KR20040090651A - Manufacturing Continuous Arc Discharge for Synthesizing Carbon Nanotubes - Google Patents

Manufacturing Continuous Arc Discharge for Synthesizing Carbon Nanotubes Download PDF

Info

Publication number
KR20040090651A
KR20040090651A KR1020030024617A KR20030024617A KR20040090651A KR 20040090651 A KR20040090651 A KR 20040090651A KR 1020030024617 A KR1020030024617 A KR 1020030024617A KR 20030024617 A KR20030024617 A KR 20030024617A KR 20040090651 A KR20040090651 A KR 20040090651A
Authority
KR
South Korea
Prior art keywords
carbon
carbon nanotubes
holder
rod
carbon rod
Prior art date
Application number
KR1020030024617A
Other languages
Korean (ko)
Inventor
이영희
조영상
Original Assignee
이영희
조영상
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이영희, 조영상 filed Critical 이영희
Priority to KR1020030024617A priority Critical patent/KR20040090651A/en
Publication of KR20040090651A publication Critical patent/KR20040090651A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J35/19
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Abstract

PURPOSE: A manufacturing method of automatized arc discharge machine is provided to produce carbon nanotubes continuously by equipping conventional arc discharge machine with carbon rod-loading part, carbon rod holder and collecting chamber. CONSTITUTION: The automatized arc discharge machine for production of carbon nanotubes such as single wall carbon nanotubes is characterized by containing carbon rod-loading part, carbon rod holder and carbon nanotube-collecting chamber, wherein the carbon rods for single wall carbon nanotubes are produced by mixing graphite powder(or carbon material) with less than 5wt.% of mixtures of catalyst such as Ni, Co, Fe, W or Y, and yield increaser such as sulfur powder or sulfur compound(FeS, NiS) in a ratio of 1 : 1, pressing, and thermal-hardening. The carbon rod-loading part contains sample cassette enabling loading of several carbon rods and elevator for loading carbon rods automatically. The sample holder, using an air cylinder for putting a carbon rod into a holder, is made of tungsten or stainless steel and is cooled with water for preventing thermal damage to the holder. The carbon nanotube-collecting chamber contains an adsorption drum and a scraper for detaching carbon nanotubes from the drum.

Description

탄소나노튜브 합성용 연속공정화된 전기방전장치 제작 방법 {Manufacturing Continuous Arc Discharge for Synthesizing Carbon Nanotubes}Manufacturing Process of Continuous Nano Discharge for Carbon Nanotubes {Manufacturing Continuous Arc Discharge for Synthesizing Carbon Nanotubes}

본 발명은 탄소나노튜브를 연속공정과정에 의해 대량 합성하는 장치를 개발하는 것으로 기존의 전기방전법 (arc discharge) 장치를 개조하여 탄소봉 장착부, 시료 holder, 수거 chamber를 새로이 부착하여 만든 장치 고안에 관한 것이다.The present invention is to develop a device for synthesizing a large amount of carbon nanotubes in a continuous process process by remodeling an existing arc discharge device to a device made by attaching a carbon rod mounting portion, a sample holder, a collection chamber newly attached will be.

전기방전법은 탄소나노튜브를 합성하는 전통적인 방법으로, 다층탄소나노튜브의 경우 탄소봉에 직류 또는 교류를 가하여 전기방전에 의해 태우거나, 단층탄소나노튜브의 경우 탄소봉에 구멍을 뚫고 촉매 전이금속을 채워 같은 방법으로 전기방전하여 합성해 왔다. 이 때 가해준 전압은 20~30 V이고 전류는 탄소봉의 직경에 따라 다르지만 50~100A 정도이고, chamber의 압력은 100~500 torr를 유지한다. 그러나 이 방법은 탄소나노튜브를 비교적 쉽게 만들 수 있는 장점이 있지만 한 개의 탄소봉을 태우면 다시 탄소봉을 바꾸어야 하는 단점이 있어 연속공정과정이 불가능하였다. 또 탄소봉을 뚫어 전이금속을 채워 작업하는 불편함과 불필요한 탄소봉의연소로 수율이 낮고, 합성된 탄소나노튜브를 수거할 때 chamber를 완전히 열어야 하는 등 많은 단점이 있다. 따라서 기존의 방법을 이용하여 탄소나노튜브를 합성하는 경우 생산 단가가 비싼 것이 큰 단점으로 대두되어왔다.The electric discharge method is a traditional method of synthesizing carbon nanotubes. In the case of multilayer carbon nanotubes, a direct current or alternating current is applied to a carbon rod and burned by electric discharge. It has been synthesized by electric discharge in the same way. At this time, the applied voltage is 20 ~ 30V, the current varies depending on the diameter of the carbon rod, but it is about 50 ~ 100A, and the chamber pressure is maintained at 100 ~ 500 torr. However, this method has the advantage of making carbon nanotubes relatively easy, but if one carbon rod is burned, it is impossible to change the carbon rod again. In addition, there is a lot of disadvantages such as the inconvenience of working through filling the carbon rod filling the transition metal and the low yield of combustion of unnecessary carbon rod, and the need to open the chamber completely when collecting the synthesized carbon nanotubes. Therefore, when synthesizing carbon nanotubes using conventional methods, the high production cost has been a major disadvantage.

본 발명이 이루고자 하는 기술적 과제는, 기존의 전기방전법을 개조시켜 자동화시킨 것으로, 탄소봉 장착부, 시료 holder, 수거 chamber를 새로이 부착하여 만든 장치이다. 기존의 장치에서는 한 대의 탄소봉을 사용하였지만 본 장치에서는 여러 개의 탄소봉을 cassette에 동시에 탑재하여 자동으로 하나씩 전기방전시켜 탄소나노튜브를 합성하는 것을 특징으로 한다. 또 합성된 탄소나노튜브를 수거하는데 chamber를 개방해야하는 불편함을 최소화시키기 위해 흡착드럼을 설치하여 탄소나노튜브를 흡착시켜 수거chamber 에서 scraper를 이용하여 탄소나노튜브를 연속적으로 얻어낼 수 있도록 하였다. 또 탄소파우더와 촉매 전이금속과 혼합하여 경화시켜 만든 탄소봉을 사용하여 반응시 생겨나는 탄소 flake등의 발생을 최소화시켜 수율을 개선하였다. 따라서 이 장치는 고수율의 탄소나노튜브를 대량 합성할 수 있는 연속공정을 특징으로 한다.The technical problem to be achieved by the present invention is to retrofit an existing electric discharge method, and is a device made by attaching a carbon rod mounting portion, a sample holder, and a collection chamber newly. In the existing apparatus, one carbon rod was used, but in this apparatus, multiple carbon rods are simultaneously mounted on a cassette to automatically discharge one by one to synthesize carbon nanotubes. In addition, in order to minimize the inconvenience of having to open the chamber to collect the synthesized carbon nanotubes, an adsorption drum was installed to adsorb carbon nanotubes so that carbon nanotubes could be continuously obtained by using a scraper at the collection chamber. In addition, the carbon rod made by mixing with the carbon powder and the catalyst transition metal was used to minimize the occurrence of carbon flakes generated during the reaction to improve the yield. Thus, the device features a continuous process that allows the synthesis of high yields of carbon nanotubes in large quantities.

도 1은 발명의 실시 예에 따라 제조된 탄소나노튜브 합성용 연속공정화된 전기방전장치의 개략도이다.1 is a schematic diagram of a continuous process electric discharge device for synthesizing carbon nanotubes prepared according to an embodiment of the present invention.

※도면의 주요 부호에 대한 간략한 설명※ Brief description of the main symbols in the drawings

시료 cassette : 탄소봉 장착부, 시료 holder : 탄소봉 주입시 탄소봉 고정대Sample cassette: carbon rod mounting part, sample holder: carbon rod holder when injecting carbon rod

holding chamber : 시료 주입용 chamber,holding chamber: sample injection chamber,

arcing chamber : 전기방전이 일어나는 chamberarcing chamber: Chamber where electric discharge occurs

수거 chamber : 합성된 탄소나노튜브를 수거하는 chamberCollection chamber: chamber for collecting synthesized carbon nanotubes

흡착drum : 합성된 탄소나노튜브가 흡착되는 냉각용 드럼Adsorption drum: Cooling drum where synthetic carbon nanotubes are adsorbed

상기의 기술적 과제를 달성하기 위한 본 발명에 따른 자동화된 전기방전법을 이용한 탄소나노튜브 합성 장치는 탄소봉 장착부, 시료 holder, 수거 chamber를 포함한다.Carbon nanotube synthesis apparatus using an automated electric discharge method according to the present invention for achieving the above technical problem includes a carbon rod mounting portion, a sample holder, a collection chamber.

상기 장치중 탄소봉 장착부는 한 개의 탄소봉을 장착하는 대신 여러 개의 탄소봉을 cassette식으로 탑재하여 시료 holder가 하나씩 물고 chamber안으로 들어가 전기방전시키는 자동화된 계를 특징으로 한다. 이 경우 장착부 전체의 압력은 반응 chamber의 압력과 동일하게 유지된다. 탄소봉의 수는 cassette 크기에 의존한다. 또 사용된 탄소봉은 촉매 전이금속파우더 (Ni, Co, Fe, Y 혹은 그 혼합물)와 흑연 파우더(혹은 탄소재료입자)가 혼합된 파우더를 압착하여 열경화시킨 탄소봉을 사용한다. 금속무게 비율은 5% 이내로 하며 전이금속 이외에도 합성된 탄소나노튜브의 수율을 올리기 위해 전이금속량의 절반이하를 황파우더를 쓴다. 또 황파우더 대신 FeS, NiS, CoS등 황화합물을 쓸 수도 있다. cassette에서 탄소봉을 꺼낸 후에는 그림에 있는 elevator를 이용하여 시료 holder가 탄소봉을 반응관에 밀어넣도록 cassette를 위로 밀어낸다.The carbon rod mounting portion of the device is characterized by an automated system for mounting a plurality of carbon rods in a cassette type instead of mounting one carbon rod so that the sample holders can bite into the chamber and perform electrical discharge. In this case, the pressure of the entire mounting portion is kept equal to the pressure of the reaction chamber. The number of carbon rods depends on the cassette size. In addition, the carbon rod used is a carbon rod that is thermally cured by pressing a powder containing a catalyst transition metal powder (Ni, Co, Fe, Y or a mixture thereof) and graphite powder (or carbon material particles). The metal weight ratio is less than 5%, and in order to increase the yield of the synthesized carbon nanotubes in addition to the transition metal, sulfur powder is used for less than half of the amount of the transition metal. In addition, sulfur compounds such as FeS, NiS, and CoS may be used instead of sulfur powder. After removing the carbon rod from the cassette, use the elevator shown in the illustration to push the cassette up so that the sample holder pushes the carbon rod into the reaction tube.

시료 holder는 탄소봉을 holder 내부에 고정시킨 후 탄소봉을 반응 chamber 내부로 step motor에 의해 이동시킨다. 이때 시료 holder는 열에 강한 재료, 전기저항이 적은 텅스테, 스테인레스등을 사용한다. 탄소봉을 holder 안에 유입시키기 위해 공기 실린더를 사용하며 시료 holder는 발생되는 열로 인해 손상되는 것을 막기 위해 시료 holder 전체를 물로 냉각시킨다.The sample holder fixes the carbon rod inside the holder and then moves the carbon rod into the reaction chamber by a step motor. The sample holder is made of heat resistant material, tungsten with low electrical resistance, and stainless steel. An air cylinder is used to introduce the carbon rod into the holder, and the sample holder cools the entire sample holder with water to prevent damage from the heat generated.

반응관에서 합성된 탄소나노튜브를 수거하기 위해 반응관 상단에 흡착드럼을 설치한다. 이 흡착드럼은 흡착을 촉진하기 위해 물로 냉각시키며 흡착드럼을 회전시켜 scraper를 이용하여 드럼에 흡착된 탄소나노튜브를 긁어내어 수거 chamber에 쌓이도록 한다. 수거 chmaber도 반응관의 압력과 동일하게 유지된다.An adsorption drum is installed at the top of the reaction tube to collect the carbon nanotubes synthesized in the reaction tube. The adsorption drum is cooled with water to promote adsorption, and the adsorption drum is rotated to scrape the carbon nanotubes adsorbed on the drum using a scraper and accumulate in the collection chamber. The collection chmaber is also maintained at the same pressure in the reaction tube.

이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명한다. 그러나, 본 발명의 실시 예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시 예들에 한정되어지는 것으로 해석되어져서는 안 된다. 본 발명의 실시 예들은 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되어지는 것이다. 따라서, 도면에서의 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 과장되어진 것이며, 도면 상에서 동일한 부호로 표시된 요소는 동일한 요소를 의미한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, embodiments of the present invention may be modified in many different forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. Embodiments of the present invention are provided to more completely describe the present invention to those skilled in the art. Accordingly, the shape and the like of the elements in the drawings are exaggerated to emphasize a more clear description, and the elements denoted by the same reference numerals in the drawings means the same elements.

도 1은 본 발명의 실시 예에 따른 탄소나노튜브를 합성하기 위한 개조된 자동화된 arc discharge 장치의 개략도이다. 도 1을 참조하여, 탄소나노튜브 합성용 자동화된 arc discharge장치를 설명한다.1 is a schematic diagram of a modified automated arc discharge apparatus for synthesizing carbon nanotubes according to an embodiment of the present invention. Referring to FIG. 1, an automated arc discharge device for carbon nanotube synthesis will be described.

먼저, Fe, Co, Ni등과 같은 전이금속파우더와 황이 첨가되어 제작된 탄소봉 수십 개를 시료 cassette에 장착한다. 그 중 맨 아래에 있는 탄소봉을 시료 holder로 고정시킨 다음 elevator에 의해 시료 cassette를 위로 밀어내고 탄소봉을 step motor를 이용하여 반응관 속으로 밀어넣는다. 탄소봉을 음극 2 mm 정도 떨어질 때까지 밀착시키고 음극과 양극인 탄소봉 사이에 전압을 가한다. 이 때 가해진 전압과 전류는 두 극 사이의 간격에 따라 달라지며 원하는 값을 고정하여 자동으로 step motor에 의해 전류 전압이 제어되도록 한다. 이 동안 흡착드럼은 냉각된 채 반응동안 계속 회전하여 합성된 탄소나노튜브를 수거한다. 탄소봉이 다 타면 holder에 남아있는 탄소봉은 air cylinder에 의해 제거되고 이하 상기 기술된 과정을 반복한다. 이상에 기술된 모든 과정은 자동화되어 있어 임의로 조절할 필요가 없다. 또 반응동안 자동압력조절기에 의해 chamber의 압력을 일정하게 유지한다.First, dozens of carbon rods prepared by adding transition metal powders such as Fe, Co, and Ni and sulfur are mounted on a sample cassette. The carbon rod at the bottom is fixed with the sample holder, and the sample cassette is pushed upward by the elevator and the carbon rod is pushed into the reaction tube by using a step motor. The carbon rod is pressed until about 2 mm away from the cathode and a voltage is applied between the anode and the anode carbon rod. The voltage and current applied at this time depend on the distance between the two poles, and the desired value is fixed so that the current voltage is automatically controlled by the step motor. During this time, the adsorption drum is cooled and continuously rotated to collect the synthesized carbon nanotubes. When the carbon rod burns out, the carbon rod remaining in the holder is removed by the air cylinder and the process described above is repeated. All the processes described above are automated and do not need to be adjusted arbitrarily. During the reaction, the pressure in the chamber is kept constant by the automatic pressure regulator.

상술한 본 발명에 따르면, 전이금속과 황이 첨가되어 만든 탄소봉을 사용하기 때문에 합성된 탄소나노튜브의 수율이 높아지고 모든 과정이 자동화된 연속공정이므로 불필요한 인력소모를 줄일 수 있어 합성된 탄소나노튜브의 가격을 현저히 줄일 수 있다. 또 다층탄소나노튜브도 전이금속없이 탄소봉을 전기방전하면 만들 수 있기 때문에 다층탄소나노튜브 합성에도 응용할 수 있다.According to the present invention described above, since the carbon rod made of transition metals and sulfur is used, the yield of the synthesized carbon nanotubes is increased and all processes are automated continuous processes, thereby reducing unnecessary manpower consumption. Can be significantly reduced. In addition, since multilayer carbon nanotubes can be made by electrodischarging carbon rods without transition metals, they can be applied to multilayer carbon nanotube synthesis.

Claims (8)

상기 탄소나노튜브를 합성하기 위해 자동화된 전기방전 장치를 사용하는 방법.Using an automated electric discharge device to synthesize the carbon nanotubes. 제 1 항에 있어서, 자동화된 전기방전장치에 탄소봉 장착부, 시료 holder, 수거 chamber를 부착시킨 장치.The device of claim 1, wherein a carbon rod mount, a sample holder, and a collection chamber are attached to the automated electrical discharge device. 제 1 항에 있어서, 단층탄소나노튜브 합성시 사용되는 탄소봉은 촉매로써, Ni, Co, Fe, W, Y 혹은 그들의 혼합물과 수율 개선제로서 황 파우더 혹은 황화합물을 1:1로 섞어 흑연파우더 혹은 탄소재료에 5 wt% 이내로 혼합하여 바인더와 같이 압착한 후 열 경화시켜 만들며 여기에 기술된 탄소봉 제조 방법.The method of claim 1, wherein the carbon rod used in the synthesis of single-walled carbon nanotubes is a catalyst, Ni, Co, Fe, W, Y or a mixture thereof and a powder or sulfur compound in a 1: 1 mixture of sulfur powder or sulfur compound as a yield improving agent The method for producing a carbon rod as described herein, which is made by mixing within 5 wt. 제 1 항에 있어서, 합성된 탄소나노튜브는 단층탄소나노튜브, 다층탄소나노튜브를 포함한다.The method of claim 1, wherein the synthesized carbon nanotubes include single-walled carbon nanotubes and multi-walled carbon nanotubes. 제 2 항에 있어서, 시료 cassette를 사용하여 여러 개의 탄소봉을 동시에 장착하고 elevator를 이용하여 탄소봉을 자동으로 연속적으로 장착하는 방법.3. A method according to claim 2, wherein a plurality of carbon rods are simultaneously mounted using a sample cassette and the carbon rods are continuously loaded automatically using an elevator. 제 2항에 있어서, 시료 holder는 air cylinder를 이용하고 탄소봉 holder는 열에 잘 버티고 전기저항이 낮은 금속을 사용하며 시료 holder 전체를 물로 냉각시키는 방법.3. The method of claim 2, wherein the sample holder uses an air cylinder, the carbon rod holder is heat resistant, uses a low electrical resistance metal, and the entire sample holder is cooled with water. 제 2항에 있어서, 시료를 수거하기 위해 흡착드럼을 사용하고 scraper를 사용하여 합성된 탄소나노튜브를 자동으로 수거하는 방법.The method of claim 2, wherein the carbon nanotubes are automatically collected using an adsorption drum and a scraper to collect the sample. 제 2항에 있어서, 탄소나노튜브 합성시 step motor를 사용하여 양극과 음극사이의 간격을 feedback 된 전류,전압으로 자동으로 제어하는 방법.The method of claim 2, wherein the step motor is used to automatically control the distance between the anode and the cathode by using feedback current and voltage when synthesizing carbon nanotubes.
KR1020030024617A 2003-04-18 2003-04-18 Manufacturing Continuous Arc Discharge for Synthesizing Carbon Nanotubes KR20040090651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030024617A KR20040090651A (en) 2003-04-18 2003-04-18 Manufacturing Continuous Arc Discharge for Synthesizing Carbon Nanotubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030024617A KR20040090651A (en) 2003-04-18 2003-04-18 Manufacturing Continuous Arc Discharge for Synthesizing Carbon Nanotubes

Publications (1)

Publication Number Publication Date
KR20040090651A true KR20040090651A (en) 2004-10-26

Family

ID=37371672

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030024617A KR20040090651A (en) 2003-04-18 2003-04-18 Manufacturing Continuous Arc Discharge for Synthesizing Carbon Nanotubes

Country Status (1)

Country Link
KR (1) KR20040090651A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100492A3 (en) * 2009-03-03 2011-03-31 Isis Innovation Limited Methods and apparatus for the production of carbon-containing materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010100492A3 (en) * 2009-03-03 2011-03-31 Isis Innovation Limited Methods and apparatus for the production of carbon-containing materials
US9187328B2 (en) 2009-03-03 2015-11-17 Isis Innovation Limited Methods and apparatus for the production of carbon-containing materials

Similar Documents

Publication Publication Date Title
JP3754417B2 (en) Double-walled carbon nanotubes and methods for their production and use
Berkmans et al. Synthesis of thin bundled single walled carbon nanotubes and nanohorn hybrids by arc discharge technique in open air atmosphere
Keidar et al. Mechanism of carbon nanostructure synthesis in arc plasma
JP2526782B2 (en) Carbon fiber and its manufacturing method
US20050191417A1 (en) Isotope-doped carbon nanotube and method for making the same
BRPI0613344A2 (en) process to produce carbon nanotubes and reactor to produce carbon nanotubes
JP2007169159A (en) Apparatus and method for forming nanoparticle and nanotube, and use therefor for gas storage
CN103191683A (en) Device of preparing nano powder material through electrical explosion
US20050230240A1 (en) Method and apparatus for carbon allotropes synthesis
Mohammad et al. Carbon nanotubes synthesis via arc discharge with a Yttria catalyst
GB2385864A (en) Production of nanocarbons
US7955663B2 (en) Process for the simultaneous and selective preparation of single-walled and multi-walled carbon nanotubes
JP4604342B2 (en) Arc electrode for synthesis of carbon nanostructures
KR20040090651A (en) Manufacturing Continuous Arc Discharge for Synthesizing Carbon Nanotubes
EP1747309A1 (en) Production of carbon nanotubes
CN1522955A (en) Method for preparing single wall nanometer carbon tube using mesophase asphalt as raw material
WO2004035881A2 (en) Single-walled carbon nanotube synthesis method and apparatus
Tan et al. Synthesis of single-walled carbon nanotubes by arc-vaporization under high gravity condition
CN1309659C (en) Carbon nanotube preparing process
JP2005060116A (en) Method for manufacturing fine particle and manufacturing apparatus for fine particle
JPH11263610A (en) Production of carbon nanotube
KR20030051459A (en) Manufacturing Thermal Evaporator for Synthesizing Carbon Nanotubes
KR100972044B1 (en) manufacturing equipment of carbon nanotube using electrical arc discharge methode
Musikhin et al. Growth of metal catalyst nanoparticles in hydrocarbon-rich atmosphere of arc discharge for synthesis of carbon nanotubes
CN1544319A (en) Carbon nanometer tube arc discharge preparation method under vacuum condition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application