KR20040035323A - Manufacturing Magnetic-Field Enhanced Thermal Chemical Vapor Deposition System - Google Patents

Manufacturing Magnetic-Field Enhanced Thermal Chemical Vapor Deposition System Download PDF

Info

Publication number
KR20040035323A
KR20040035323A KR1020020064421A KR20020064421A KR20040035323A KR 20040035323 A KR20040035323 A KR 20040035323A KR 1020020064421 A KR1020020064421 A KR 1020020064421A KR 20020064421 A KR20020064421 A KR 20020064421A KR 20040035323 A KR20040035323 A KR 20040035323A
Authority
KR
South Korea
Prior art keywords
magnetic field
carbon nanotubes
growth
vapor deposition
chemical vapor
Prior art date
Application number
KR1020020064421A
Other languages
Korean (ko)
Inventor
이영희
김근수
조영상
배동재
Original Assignee
이영희
김근수
조영상
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이영희, 김근수, 조영상 filed Critical 이영희
Priority to KR1020020064421A priority Critical patent/KR20040035323A/en
Publication of KR20040035323A publication Critical patent/KR20040035323A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance

Abstract

PURPOSE: Provided is a method for making a magnetic field-enhanced thermal chemical vapor deposition apparatus, which aligns magnetic moments of a metal catalyst used for the growth of a carbon nano-tube so as to obtain a desired structure and a specific property. CONSTITUTION: The method comprises the steps of: establishing a strong magnetic field for growing a carbon nano-tube or nano-structure, while controlling its structure, and adjusting the distance between magnets to control the strength of the magnetic field. The method further comprises the steps of: mounting a heating system considering the interaction with the magnetic field; providing cooling water for protecting a permanent magnet from the heating system and attaching an alarm system; and setting a load rock.

Description

자기장을 이용한 열 화학기상증착장치 제작 방법 {Manufacturing Magnetic-Field Enhanced Thermal Chemical Vapor Deposition System}Manufacturing method of thermal chemical vapor deposition apparatus using magnetic field {Manufacturing Magnetic-Field Enhanced Thermal Chemical Vapor Deposition System}

본 발명은 탄소나노튜브 및 나노재료 성장시 구조제어에 관한 것으로, 특히 강력한 자기장을 이용한 단일특성을 가지는 탄소나노튜브의 성장장치 고안에 관한 것이다.The present invention relates to the structure control in the growth of carbon nanotubes and nanomaterials, and more particularly, to the development of a carbon nanotube growth apparatus having a single characteristic using a strong magnetic field.

탄소나노튜브는 구조에 따라서 다양한 특성을 가진다. 탄소층이 말린 각도에 따라 금속성 또는 반도체 특성을 가지게 되며, 쌓인 층 수에 따라 단층 탄소나노튜브와 다층 탄소나노튜브가 된다. 이러한 탄소나노튜브들은 궁극적으로 응용 목적에 따라서 금속성, 반도체성 또는 단, 다층 탄소나노튜브를 쓰는 경우가 정해진다. 예를 들어 탄소나노튜브를 집적메모리소자에 응용할 경우 반도체 특성을 가지는 탄소나튜브만이 대량으로 필요할 것이다.Carbon nanotubes have various properties depending on their structure. The carbon layer has metallic or semiconducting properties depending on the angle at which it is dried, and becomes single-walled carbon nanotubes and multi-walled carbon nanotubes depending on the number of stacked layers. These carbon nanotubes are ultimately determined to use metallic, semiconducting or multi-layered carbon nanotubes depending on the application purpose. For example, when carbon nanotubes are applied to integrated memory devices, only carbon nanotubes having semiconductor characteristics will be required in large quantities.

종래의 탄소나노튜브 성장 장치에서 성장된 탄소나노튜브들은 성장시 구조제어가 불가능해서, 다양한 특성을 가진 탄소나노튜브들이 동시에 성장되었다. 탄소나노튜브를 소자에 응용할 경우 단일 특성을 가진 탄소나노튜브가 필요하지만, 이미 다양한 특성을 가진 나노튜브들로부터 특정 나노튜브만을 선택하기는 아주 어려운 일이다.Carbon nanotubes grown in the conventional carbon nanotube growth apparatus are impossible to control the structure during growth, and carbon nanotubes having various characteristics were simultaneously grown. When carbon nanotubes are applied to devices, carbon nanotubes having a single characteristic are required, but it is very difficult to select only specific nanotubes from nanotubes having various characteristics.

본 발명이 이루고자 하는 기술적 과제는, 화학기상 증착법으로 탄소나노튜브 성장시 사용되는 촉매금속의 자기모멘트를 강력한 자기장을 이용하여 자기장 방향으로 정열함으로써 탄소층이 말리는 각도를 제어하여, 원하는 구조의 특정 특성을 갖는 탄소 나노튜브를 성장할 수 있는 장비를 개발함에 있다.The technical problem to be achieved by the present invention is to control the angle of the carbon layer by arranging the magnetic moment of the catalytic metal used in the growth of carbon nanotubes by the chemical vapor deposition in the direction of the magnetic field using a strong magnetic field, thereby controlling the specific characteristics of the desired structure In developing a device that can grow carbon nanotubes with.

아울러 촉매금속을 이용한 다른 나노재료의 성장에 있어서도 같은 효과를 볼 수 있다.The same effect can be seen in the growth of other nanomaterials using catalytic metals.

도 1은 발명의 실시 예에 따라 제조된 METCVD[Magnetic-field Enhanced Thermal Chemical Vapor Deposition]의 개략도이다.1 is a schematic diagram of a magnetic-field enhanced thermal chemical vapor deposition (METCVD) prepared according to an embodiment of the present invention.

※도면의 주요 부호에 대한 간략한 설명※ Brief description of the main symbols in the drawings

heating block : 가열 시스템 및 반응로, permanent magnet : 영구자석heating block: Heating system and reactor, permanent magnet: Permanent magnet

load lock : 시료 도입부, cooling water : 냉각시스템load lock: sample introduction part, cooling water: cooling system

상기의 기술적 과제를 달성하기 위한 본 발명에 따른 자기장을 이용한 탄소나노튜브 성장시 구조 제어방법은 강한 영구자석과 가열 및 냉각 시스템 그리고 시료 도입부[load rock]를 포함한다.Carbon nanotube growth control method using a magnetic field according to the present invention for achieving the above technical problem includes a strong permanent magnet, a heating and cooling system and a sample load (load rock).

종래의 화학기상증착 장비에 탄소나노튜브 성장용 촉매금속 기판이 위치하는 곳에 강력한 자기장이 생성되도록 반응로 부분의 상단과 하단에 거의 근접하도록 강한 영구자석[1 Tesla 이상]을 설치한다. 상, 하단에 설치된 영구자석은 거리를 조절할 수 있도록 설계하여, 거리의 함수로 자기장의 세기조절이 가능하다. 이 장비는 탄소나노튜브 성장시 사용되는 촉매금속의 자기모멘트를 강력한 자기장을 이용하여 정열함으로써 탄소층이 말리는 각도를 제어하여, 원하는 구조의 특정 특성을 갖는 탄소 나노튜브를 성장할 수 있다.In the conventional chemical vapor deposition equipment, a strong permanent magnet [more than 1 Tesla] is installed near the top and bottom of the reactor part so that a strong magnetic field is generated where the carbon nanotube growth catalyst metal substrate is located. Permanent magnets installed at the top and bottom are designed to control the distance, so that the strength of the magnetic field can be adjusted as a function of distance. This equipment arranges the magnetic moment of the catalyst metal used in the growth of carbon nanotubes using a strong magnetic field to control the angle at which the carbon layer is curled, thereby growing carbon nanotubes having specific characteristics of a desired structure.

한편 탄소나노튜브를 성장하기 위해서는 전기 방전, 열분해, 플라즈마, 레이져 등의 높은 에너지가 필요한데, 본 발명에서는 열 화학기상증착 장비를 고려하여필요한 고에너지를 열로 선택했다. 탄소를 포함한 기체를 분해하기 위해 열이 필요한데, 반응로 주변에 강력한 자기장이 있으므로 전류에 의한 가열시스템에서는 자기장의 상호작용을 고려해야 한다. 가열을 할로겐램프로 할 경우 온도를 빠르게 높이고 냉각시킬 수 있는 장점이 있으나 주변의 자기장으로 인해 할로겐램프 안의 텅스텐 필라멘트가 로렌츠 힘을 받아서 진동하여 자기장을 일그러뜨리는 단점과 할로겐램프의 수명이 짧아져서 자주 갈아줘야 하는 단점이 있다. 또 실리콘카바이드(SiC)와 같은 재료를 이용한 가열 봉을 설치하면 온도를 빠르게 제어할 수 없는 단점이 있지만 가열봉은 로렌츠 힘을 받더라도 떨리진 않으므로 균일한 자기장을 유지할 수 있는 장점이 있다.Meanwhile, in order to grow carbon nanotubes, high energy, such as electric discharge, pyrolysis, plasma, and laser, is required. In the present invention, high energy is selected as heat in consideration of thermal chemical vapor deposition equipment. Heat is required to decompose gases containing carbon, and there is a strong magnetic field around the reactor, so the interaction of the magnetic field must be taken into account in the current heating system. When heating is used as a halogen lamp, there is an advantage that the temperature can be quickly increased and cooled.However, due to the surrounding magnetic field, the tungsten filament in the halogen lamp is subjected to Lorentz force and vibrates to distort the magnetic field. There are disadvantages to be given. In addition, if a heating rod using a material such as silicon carbide (SiC) is installed, there is a disadvantage that the temperature can not be controlled quickly, but the heating rod has the advantage of maintaining a uniform magnetic field because it is not shaken even under Lorentz force.

탄소나노튜브를 성장하는 대부분의 방법에서 열이 많이 발생하기 때문에 냉각장치가 필요하다. 특히, 본 발명에서는 자기장을 걸어주기 위해 반응로 가까이에 영구자석이 위치하게 됨으로 냉각장치의 고안에 주의를 요한다. 만약 영구자석이 탄소나노튜브 성장 온도에 노출되었다가 상온이 되면 자기모멘트가 재배열되어 자성을 잃게 된다. 그럼으로 영구자석을 이중금속 틀에 넣고 그 사이에 냉각수를 계속해서 흘려 보내줘야 한다. 성장시 부주의로 인해 냉각수를 켜지 않고 성장할 경우, 영구자석이 자성을 잃게 됨으로 이를 대비해서 냉각수가 흐르지 않으면 경고음이 울리도록 중간에 수압센서와 알람을 설치한다.Most of the methods of growing carbon nanotubes generate a lot of heat, so a cooling device is required. In particular, the present invention requires attention to the design of the cooling device because the permanent magnet is located near the reactor in order to apply a magnetic field. If the permanent magnet is exposed to carbon nanotube growth temperature and reaches room temperature, the magnetic moment is rearranged to lose the magnetism. Therefore, the permanent magnet must be placed in a double metal mold and the coolant must be continuously flowed between them. In case of growth without inadvertently turning on the coolant, the permanent magnet loses its magnetism. In case of the coolant, the water pressure sensor and alarm are installed in the middle so that the alarm sounds.

또한, 탄소나노튜브 성장시 성장용 촉매 금속 기판이 필요한데 기판이 처음부터 반응로의 자기장 중심부에 들어가 있으면 온도를 올리는 과정에서 기판의 촉매금속이 높은 열과 강한 전기장으로 인해 증발되어 날아가거나 표면에서 확산되어촉매기능을 할 수 없게 된다. 그러므로 온도를 성장온도로 올리고 난후에 기판을 중심에 이동시킬 수 있도록 시료도입부(load rock)가 필요하다. 이것은 촉매금속의 증발과 확산 두 가지 문제를 동시에 해결할 수 있다. 따라서 부수적인 효과로 직경이 작은 탄소나노튜브를 성장하기가 용이하다.In addition, when growing carbon nanotubes, a growth catalyst metal substrate is required. If the substrate enters the center of the magnetic field of the reactor from the beginning, the catalyst metal of the substrate is evaporated and flew away or diffused from the surface due to the high heat and strong electric field. It will not be able to function as a catalyst. Therefore, a load rock is required to move the substrate to the center after raising the temperature to the growth temperature. This solves both problems of evaporation and diffusion of catalytic metals simultaneously. Therefore, it is easy to grow a small diameter carbon nanotubes as a side effect.

이 외에 진공 및 가스조절 시스템이 갖추어진다.In addition, vacuum and gas control systems are equipped.

이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명한다. 그러나, 본 발명의 실시 예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시 예들에 한정되어지는 것으로 해석되어져서는 안된다. 본 발명의 실시 예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되어지는 것이다. 따라서, 도면에서의 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 과장되어진 것이며, 도면 상에서 동일한 부호로 표시된 요소는 동일한 요소를 의미한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, embodiments of the present invention may be modified in many different forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art. Accordingly, the shape and the like of the elements in the drawings are exaggerated to emphasize a more clear description, and the elements denoted by the same reference numerals in the drawings means the same elements.

도 1은 본 발명의 실시 예에 따른 나노튜브 및 나노 재료의 성장 제어를 위한 자기장 열 화학기상증착장치의 개략도이다. 도 1을 참조하여, 나노튜브 및 나노 재료의 성장 제어를 위한 자기장 열 화학기상증착장치를 설명한다.1 is a schematic diagram of a magnetic field thermal chemical vapor deposition apparatus for controlling the growth of nanotubes and nanomaterials according to an embodiment of the present invention. Referring to FIG. 1, a magnetic field thermal chemical vapor deposition apparatus for controlling growth of nanotubes and nanomaterials will be described.

먼저, 탄소나노튜브 및 나노 재료의 성장 제어를 위한 촉매금속 기판을 준비하여 시료도입부(load rock)에 넣는다. 주 전원을 켜고 냉각 시스템이 잘 작동되는지 확인한 후 진공시스템을 동작한다. 진공이 잡히면 가열시스템에 성장온도를 유지하고 전류를 흘려준다. 온도가 완전히 유지되면 load rock을 이용하여 성장용 기판을 자기장의 중심 반응로에 집어넣는다. 그리고 가스조절기에 원하는 가스의유량을 정하고 주입한다. 이와 같은 공정으로 강력한 자기장 하에서 특정 성질을 가진 탄소나노튜브나 나노 재료를 성장할 수 있다. 성장이 완료되면 가스주입을 멈추고 장비를 냉각시킨다. 이 때 여전히 자기장은 걸려 있으므로 성장된 탄소나노튜브나 나노재료 끝에 잔여하는 촉매금속은 자성을 띠게된다.First, a catalyst metal substrate for growth control of carbon nanotubes and nanomaterials is prepared and placed in a load rock. Turn on the main power and verify that the cooling system is working properly before operating the vacuum system. When the vacuum is applied, the heating system maintains the growth temperature and supplies current. Once the temperature is maintained, the growth substrate is placed in the central reactor of the magnetic field using a load rock. In addition, the desired gas flow rate is determined and injected into the gas regulator. This process allows the growth of carbon nanotubes or nanomaterials with specific properties under strong magnetic fields. When growth is complete, stop gas injection and allow the equipment to cool. At this time, the magnetic field is still hung, so the catalytic metal remaining at the end of the grown carbon nanotubes or nanomaterials becomes magnetic.

상술한 본 발명에 따르면, 강력한 자기장을 이용하여 탄소나노튜브 성장시 사용되는 촉매금속의 자기모멘트를 성장과정 내내 정열함으로써 탄소층이 말리는 각도를 제어하여, 원하는 구조의 특정 특성을 갖는 탄소 나노튜브를 성장할 수 있다.According to the present invention described above, by controlling the angle of the carbon layer by arranging the magnetic moment of the catalyst metal used in the growth of carbon nanotubes using a strong magnetic field throughout the growth process, the carbon nanotubes having a specific characteristic of the desired structure You can grow.

본 발명에 따른 장비로 성장된 탄소나노튜브는 아무런 차후 처리 없이 특정 소자에 곧바로 응용가능 하다. 반도체성 탄소나노튜브만을 성장하여 고집적 메모리 소자에 응용할 수 있고, 성장 후 탄소나토튜브 끝에 자화되어 있는 촉매금속 탐침(tip)을 이용한 MFM(Magnetic Force Microscrope)-tip 등에 응용할 수 있다.Carbon nanotubes grown with equipment according to the invention can be applied directly to specific devices without any further processing. Only semiconducting carbon nanotubes can be grown and applied to highly integrated memory devices, and they can be applied to magnetic force microscrope (MFM) tips using catalytic metal tips magnetized at the ends of carbon nanotubes after growth.

아울러 탄소나노튜브가 아닌 나노재료의 성장에 있어서도 유사한 효과가 기대된다.Similar effects are expected in the growth of nanomaterials, not carbon nanotubes.

Claims (7)

상기 탄소나노튜브 및 나노구조체의 구조를 제어하여 성장하기 위한 강력한 자기장을 설치하는 단계 및 자석의 거리를 조절하여 자기장의 세기를 조절 가능하게 하는 방법.Installing a strong magnetic field for controlling and growing the structure of the carbon nanotubes and nanostructures and the method of controlling the distance of the magnets to adjust the strength of the magnetic field. 제 1 항에 있어서, 탄소나노튜브 성장시 사용되는 촉매금속의 자기모멘트를 강력한 자기장을 이용하여 정열함으로써 탄소층이 말리는 각도를 제어하여, 원하는 구조의 특정 특성을 갖는 탄소 나노튜브를 성장하는 방법.The method according to claim 1, wherein the angle of the carbon layer is controlled by arranging the magnetic moment of the catalyst metal used in the growth of the carbon nanotubes using a strong magnetic field to grow carbon nanotubes having specific characteristics of a desired structure. 제 1 항에 있어서, 자기장과의 상호작용을 고려한 가열시스템 설치;The method of claim 1, further comprising: installing a heating system in consideration of interaction with the magnetic field; 가열속도제어가 쉬운 할로겐 램프 설치법과 균일한 자기장을 유지할 수 있는 가열봉(예:SiC) 설치법Halogen lamp installation for easy heating rate control and heating rod (eg SiC) installation to maintain a uniform magnetic field 제 1항에 있어서, 가열시스템으로부터 영구자석 보호를 위한 냉각수 설치;The system of claim 1, further comprising: installing coolant for permanent magnet protection from the heating system; 및 경고 시스템 설치.And warning system installation. 제 1항에 있어서, 기판의 촉매금속이 높은 열과 강한 전기장내에서 안정되도록 온도가 완전히 유지된 후, 기판을 중심에 이동 가능하도록 시료도입부(load rock) 설치The method of claim 1, wherein a load rock is provided to move the substrate to the center after the temperature is completely maintained so that the catalyst metal of the substrate is stable in a high heat and strong electric field. 상기 장비를 이용하여 성장된 탄소나노튜브의 MFM-tip 응용.MFM-tip application of carbon nanotubes grown using the above equipment. 상기 장비를 이용한 단일 특성의 나노재료 합성.Synthesis of single-character nanomaterials using the above equipment.
KR1020020064421A 2002-10-22 2002-10-22 Manufacturing Magnetic-Field Enhanced Thermal Chemical Vapor Deposition System KR20040035323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020064421A KR20040035323A (en) 2002-10-22 2002-10-22 Manufacturing Magnetic-Field Enhanced Thermal Chemical Vapor Deposition System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020064421A KR20040035323A (en) 2002-10-22 2002-10-22 Manufacturing Magnetic-Field Enhanced Thermal Chemical Vapor Deposition System

Publications (1)

Publication Number Publication Date
KR20040035323A true KR20040035323A (en) 2004-04-29

Family

ID=37334269

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020064421A KR20040035323A (en) 2002-10-22 2002-10-22 Manufacturing Magnetic-Field Enhanced Thermal Chemical Vapor Deposition System

Country Status (1)

Country Link
KR (1) KR20040035323A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100938230B1 (en) * 2007-08-16 2010-01-22 세메스 주식회사 A producing device of carbon nano-tube using magnetic field
WO2021096153A1 (en) * 2019-11-12 2021-05-20 충남대학교산학협력단 Method for manufacturing chiral nanostructure and apparatus for forming helical magnetic field to manufacture chiral nanostructure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019413A (en) * 1999-07-01 2001-01-23 Ebara Corp Production of carbon nanofiber and device therefor
EP1205436A1 (en) * 2000-11-13 2002-05-15 International Business Machines Corporation Crystals comprising single-walled carbon nanotubes
JP2002220654A (en) * 2001-01-30 2002-08-09 Japan Science & Technology Corp Method for manufacturing carbon nano-fiber and equipment therefor
KR20030026870A (en) * 2001-09-25 2003-04-03 가부시키 가이샤 곡사이 기반 자이료 겐큐쇼 Carbon nanotubes and method of manufacturing same, electron emission source, and display
KR20040068098A (en) * 2002-10-30 2004-07-30 후지제롯쿠스 가부시끼가이샤 Manufacturing apparatus and method for carbon nanotube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001019413A (en) * 1999-07-01 2001-01-23 Ebara Corp Production of carbon nanofiber and device therefor
EP1205436A1 (en) * 2000-11-13 2002-05-15 International Business Machines Corporation Crystals comprising single-walled carbon nanotubes
JP2002220654A (en) * 2001-01-30 2002-08-09 Japan Science & Technology Corp Method for manufacturing carbon nano-fiber and equipment therefor
KR20030026870A (en) * 2001-09-25 2003-04-03 가부시키 가이샤 곡사이 기반 자이료 겐큐쇼 Carbon nanotubes and method of manufacturing same, electron emission source, and display
KR20040068098A (en) * 2002-10-30 2004-07-30 후지제롯쿠스 가부시끼가이샤 Manufacturing apparatus and method for carbon nanotube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100938230B1 (en) * 2007-08-16 2010-01-22 세메스 주식회사 A producing device of carbon nano-tube using magnetic field
WO2021096153A1 (en) * 2019-11-12 2021-05-20 충남대학교산학협력단 Method for manufacturing chiral nanostructure and apparatus for forming helical magnetic field to manufacture chiral nanostructure

Similar Documents

Publication Publication Date Title
Lee et al. Control of growth orientation for carbon nanotubes
US7611579B2 (en) Systems and methods for synthesis of extended length nanostructures
US7060356B2 (en) Carbon nanotube-based device and method for making carbon nanotube-based device
US7303790B2 (en) Electron cyclotron resonance plasma deposition process and device for single-wall carbon nanotubes and nanotubes thus obtained
Dong et al. ZnO nanowires formed on tungsten substrates and their electron field emission properties
CN101591015B (en) Preparation method of banded carbon nano tube film
US7591897B2 (en) Method for the rapid synthesis of large quantities of metal oxide nanowires at low temperatures
US20040244677A1 (en) Nanofiber and method of manufacturing nanofiber
WO1998042620A1 (en) Process for producing carbon nanotubes, process for producing carbon nanotube film, and structure provided with carbon nanotube film
WO2006091291A2 (en) Apparatus and process for carbon nanotube growth
WO2005051842A2 (en) Elongated nano-structures and related devices
JP2008037670A (en) Method for producing carbon nanotube
Yuan et al. Synthesis and characterization of single crystalline hafnium carbide nanowires
US20080060581A1 (en) Deposition of carbon-containing layers using vitreous carbon source
KR20040035323A (en) Manufacturing Magnetic-Field Enhanced Thermal Chemical Vapor Deposition System
Wang et al. Low-temperature catalytic growth of carbon nanotubes under microwave plasma assistance
US20070183964A1 (en) Nano-fiber or nano-tube comprising v group transition metal dichalcogenide crystals, and method for preparation thereof
JP3061755B2 (en) CVD apparatus having susceptor for CVD apparatus and high frequency induction heating apparatus
JP2001039707A (en) Production of carbon capsule
US10336618B1 (en) Apparatus and method for synthesizing vertically aligned carbon nanotubes
Ren et al. Large arrays of well-aligned carbon nanotubes
JP2004051432A (en) Substrate for manufacturing carbon nanotube and method of manufacturing carbon nanotube using the same
Boskovic et al. Branched carbon nanofiber network synthesis at room temperature using radio frequency supported microwave plasmas
Yan et al. Effects of argon plasma treating on surface morphology and gas ionization property of carbon nanotubes
Cui et al. Microstructure and field emission properties of the Si–TaSi2 eutectic in situ composites by electron beam floating zone melting technique

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E601 Decision to refuse application