KR20030091478A - Fabricating method of copper film for semiconductor interconnection - Google Patents

Fabricating method of copper film for semiconductor interconnection Download PDF

Info

Publication number
KR20030091478A
KR20030091478A KR1020020029543A KR20020029543A KR20030091478A KR 20030091478 A KR20030091478 A KR 20030091478A KR 1020020029543 A KR1020020029543 A KR 1020020029543A KR 20020029543 A KR20020029543 A KR 20020029543A KR 20030091478 A KR20030091478 A KR 20030091478A
Authority
KR
South Korea
Prior art keywords
copper
electroless plating
thin film
forming
reducing agent
Prior art date
Application number
KR1020020029543A
Other languages
Korean (ko)
Other versions
KR100475403B1 (en
Inventor
김재정
차승환
Original Assignee
김재정
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김재정 filed Critical 김재정
Priority to KR10-2002-0029543A priority Critical patent/KR100475403B1/en
Publication of KR20030091478A publication Critical patent/KR20030091478A/en
Application granted granted Critical
Publication of KR100475403B1 publication Critical patent/KR100475403B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/168Control of temperature, e.g. temperature of bath, substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1619Apparatus for electroless plating
    • C23C18/1628Specific elements or parts of the apparatus
    • C23C18/163Supporting devices for articles to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1675Process conditions
    • C23C18/1683Control of electrolyte composition, e.g. measurement, adjustment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • C23C18/405Formaldehyde
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition

Abstract

PURPOSE: A method for fabricating a copper film for semiconductor interconnection which has low resistivity by solving such conventional problems as interruption of electroless copper plating and increase of resistivity value is provided. CONSTITUTION: In a method for fabricating copper film for semiconductor interconnection in which electroless plating is performed on the surface of the object to be plated by dipping an object to be plated into an electroless copper plating solution comprising copper salt, complexing agent for forming ligands with copper ions to suppress liquid phase reaction, reducing agent for reducing copper ions and pH adjusting agent for keeping pH constant to oxidize the reducing agent, the method for fabricating copper film for semiconductor interconnection is characterized in that the electroless plating is performed by using formaldehyde as the reducing agent and maintaining temperature of the electroless copper plating solution to 30 to 70 deg.C, wherein the electroless plating is performed by using the electroless copper plating solution comprising 0.7 to 1.1 g/L of copper sulfate as the copper salt, 2 to 2.5 g/L of ethylene diamine acetic acid as the complexing agent, 0.3 to 0.5 g/L of formaldehyde as the reducing agent and 3 to 5 g/L of potassium hydroxide as the pH adjusting agent, wherein the electroless plating is performed as the object to be plated is being rotated, and wherein the electroless plating is performed at a nitrogen atmosphere or argon atmosphere.

Description

반도체 배선용 구리 박막 형성방법{Fabricating Method of Copper Film for Semiconductor Interconnection}Fabricating Method of Copper Film for Semiconductor Interconnection

본 발명은 반도체 배선용 금속막 형성방법 관한 것으로서, 특히 무전해 도금을 이용하는 반도체 배선용 구리 박막 형성방법에 관한 것이다.The present invention relates to a method for forming a metal film for semiconductor wiring, and more particularly, to a method for forming a copper thin film for semiconductor wiring using electroless plating.

반도체 소자의 배선으로서 구리 박막은 알루미늄막을 대체하여 차세대 로직칩(logic chip)과 디램(DRAM) 반도체의 성능을 향상시킬 수 있는 것으로 인식되고 있다. 구리는 알루미늄에 비해 비저항이 낮기 때문에 저항-축전 지연(RC delay)을 감소시켜 집적회로를 보다 빠르게 동작 가능하고 전기이동에 대한 저항성(electromigration resistance)이 좋기 때문에 소자 내에서의 금속 회로의 단락을 줄일 수 있어 알루미늄을 대신하여 0.18㎛이하의 반도체 소자에 있어서의 그 사용 가능성을 인정받고 있다.It is recognized that a copper thin film as a wiring for a semiconductor device can improve performance of next-generation logic chips and DRAM semiconductors by replacing aluminum films. Copper has a lower resistivity compared to aluminum, which reduces the resistance-to-capacitance delay (RC delay), enabling faster operation of integrated circuits and better electromigration resistance, which reduces short circuits in metal circuits within the device. In place of aluminum, its use in a semiconductor device of 0.18 mu m or less has been recognized.

이러한 구리 박막 형성하는 데 있어서, 간단한 습식법으로서 도금액을 이용하는 무전해 도금 방법을 이용하고 있다. 무전해 도금이란, 피도금체 표면에 외부로부터 전기 에너지를 공급받지 않고 제이구리이온을 포함하는 용액에 환원제를 첨가하여 자기 촉매적으로 구리를 환원시키는 것이다. 여기서, 반도체 소자의 배선 공정에서는 무전해 도금을 이용하여 상기 환원된 구리를 웨이퍼 표면에 증착시킨다.In forming such a copper thin film, an electroless plating method using a plating liquid is used as a simple wet method. In electroless plating, copper is catalytically reduced by adding a reducing agent to a solution containing a cuprous ion without receiving electrical energy from the outside on the surface of the plated body. Here, in the wiring process of the semiconductor device, the reduced copper is deposited on the wafer surface using electroless plating.

종래에서는 환원제로서 포름알데히드(HCHO)를 이용하는 데, 포름알데히드의 산화 반응은 다음의 화학식 1과 같다.Conventionally, formaldehyde (HCHO) is used as a reducing agent, and the oxidation reaction of formaldehyde is represented by the following Chemical Formula 1.

2HCHO + 4OH-↔ 2HCOO-+ 2H2O + H2+ 2e- 2HCHO + 4OH - ↔ 2HCOO - + 2H 2 O + H 2 + 2e -

이러한 포름알데히드의 산화 반응에서 발생한 전자는 화학식 2에서와 같이 착화제와 결합하고 있는 구리 이온이 받아서 구리로 환원된다.The electrons generated in the oxidation reaction of the formaldehyde is received by the copper ions bound to the complexing agent as shown in the formula (2) is reduced to copper.

[CuEDTA]2-+ 2e-→ Cu + [EDTA]4- [CuEDTA] 2- + 2e - → Cu + [EDTA] 4-

이와 같이, 포름알데히드가 산화되어 수소 기체가 발생하게 되면, 수소 기체는 기판 표면 상에 흡착된 상태로 존재하여서 구리 무전해 도금을 방해하고, 또 일부는 구리의 내부에 존재하여 구리의 표면적을 넓게 형성함으로써, 배선용 구리 박막이 불균일하게 된다. 이러한 넓은 표면적을 가진 구리 박막은, 산소와 반응하여 산화되는 구리의 특성상 더 넓은 부분에서 산화물을 형성하게 되고 결과적으로 비저항 값이 커지는 문제점을 야기한다.As such, when formaldehyde is oxidized to generate hydrogen gas, hydrogen gas is adsorbed on the surface of the substrate to interfere with copper electroless plating, and part of it is inside of copper to increase the surface area of copper. By forming, the copper thin film for wiring becomes nonuniform. The copper thin film having such a large surface area causes oxides to be formed in a larger portion due to the nature of the copper which is reacted with oxygen, and consequently causes a problem in that the resistivity value becomes large.

도 1a는 종래의 환원제로서 포름알데히드를 이용하여 무전해 도금한 구리 박막을 나타내기 위한 SEM(scanning electron microscope) 사진이며, 도 1b는 도 1a에 있어서의 구리 박막이 형성되는 과정을 나타내는 AES(Auger electron spectroscopy) 그래프이다.FIG. 1A is a scanning electron microscope (SEM) photograph for showing an electroless plated copper thin film using formaldehyde as a conventional reducing agent, and FIG. 1B is an AES (Auger) showing a process of forming a copper thin film in FIG. 1A. electron spectroscopy) graph.

도 1a 및 도 1b를 참조하면, 도 1b에서 나타낸 것과 같이, 기판에 구리 증착공정이 이루어지고, 증착된 구리 박막 내에는 산소가 상당량 존재하는 것을 볼 수 있다. 이렇게 증착 환원제로서 포름알데히드를 이용하여 상온에서 무전해 도금을 실시할 경우에, 3분 정도 실시하면, 도 1a에서 나타낸 것과 같은 표면이 불균일한 구리 박막이 증착됨을 볼 수 있다. 이때, 전체 비저항이 약 5.1μΩ·㎝로 나타나고, 이것은 실제 구리의 비저항이 1.7μΩ·㎝것에 비하여 3배나 높게 되는 것이다.1A and 1B, as shown in FIG. 1B, a copper deposition process is performed on a substrate, and a significant amount of oxygen is present in the deposited copper thin film. Thus, when electroless plating is performed at room temperature using formaldehyde as a deposition reducing agent, it can be seen that when the copper plating is performed for about 3 minutes, a non-uniform copper thin film as shown in FIG. 1A is deposited. At this time, the total specific resistance is about 5.1 µPa · cm, which is three times higher than that of actual copper of 1.7 µPa · cm.

따라서, 본 발명이 이루고자 하는 기술적 과제는, 상술한 종래의 문제점을 해결하여 보다 균일하고 비저항이 낮은 반도체 배선용 구리 박막 형성방법을 제공하는 데 있다.Accordingly, the present invention has been made in an effort to provide a method for forming a copper thin film for semiconductor wiring, which is more uniform and has a low specific resistance, by solving the above-described problems.

도 1a는 종래의 환원제로서 포름알데히드를 이용하여 무전해 도금한 구리 박막을 나타내기 위한 SEM(scanning electron microscope) 사진이며;1A is a scanning electron microscope (SEM) photograph to show a copper thin film electroless plated using formaldehyde as a conventional reducing agent;

도 1b는 도 1a에 있어서의 구리 박막이 형성되는 과정을 나타내는 AES(Auger electron spectroscopy) 그래프;FIG. 1B is an AES (Auger electron spectroscopy) graph showing a process of forming a copper thin film in FIG. 1A; FIG.

도 2a는 본 발명에 따른 실시예 1에 의해 증착된 구리 박막을 나타낸 SEM사진이고;2A is a SEM photograph showing a copper thin film deposited by Example 1 according to the present invention;

도 2b는 본 발명에 따른 실시예 1에 의해 증착된 구리 박막을 나타낸 AES 그래프;2B is an AES graph showing a copper thin film deposited by Example 1 according to the present invention;

도 3은 본 발명에 있어서의 반도체 배선용 구리 박막 형성 방법에 따라 증착되는 구리 박막의 두께를 나타낸 그래프;3 is a graph showing the thickness of a copper thin film deposited according to the method for forming a copper thin film for semiconductor wiring in the present invention;

도 4a 내지 도 4c는 도 3에서의 기판의 표면 상태를 나타내기 위한 SEM 사진들;4A-4C are SEM photographs for showing the surface state of the substrate in FIG. 3;

도 5는 본 발명에 따른 실시예 2에서의 무전해 도금의 잠복기의 변화를 나타낸 그래프;5 is a graph showing a change in the latency of electroless plating in Example 2 according to the present invention;

도 6a는 본 발명에 따른 실시예 2에 있어서의 구리 박막 증착에 따른 면저항의 변화를 나타낸 그래프;6A is a graph showing a change in sheet resistance due to copper thin film deposition in Example 2 according to the present invention;

도 6b는 도 6a에서의 면저항에 따라 증착된 구리 박막의 두께를 나타낸 SEM 사진;FIG. 6B is a SEM photograph showing the thickness of the copper thin film deposited according to the sheet resistance in FIG. 6A; FIG.

도 7은 본 발명에 따른 실시예 3에 있어서 무전해 도금 공정 전체의 면저항변화를 나타내기 위한 그래프;7 is a graph showing the sheet resistance change of the whole electroless plating process in Example 3 according to the present invention;

도 8은 본 발명에 따른 실시예 3에 있어서 잠복기 이후의 면저항 변화를 설명하기 위한 그래프;8 is a graph for explaining the sheet resistance change after the incubation period in Example 3 according to the present invention;

도 9는 본 발명에 따른 실시예 3에 의하여 형성된 구리 박막을 나타낸 SEM 사진; 및9 is a SEM photograph showing a copper thin film formed by Example 3 according to the present invention; And

도 10은 본 발명에 따른 실시예 4에 의해 형성된 구리 박막을 나타내는 SEM사진이다.10 is a SEM photograph showing a copper thin film formed by Example 4 according to the present invention.

상기 기술적 과제를 달성하기 위한 본 발명에 따른 일예의 반도체 배선용 구리 박막 형성방법은: 구리염과, 구리이온과 리간드를 형성하여 액상반응을 억제하는 착화제와, 구리이온을 환원시키는 환원제, 상기 환원제가 산화되도록 적당한 pH를 유지시키는 pH 조절제를 포함하는 구리 무전해 도금액에 피도금체를 침지하여 상기 피도금체 표면에 무전해 도금을 실시하는 반도체 배선용 구리 박막 형성방법에 있어서, 상기 무전해 도금은 상기 환원제로서 포름알데히드를 이용하고, 상기 구리 무전해 도금액의 온도를 30℃∼70℃으로 하여 실시하는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a method for forming a copper thin film for semiconductor wiring, comprising: a copper salt, a complexing agent for inhibiting liquid phase reaction by forming a ligand with copper ions, a reducing agent for reducing copper ions, and the reducing agent A method of forming a copper thin film for semiconductor wiring in which a plating target is immersed in a copper electroless plating solution containing a pH adjusting agent for maintaining a proper pH so that the oxidation is performed, and the electroless plating is performed. Formaldehyde is used as the reducing agent, and the temperature of the copper electroless plating solution is set at 30 ° C to 70 ° C.

또한, 상기 기술적 과제를 달성하기 위한 본 발명에 따른 다른 예의 반도체 배선용 구리 박막 형성방법은: 구리염과, 구리이온과 리간드를 형성하여 액상반응을 억제하는 착화제와, 구리이온을 환원시키는 환원제, 상기 환원제가 산화되도록 적당한 pH를 유지시키는 pH 조절제를 포함하는 구리 무전해 도금액에 피도금체를 침지하여 상기 피도금체 표면에 무전해 도금을 실시하는 반도체 배선용 구리 박막 형성방법에 있어서, 상기 무전해 도금은 상기 환원제로서 포름알데히드를 이용하며, 상기 구리 무전해 도금액의 온도를 30℃∼70℃으로 하여 실시한 다음에, 상기구리 무전해 도금액의 온도를 15℃∼28℃로 하여 실시하는 것을 특징으로 한다.In addition, another method for forming a copper thin film for semiconductor wiring according to the present invention for achieving the above technical problem is: a complexing agent for inhibiting liquid phase reaction by forming a copper salt, a copper ion and a ligand, a reducing agent for reducing the copper ion, A method of forming a copper thin film for semiconductor wiring in which a plating target is immersed in a copper electroless plating solution containing a pH adjusting agent for maintaining a suitable pH so that the reducing agent is oxidized, and the electroless plating is performed on the surface of the plating target. Plating is carried out by using formaldehyde as the reducing agent, performing the temperature of the copper electroless plating solution at 30 ° C. to 70 ° C., and then performing the temperature of the copper electroless plating solution at 15 ° C. to 28 ° C. do.

본 발명에 따른 일예 및 다른 예에 있어서, 나아가, 상기 무전해 도금은, 상기 구리 무전해 도금액을 상기 구리염으로서 0.7∼1.1g/L의 황산구리, 상기 착화제로서 2∼2.5g/L의 에틸렌디아민아세트산, 상기 환원제로서 0.3∼0.5g/L의 포름알데히드, 및 상기 pH 조절제로서 3∼5g/L의 수산화칼륨으로 형성하여 실시하는 것이 바람직하다.In the examples and other examples according to the present invention, further, the electroless plating includes 0.7 to 1.1 g / L copper sulfate as the copper salt and 2 to 2.5 g / L ethylene as the complexing agent. It is preferable to form and form diamine acetic acid, 0.3-0.5 g / L formaldehyde as said reducing agent, and 3-5 g / L potassium hydroxide as said pH adjuster.

더 나아가, 상기 무전해 도금은, 상기 피도금체 표면에 구리 결정이 증착된 때부터 상기 피도금체 표면 전체에서 구리 결정의 성장이 이루어지기 전까지의 시간, 즉 잠복기에는 상기 구리 무전해 도금액을 상기 구리염으로서 5∼8g/L의 황산구리, 상기 착화제로서 14∼18g/L의 에틸렌디아민아세트산, 상기 환원제로서 2∼3.5g/L의 포름알데히드, 및 상기 pH 조절제로서 20∼35g/L의 수산화칼륨으로 농도 증가시켜 실시하는 것이 더욱 바람직하다.Further, the electroless plating may be performed by depositing the copper electroless plating solution in a time period from when copper crystals are deposited on the surface of the plated body until growth of copper crystals is formed on the entire surface of the plated body. 5-8 g / L copper sulfate as the copper salt, 14-18 g / L ethylenediamineacetic acid as the complexing agent, 2 to 3.5 g / L formaldehyde as the reducing agent, and 20 to 35 g / L hydroxide as the pH adjusting agent It is more preferable to carry out by increasing the concentration with potassium.

또한, 상기 무전해 도금은, 상기 피도금체를 회전시키면서 실시하는 것이 바람직하다.Moreover, it is preferable to perform the said electroless plating, rotating the said to-be-plated body.

또한, 상기 무전해 도금은, 질소 분위기 또는 아르곤 분위기에서 실시하는 것이 바람직하다.In addition, it is preferable to perform the said electroless plating in nitrogen atmosphere or argon atmosphere.

이하에서, 본 발명의 바람직한 실시예들은 첨부한 도면을 참조하여 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

먼저, 본 발명의 일예에 따른 반도체 배선용 구리 박막 형성 방법에 관하여설명한다.First, a method of forming a copper thin film for semiconductor wiring according to an example of the present invention will be described.

반도체 배선용 구리 박막 형성 방법은, 우선, 실리콘 웨이퍼로서 기판을 마련한 다음에, 구리 무전해 도금액에 웨이퍼를 침지시켜 웨이퍼 표면에 구리 박막을 형성하는 데, 이때 구리 무전해 도금액의 온도는 70℃로 일정하게 유지하면서 무전해 도금 공정이 이루어지게 된다.In the method of forming a copper thin film for semiconductor wiring, first, a substrate is prepared as a silicon wafer, and then the wafer is immersed in a copper electroless plating solution to form a copper thin film on the surface of the wafer, wherein the temperature of the copper electroless plating solution is constant at 70 ° C. The electroless plating process is carried out while maintaining it.

여기서, 구리 무전해 도금액은 구리이온을 생성하는 구리염, 구리이온을 환원시키는 환원제, 구리이온과 리간드를 형성함으로써 구리가 액상에서 환원되어 용액이 불안정하게 되는 것을 방지하기 위한 착화제, 및 상기 환원제가 산화되도록 용액을 적당한 pH로 유지시키는 pH 조절제가 혼합된 것으로서, 구리염으로서 0.7∼1.1g/L의 황산구리, 착화제로서 2∼2.5g/L의 에틸렌디아민아세트산, 환원제로서 0.3∼0.5g/L의 포름알데히드, pH 조절제로서 3∼5g/L의 수산화칼륨으로 이루어지는 것이다.Here, the copper electroless plating solution is a copper salt for producing copper ions, a reducing agent for reducing copper ions, a complexing agent for preventing copper from being reduced in the liquid phase and forming a ligand by forming a ligand with copper ions, and the reducing agent A pH adjusting agent for maintaining the solution at an appropriate pH is mixed so that the oxidation is carried out, and copper sulfate of 0.7 to 1.1 g / L as a copper salt, 2 to 2.5 g / L ethylenediamineacetic acid as a complexing agent and 0.3 to 0.5 g / as a reducing agent It is made of L formaldehyde and 3-5 g / L potassium hydroxide as a pH adjuster.

이때, 구리 무전해 도금액의 온도는 70℃로 하였으나 이에 한하지 않는다. 그러나, 환원제로서 포름알데히드를 사용하므로 구리 무전해 도금액의 온도가 70℃보다 높을 경우에 화학식 3에서 나타내는 것과 같은 부반응을 일으키게 된다.At this time, the temperature of the copper electroless plating solution was set at 70 ° C., but is not limited thereto. However, since formaldehyde is used as the reducing agent, when the temperature of the copper electroless plating solution is higher than 70 ° C., side reactions such as those shown in Formula 3 are caused.

2HCHO + OH-→ HCOO-+ CH3OH 2HCHO + OH - → HCOO - + CH 3 OH

그러므로, 화학식 3에서와 같은 부반응이 일어나지 않도록 구리 무전해 도금액의 온도는 70℃이하로 이루어져야만 한다. 더불어, 상온 보다 높은 온도에서 이루어져서 산소 기체의 용해도를 감소시켜 구리 무전해 도금액 내에 산소의 양을 줄임으로써 산소로 인해 구리 박막에 산화물이 발생되는 것을 방지해야 한다. 그러므로, 상온 보다 높은 30℃∼70℃의 범위에서 이루지는 것이 보다 바람직한 것이다. 이때, 이러한 구리 무전해 도금액의 온도에서는 상술한 환원제로서 포름알데이드의 산화 반응에서 발생하는 수소 기체는 온도가 높을 수록 운동에너지가 증가하게 되어 구리 박막의 표면에서 쉽게 떨어져 박막의 균일성이 높아지며, 생성된 구리 산화물도 용해도가 증가하여 구리 박막 내에서 존재하기 어려워진다.Therefore, the temperature of the copper electroless plating solution should be 70 ° C. or less so that no side reaction as in Chemical Formula 3 occurs. In addition, it should be made at a temperature higher than room temperature to reduce the solubility of oxygen gas to reduce the amount of oxygen in the copper electroless plating solution to prevent the generation of oxides in the copper thin film due to oxygen. Therefore, what is achieved in the range of 30 degreeC-70 degreeC higher than normal temperature is more preferable. At this time, at the temperature of the copper electroless plating solution, the hydrogen gas generated in the oxidation reaction of formaldehyde as the reducing agent described above increases in kinetic energy as the temperature increases, and easily falls off the surface of the copper thin film, thereby increasing the uniformity of the thin film. The resulting copper oxide also increases in solubility, making it difficult to exist in the copper thin film.

[실시예 1]Example 1

본 실시예는 본 발명의 일예에 따라 구리 무전해 도금액을 0.9g/L의 황산구리, 2.3g/L의 에틸렌디아민아세트산, 0.41g/L의 포름알데히드, 3.9g/L의 수산화칼륨으로 혼합한다. 여기서, 구리 무전해 도금은 상기 구리 무전해 도금액을 70℃로 유지하여 40분 동안 실시한다.This example mixes a copper electroless plating solution with 0.9 g / L copper sulfate, 2.3 g / L ethylenediamineacetic acid, 0.41 g / L formaldehyde, and 3.9 g / L potassium hydroxide in accordance with one embodiment of the present invention. Here, copper electroless plating is performed for 40 minutes while maintaining the copper electroless plating solution at 70 ° C.

도 2a는 본 발명에 따른 실시예 1에 의해 증착된 구리 박막을 나타낸 SEM사진이고, 도 2b는 본 발명에 따른 실시예 1에 의해 증착된 구리 박막을 나타낸 AES 그래프이다.FIG. 2A is a SEM photograph showing a copper thin film deposited by Example 1 according to the present invention, and FIG. 2B is an AES graph showing the copper thin film deposited by Example 1 according to the present invention.

도 2a 및 도 2b를 참조하면, 본 발명 일예의 실시예 1에 따른 결과, 도 2a에서 나타낸 것 같이, 전체 구리 박막의 두체는 약 5000Å이며, 비저항은 약 2μΩ·㎝인 것을 알 수 있다. 또한, 도 2b에서 나타내는 것 같이, 구리 박막의 내부에 구리 산화물이 존재하지 않고, 구리 박막의 비저항은 거의 실제 구리의 비저항에 근접한 값으로 이루어지는 것을 알 수 있다.2A and 2B, as a result of the first embodiment of the present invention, as shown in FIG. 2A, it can be seen that the head of the entire copper thin film is about 5000 kPa and the specific resistance is about 2 μΩ · cm. In addition, as shown in FIG. 2B, it is understood that no copper oxide is present in the copper thin film, and the specific resistance of the copper thin film is substantially close to that of the actual copper.

도 3은 본 발명에 있어서의 반도체 배선용 구리 박막 형성 방법에 따라 증착되는 구리 박막의 두께를 나타낸 그래프이다.3 is a graph showing the thickness of the copper thin film deposited by the method for forming a copper thin film for semiconductor wiring in the present invention.

도 3을 참조하면, 본 발명의 일예에 따라 구리 무전해 도금을 실시하면 구리 박막의 결정 성장, 즉 구리 박막의 두께를 형성하는 시간은 공정 실시의 약 18분 후 이다. 이는 구리 결정이 기판 표면에 형성된 때부터 구리 결정이 기판 표면 전체에 형성되어 구리 결정이 성장하기 전까지의 시간 간격(이하에서는, '잠복기'라 한다)은 구리 결정이 성장하기 시작하여 구리 박막의 두께가 형성되는 시간과 거의 비슷한 것을 알 수 있다. 이렇게 공정 시간의 반을 차지할 정도의 잠복기가 나타나는 이유는, 기판 표면 상에 팔라듐과 같은 비저항이 상대적으로 높은 촉매가 존재하여 환원제의 산화에 의해 발생한 전자를 구리 이온에 전달하지 못하기 때문이다.Referring to FIG. 3, when copper electroless plating is performed according to an example of the present invention, crystal growth of the copper thin film, that is, the time for forming the thickness of the copper thin film is about 18 minutes after the process is performed. This is because the time interval (hereinafter referred to as 'latency') from when the copper crystals are formed on the substrate surface until the copper crystals are formed throughout the substrate surface and the copper crystals grow, the thickness of the copper thin film starts to grow. It can be seen that it is almost the same as the time that is formed. The reason for the incubation period that accounts for half of the process time is that a catalyst having a relatively high resistivity such as palladium is present on the surface of the substrate and thus cannot transfer electrons generated by oxidation of the reducing agent to the copper ions.

도 4a 내지 도 4c는 도 3에서의 기판의 표면 상태를 나타내기 위한 SEM 사진들이다. 이때, 도 4a는 잠복기 전의 기판 표면을 나타낸 SEM 사진이고, 도 4b는 잠복기 동안의 기판 표면을 나타낸 SEM 사진이며, 도 4c는 잠복기 후의 기판 표면을 나타낸 SEM 사진이다.4A to 4C are SEM photographs for illustrating the surface state of the substrate in FIG. 3. 4A is a SEM photograph showing the substrate surface before the incubation period, FIG. 4B is a SEM photograph showing the substrate surface during the incubation period, and FIG. 4C is a SEM photograph showing the substrate surface after the incubation period.

도 4a 내지 도 4c를 참조하면, 본 발명에서의 구리 박막 증착은 도 4a에서와 같이 잠복기 전에는 구리 결정이 약간 보이다가 도 4b에서와 같이, 잠복기 동안에는 기판 표면 전체에 결정들이 형성되는 것을 볼 수 있는 데, 기판 표면 전체에 결정들이 다 형성되면 그 다음부터, 즉 잠복기 이후에는, 도 4c에서와 같이 결정성장이 이루어지는 것을 볼 수 있다.4A to 4C, the copper thin film deposition in the present invention shows a slight copper crystals before incubation as shown in FIG. 4A, but crystals are formed on the entire surface of the substrate during the incubation period as shown in FIG. 4B. However, when the crystals are formed on the entire surface of the substrate, that is, after the incubation period, the crystal growth can be seen as shown in Figure 4c.

[실시예 2]Example 2

본 실시예에서는 실시예 1에서와 같은 구리 무전해 도금액에 기판을 침지시켜 무전해 도금 공정을 실시한다. 이때, 본 실시예에서는 기판을 회전시키면서 무전해 도금 공정을 실시하여 잠복기를 줄인다.In this embodiment, an electroless plating process is performed by immersing a substrate in a copper electroless plating solution as in Example 1. At this time, in the present embodiment by performing the electroless plating process while rotating the substrate to reduce the latency.

도 5는 본 발명에 따른 실시예 2에서의 무전해 도금의 잠복기의 변화를 나타낸 그래프이다.5 is a graph showing a change in the latency period of the electroless plating in Example 2 according to the present invention.

도 5를 참조하면, 본 발명 일예에 따른 실시예 2에서와 같이 무전해 도금을 실시할 때 기판을 회전시키면, 기판의 회전 속도가 증가할수록 잠복기가 짧아지다가 50rpm일 때부터 약 3분으로 일정해 지는 것을 알 수 있다.Referring to FIG. 5, when the substrate is rotated when performing electroless plating as in Example 2 according to one embodiment of the present invention, the latency is shortened as the rotation speed of the substrate increases, and is constant at about 3 minutes from 50 rpm. You can see the loss.

도 6a는 본 발명에 따른 실시예 2에 있어서의 구리 박막 증착에 따른 면저항의 변화를 나타낸 그래프이고, 도 6b는 도 6a에서의 면저항에 따라 증착된 구리 박막의 두께를 나타낸 SEM 사진이다. 이때, 기판의 회전 속도를 50rpm로 일정하게 유지한다.6A is a graph showing a change in sheet resistance according to copper thin film deposition in Example 2 according to the present invention, and FIG. 6B is a SEM photograph showing the thickness of the copper thin film deposited according to sheet resistance in FIG. 6A. At this time, the rotational speed of the substrate is kept constant at 50 rpm.

도 6a 및 6b를 참조하면, 실시예 2에서와 같이 기판을 회전시키면서 무전해 도금 공정을 실시할 경우, 도 6a에서와 같이, 구리 박막 증착 시간에 따른 1/면저항 값이 커지므로, 면저항이 줄어들고 결국, 잠복기가 감소하여 구리 박막 증착이 빨리 이루어지게 되는 것이다. 또한, 구리 박막 두께는 면저항과 반비례 관계이므로 1/면저항 값을 통해서 유추할 수 있다. 여기서, 기판의 회전 속도를 50rpm으로유지하여 무전해 도금 공정을 10분 동안 실시하면, 도 6b에서와 같이, 두께가 1900Å이고, 비저항이 약 2.6μΩ·㎝으로 이루어진 구리 박막을 얻을 수 있다.6A and 6B, when the electroless plating process is performed while rotating the substrate as in Example 2, as shown in FIG. 6A, the 1 / sheet resistance value according to the copper thin film deposition time is increased, thereby reducing the sheet resistance. As a result, the incubation period is reduced and the copper thin film deposition is performed quickly. In addition, since the thickness of the copper thin film is inversely related to the sheet resistance, it may be inferred from the value of 1 / sheet resistance. Here, if the electroless plating process is performed for 10 minutes while maintaining the rotational speed of the substrate at 50 rpm, as shown in FIG. 6B, a copper thin film having a thickness of 1900 kPa and a specific resistance of about 2.6 μΩ · cm can be obtained.

[실시예 3]Example 3

본 실시예에서는 실시예 1에서와 같은 구리 무전해 도금액에 기판을 침지시켜 무전해 도금 공정을 실시한다. 이때, 잠복기에서는 구리 무전해 도금액의 농도를 7배 정도로 증가시켜 실시한다.In this embodiment, an electroless plating process is performed by immersing a substrate in a copper electroless plating solution as in Example 1. At this time, in the incubation period, the concentration of the copper electroless plating solution is increased to about seven times.

여기서, 잠복기의 구리 무전해 도금액은 5∼8g/L의 황산구리, 14∼18g/L의 에틸렌디아민아세트산, 2∼3.5g/L의 포름알데히드, 및 20∼35g/L의 수산화칼륨으로 농도를 증가시킨다.Here, the latent copper electroless plating solution is increased in concentration with 5 to 8 g / L copper sulfate, 14 to 18 g / L ethylenediamineacetic acid, 2 to 3.5 g / L formaldehyde, and 20 to 35 g / L potassium hydroxide. Let's do it.

도 7은 본 발명에 따른 실시예 3에 있어서 무전해 도금 공정 전체의 면저항변화를 나타내기 위한 그래프이다.7 is a graph showing the sheet resistance change of the whole electroless plating process in Example 3 according to the present invention.

도 7을 참조하면, 본 실시예에 따라 무전해 도금의 잠복기에 초기 구리 무전해 도금액의 농도를 7배 정도로 증가시켜 실시하면, 구리 박막 증착 시간에 따른 1/면저항 값은 크게 증가한다. 그러므로, 잠복기는 35초로 크게 감소하게 된다. 그러나, 이러한 증가된 농도에서 계속 무전해 도금을 실시하면 구리 박막의 접합성이 떨어지므로, 잠복기를 지난 후에는 초기 농도로 무전해 도금을 실시해야한다.Referring to FIG. 7, when the concentration of the initial copper electroless plating solution is increased by about seven times during the incubation period of the electroless plating according to the present embodiment, the 1 / sheet resistance value according to the deposition time of the copper thin film is greatly increased. Therefore, the latency is greatly reduced to 35 seconds. However, if the electroless plating is continued at such an increased concentration, the bondability of the copper thin film is degraded, and thus, after the incubation period, the electroless plating should be performed at the initial concentration.

도 8은 본 발명에 따른 실시예 3에 있어서 잠복기 이후의 면저항 변화를 설명하기 위한 그래프이다.8 is a graph for explaining the sheet resistance change after the incubation period in Example 3 according to the present invention.

도 8을 참조하면, 잠복기 동안에 구리 무전해 도금액의 농도를 7배 증가시켜잠복기를 줄인 후에, 다시 초기의 구리 무전해 도금액의 농도로 무전해 도금을 할 경우에는, 용액의 농도 증가로 감소했던 접합성이 증가하여 일정한 두께의 구리 박막이 형성되는 것이다.Referring to FIG. 8, after reducing the incubation period by increasing the concentration of the copper electroless plating solution by 7 times during the incubation period, in the case of electroless plating to the concentration of the initial copper electroless plating solution, the bonding property decreased due to the increase in the concentration of the solution. This increases to form a copper thin film of a constant thickness.

도 9는 본 발명에 따른 실시예 3에 의하여 형성된 구리 박막을 나타낸 SEM 사진이다.9 is a SEM photograph showing a copper thin film formed by Example 3 according to the present invention.

도 9를 참조하면, 실시예 3에 따라 15분간 무전해 도금을 실시하여 증착하면, 두께는 1500Å이고, 비저항이 약 2.1μΩ·㎝으로 이루어진 구리 박막을 얻을 수 있다.Referring to FIG. 9, when the electroless plating is carried out for 15 minutes in accordance with Example 3 and deposited, a copper thin film having a thickness of 1500 kPa and a specific resistance of about 2.1 μΩ · cm can be obtained.

다음에는, 본 발명의 다른 예에 따른 반도체 배선용 구리 박막 형성 방법에 관하여 도면을 참조하여 설명한다.Next, a method for forming a copper thin film for semiconductor wiring according to another embodiment of the present invention will be described with reference to the drawings.

다른 예에 따른 반도체 배선용 구리 박막 형성 방법은, 실리콘 웨이퍼로서 기판을 마련한 다음에, 구리 무전해 도금액에 웨이퍼를 침지시켜 웨이퍼 표면에 구리 박막을 형성한다. 이때 구리 무전해 도금액의 온도는 30℃∼70℃로 증가시킨 다음에, 15℃∼28℃로 다시 식힌 후에 무전해 도금을 실시한다. 또한, 온도를 증가시킬 때에는 부반응이 일어나지 않도록 구리 무전해 도금액의 온도는 70℃이하로 이루어져야만 한다.In the method for forming a copper thin film for semiconductor wiring according to another example, after the substrate is provided as a silicon wafer, the copper thin film is formed on the wafer surface by immersing the wafer in a copper electroless plating solution. At this time, the temperature of the copper electroless plating solution was increased to 30 ° C. to 70 ° C., and then cooled again to 15 ° C. to 28 ° C., followed by electroless plating. In addition, when increasing the temperature, the temperature of the copper electroless plating solution should be 70 ° C. or less so that no side reaction occurs.

[실시예 4]Example 4

본 실시예에서는 실시예 1에서와 같은 구리 무전해 도금액을 이용하며, 구리무전해 도금액의 온도를 70℃로 증가시킨 후, 상온으로 감소시킨 다음에 약 3분 동안 구리 무전해 도금을 실시한다. 이때, 온도 증가는 질소 또는 아르곤 분위기에서 이루어진다.In this embodiment, the same copper electroless plating solution as in Example 1 is used, and after the temperature of the copper electroless plating solution is increased to 70 ° C., the temperature is reduced to room temperature, followed by copper electroless plating for about 3 minutes. At this time, the temperature increase is made in nitrogen or argon atmosphere.

여기서, 구리 무전해 도금 용액의 온도를 증가시키면 실시예 1에서와 같이 산소의 용해도가 감소하여 구리 무전해 도금 용액 내에 산소를 감소시킨다. 이로 인해, 구리 박막 내의 산화물이 형성되지 않게 된다.Here, increasing the temperature of the copper electroless plating solution decreases the solubility of oxygen as in Example 1 to reduce the oxygen in the copper electroless plating solution. For this reason, the oxide in a copper thin film will not be formed.

도 10은 본 발명에 따른 실시예 4에 의해 형성된 구리 박막을 나타내는 SEM사진이다.10 is a SEM photograph showing a copper thin film formed by Example 4 according to the present invention.

도 10을 참조하면, 구리 무전해 도금액을 70℃로 증가한 다음, 상온으로 식혀서 3분 동안 구리 무전해 도금을 실시하면, 두께는 약 1300Å이고, 비저항이 약 2.3μΩ·㎝으로 이루어진 구리 박막을 얻을 수 있다.Referring to FIG. 10, when the copper electroless plating solution was increased to 70 ° C., and then cooled to room temperature and subjected to copper electroless plating for 3 minutes, a copper thin film having a thickness of about 1300 μs and a resistivity of about 2.3 μΩ · cm was obtained. Can be.

[실시예 5]Example 5

본 실시예에서는 실시예 1에서와 같은 구리 무전해 도금액을 이용하며, 구리 무전해 도금액의 온도를 70℃로 증가시킨 후, 상온으로 감소시킨 다음에 약 3분 동안 구리 무전해 도금을 실시한다In this embodiment, the same copper electroless plating solution as in Example 1 is used, and after the temperature of the copper electroless plating solution is increased to 70 ° C., the temperature is reduced to room temperature, followed by copper electroless plating for about 3 minutes.

이때, 실시예 2에서와 같이 기판을 회전시키면서 무전해 도금 공정을 실시하는 것이다.At this time, the electroless plating process is performed while rotating the substrate as in Example 2.

[실시예 6]Example 6

본 실시예에서는 실시예 1에서와 같은 구리 무전해 도금액에 기판을 침지시켜 무전해 도금 공정을 실시한다.In this embodiment, an electroless plating process is performed by immersing a substrate in a copper electroless plating solution as in Example 1.

이때, 실시예 3에서와 같이, 잠복기에서는 구리 무전해 도금액의 농도를 7배 정도로 증가시켜 실시한다.At this time, as in Example 3, in the incubation period, the concentration of the copper electroless plating solution is increased to about seven times.

본 발명에 있어서의 이러한 구리 무전해 도금액에는 계면활성제와 같은 첨가제를 더 넣어도 좋다.In such a copper electroless plating solution in the present invention, an additive such as a surfactant may be further added.

또한, 본 발명의 무전해 도금 공정은 질소 분위기 또는 아르곤 분위기에서 실시되면 더욱 박막 증착이 잘 이루어진다.In addition, the electroless plating process of the present invention is more thin film deposition is carried out if carried out in a nitrogen atmosphere or argon atmosphere.

이와 같이, 본 발명에 따른 반도체 구리 박막 배선 방법에 있어서는 접착도가 더욱 향상될 뿐아니라 비저항도 감소하므로 고품질의 반도체 배선용 구리 박막을 형성할 수 있음을 알 수 있다.As described above, in the semiconductor copper thin film wiring method according to the present invention, not only the adhesion is further improved but also the specific resistance is reduced, and thus it can be seen that a high quality copper thin film for semiconductor wiring can be formed.

상술한 바와 같이 본 발명에 의하면, 구리 무전해 도금액의 온도를 일정시간 동안 상승시켜 구리 박막의 내부에 구리 산화물이 존재하지 않고, 구리 박막의 비저항은 낮으며, 접합성 또한 뛰어난 반도체 배선용 구리 박막을 얻을 수 있기 때문에, 고품질의 반도체 소자를 제공할 수 있다.As described above, according to the present invention, the temperature of the copper electroless plating solution is raised for a predetermined time to obtain a copper thin film for semiconductor wiring, in which copper oxide does not exist inside the copper thin film, the specific resistance of the copper thin film is low, and the bonding property is also excellent. Therefore, a high quality semiconductor element can be provided.

또한, 기판을 회전시키면서 구리 무전해 도금을 실시하거나 구리 무전해 도금액의 용도를 증가시켜서 잠복기를 줄여 공정 전체 시간을 최소화 할 수 있다.In addition, the copper electroless plating may be performed while the substrate is rotated, or the use of the copper electroless plating solution may be increased, thereby reducing the latency and minimizing the overall process time.

본 발명은 상기 실시예에만 한정되지 않으며, 본 발명의 기술적 사상 내에서당 분야에서 통상의 지식을 가진 자에 의해 많은 변형이 가능함은 명백하다.The present invention is not limited only to the above embodiments, and it is apparent that many modifications are possible by those skilled in the art within the technical spirit of the present invention.

Claims (10)

구리염과, 구리이온과 리간드를 형성하여 액상반응을 억제하는 착화제와, 구리이온을 환원시키는 환원제, 상기 환원제가 산화되도록 적당한 pH를 유지시키는 pH 조절제를 포함하는 구리 무전해 도금액에 피도금체를 침지하여 상기 피도금체 표면에 무전해 도금을 실시하는 반도체 배선용 구리 박막 형성방법에 있어서,A plated body in a copper electroless plating solution comprising a copper salt, a complexing agent that forms a ligand with copper ions to suppress liquid phase reaction, a reducing agent for reducing copper ions, and a pH adjusting agent for maintaining a suitable pH to oxidize the reducing agent. In the method for forming a copper thin film for semiconductor wiring by immersing the electroless plating on the surface of the plated body, 상기 무전해 도금은 상기 환원제로서 포름알데히드를 이용하고, 상기 구리 무전해 도금액의 온도를 30℃∼70℃으로 하여 실시하는 것을 특징으로 하는 반도체 배선용 구리 박막 형성방법.The said electroless plating is performed using formaldehyde as said reducing agent, and makes the temperature of the said copper electroless plating liquid into 30 degreeC-70 degreeC, The copper thin film formation method for semiconductor wirings characterized by the above-mentioned. 제 1항에 있어서, 상기 무전해 도금은, 상기 구리 무전해 도금액을 상기 구리염으로서 0.7∼1.1g/L의 황산구리, 상기 착화제로서 2∼2.5g/L의 에틸렌디아민아세트산, 상기 환원제로서 0.3∼0.5g/L의 포름알데히드, 및 상기 pH 조절제로서 3∼5g/L의 수산화칼륨으로 형성하여 실시하는 것을 특징으로 하는 반도체 배선용 구리 박막 형성방법.2. The copper electroless plating according to claim 1, wherein the copper electroless plating solution contains 0.7 to 1.1 g / L of copper sulfate as the copper salt, 2 to 2.5 g / L of ethylenediamineacetic acid as the complexing agent, and 0.3 as the reducing agent. A method for forming a copper thin film for semiconductor wiring, comprising forming with -0.5 g / L formaldehyde and 3 to 5 g / L potassium hydroxide as the pH adjusting agent. 제 2항에 있어서, 상기 무전해 도금은, 상기 피도금체 표면에 구리 결정이 증착된 때부터 상기 피도금체 표면 전체에서 구리 결정의 성장이 이루어지기 전까지의 시간, 즉 잠복기에는 상기 구리 무전해 도금액을 상기 구리염으로서 5∼8g/L의 황산구리, 상기 착화제로서 14∼18g/L의 에틸렌디아민아세트산, 상기 환원제로서 2∼3.5g/L의 포름알데히드, 및 상기 pH 조절제로서 20∼35g/L의 수산화칼륨으로 농도 증가시켜 실시하는 것을 특징으로 하는 반도체 배선용 구리 박막 형성방법.3. The method of claim 2, wherein the electroless plating is a time from when copper crystals are deposited on the surface of the plated body until growth of copper crystals is formed on the entire surface of the plated body, i.e., the copper electroless in the latent period. The plating liquid is 5 to 8 g / L copper sulfate as the copper salt, 14 to 18 g / L ethylenediamineacetic acid as the complexing agent, 2 to 3.5 g / L formaldehyde as the reducing agent and 20 to 35 g / as the pH adjusting agent. A method for forming a copper thin film for semiconductor wiring, comprising increasing the concentration with potassium hydroxide of L. 제 1항에 있어서, 상기 무전해 도금은, 상기 피도금체를 회전시키면서 실시하는 것을 특징으로 하는 반도체 배선용 구리 박막 형성방법.The method for forming a copper thin film for semiconductor wiring according to claim 1, wherein the electroless plating is performed while rotating the plated body. 제 1항에 있어서, 상기 무전해 도금은, 질소 분위기 또는 아르곤 분위기에서 실시하는 것을 특징으로 하는 반도체 배선용 구리 박막 형성방법.The method for forming a copper thin film for semiconductor wiring according to claim 1, wherein the electroless plating is performed in a nitrogen atmosphere or an argon atmosphere. 구리염과, 구리이온과 리간드를 형성하여 액상반응을 억제하는 착화제와, 구리이온을 환원시키는 환원제, 상기 환원제가 산화되도록 적당한 pH를 유지시키는 pH 조절제를 포함하는 구리 무전해 도금액에 피도금체를 침지하여 상기 피도금체 표면에 무전해 도금을 실시하는 반도체 배선용 구리 박막 형성방법에 있어서,A plated body in a copper electroless plating solution comprising a copper salt, a complexing agent that forms a ligand with copper ions to suppress liquid phase reaction, a reducing agent for reducing copper ions, and a pH adjusting agent for maintaining a suitable pH to oxidize the reducing agent. In the method for forming a copper thin film for semiconductor wiring by immersing the electroless plating on the surface of the plated body, 상기 무전해 도금은 상기 환원제로서 포름알데히드를 이용하며, 상기 구리 무전해 도금액의 온도를 30℃∼70℃으로 하여 실시한 다음에, 상기 구리 무전해 도금액의 온도를 15℃∼28℃로 하여 실시하는 것을 특징으로 하는 반도체 배선용 구리 박막 형성방법.The electroless plating is carried out using formaldehyde as the reducing agent, the temperature of the copper electroless plating solution at 30 ° C to 70 ° C, and the temperature of the copper electroless plating solution at 15 ° C to 28 ° C. A method of forming a copper thin film for semiconductor wiring. 제 6항에 있어서, 상기 무전해 도금은, 상기 구리 무전해 도금액을 상기 구리염으로서 0.7∼1.1g/L의 황산구리, 상기 착화제로서 2∼2.5g/L의 에틸렌디아민아세트산, 상기 환원제로서 0.3∼0.5g/L의 포름알데히드, 및 상기 pH 조절제로서 3∼5g/L의 수산화칼륨으로 형성하여 실시하는 것을 특징으로 하는 반도체 배선용 구리 박막 형성방법.7. The copper electroless plating according to claim 6, wherein the copper electroless plating solution contains 0.7 to 1.1 g / L of copper sulfate as the copper salt, 2 to 2.5 g / L of ethylenediamineacetic acid as the complexing agent, and 0.3 as the reducing agent. A method for forming a copper thin film for semiconductor wiring, comprising forming with -0.5 g / L formaldehyde and 3 to 5 g / L potassium hydroxide as the pH adjusting agent. 제 7항에 있어서, 상기 무전해 도금은, 상기 피도금체 표면에 구리 결정이 증착된 때부터 상기 피도금체 표면 전체에서 구리 결정의 성장이 이루어지기 전까지의 시간, 즉 잠복기에는 상기 구리 무전해 도금액을 상기 구리염으로서 5∼8g/L의 황산구리, 상기 착화제로서 14∼18g/L의 에틸렌디아민아세트산, 상기 환원제로서 2∼3.5g/L의 포름알데히드, 및 상기 pH 조절제로서 20∼35g/L의 수산화칼륨으로 농도 증가시켜 실시하는 것을 특징으로 하는 반도체 배선용 구리 박막 형성방법.8. The method of claim 7, wherein the electroless plating is a time from when copper crystals are deposited on the surface of the plated body until the growth of copper crystals is formed on the entire surface of the plated body, i.e., the copper electroless during the incubation period. The plating liquid is 5 to 8 g / L copper sulfate as the copper salt, 14 to 18 g / L ethylenediamineacetic acid as the complexing agent, 2 to 3.5 g / L formaldehyde as the reducing agent and 20 to 35 g / as the pH adjusting agent. A method for forming a copper thin film for semiconductor wiring, comprising increasing the concentration with potassium hydroxide of L. 제 6항에 있어서, 상기 무전해 도금은, 상기 피도금체를 회전시키면서 실시하는 것을 특징으로 하는 반도체 배선용 구리 박막 형성방법.The method for forming a copper thin film for semiconductor wiring according to claim 6, wherein the electroless plating is performed while rotating the plated body. 제 6항에 있어서, 상기 무전해 도금은, 질소 분위기 또는 아르곤 분위기에서 실시하는 것을 특징으로 하는 반도체 배선용 구리 박막 형성방법.The method for forming a copper thin film for semiconductor wiring according to claim 6, wherein the electroless plating is performed in a nitrogen atmosphere or an argon atmosphere.
KR10-2002-0029543A 2002-05-28 2002-05-28 Fabricating Method of Copper Film for Semiconductor Interconnection KR100475403B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0029543A KR100475403B1 (en) 2002-05-28 2002-05-28 Fabricating Method of Copper Film for Semiconductor Interconnection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0029543A KR100475403B1 (en) 2002-05-28 2002-05-28 Fabricating Method of Copper Film for Semiconductor Interconnection

Publications (2)

Publication Number Publication Date
KR20030091478A true KR20030091478A (en) 2003-12-03
KR100475403B1 KR100475403B1 (en) 2005-03-15

Family

ID=32384660

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0029543A KR100475403B1 (en) 2002-05-28 2002-05-28 Fabricating Method of Copper Film for Semiconductor Interconnection

Country Status (1)

Country Link
KR (1) KR100475403B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220109876A (en) * 2021-01-29 2022-08-05 주식회사 신도씨앤에스 Electroless plating solution and method of copper electroplating

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7686875B2 (en) * 2006-05-11 2010-03-30 Lam Research Corporation Electroless deposition from non-aqueous solutions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274087A (en) * 1985-09-28 1987-04-04 Shimadzu Corp Electroless copper plating solution
DE3750056T2 (en) * 1986-06-20 1995-04-06 Dainippon Pharmaceutical Co Human TNF polypeptide mutants and DNA coding for these mutants.
JPH0320474A (en) * 1989-06-15 1991-01-29 Matsushita Electric Ind Co Ltd Electroless copper plating solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220109876A (en) * 2021-01-29 2022-08-05 주식회사 신도씨앤에스 Electroless plating solution and method of copper electroplating

Also Published As

Publication number Publication date
KR100475403B1 (en) 2005-03-15

Similar Documents

Publication Publication Date Title
CN1094799C (en) Palladium immersion deposition to selectively initiate electroless plating on Ti and W alloys for wafer fabrication
US6645567B2 (en) Electroless plating bath composition and method of using
US6962873B1 (en) Nitridation of electrolessly deposited cobalt
US5169680A (en) Electroless deposition for IC fabrication
US7531463B2 (en) Fabrication of semiconductor interconnect structure
US6054172A (en) Copper electroless deposition on a titanium-containing surface
US7972970B2 (en) Fabrication of semiconductor interconnect structure
US6180523B1 (en) Copper metallization of USLI by electroless process
US6486055B1 (en) Method for forming copper interconnections in semiconductor component using electroless plating system
US20030054633A1 (en) Method of electroless plating copper on nitride barrier
US20040096592A1 (en) Electroless cobalt plating solution and plating techniques
KR20010007482A (en) Method of passivating copper interconnects in a semiconductor
US6398855B1 (en) Method for depositing copper or a copper alloy
US20070232044A1 (en) Filling narrow and high aspect ratio openings with electroless deposition
JP2008544078A (en) Cobalt electroless plating in microelectronic devices
US7064065B2 (en) Silver under-layers for electroless cobalt alloys
KR20060018838A (en) Compositions for the currentless depoisition of ternary materials for use in the semiconductor industry
US20060188659A1 (en) Cobalt self-initiated electroless via fill for stacked memory cells
KR100475403B1 (en) Fabricating Method of Copper Film for Semiconductor Interconnection
US6875260B2 (en) Copper activator solution and method for semiconductor seed layer enhancement
KR100426209B1 (en) Fabricating Method of Copper Film for Semiconductor Interconnection
KR100445839B1 (en) Fabricating Method of silver Film for Semiconductor Interconnection
EP1022355B1 (en) Deposition of copper on an activated surface of a substrate
JP4343366B2 (en) Copper deposition on substrate active surface
JP2003178999A (en) Electroless plating method, embedded wiring, and method of forming the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130226

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140212

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150526

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160224

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee