of the unstretched yarn and increases the formation of a tie chain that connects the crystal to the crystal, thereby exhibiting excellent strength when converted to the treatment cord. However, the high intrinsic viscosity used in this method is very different from the intrinsic viscosity of the surface and the central part during solid state polymerization, so when melt spinning, the radioactivity is lowered due to the viscosity unevenness and filament cut is generated, resulting in fairness and appearance. In addition to being poor, since the thermal radiation and hydrolysis occurs due to the melt spinning at a high temperature, the fibers that are actually spun have a problem that does not have a high viscosity as the chip has.

이러한 관점에서, 본 발명은 POY사의 힘-변형곡선과 미세구조를 조절함으로써 연신단계에서 높은 연신성을 얻을 수 있었다.In this respect, the present invention was able to obtain high stretchability in the stretching step by adjusting the force-strain curve and the microstructure of POY.

본 발명은 POY사의 힘-변형곡선 및 미세구조을 조절함으로써 연신단계에서 연신성을 향상시켜 고강력 폴리에틸렌 테레프탈레이트 섬유에 관한 것으로, POY사가 0.5g/d의 초기응력에 처해졌을 때 5%미만 신장하며, 20 내지 100g/d의 초기 모듈러스를 가지고, 3.5g/d에 처해졌을 때 나아가 최소 100% 신장하는 힘-변형 곡선을 갖고, 복굴절률이 0.05 내지 0.08이 되도록 하는 방사속도로 사를 권취함으로써 연신단계에서 POY사의 연신성을 극대화시켜 물성이 우수한 고강력 폴리에틸렌테레프탈레이트 섬유 및 이의 제조방법을 제공함에 그 목적이 있다. The present invention relates to a high strength polyethylene terephthalate fiber by improving the stretchability in the stretching step by adjusting the force-strain curve and microstructure of the POY company, when the POY company is subjected to an initial stress of 0.5g / d less than 5% elongation Elongation by winding the yarn at a radial velocity with an initial modulus of 20 to 100 g / d, a force-strain curve that extends at least 100% when subjected to 3.5 g / d, and a birefringence of 0.05 to 0.08 The purpose of the present invention is to provide a high strength polyethylene terephthalate fiber with excellent physical properties by maximizing the stretchability of the POY company in the step.

또한, 본 발명의 목적은 우수한 치수안정성 및 강도를 가진 타이어 코드의 제조에 유용한, 개선된 물성을 갖는 고강력 폴리에틸렌 테레프탈레이트 섬유를 제공함에 그 목적이 있다. It is also an object of the present invention to provide a high strength polyethylene terephthalate fiber with improved physical properties, which is useful for the production of tire cords with good dimensional stability and strength.

본 발명은 (A)에틸렌 테레프탈레이트 단위를 85몰% 이상 함유하며 고유점도가 0.90 ∼ 1.2 범위인 방출사를 290 ∼ 310℃의 온도로 압출하는 단계와, (B)이 용융방출사를 지연냉각 구역을 통과시킨 후 급냉 고화시키는 단계와, (C)POY사가 0.5g/d의 초기응력에 처해졌을 때 5%미만 신장하며, 20 내지 100g/d의 초기 모듈러스를 가지고, 3.5g/d에 처해졌을 때 나아가 최소 100% 신장하는 힘-변형 곡선을 갖고, 복굴절률이 0.05 내지 0.08이 되도록 하는 방사속도로 사를 권취하는 단계와, (D) 권취된 사를 2.0배 이하의 총연신비로 다단연신시키는 단계를 포함하는 산업용 폴리에틸렌테레프탈레이트 멀티 필라멘트사의 제조 방법에 관한 것이다.The present invention comprises the steps of extruding a discharge yarn containing (A) ethylene terephthalate units of 85 mol% or more and intrinsic viscosity in the range of 0.90 to 1.2 at a temperature of 290 to 310 ℃, (B) delay cooling the melt release yarn Quench solidification after passing through the zone and (C) POY stretches less than 5% when subjected to an initial stress of 0.5 g / d, with an initial modulus of 20 to 100 g / d, at 3.5 g / d Winding the yarn at a radial velocity such that the birefringence is 0.05 to 0.08, with a force-strain curve extending at least 100% when it is lost; and (D) multi-stretching the wound yarn to a total draw ratio of 2.0 times or less. It relates to a method for producing industrial polyethylene terephthalate multifilament yarn comprising the step.

또한 본 발명은 하기의 물성을 만족하고 동시에 2.0g/d의 초기 응력에 처해졌을 때 3% 미만 신장하며, 50 내지 150g/d의 초기 모듈러스 값을 가지고, 6.0g/d의 중기 응력에 처해졌을 때 8% 미만 신장하며, 최소 8.0g/d의 인장강도로부터 사가 절단될 때까지 신장하는, 힘-변형 곡선을 갖는 폴리에틸렌 테레프탈레이트 섬유에 관한 것이다. In addition, the present invention satisfies the following physical properties and at the same time less than 3% when subjected to an initial stress of 2.0 g / d, having an initial modulus value of 50 to 150 g / d, and subjected to medium stress of 6.0 g / d And a polyethylene-terephthalate fiber having a force-strain curve when stretched to less than 8% when stretched to a yarn cut from a tensile strength of at least 8.0 g / d.

(1) 0.8 내지 1.0의 고유점도, (2) 8.0g/d 이상의 강도, (3) 10% 이상의 신도, (4) 0.20 이상의 복굴절률, (5) 1.385 내지 1.395의 밀도, (6) 3 내지 5%의 수축률(1) intrinsic viscosity of 0.8 to 1.0, (2) strength of 8.0 g / d or more, (3) elongation of 10% or more, (4) birefringence of 0.20 or more, (5) density of 1.385 to 1.395, (6) 3 to 5% shrinkage

본 발명에 사용되는 폴리에틸렌테레프탈레이트 중합물은 최소한 85몰%의 에틸렌테레프탈레이트 단위를 함유하며, 바람직하게는 에틸렌테레프탈레이트 단위만으로 구성된다. The polyethylene terephthalate polymer used in the present invention contains at least 85 mol% of ethylene terephthalate units, and preferably consists only of ethylene terephthalate units.

선택적으로, 상기 폴리에틸렌테레프탈레이트는 에틸렌글리콜 및 테레프탈렌 디카르복시산 혹은 이들의 유도체 이외의 하나 또는 그 이상의 에스테르-형성 성분으로부터 유도된 소량의 유니트를 공중합체 유니트로서 편입할 수 있다. 폴리에틸렌 테레프탈레이트 유니트와 공중합가능한 다른 에스테르 형성 성분의 예로는 1,3-프로판디올, 1,4-부탄디올, 1,6-헥산디올등과 같은 글리콜과, 테레프탈산, 이소프탈산, 헥사하이드로테레프탈산, 스틸벤 디카르복시산, 비벤조산, 아디프산, 세바스산, 아젤라산과 같은 디카르복시산을 포함한다.Optionally, the polyethylene terephthalate can incorporate small units derived from one or more ester-forming components other than ethylene glycol and terephthalene dicarboxylic acid or derivatives thereof as copolymer units. Examples of other ester forming components copolymerizable with polyethylene terephthalate units include glycols such as 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, and the like, terephthalic acid, isophthalic acid, hexahydroterephthalic acid, stilbene Dicarboxylic acids such as dicarboxylic acid, bibenzoic acid, adipic acid, sebacic acid, azelaic acid.

본 발명에 따른 폴리에틸렌 테레프탈레이트 칩은, 바람직하게는 테레프탈산(TPA)과 에틸렌글리콜 원료를 2.0 내지 2.3의 비율로 용융혼합하고, 이 용융혼합물을 에스테르 교환반응 및 축중합반응시켜 고유점도 0.60 내지 0.70 수준의 로우 칩(raw chip)을 만든 후, 240 내지 260℃의 온도 및 진공 하에서 0.90 내지 1.20의 고유점도 및 30 ppm 이하의 수분률을 갖도록 고상중합된다. The polyethylene terephthalate chip according to the present invention preferably melt-mixes terephthalic acid (TPA) and ethylene glycol raw materials at a ratio of 2.0 to 2.3, and the melt mixture is transesterified and condensation-polymerized to give an intrinsic viscosity of 0.60 to 0.70. After making a raw chip, the solid phase is polymerized to have an intrinsic viscosity of 0.90 to 1.20 and a moisture content of 30 ppm or less under a temperature of 240 to 260 ° C and a vacuum.

칩의 고유점도가 0.90보다 낮으면 최종 연신사의 고유점도가 낮아져 열처리 후 처리 코드로서 고강도를 발휘할 수 없게 되고, 칩의 고유점도가 1.20보다 높으면 방사장력이 지나치게 증가하고 방출사의 단면이 불균일해져 연신 중 필라멘트 컷이 많이 발생하여 연신작업성이 불량해진다. 칩의 수분율이 30ppm을 초과하면 용융방사 중 가수분해가 유발된다. If the intrinsic viscosity of the chip is lower than 0.90, the intrinsic viscosity of the final drawn yarn is lowered, so that it is impossible to exhibit high strength as a treatment cord after heat treatment. If the intrinsic viscosity of the chip is higher than 1.20, the radial tension is excessively increased and the cross section of the emitter is uneven, thus stretching is in progress. Many filament cuts generate | occur | produce and drawability worsens. If the moisture content of the chip exceeds 30ppm, hydrolysis occurs during melt spinning.

본 발명은 선택적으로 축중합 반응시, 중합촉매로서는 안티몬 화합물, 바람직하게는 삼산화 안티몬을 최종 중합체 중의 안티몬 금속으로서의 잔존량이 180 내지 300 ppm이 되도록 하는 양으로 첨가할 수 있는데, 이 양이 180 ppm보다 적으면 중합반응속도가 느려져 중합효율이 저하되고, 300 ppm보다 많으면 필요 이상의 안티몬 금속이 이물질로 작용하여 방사연신 작업성을 떨어뜨린다. In the present invention, optionally, during the polycondensation reaction, as a polymerization catalyst, an antimony compound, preferably antimony trioxide, may be added in an amount such that the amount remaining as an antimony metal in the final polymer is from 180 to 300 ppm. When less, the polymerization reaction rate is lowered and the polymerization efficiency is lowered. When the amount is higher than 300 ppm, more than necessary antimony metal acts as a foreign material, which degrades radio-stretching workability.

이와 같이 제조된 폴리에틸렌 테레프탈레이트 칩을 본 발명의 방법에 따라 섬유화하며, 도 1은 이러한 본 발명의 하나의 실시양태에 따른 제조공정을 개략적으로 도시한다.The polyethylene terephthalate chip thus prepared is fiberized according to the method of the present invention, and FIG. 1 schematically shows a manufacturing process according to one embodiment of this invention.

단계 (A)에서, 폴리에틸렌 테레프탈레이트 칩을 팩(1) 및 노즐(2)을 통해 바람직하게는 290 내지 310℃의 방사온도에서, 바람직하게는 200 내지 800의 방사 드래프트비(최초 권취롤러 위에서의 선속도/노즐에서의 선속도)로 저온 용융방사함으로써 열분해 및 가수분해에 의한 중합체의 점도의 저하를 방지할 수 있다. 방사 드래프트비가 200보다 작으면 필라멘트 단면 균일성이 나빠져 연신작업성이 현저히 떨어지고, 800을 초과하면 방사 중 필라멘트 파손이 발생하여 정상적인 원사를 생산하기 어렵게 된다. In step (A), the polyethylene terephthalate chip is passed through a pack 1 and a nozzle 2 at a spinning temperature of preferably 290 to 310 ° C., preferably of a spinning draft ratio of 200 to 800 (on the first winding roller). Low-temperature melt spinning at a linear velocity / linear velocity) can prevent a decrease in the viscosity of the polymer due to thermal decomposition and hydrolysis. If the draft ratio is less than 200, the uniformity of the filament cross section is worse, the drawing workability is significantly reduced. If the draft ratio exceeds 800, filament breakage occurs during spinning, making it difficult to produce a normal yarn.

단계 (B)에서, 상기 단계 (A)의 용융방출사(4)를 냉각구역(3)을 통과시켜 급냉고화시키는바, 필요에 따라 노즐(2) 직하에서 냉각구역(3) 시작점까지의 거리, 즉 후드의 길이(L) 구간에 짧은 가열장치를 설치할 수 도 있다. In step (B), the melt discharged yarn (4) of step (A) is quenched by passing through the cooling zone (3), if necessary, the distance from the nozzle (2) directly below the starting point of the cooling zone (3). That is, a short heating device may be installed in the length (L) of the hood.

이 구역을 지연 냉각구역 또는 가열구역이라 칭하는데, 이 구역은 50 내지 250mm의 길이 및 250 내지 400℃의 온도(공기접촉 표면온도)를 갖는다.This zone is called delayed cooling zone or heating zone, which has a length of 50 to 250 mm and a temperature of 250 to 400 ° C. (air contact surface temperature).

냉각구역(3)에서는 냉각공기를 불어주는 방법에 따라 오픈 냉각(open quenching)법, 원형 밀폐 냉각(circular closed quenching)법 및 방사형 아웃플로우 냉각(radial outflow quenching)법 등을 적용할 수 있으나, 이것으로 제한되지는 않는다. 이어, 냉각구역(3)을 통과하면서 고화된 방출사(4)를 유제 부여장치(5)에 의해 0.5 내지 1.0%로 오일링할 수 있다.In the cooling zone 3, an open quenching method, a circular closed quenching method, and a radial outflow quenching method may be applied depending on a method of blowing cooling air. It is not limited to. Subsequently, the discharged yarn 4 solidified while passing through the cooling zone 3 can be oiled by the emulsion applying device 5 to 0.5 to 1.0%.

단계(C)에서, POY사가 0.5g/d의 초기응력에 처해졌을 때 5%미만 신장하며, 20 내지 100g/d의 초기 모듈러스를 가지고, 3.5 g/d에 처해졌을 때 나아가 최소 100% 신장하는 힘-변형 곡선을 갖고, 복굴절률이 0.05 내지 0.08이 되도록 하는 방사속도로 사를 권취하며, 바람직한 방사속도는 2000 내지 4,000m/분이다. In step (C), POY stretches less than 5% when subjected to an initial stress of 0.5 g / d, with an initial modulus of 20 to 100 g / d, and further elongates at least 100% when subjected to 3.5 g / d. It has a force-strain curve and winds the yarn at a spinning speed such that the birefringence is 0.05 to 0.08, with a preferred spinning speed being 2000 to 4,000 m / min.

본 발명에서는 POY사의 미세구조를 조절하는 인자로서는 POY사의 힘-변형 곡선 및 복굴절률이 사용된다. In the present invention, POY's force-strain curve and birefringence are used as factors for controlling the microstructure of the POY yarn.

특히, 본 발명에서는 POY사가 0.5g/d의 초기응력에 처해졌을 때 5%미만 신장하며, 20 내지 100g/d의 초기 모듈러스를 가지고, 3.5 g/d에 처해졌을 때 나아가 최소 100% 신장하는, 힘-변형 곡선을 갖는 것을 특징으로 한다. In particular, in the present invention, the POY yarn stretches less than 5% when subjected to an initial stress of 0.5 g / d, has an initial modulus of 20 to 100 g / d, and further stretches at least 100% when subjected to 3.5 g / d, It is characterized by having a force-strain curve.

상기 힘 변형곡선을 갖는 POY사가 이후 연속적으로 진행되는 연신 공정에서 연신성을 극대화 할 수 있다. POY having the force deformation curve can be maximized in the stretching process in a subsequent stretching process.

또한 본 발명에서는 POY사의 복굴절률이 상기 힘-변형곡선과 함께 미연신상의 미세구조를 조절하는 인자로 사용된다. In addition, in the present invention, birefringence of POY is used as a factor for controlling the microstructure of the unstretched phase together with the force-strain curve.

특히 본 발명에서는 앞서 설명한 바와 같이 POY사 힘 변형곡선과 복굴절률이 상기 기재된 범위을 만족하여만 연신공정에서 우수한 연신성을 얻을 수 있었다. 이러한 이유는 POY사의 복굴절률이 0.05보다 작으면 연신단계에서 결정화속도가 너무 느려져 충분히 결정들 간의 타이 체인의 형성을 유도할 수 없으며, 복굴절률이 0.08를 초과하면 연신 중에 결정화가 너무 급속히 진행되어 오히려 연신성이 떨어져 고강력사를 제조하기가 어렵다. In particular, in the present invention, as described above, only the POY yarn strain curve and the birefringence satisfy the above-described range, thereby obtaining excellent stretchability in the stretching process. This is because if the birefringence of POY is less than 0.05, the crystallization rate is too slow to induce the formation of tie chains between the crystals in the stretching step. If the birefringence exceeds 0.08, the crystallization progresses too rapidly during stretching. It is difficult to manufacture high strength yarns due to poor elongation.

단계 (D)에서, 첫 번째 연신 롤러(6)를 통과한 사를 스핀드로(spin draw) 공법으로 일련의 연신 롤러(7, 8, 9 및 10)를 통과시키면서 총연신비 2.0배 이하, 바람직하기로는 1.5 내지 2.0배로 연신시킴으로써 최종 연신사(11)를 얻는다.In step (D), the yarn having passed through the first stretching roller 6 is passed through a series of stretching rollers 7, 7, 8, 9 and 10 by a spin draw method while the total draw ratio is 2.0 times or less, preferably The final stretched yarn 11 is obtained by stretching 1.5 to 2.0 times.

또한 본 발명에서는 상기 POY사를 3단 연신하고, 각각의 연신온도를 POY사의 유리전이온도보다 95℃이하로 하는 것이 특징으로 하는데 이는 연신온도가 유리전이온도보다 낮으면 연신성이 떨어지고, 또한 95℃를 초과하면 연신중 결정화가 급속히 진행되어 3단 연신이 어렵다. In addition, in the present invention, the POY yarn is drawn in three stages, and each drawing temperature is 95 ° C. or less than the POY yarn glass transition temperature, which is lowered when the drawing temperature is lower than the glass transition temperature. If it exceeds C, crystallization during the stretching proceeds rapidly, making it difficult to stretch in three steps.

방사 시 노즐과 냉각부 상단과의 거리를 가능한 좁히는 것이 최종 연신사에서 높은 강력을 갖도록 하는데 유리하나, 방사 시 노즐 밑에서 가열 장치 하단까지의 거리가 50mm 이하가 되든지(실제적으로는 노즐 직하에 길이가 약 50mm인 방사블럭이 존재함으로 길이가 50mm인 가열장치를 사용하면 노즐 밑에서 가열장치 하단까지의 거리는 100mm가 됨), 가열장치 하단과 냉각장치 상단과의 거리가 50 ∼ 150mm를 벗어나면 POY사의 불균일이 상당수준 발생되어 정상적인 물성을 내는 연신이 불가능하다. While narrowing the distance between the nozzle and the top of the cooling section as possible during spinning, it is advantageous to have high strength in the final stretch yarn, but during spinning, the distance from the nozzle to the bottom of the heating device is less than 50 mm (actually the length directly under the nozzle Since there is a radial block of about 50mm, the distance from the bottom of the heater to the bottom of the heater becomes 100mm when using a heater of 50mm in length.If the distance between the bottom of the heater and the top of the chiller is 50 ~ 150mm, the POY's unevenness This occurs to a considerable degree, and stretching that is not normal physical properties is impossible.

본 발명의 방법에 따라 제조된 연신 폴리에틸렌 테레프탈레이트 섬유는 하기의 물성을 만족하고 동시에 2.0g/d의 초기 응력에 처해졌을 때 3% 미만 신장하며, 50 내지 150g/d의 초기 모듈러스 값을 가지고, 6.0g/d의 중기 응력에 처해졌을 때 8% 미만 신장하며, 최소 8.0g/d의 인장강도로부터 사가 절단될 때까지 신장하는, 힘-변형 곡선을 갖는다.Stretched polyethylene terephthalate fibers produced according to the method of the present invention satisfy the following properties and at the same time less than 3% when subjected to an initial stress of 2.0 g / d, has an initial modulus value of 50 to 150 g / d, It has a force-strain curve that elongates to less than 8% when subjected to medium stress of 6.0 g / d and elongates until the yarn is cut from a tensile strength of at least 8.0 g / d.

(1) 0.8 내지 1.0의 고유점도, (2) 8.0g/d 이상의 강도, (3) 10% 이상의 신도, (4) 0.20 이상의 복굴절률, (5) 1.385 내지 1.395의 밀도, (6) 3 내지 5%의 수축률(1) intrinsic viscosity of 0.8 to 1.0, (2) strength of 8.0 g / d or more, (3) elongation of 10% or more, (4) birefringence of 0.20 or more, (5) density of 1.385 to 1.395, (6) 3 to 5% shrinkage

또한, 본 발명에 의하여 제조된 연신사는 통상적인 처리방법에 의해 처리 코드로 전환 될 수 있다. In addition, the drawn yarn produced according to the present invention can be converted into a treatment code by a conventional treatment method.

예를 들면, 1,500 데니어의 연신사 2가닥을 370tpm(twist/m)(일반적인 폴리에틸렌테레프탈레이트 처리 코드 기준 꼬임 수)로 합연(plying & cabling)하여 코드사를 제조한 후 먼저 1차 디핑탱크(1st Dipping Tank)에서 접착액 [이소시아네이트 (Isocyanate) + 에폭시(Epoxy) 혹은 PCP 수지 + RFL(Resorcynol- Formalin- Latex)]에 침지 시킨 후, 건조지역(Drying Zone)에서 130 ∼ 160℃로 1.0 ∼ 4.0%의 스트렛치(Stretch)하에서 150 ∼ 200초간 건조하고, 고온연신지역(Hot Stretching Zone)에서 235 ∼ 245℃의 온도로 2.0 ∼ 6.0%의 연신(Stretch)으로 45 ∼ 80초간 열고정(Heat Set)한 후, 2차 디핑탱크(2nd Dipping Tank)에서 다시 접착액(RFL)에 침지하여 140 ∼ 160℃의 온도로 90 ∼ 120초간 건조 후, 이어서 235 ∼ 245℃의 온도와 1.0 ∼ 5.0%의 리랙스(Relax)으로 45 ∼ 80초간 열고정(Heat Set)시켜 디핑처리한 코드(dipped cord)를 제조한다. For example, two strands of stretched yarn of 1,500 deniers are plyed & cabling to 370 tpm (twist / m) (the number of twists based on a typical polyethylene terephthalate treated cord) to produce cord yarn, and then the first dipping tank (1st After dipping into adhesive liquid [Isocyanate + Epoxy or PCP resin + RFL (Resorcynol- Formalin- Latex)] in Dipping Tank), 1.0 ~ 4.0% at 130 ~ 160 ℃ in Drying Zone. Dry for 150 to 200 seconds under Stretch, and Heat Set for 45 to 80 seconds with 2.0 to 6.0% of Stretch at a temperature of 235 to 245 ° C in a Hot Stretching Zone After immersion in the adhesive liquid (RFL) again in a 2nd Dipping Tank, and dried for 90 to 120 seconds at a temperature of 140 ~ 160 ℃, followed by a temperature of 235 ~ 245 ℃ and 1.0 ~ 5.0% Li Heat-set for 45 to 80 seconds with a lax to produce a dipped cord. All.

이와 같이 제조된 처리 코드(1,500데니어 2가닥 상하연 합연 370tpm 기준)는 7.0이하의 E2.25+FS 및 7.0g/d 이상의 강도를 갖는다(단, E2.25 ; 2.25g/d에서의 신장률, FS ; 자유수축률).The treatment cord thus prepared (based on 370 tpm of 1,500 denier two-strand top and bottom joints) has an E2.25 + FS of less than 7.0 and strengths of 7.0 g / d or more (except E2.25; elongation at 2.25 g / d, FS; free shrinkage).

이와 같이 본 발명에 의한 높은 모듈라스 및 저수축률의 폴리에틸렌테레프탈레이트 멀티 필라멘트사로 제조한 처리 코드는 치수안정성 및 강도가 우수하여 타이어 및 공업용 벨트 등의 고무제품의 보강재로서 또는 기타 산업적 용도에 유용하게 사용될 수 있다.As such, the treatment cord made of the high modulus and low shrinkage polyethylene terephthalate multifilament yarn according to the present invention has excellent dimensional stability and strength, so that it can be usefully used as a reinforcement material for rubber products such as tires and industrial belts or for other industrial uses. Can be.

이하, 본 발명을 하기 실시예에 의거하여 좀더 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 한정하지는 않으며, 본 발명의 실시예 및 비교예에서 제조된 사 및 처리 코드의 각종 물성 평가는 다음과 같은 방법으로 실시하였다.Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are not intended to limit the present invention, but are not limited thereto. Various physical property evaluations of the yarns and treatment cords prepared in Examples and Comparative Examples of the present invention were performed by the following methods.

(1) 고유점도(I.V.)(1) Intrinsic viscosity (I.V.)

페놀과 1,1,2,3-테트라클로로에탄올을 6:4의 무게비로 혼합한 시약(90℃)에 시료 0.1g을 농도가 0.4g/100ml 되도록 90분간 용해시킨 후 우베로데(Ubbelohde) 점도계에 옮겨담아 30℃ 항온조에서 10분간 유지시키고, 점도계와 흡인장치(aspirator)를 이용하여 용액의 낙하 초수를 구했다. 용매의 낙하 초수도 동일한 방법으로 구한 다음, 하기 수학식 1 및 2에 의해 R.V.값 및 I.V.값을 계산하였다.After dissolving 0.1 g of the sample in a reagent (90 ° C.) mixed with phenol and 1,1,2,3-tetrachloroethanol at a weight ratio of 6: 4 for 90 minutes to give a concentration of 0.4g / 100ml, Ubbelohde Transfer to a viscometer was carried out for 30 minutes in a 30 degreeC thermostat, and the drop number of seconds of the solution was calculated | required using a viscometer and an aspirator. The falling seconds of the solvent was also determined in the same manner, and then the R.V.value and the I.V.value were calculated by the following equations (1) and (2).

상기 식에서, C는 용액 중의 시료의 농도(g/100ml)를 나타낸다.Where C represents the concentration of the sample in solution (g / 100ml).

(2) 강신도(2) strength

인스트론(Instron) 5565(인스트론사제, 미국)를 이용하여, ASTM D 885의 규정에 따라 표준 상태(20℃, 65% 상대습도)하에서 250mm의 시료 길이, 300mm/분의 인장속도 및 20turns/m의 조건으로 강신도를 측정하였다.Using Instron 5565 (manufactured by Instron, USA), 250 mm sample length, 300 mm / min tensile speed and 20 turns / s under standard conditions (20 ° C., 65% relative humidity) according to ASTM D 885 Elongation was measured under conditions of m.

(3) 밀도 (3) density

23℃의 온도에서 크실렌/사염화탄소 밀도구배관을 이용하여 시료의 밀도(ρ)를 구하였다. 이때, 밀도구배관은 1.34∼1.41 g/cm2 범위의 밀도를 가지며 ASTM D 1505의 규정에 따라 제조된 것을 사용하였다.The density (ρ) of the sample was calculated | required using the xylene / carbon tetrachloride density gradient tube at the temperature of 23 degreeC. At this time, the density gradient pipe has a density in the range of 1.34 ~ 1.41 g / cm 2 and was prepared according to the provisions of ASTM D 1505.

(4) 수축률(4) shrinkage

시료를 20℃, 65% 상대습도의 표준 상태 하에서 24시간 이상 방치한 후 0.1g/d에 상당하는 중량을 달아 길이(L0)를 측정하고, 무장력 상태 하에서 드라이 오븐을 이용하여 150℃하에서 30분간 처리한 다음 꺼내어 4시간 이상 방치한 후 하중을 달아 길이(L)를 측정하여 하기 수학식 3에 의해 수축률을 계산하였다.The sample was left at 20 ° C. and 65% relative humidity for at least 24 hours, and then weighed at a weight corresponding to 0.1 g / d to measure the length (L 0), and at 150 ° C. for 30 minutes using a dry oven under no tension. After the treatment was taken out and left for 4 hours or more, the load was measured to measure the length (L), and the shrinkage ratio was calculated by the following Equation 3.

(5) 중간신도(5) Intermediate Shinto

강신도 S-S 커브 상에서 원사는 하중 4.5g/d에서의 신도를, 처리 코드는 하중 2.25g/d에서의 신도를 측정하여 중간신도로 하였다.On the S-S curve, the yarn was elongated at 4.5 g / d and the treated cord was elongated at 2.25 g / d.

(6) 치수안정성(6) Dimensional stability

처리 코드의 치수안정성(%)은 타이어 측벽 결각화(Side Wall Indentation, SWI) 및 핸들링에 관계되는 물성으로서 주어진 수축률에서의 높은 모듈러스로 정의되고, E2.25(2.25g/d에서의 신장률)+FS(자유수축률)는 서로 다른 열처리과정을 거친 처리 코드에 대한 치수안정성의 척도로서 유용하며 낮을수록 더 우수한 치수안정성을 나타낸다.The dimensional stability (%) of the treatment cord is defined as the high modulus at a given shrinkage as properties related to tire side wall indentation (SWI) and handling, and E 2.25 (elongation at 2.25 g / d) + FS Free Shrinkage is useful as a measure of dimensional stability for treatment codes that have undergone different heat treatments, and the lower the better the dimensional stability.

(7) 복굴절률(7) birefringence

베레크 보상기(Berek compensator)가 구비된 편광현미경을 사용하여 하기의 방법으로 측정한다.It is measured by the following method using a polarizing microscope equipped with a Berek compensator.

·Polarizer와 analyzer를 수직한 위치로 놓는다.(→직교편광)Place the polarizer and analyzer in a vertical position (→ orthogonal polarization).

·Compensator를 analyzer와 45°각도(현미경 N-S방향에 45°)로 삽입한다.Insert the compensator with the analyzer at a 45 ° angle (45 ° in the microscope N-S direction).

·시료를 Stage에 올린 후 diagonal position(nγ-direction: Polarizer와 45°각도)로 놓는다.(이 위치에서 black compensation band가 나타난다)Place the sample on the stage and place it in a diagonal position (45 ° angle with the polarizer) (the black compensation band appears at this position).

·Compensator의 micrometer screw를 오른쪽으로 회전시키면서 시료의 중앙이 가장 어두워지는 지점에서의 눈금을 읽는다.• Rotate the micrometer screw of the compensator to the right and read the scale at the darkest point of the sample.

·다시 반대방향으로 회전시키면서 마찬가지로 가장 어두워지는 지점에서 눈금을 읽는다.· Rotate in the opposite direction again and read the scale at the darkest point.

·위에서 읽은 눈금의 차를 2로 나누어 제작회사에서 만든 표를 참조하여 retardation(γ, nm)을 구한다.• Divide the difference between the two readings above by 2 to get the retardation (γ, nm) referring to the table made by the manufacturer.

·Compensator와 analyzer를 제거하고 eyefilar micrometer를 사용하여 시료의 두께(d, nm)를 측정한다.Remove the compensator and analyzer and measure the sample thickness (d, nm) using an eyefilar micrometer.

·이렇게 측정된 retardation과 두께를 아래 식에 대입하여 시료의 복굴절(Δn)을 구한다. Δn= γ/dObtain the birefringence (Δn) of the sample by substituting the measured retardation and thickness into the following equation. Δn = γ / d

[실시예 1]Example 1

안티몬 금속을 220 ppm 포함하는 고유점도(I.V.) 1.10, 수분률 20 ppm의 고상중합 폴리에틸렌 테레프탈레이트 칩을 제조하였다. 제조된 칩을 압출기를 사용하여 285℃의 온도에서 900g/분의 토출량 및 410의 방사 드래프트비로 용융방사하였다. 이어, 방출사를 노즐 직하 길이 60mm의 가열구역(분위기온도 300℃) 및 길이 500mm의 냉각구역(20℃, 0.5m/초의 풍속을 갖는 냉각공기 취입)을 통과시켜 고화시킨 다음 방사 유제로 오일링하였다. 이 POY사를 2700m/분의 방사속도로 권취하고, 제1단계 연신은 60℃에서 1.4배로, 제2단계 연신은 70℃에서 1.1배로, 제3단계 연신은 70℃에서 1.3배로 수행하고, 230℃에서 열고정하고 2% 이완시킨 다음 권취하여 1500 데니어의 최종 연신사(원사)를 제조하였다.A solid-state polymerized polyethylene terephthalate chip having an intrinsic viscosity (I.V.) of 1.10 and a moisture content of 20 ppm containing 220 ppm of antimony metal was prepared. The produced chips were melt spun using an extruder at a discharge rate of 900 g / min and a spin draft ratio of 410 at a temperature of 285 ° C. Subsequently, the discharged yarn is solidified through a 60 mm long heating zone (atmosphere temperature 300 ° C.) and a 500 mm long cooling zone (20 ° C., cooling air blowing with a wind speed of 0.5 m / sec), followed by oiling with a spinning emulsion. It was. The POY was wound at a spinning speed of 2700 m / min, the first stage stretching was 1.4 times at 60 ° C, the second stage stretching was 1.1 times at 70 ° C, and the third stage was 1.3 times at 70 ° C, 230 After heat setting at 2 ° C., 2% relaxation and winding, a final drawn yarn (yarn) of 1500 denier was produced.

제조된 원사 2가닥을 370 turns/m로 상하연하여 코드 사를 제조한 후, 이 코드 사를 딥핑 탱크에서 (PCP 수지+RFL)의 접착액에 침적한 다음 건조 지역에서 170℃로 2.0% 연신 하에 150초간 건조하고 고온 연신 지역에서 240℃로 6.0% 연신 하에 150초간 열고정한 후, 다시 RFL에 침적한 다음 170℃로 100초간 건조하고 240℃로 -4% 연신하에 40초간 열고정시켜 처리 코드를 제조하였다.After two strands of yarn were rolled up and down at 370 turns / m to prepare cord yarns, the cord yarns were immersed in the adhesive solution of (PCP resin + RFL) in a dipping tank and then stretched 2.0% at 170 ° C. in a dry area After drying for 150 seconds and heat setting for 150 seconds under 6.0% stretching at 240 ° C. in a high temperature stretching area, immersing in RFL again, drying for 100 seconds at 170 ° C. and heat setting for 40 seconds under -4% stretching at 240 ° C. Was prepared.

이와 같이 제조된 연신사 및 처리 코드의 물성을 평가하여 하기 표 2에 나타내었다.The physical properties of the drawn yarn and the treated cord thus prepared are shown in Table 2 below.

[실시예 2 내지 5 및 비교예 1 내지 4][Examples 2 to 5 and Comparative Examples 1 to 4]

칩의 고유점도, 방사온도, 가열구역의 길이 또는 온도, 또는 POY사의 복굴절률을 하기 표 1에 나타낸 바와 같이 변화시키면서 상기 실시예 1과 동일한 방법으로 실험을 수행하여 연신사 및 처리 코드를 제조하였다.A stretch yarn and a treatment cord were prepared by performing experiments in the same manner as in Example 1 while changing the intrinsic viscosity of the chip, the spinning temperature, the length or temperature of the heating zone, or the birefringence of POY yarn as shown in Table 1 below. .

이와 같이 제조된 연신사 및 처리 코드의 물성을 평가하여 하기 표 2에 나타내었다.The physical properties of the drawn yarn and the treated cord thus prepared are shown in Table 2 below.

[표 1]TABLE 1

구분division 칩고유점도Chip specific viscosity 방사온도(℃)Spinning temperature (℃) 단사섬도A single island 가열구역Heating zone POY사POY Company 길이(㎝)Length (cm) 온도(℃)Temperature (℃) 복굴절율Birefringence 고유점도Intrinsic viscosity 0.5g/d 하중에서 신도(%)% Elongation at 0.5g / d load 3.5g/d 하중에서 신도(%)% Elongation at 3.5g / d load 실1Thread 1 1.101.10 285285 3.03.0 1010 290290 0.0650.065 0.960.96 2.12.1 111111 실2Thread 2 1.101.10 285285 3.03.0 1010 290290 0.0700.070 0.960.96 2.02.0 108108 실3Thread 3 1.101.10 285285 3.03.0 1010 310310 0.0700.070 0.950.95 2.22.2 115115 실4Thread 4 1.101.10 285285 3.03.0 1010 310310 0.0700.070 0.950.95 2.32.3 114114 실5Thread 5 1.101.10 285285 3.03.0 1010 310310 0.0700.070 0.950.95 2.32.3 113113 비1Rain 1 1.051.05 290290 3.03.0 66 290290 0.0600.060 0.930.93 5.45.4 9797 비2B2 1.191.19 295295 3.03.0 1010 310310 0.0750.075 0.960.96 6.06.0 9393 비3Rain 3 1.101.10 285285 3.03.0 1515 290290 0.0750.075 0.960.96 5.25.2 9292 비4Rain 4 1.101.10 285285 3.03.0 1010 290290 0.0780.078 0.960.96 5.45.4 9696

[표 2]TABLE 2

구분division 연신사Drawing company 처리코드Processing code 비고Remarks 고유점도Intrinsic viscosity 복굴절율Birefringence 밀도density 강도(g/d)Strength (g / d) 중간신도(%)Intermediate Elongation (%) 신도(%)Elongation (%) 수축율(%)Shrinkage (%) 강도(g/d)Strength (g / d) 중간신도(%)Intermediate Elongation (%) 수축율(%)Shrinkage (%) E2.25+FS(%)E 2.25 + FS (%) 실1Thread 1 0.950.95 0.210.21 1.3911.391 8.58.5 6.06.0 11.511.5 4.44.4 7.37.3 3.83.8 2.22.2 6.06.0 실2Thread 2 0.950.95 0.210.21 1.3921.392 8.48.4 5.85.8 11.511.5 4.74.7 7.07.0 3.73.7 2.72.7 6.46.4 실3Thread 3 0.940.94 0.200.20 1.3901.390 8.58.5 5.75.7 11.511.5 4.74.7 7.17.1 3.73.7 2.82.8 6.56.5 실4Thread 4 0.940.94 0.190.19 1.3931.393 8.88.8 5.95.9 11.211.2 4.74.7 7.37.3 3.53.5 2.72.7 6.26.2 실5Thread 5 0.940.94 0.190.19 1.3921.392 8.98.9 5.95.9 11.111.1 4.74.7 7.37.3 3.63.6 2.62.6 6.26.2 비1Rain 1 0.920.92 0.220.22 1.3871.387 7.17.1 5.95.9 10.810.8 4.64.6 6.36.3 3.73.7 2.72.7 6.46.4 비2B2 0.940.94 0.240.24 1.3951.395 8.08.0 6.26.2 10.910.9 4.74.7 ■■■■ 비3Rain 3 0.950.95 0.210.21 1.3901.390 8.18.1 5.95.9 11.111.1 4.74.7 6.96.9 3.73.7 2.72.7 6.46.4 비4Rain 4 0.950.95 0.210.21 1.3901.390 7.27.2 6.06.0 11.011.0 4.64.6 6.56.5 3.93.9 2.72.7 6.66.6

■ : 외관 불량, ■■ : 외관이 극히 불량하여 처리 코드의 제조가 의미 없음. ■: Poor appearance, ■■: The appearance of extremely poor treatment code is meaningless.

본 발명은 POY사의 힘-변형곡선 및 미세구조을 조절함으로서 연신단계에서 연신성을 향상시켜 제조된 산업용 폴리에틸렌테레프탈레이트 멀티 필라멘트사는 강도가 8.5g/d 이상, 수축률이 2 내지 4%로서 높은 강도와 낮은 수축률을 가지므로 치수안정성과 강도가 높은 처리코드를 제공하며, 그 결과 타이어나 공업용 벨트 등의 산업용으로 유용하게 사용될 수 있다. Industrial Polyethylene terephthalate multifilament yarn manufactured by improving the stretchability in the stretching step by adjusting the force-strain curve and microstructure of the POY company is strength of 8.5g / d or more, shrinkage rate of 2 to 4%, high strength and low Since it has a shrinkage ratio, it provides a processing code with high dimensional stability and strength, and as a result, it can be usefully used for industrial purposes such as tires and industrial belts.

또 본 발명은 단사섬도가 2.5 ∼ 8데니어이고 총섬도가 1,000데니어 이상이며 산업용 폴리에틸렌테레프탈레이트 멀티 필라멘트사를 제조 할 수 있다. In addition, the present invention has a single yarn fineness of 2.5 to 8 deniers and a total fineness of 1,000 deniers or more to produce an industrial polyethylene terephthalate multifilament yarn.

도 1는 본 발명의 섬유방사공정을 예시한 공정개략도 이다.1 is a process schematic diagram illustrating a fiber spinning process of the present invention.

도 2은 본 발명의 폴리에텔렌 테레프탈레이트 POY사의 힘-변형 곡선 일예 이다. Figure 2 is an example of the force-strain curve of the polyetherene terephthalate POY company of the present invention.

도 3은 본 발명의 폴리에텔렌 테레프탈레이트 연신사의 힘-변형 곡선 일예 이다.3 is an example of a force-strain curve of the polyetherene terephthalate stretched yarn of the present invention.

Claims (6)

(A)에틸렌 테레프탈레이트 단위를 85몰% 이상 함유하며 고유점도가 0.90 ~ 1.2 범위인 방출사를 290 ∼ 310℃의 온도로 압출하는 단계, (A) extruding a release yarn containing at least 85 mol% of ethylene terephthalate units and having an intrinsic viscosity ranging from 0.90 to 1.2 at a temperature of 290 to 310 ° C (B)이 용융방출사를 지연냉각 구역을 통과시킨 후 급냉 고화시키는 단계, (C)POY사가 0.5g/d의 초기응력에 처해졌을 때 5%미만 신장하며, 20 내지 100g/d의 초기 모듈러스를 가지고, 3.5 g/d에 처해졌을 때 나아가 최소 100% 신장하는 힘-변형 곡선을 갖고, 복굴절률이 0.05 내지 0.08이 되도록 하는 방사속도로 사를 권취하는 단계, (B) quenching and solidifying the melt release yarn through the delayed cooling zone; (C) the POY yarn elongates less than 5% when subjected to an initial stress of 0.5 g / d, with an initial modulus of 20 to 100 g / d. Winding the yarn at a radial velocity such that the birefringence is 0.05 to 0.08, with a force-strain curve extending at least 100% when subjected to 3.5 g / d, (D) 권취된 사를 2.0배 이하의 총연신비로 다단연신시키는 단계를 포함하는 방법에 의해 제조되는, 하기의 물성을 만족하고 동시에 2.0g/d의 초기 응력에 처해졌을 때 3% 미만 신장하며, 50 내지 150g/d의 초기 모듈러스 값을 가지고, 6.0g/d의 중기 응력에 처해졌을 때 8% 미만 신장하며, 최소 8.0g/d의 인장강도로부터 사가 절단될 때까지 신장하는, 힘-변형 곡선을 갖는 폴리에틸렌 테레프탈레이트 섬유. (D) multi-stretching the wound yarn to a total draw ratio of 2.0 times or less, which satisfies the following physical properties and simultaneously stretches less than 3% when subjected to an initial stress of 2.0 g / d, Force-strain curves with an initial modulus value of 50 to 150 g / d, elongate less than 8% when subjected to medium stress of 6.0 g / d, and elongate from the tensile strength of at least 8.0 g / d until the yarn is cut Polyethylene terephthalate fiber having a. (1) 0.8 내지 1.0의 고유점도, (2) 8.0g/d 이상의 강도, (3) 10% 이상의 신도, (4) 0.20 이상의 복굴절률, (5) 1.385 내지 1.395의 밀도, (6) 3 내지 5%의 수축률(1) intrinsic viscosity of 0.8 to 1.0, (2) strength of 8.0 g / d or more, (3) elongation of 10% or more, (4) birefringence of 0.20 or more, (5) density of 1.385 to 1.395, (6) 3 to 5% shrinkage 제 1 항에 있어서,The method of claim 1, 상기 고상중합 폴리에틸렌테레프탈레이트 칩에 안티몬 금속을 180 내지 300 ppm 포함하는 것을 특징으로 하는 폴리에틸렌 테레프탈레이트 섬유. Polyethylene terephthalate fiber, characterized in that it comprises 180 to 300 ppm of the antimony metal in the solid-state polymerized polyethylene terephthalate chip. 제 1 항에 있어서,The method of claim 1, 단계 (B)에서 냉각구역 직전에 이웃하여 분위기온도가 300 내지 400℃이며 길이가 200 내지 700mm인 가열구역을 설치하는 것을 특징으로 하는 방법에 의해 제조되는 폴리에틸렌 테레프탈레이트 섬유. Polyethylene terephthalate fiber produced by the method characterized in that the heating zone of the ambient temperature of 300 to 400 ℃ and length of 200 to 700mm adjacent to immediately before the cooling zone in step (B). 제 1 항에 있어서,The method of claim 1, 단계 (D)에서 상기 POY사를 3단 연신하고, 각각의 연신온도를 POY사의 유리전이온도보다 95℃이하로 하는 것을 특징으로 하는 방법에 의해 제조되는 폴리에틸렌 테레프탈레이트 섬유. Polyethylene terephthalate fiber produced by the method characterized in that the three-step stretching of the POY yarn in step (D), each stretching temperature is 95 ℃ or less than the glass transition temperature of POY yarn. 제 1 항의 폴리에틸렌 테레프탈레이트 섬유 2가닥을 상하연하고 레소르시놀-포르말린-라텍스(RFL)로 처리하여 얻어지는, 하기의 물성을 갖는 처리 코드:A treatment code having the following physical properties, obtained by subjecting the two polyethylene terephthalate fibers of claim 1 to upper and lower edges and treating with resorcinol-formalin-latex (RFL): (a) 7.5% 이하의 E2.25(2.25g/d에서의 신장률)+FS(자유수축률), 및 (b) 6.5g/d 이상의 강도.(a) not more than 7.5% E 2.25 (elongation at 2.25 g / d) + FS (free shrinkage), and (b) an intensity of at least 6.5 g / d. 제 5 항의 처리 코드가 보강재로서 혼입된 고무제품.A rubber product in which the treatment cord of claim 5 is incorporated as a reinforcing material.
KR10-2003-0058355A 2003-08-22 2003-08-22 Polyethylene terephthalate fibers using stress-strain curve, and process for preparing the same KR100492337B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-0058355A KR100492337B1 (en) 2003-08-22 2003-08-22 Polyethylene terephthalate fibers using stress-strain curve, and process for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2003-0058355A KR100492337B1 (en) 2003-08-22 2003-08-22 Polyethylene terephthalate fibers using stress-strain curve, and process for preparing the same

Publications (2)

Publication Number Publication Date
KR20050020885A true KR20050020885A (en) 2005-03-04
KR100492337B1 KR100492337B1 (en) 2005-05-30

Family

ID=37229529

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2003-0058355A KR100492337B1 (en) 2003-08-22 2003-08-22 Polyethylene terephthalate fibers using stress-strain curve, and process for preparing the same

Country Status (1)

Country Link
KR (1) KR100492337B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015617A1 (en) * 2005-08-03 2007-02-08 Hyosung Corporation Method for preparing polyester multifilament yarn for reinforcement of rubber and polyester multifilament yarn prepared by the same method
KR100779936B1 (en) * 2006-04-14 2007-11-28 주식회사 효성 Polyethyleneterephthalate filament with high tenacity for industrial use
KR101228127B1 (en) * 2007-06-20 2013-01-31 코오롱인더스트리 주식회사 Drawn poly(ethyleneterephthalate) fiber, tire-cord and tire comprising the same
EP2554722A2 (en) * 2010-03-29 2013-02-06 Kolon Industries, Inc. Polyester yarn and method for manufacturing same
KR101231094B1 (en) * 2008-03-31 2013-02-07 코오롱인더스트리 주식회사 Drawn poly(ethyleneterephthalate) fiber, tire-cord and tire comprising the same
US9045589B2 (en) 2008-03-31 2015-06-02 Kolon Industries, Inc. Drawn polyethylene terephthalate fiber, pet tire cord, and tire comprising thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120083776A (en) * 2011-01-18 2012-07-26 코오롱인더스트리 주식회사 Polyester fiber and polyester fabric comprising the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015617A1 (en) * 2005-08-03 2007-02-08 Hyosung Corporation Method for preparing polyester multifilament yarn for reinforcement of rubber and polyester multifilament yarn prepared by the same method
KR100779936B1 (en) * 2006-04-14 2007-11-28 주식회사 효성 Polyethyleneterephthalate filament with high tenacity for industrial use
KR101228127B1 (en) * 2007-06-20 2013-01-31 코오롱인더스트리 주식회사 Drawn poly(ethyleneterephthalate) fiber, tire-cord and tire comprising the same
US9347154B2 (en) 2007-06-20 2016-05-24 Kolon Industries, Inc. Drawn poly(ethyleneterephthalate) fiber, poly(ethyleneterephthalate) tire-cord, their preparation method and tire comprising the same
KR101231094B1 (en) * 2008-03-31 2013-02-07 코오롱인더스트리 주식회사 Drawn poly(ethyleneterephthalate) fiber, tire-cord and tire comprising the same
US9045589B2 (en) 2008-03-31 2015-06-02 Kolon Industries, Inc. Drawn polyethylene terephthalate fiber, pet tire cord, and tire comprising thereof
US9441073B2 (en) 2008-03-31 2016-09-13 Kolon Industries, Inc. Drawn polyethylene terephthalate fiber, pet tire cord, and tire comprising thereof
EP2554722A2 (en) * 2010-03-29 2013-02-06 Kolon Industries, Inc. Polyester yarn and method for manufacturing same
CN102918187A (en) * 2010-03-29 2013-02-06 可隆工业株式会社 Polyester yarn and method for manufacturing same
EP2554722A4 (en) * 2010-03-29 2013-08-07 Kolon Inc Polyester yarn and method for manufacturing same
CN102918187B (en) * 2010-03-29 2015-08-05 可隆工业株式会社 Polyester fiber and preparation method thereof
US9499928B2 (en) 2010-03-29 2016-11-22 Kolon Industries, Inc. Polyester fiber suitable for air bag and method for producing the polyester fiber

Also Published As

Publication number Publication date
KR100492337B1 (en) 2005-05-30

Similar Documents

Publication Publication Date Title
KR100402839B1 (en) Polyethylene naphtalate fiber of high strength
US6967058B2 (en) Polyester multifilament yarn for rubber reinforcement and method of producing the same
KR100402838B1 (en) Polyester multifilament yarns
KR101225584B1 (en) Polyethyleneterephthalate filament having an excellent dimensional stability
KR100412178B1 (en) A process for preparing a polyester multifilament yarn for the industrial use
KR100492337B1 (en) Polyethylene terephthalate fibers using stress-strain curve, and process for preparing the same
KR101602387B1 (en) Method of manufacturing polyethyleneterephthalate tire cord with high modulus and polyethyleneterephthalate tire cord manufactured by the same method
KR20150097126A (en) Dimensionally stable polyethyleneterephthalate dipped cord, method of manufacturing the same and tire including the same
KR100505018B1 (en) Polyethylene-2,6-naphthalate fibers having excellent processability, and process for preparing the same
KR100456340B1 (en) Process for production of a polyester multifilament yarn for the industrial use
KR100595607B1 (en) Polyethylene-2,6-naphthalate fibers by using high speed spinning and radial in to out quenching method, and process for preparing the same
KR20170091968A (en) Manufacturing method of polyethylene terephthalate cord having excellent fatigue resistance
KR100488606B1 (en) Polyethylene-2,6-naphthalate fibers using stress-strain curve and process for preparing the same
KR101551421B1 (en) Process for preparing polyester multifilament for tire cord
KR100595842B1 (en) Polyethylene-2,6-naphthalate fibers using stress-strain curve, and process for preparing the same
KR100488605B1 (en) Polyethylene-2,6-naphthalate fibers having excellent processability, and process for preparing the same
KR100505016B1 (en) Polyethylene-2,6-naphthalate fibers by using high speed spinning and process for preparing the same
KR100618397B1 (en) Polyethylene-2,6-naphthalate fibers having excellent processability, and process for preparing the same
KR100595991B1 (en) Polyethylene-2,6-naphthalate fibers
KR100595608B1 (en) Polyethylene-2,6-naphthalate fibers by using low speed spinning and radial in to out quenching method, and process for preparing the same
KR100595992B1 (en) Polyethylene-2,6- naphthalate fibers by high speed spinning
KR101007331B1 (en) Method for preparing polyether filament yarn, and polyester filament yarn prepared therefrom, and polyester tire cord the comprising the same
KR20160071714A (en) Process for preparing polyester multifilament having excellent dimensional stability and heat-resistance for tire cord
KR101086745B1 (en) High tenacity polyethylene terephthalate fibers and process for preparing the same
KR100627960B1 (en) Polyester Multifilament Yarn for Rubber Reinforcement and Process for Producing the Same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121220

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140407

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160414

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20170413

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20180411

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20190411

Year of fee payment: 15