KR20030019527A - Electromagnetic Wave Shielding Material using Carbon Nano-Composites and Preparation Method Thereof - Google Patents

Electromagnetic Wave Shielding Material using Carbon Nano-Composites and Preparation Method Thereof Download PDF

Info

Publication number
KR20030019527A
KR20030019527A KR1020030008351A KR20030008351A KR20030019527A KR 20030019527 A KR20030019527 A KR 20030019527A KR 1020030008351 A KR1020030008351 A KR 1020030008351A KR 20030008351 A KR20030008351 A KR 20030008351A KR 20030019527 A KR20030019527 A KR 20030019527A
Authority
KR
South Korea
Prior art keywords
carbon
resin
electromagnetic wave
shielding material
polymer
Prior art date
Application number
KR1020030008351A
Other languages
Korean (ko)
Inventor
김기동
허몽영
Original Assignee
김기동
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김기동 filed Critical 김기동
Priority to KR1020030008351A priority Critical patent/KR20030019527A/en
Publication of KR20030019527A publication Critical patent/KR20030019527A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F45/00Wire-working in the manufacture of other particular articles
    • B21F45/12Wire-working in the manufacture of other particular articles of fishing hooks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F1/00Bending wire other than coiling; Straightening wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F23/00Feeding wire in wire-working machines or apparatus

Abstract

PURPOSE: An electromagnetic interference(EMI) shield material and a method for producing the same are provided to achieve superior EMI shielding characteristics in a high frequency band, while improving improved mechanical thermal characteristics. CONSTITUTION: A method for producing an EMI shield material, comprises a first step of performing a plating process to a carbon material through an electrolytic analysis using an alkali transition metal electrolyte; a second step of obtaining a carbon nano composite material by mixing the resultant material with a resin and solidifying the resultant structure; and a third step of obtaining an EMI shield material by cutting the carbon nano composite material.

Description

탄소 나노복합재를 이용한 전자파 차폐재 및 이의 제조방법{Electromagnetic Wave Shielding Material using Carbon Nano-Composites and Preparation Method Thereof}Electromagnetic Wave Shielding Material using Carbon Nano-Composites and Preparation Method Thereof}

본 발명은, 알칼리 전이금속 전해액중에서의 도금처리 된 고비표면적의 탄소 나노소재로서 탄소 나노튜브, 탄소 나노섬유 및 탄소 나노입자를 다양한 고분자 수지 기재에 혼합, 분산시켜 이루어진 탄소 나노소재/고분자 복합재료 및 이를 이용한 전자파 차폐재로서 특히 마이크로 주파수 대역에서의 효과적인 차폐성능을 나타내는 전자파 차폐재 및 이의 제조방법에 관한 것이다.The present invention provides a carbon nanomaterial / polymer composite material obtained by mixing and dispersing carbon nanotubes, carbon nanofibers, and carbon nanoparticles as various high-resistance carbon nanomaterials plated in alkali transition metal electrolytes on various polymer resin substrates, and The present invention relates to an electromagnetic shielding material and a method for manufacturing the same, which exhibit an effective shielding performance in a micro frequency band.

최근 컴퓨터, 전자, 통신기기등의 급속한 발달과 대량보급에 따른 전자파 사용량의 증가와 더불어 다양한 주파수 범위에서의 전자파 잡음의 발생이 급증하면서 각종 전자장치 상호간의 장애현상이 발생하고 있다. 또한 각종 전자장비들에 들어가는 전자소자 및 회로들의 저전력화, 고집적화에 따라 효과적으로 전자파 공해를 최소화하기 위한 해결책으로 전자파 차폐소재의 연구 및 개발이 활발이 진행되고 있다. 이러한 전자파 차폐성능을 결정하는 주요 변수로는 소재의 기본 물성 (복소 유전율 및 복소 투자율), 특정 주파수 대역에서의 저항성 및 차폐재의 두께 등이 있으며, 균일한 도체에서의 전자파 차폐효과는 다음의 식으로 나타낼 수 있다.Recently, with the rapid development of computers, electronics, communication devices, and the like, the use of electromagnetic waves has increased due to the mass distribution, and the occurrence of electromagnetic noises in various frequency ranges has increased rapidly. In addition, research and development of electromagnetic shielding materials have been actively conducted as a solution for effectively minimizing electromagnetic pollution according to the low power and high integration of electronic devices and circuits in various electronic devices. The main variables that determine the electromagnetic shielding performance are the basic physical properties of the material (complex dielectric constant and complex permeability), the resistance in a specific frequency band and the thickness of the shielding material, the electromagnetic shielding effect in a uniform conductor is Can be represented.

여기서 SE는 총 전자파 차폐성능, A는 전자파 에너지 흡수량, R은 전자파 에너지 반사량을 B는 복합 반사 인자를 나타낸다.Where SE is the total electromagnetic shielding performance, A is the amount of electromagnetic wave energy absorption, R is the amount of electromagnetic wave energy reflection, and B is the composite reflection factor.

전자파 차폐재는 기존의 고분자 소재의 기재에 탄소 소재, 세라믹 및 알루미늄, 철, 구리등의 금속 충전재를 첨가한 복합재료가 사용되었으나, 일반적으로 카본 블랙, 흑연 및 탄소 섬유등의 탄소소재나 페라이트, 실리카등의 세라믹 소재는 특정 주파수영역의 전자파를 흡수하는 경향이 크고 금속소재등은 전자파를 산란시키는 특성을 갖는다.The electromagnetic wave shielding material is a carbon material, ceramics, and composite materials in which metal fillers such as aluminum, iron, and copper are added to a substrate of a conventional polymer material, but in general, carbon materials such as carbon black, graphite, and carbon fiber, ferrite, and silica are used. Ceramic materials such as these have a tendency to absorb electromagnetic waves in a specific frequency range, and metal materials have the property of scattering electromagnetic waves.

이러한 고분자 기재에 충전재를 첨가하는 방법으로는 성형된 기재 표면을 코팅하여 유전층을 형성하거나 고분자 수지와의 분산, 혼화 후 적합한 경화조건을 통해 성형하는 방법이 있다. 전자의 방법으로 성형품의 표면에 형성되는 유전층은 전도성 도료, 예로는 니켈, 구리, 은/구리, 은 혹은 카본블랙 및 흑연 분말등을 아크릴, 아크릴/우레탄, 우레탄, 에폭시등의 결합용 수지와 함께 고분자 기재 표면에 도포한 후 건조시키거나 금속 용사, 증착, 스퍼터링등에 의해 유전층을 형성시킨다. 후자의 방법으로는 성형품에 직접 전도성을 부여한 것으로 구리나 은등의 금속제 소재나 섬유상, 과립 혹은 미분말상의 카본 블랙, 탄소 섬유등을 열가소성, 열경화성 및 고무등의 다양한 고분자 수지에 직접 혼화, 분산시켜 경화시킨다.As a method of adding a filler to such a polymer substrate, there is a method of forming a dielectric layer by coating a molded substrate surface, or molding through suitable curing conditions after dispersion and blending with a polymer resin. The dielectric layer formed on the surface of the molded article by the former method is made of conductive paints such as nickel, copper, silver / copper, silver or carbon black and graphite powder together with resins for bonding acrylic, acrylic / urethane, urethane, epoxy, etc. The dielectric layer is formed by coating on the surface of the polymer substrate and then drying or by metal spraying, vapor deposition, sputtering, or the like. In the latter method, a conductive material is directly applied to a molded product, and the metal material such as copper or silver, fibrous, granular or fine powder carbon black, carbon fiber, etc. are directly mixed and dispersed in various polymer resins such as thermoplastic, thermosetting and rubber and cured. Let's do it.

한편, 마이크로파 영역의 전파 특히 이동통신, 고주파 가열, 레이다등 극초단파로 표현되는 파장이 약 1m이하의 전파에 대한 전자파 흡수재로서 저항 재료, 유전손실 재료 및 자성손실 재료를 이용한 전자파 흡수체로 분류된다. 저항체 재료로는 저항선이나 저항 피막을 형성하는 유전성 섬유로서 직물에 적절한 저항치를 가진다. 유전손실 재료로는 흑연, 카본 블랙 및 탄소섬유등의 탄소재료를 첨가한 고분자 복합재등이 있으며 고주파대의 전자파 흡수체로 사용된다. 또한 자성손실 재료로는 페라이트, 실리카등의 무기 충전재가 대표적이다. 그러나 이러한 복합재료의 전자기적 특성 변화는 전자파 흡수능과 직접 관련이 있으며, 마이크로파등의 고주파 영역에서의 효과적인 전자파 차폐성능을 가지지 못한 문제점이 있었다.On the other hand, the electromagnetic wave absorber for the radio wave of the microwave region, especially the microwaves, such as mobile communication, high frequency heating, radar, etc., is classified as an electromagnetic wave absorber using a resistive material, a dielectric loss material, and a magnetic loss material. The resistive material is a dielectric fiber forming a resistance line or a resist film, and has a proper resistance value for the fabric. Dielectric loss materials include polymer composite materials containing carbon materials such as graphite, carbon black and carbon fiber, and are used as electromagnetic wave absorbers of high frequency band. As the magnetic loss material, inorganic fillers such as ferrite and silica are typical. However, the change in the electromagnetic properties of the composite material is directly related to the electromagnetic wave absorption ability, there was a problem that does not have an effective electromagnetic shielding performance in the high frequency region such as microwave.

따라서, 본 발명은 전자파 차폐재에 첨가되는 충전재로서 나노기공이 잘 발달되어 비표면적이 넓고, 전기 및 열 전도성이 우수한 탄소 나노튜브, 탄소 나노섬유 및 탄소 나노입자등의 탄소 나노소재를 구리, 니켈 및 크롬등의 알칼리 전이금속의 전기분해 도금처리를 통해 고분자 수지 기재와의 혼화, 분산성을 향상시킨 후 다양한 수지 기재와 혼합하여 경화시켜 이루어진 탄소 나노소재/고분자 복합재 및이를 이용한 전자파 차폐재를 제조하였다.Therefore, the present invention is a filler added to the electromagnetic shielding material, nanoporosity is well developed, the specific surface area is wide, the carbon nanotubes such as carbon nanotubes, carbon nanofibers and carbon nanoparticles excellent in electrical and thermal conductivity, copper, nickel and Carbon nanomaterials / polymer composites and electromagnetic wave shielding materials were prepared by improving the miscibility and dispersibility with polymer resin substrates through electrolytic plating treatment of alkali transition metals such as chromium, and mixing and curing them with various resin substrates. .

도 1은 본 발명에 따른 탄소 나노소재를 이용한 전자파 차폐재용 탄소 나노복합재의 제조 공정도1 is a manufacturing process diagram of the carbon nanocomposite for the electromagnetic shielding material using the carbon nanomaterial according to the present invention

도 2는 ASTM D 4935-89에 의한 전자파 차폐 표준시료 시편규격Figure 2 is a standard specimen specimen electromagnetic shielding according to ASTM D 4935-89

도 3은 각 실시예 및 비교예에 의한 탄소 나노복합재 시편의 주파수 대역별 전자파 차폐효율Figure 3 is the electromagnetic shielding efficiency of each frequency band of the carbon nanocomposite specimens according to the Examples and Comparative Examples

이러한 목적을 달성하기 위하여 전기 저항성이 우수하고 전도성 조절이 용이한 고비표면적의 나노기공성 탄소소재를 구리, 니켈 및 크롬등의 다양한 알칼리 전이금속 전해액중에서 전기분해를 통해 도금처리 후 이를 고분자 수지 기재에 혼합, 분산시키고 경화조건에 따라 경화시켜 탄소 나노복합재를 제조하였으며, 도 1에 본 발명에 의한 탄소 나노복합재의 제조공정도를 나타내었다.In order to achieve this purpose, a high specific surface area nanoporous carbon material having excellent electrical resistance and easy conductivity control is plated by electrolysis in various alkali transition metal electrolytes such as copper, nickel, and chromium, and then coated on a polymer resin substrate. The carbon nanocomposite was prepared by mixing, dispersing and curing according to curing conditions, and a manufacturing process diagram of the carbon nanocomposite according to the present invention is shown in FIG. 1.

이렇게 제조된 탄소 나노복합재의 전자파 차폐특성을 ASTM D-4935-89에 따라 중공(中空)형 동축 케이블내에 전자파 신호발생기, 시편 지지대 및 전자파 수신기가 장착된 장치에 본 발명에 의한 탄소 나노복합재 시편을 도 2의 시편 규격에 따라 제조하여 이를 시편 지지대에 고정시킨 후 주파수 변환율을 측정하였다. 각 실시예에 따른 처리 조건 및 탄소 나노소재 및 복합재의 기본 물성을 표 1에, 탄소 나노복합재의 주파수 대역에서의 전자파 차폐효율을 도 3에 각각 나타내었다.The electromagnetic shielding characteristics of the carbon nanocomposite thus prepared were measured in accordance with ASTM D-4935-89 in a device equipped with an electromagnetic wave signal generator, a specimen supporter, and an electromagnetic receiver in a hollow coaxial cable. After manufacturing according to the specimen standard of Figure 2 was fixed to the specimen support and then the frequency conversion was measured. The treatment conditions and the basic physical properties of the carbon nanomaterial and the composite according to each example are shown in Table 1, and the electromagnetic shielding efficiency in the frequency band of the carbon nanocomposite is shown in FIG. 3, respectively.

본 발명에 따른 도금액으로는 구리, 니켈, 크롬등의 알칼리 전이금속의 전해액이 사용될 수 있으며, 각 전해액에서의 전기분해 도금 시간은 5 내지 30분 동안 처리할 수 있다. 도금처리 시간이 5분 미만의 경우 탄소 나노소재에 충분한 도금이 되지않아 수지와의 분산 및 전기전도성이 저하되고, 30분을 초과할 경우 도금막이 너무 두껍고 탄소 소재의 특성발현을 기대하기 어렵다.As the plating solution according to the present invention, an electrolyte of an alkali transition metal such as copper, nickel, and chromium may be used, and the electrolytic plating time in each electrolyte may be treated for 5 to 30 minutes. If the plating treatment time is less than 5 minutes, the carbon nanomaterial is not sufficiently plated, so that the dispersion and electrical conductivity with the resin are lowered. If the plating time is more than 30 minutes, the plating film is too thick and it is difficult to expect the characteristics of the carbon material.

본 발명에 따른 고분자 수지 기재로는 절연성이 우수하고 충전재와의 분산성 및 혼화성이 양호하며 성형 및 가공성이 우수한 것으로서 열경화성 수지로는 페놀,에폭시 수지, 열가소성 수지로는 아크릴 수지, 폴리 염화비닐 (PVC), 폴리 염화비닐리덴 (PVDC), 폴리 불소화 비닐리덴 (PVDF), 프로필렌 (PP), 폴리에스테르, 폴리이미드 (PI), 실리콘 및 에틸렌-비닐 아세테이트 (EVA)수지등이 사용될 수 있다.The polymer resin substrate according to the present invention has excellent insulation properties, good dispersibility and miscibility with the filler, and excellent moldability and processability.The thermosetting resin is phenol, epoxy resin, thermoplastic resin, acrylic resin, polyvinyl chloride ( PVC), polyvinylidene chloride (PVDC), polyvinylidene fluoride (PVDF), propylene (PP), polyester, polyimide (PI), silicone and ethylene-vinyl acetate (EVA) resins and the like can be used.

본 발명에 따른 고분자 수지 첨가제로서 탄소 나노소재는 탄소 나노튜브, 탄소 나노입자 및 탄소 나노섬유등이 사용될 수 있다.As the polymer resin additive according to the present invention, carbon nanomaterials may include carbon nanotubes, carbon nanoparticles, and carbon nanofibers.

본 발명에 따른 탄소 나노소재의 첨가량은 1.0 내지 15.0 중량%인 것이 바람직하다. 탄소 나노소재의 첨가량이 1.0 중량% 미만인 경우 충전제가 수지 기재에 충분히 분산되지 않아 분산 안정성 및 밀도가 낮아 이에 따른 전기 저항 및 전자파 차폐효과를 기대하기 어렵고, 15.0 중량%를 넘게되면 복합재의 경화 및 성형성이 떨어지며, 추가 가공이 요구되어 적합하지 않다.The addition amount of the carbon nanomaterial according to the present invention is preferably 1.0 to 15.0% by weight. When the added amount of carbon nanomaterial is less than 1.0 wt%, the filler is not sufficiently dispersed in the resin substrate, and thus, dispersion stability and density are low, so that it is difficult to expect the electric resistance and electromagnetic shielding effect, and when it exceeds 15.0 wt%, curing and molding of the composite It is inferior in properties and requires further processing and is not suitable.

이하, 본 발명에 따른 구체적인 실시예를 기술하였으며, 본 발명의 범위가 하기 실시예에 한정되지 않으며 후술하는 청구범위 내에서 다양한 응용 및 변형이 가능하다.Hereinafter, specific embodiments of the present invention have been described, and the scope of the present invention is not limited to the following examples, and various applications and modifications are possible within the scope of the following claims.

[실시예 1]Example 1

고온 열분해 방법에 의해 제조된 탄소 나노튜브를 구리 전해액으로 약 5분 동안 도금처리 후 이를 열경화성 수지인 페놀 (액상 형태)에 약 1.0중량%를 첨가하고 초음파 분산기 (Ultrasonic Homogenizer)로 혼합, 분산시킨 후 이를 경화시켜 탄소 나노복합재를 제조하였으며 이를 상기의 ASTM D-4935-89 방법에 따라 전자파 차폐용 시료를 제작하여 전자파 차폐효율을 측정하여 그 결과를 표 1 및 도 3에 각각 나타내었다.After the carbon nanotubes prepared by the high temperature pyrolysis method were plated with copper electrolyte for about 5 minutes, about 1.0% by weight was added to the thermosetting resin phenol (liquid form), mixed and dispersed with an ultrasonic disperser (Ultrasonic Homogenizer). The carbon nanocomposite was cured to prepare a carbon nanocomposite, and the electromagnetic shielding efficiency was measured according to the ASTM D-4935-89 method, and the results are shown in Table 1 and FIG. 3.

[실시예 2]Example 2

실시예 1에 의해 제조된 탄소 나노튜브를 니켈 전해액으로 약 10분간 도금처리 후 이를 열가소성 수지인 폴리 염화비닐리덴 (PVDC)수지에 약 5.0중량%를 첨가하고 초음파 분산기 (Ultrasonic Homogenizer)로 혼합, 분산시킨 후 이를 경화시켰다. 이렇게 제조된 탄소 나노복합재를 상기의 ASTM D-4935-89 방법에 따라 전자파 차폐용 시료를 제작하여 전자파 차폐효율을 측정하여 그 결과를 표 1 및 도 3에 각각 나타내었다.After the carbon nanotubes prepared in Example 1 were plated with nickel electrolyte for about 10 minutes, they were added to a polyvinylidene chloride (PVDC) resin, which is a thermoplastic resin, about 5.0% by weight, and then mixed and dispersed with an ultrasonic homogenizer. And then cured. The carbon nanocomposite thus prepared was prepared according to the ASTM D-4935-89 method, and the electromagnetic shielding efficiency was measured. The results are shown in Table 1 and FIG. 3, respectively.

[실시예 3]Example 3

고온 열분해 방법에 의해 제조된 입자상 탄소 나노소재를 크롬 전해액으로 약 10분 동안 도금처리 후 이를 열경화성 수지인 에폭시에 약 10.0중량%를 첨가하고 초음파 분산기 (Ultrasonic Homogenizer)로 혼합, 분산시킨 후 이를 경화시켰다. 이렇게 제조된 탄소 나노복합재를 상기의 ASTM D-4935-89 방법에 따라 전자파 차폐용 시료를 제작하여 전자파 차폐효율을 측정하여 그 결과를 표 1 및 도 3에 각각 나타내었다.The particulate carbon nanomaterial prepared by the high temperature pyrolysis method was plated with a chromium electrolyte for about 10 minutes, and then, about 10.0% by weight was added to the thermosetting resin epoxy, mixed and dispersed with an ultrasonic homogenizer, and then cured. . The carbon nanocomposite thus prepared was prepared according to the ASTM D-4935-89 method, and the electromagnetic shielding efficiency was measured. The results are shown in Table 1 and FIG. 3, respectively.

[실시예 4]Example 4

실시예 3에 의해 제조된 입자상 탄소 나노소재를 구리 전해액으로 약 20분간 도금처리 후 이를 열가소성 수지인 폴리 불소화비닐리덴 (PVDF)수지에 약 15.0중량%를 첨가하고 초음파 분산기 (Ultrasonic Homogenizer)로 혼합, 분산시킨 후 이를 경화시켰다. 이렇게 제조된 탄소 나노복합재를 상기의 ASTM D-4935-89 방법에 따라 전자파 차폐용 시료를 제작하여 전자파 차폐효율을 측정하여 그 결과를표 1 및 도 3에 각각 나타내었다.After the particulate carbon nanomaterial prepared in Example 3 was plated with a copper electrolyte for about 20 minutes, it was added about 15.0 wt% to a polyvinylidene fluoride (PVDF) resin, which is a thermoplastic resin, and mixed with an ultrasonic disperser (Ultrasonic Homogenizer). After dispersion, it was cured. The carbon nanocomposite thus prepared was prepared according to the ASTM D-4935-89 method, and the electromagnetic shielding efficiency was measured. The results are shown in Table 1 and FIG. 3, respectively.

[실시예 5]Example 5

고온 열분해 방법에 의해 제조된 섬유상 탄소 나노소재를 니켈 전해액으로 약 15분간 도금처리 후 이를 열가소성 수지인 아크릴 수지에 약 5.0중량%를 첨가하고 초음파 분산기 (Ultrasonic Homogenizer)로 혼합, 분산시킨 후 이를 경화시켰다. 이렇게 제조된 탄소 나노복합재를 상기의 ASTM D-4935-89 방법에 따라 전자파 차폐용 시료를 제작하여 전자파 차폐효율을 측정하여 그 결과를 표 1 및 도 3에 각각 나타내었다.The fibrous carbon nanomaterial prepared by the high temperature pyrolysis method was plated with nickel electrolyte for about 15 minutes, and then, about 5.0% by weight was added to an acrylic resin, which is a thermoplastic resin, mixed and dispersed by an ultrasonic homogenizer, and then cured. . The carbon nanocomposite thus prepared was prepared according to the ASTM D-4935-89 method, and the electromagnetic shielding efficiency was measured. The results are shown in Table 1 and FIG. 3, respectively.

[실시예 6]Example 6

실시예 5에 의해 제조된 섬유상 탄소 나노소재를 크롬 전해액으로 약 30분간 도금처리 후 이를 열가소성 수지인 실리콘에 약 10.0중량%를 첨가하고 초음파 분산기 (Ultrasonic Homogenizer)로 혼합, 분산시킨 후 이를 경화시켰다. 이렇게 제조된 탄소 나노복합재를 상기의 ASTM D-4935-89 방법에 따라 전자파 차폐용 시료를 제작하여 전자파 차폐효율을 측정하여 그 결과를 표 1 및 도 3에 각각 나타내었다.The fibrous carbon nanomaterial prepared in Example 5 was plated with a chromium electrolyte for about 30 minutes, and then, about 10.0 wt% was added to silicone, which is a thermoplastic resin, mixed and dispersed with an ultrasonic homogenizer, and then cured. The carbon nanocomposite thus prepared was prepared according to the ASTM D-4935-89 method, and the electromagnetic shielding efficiency was measured. The results are shown in Table 1 and FIG. 3, respectively.

[비교예][Comparative Example]

열가소성 수지인 폴리프로필렌에 1,000℃ 이상의 고온에서 제조된 전도성 카본블랙을 약 10중량%로 첨가하여 제조된 복합재료를 상기 실시예의 시험방법에 따라 전자파 차폐효율을 측정하여 각 실시예와 비교하였으며, 그 결과를 도 3에 나타내었다.A composite material prepared by adding about 10% by weight of conductive carbon black prepared at a high temperature of 1,000 ° C. or higher to a polypropylene, which is a thermoplastic resin, was measured and compared with each example by measuring electromagnetic shielding efficiency according to the test method of the above embodiment. The results are shown in FIG.

본 발명에 따른 알칼리 전이금속의 전기분해를 통한 도금처리 된 고비표면적의 나노기공성 탄소 소재로서 탄소 나노튜브, 탄소 나노섬유 및 탄소 나노입자를 다양한 수지 결합제에 혼화 분산시켜 이루어진 탄소 나노복합재는 기존의 고분자 복합재료의 제조공정과 유사하여 새로운 추가 설비 및 공정이 필요없이 소량의 첨가로 고주파 대역에서의 우수한 전자파 차폐 및 흡수효과를 나타낸다. 또한 표면 처리를 통한 분산능의 향상과 함께 배합비 조절을 통한 우수한 기계적, 열적 특성을 나타낸다.Carbon nanocomposites made by mixing and dispersing carbon nanotubes, carbon nanofibers, and carbon nanoparticles in various resin binders as a high specific surface area nanoporous carbon material plated through electrolysis of alkali transition metals according to the present invention are conventional. It is similar to the manufacturing process of polymer composite material and shows good electromagnetic shielding and absorption effect in high frequency band by adding small amount without the need for new additional equipment and process. In addition, it exhibits excellent mechanical and thermal properties through adjustment of the mixing ratio as well as improvement of dispersibility through surface treatment.

Claims (5)

알칼리 전이금속의 전기분해를 통해 도금처리 탄소 나노소재를 첨가제로 하여 다양한 수지 기재에 분산, 경화시킨 후 이를 불활성 분위기에서의 고온 열처리 공정을 통하여 이루어진 탄소 나노소재/고분자 복합재 및 이를 이용한 전자파 차폐재의 제조방법Preparation of carbon nanomaterials / polymer composites and electromagnetic wave shielding materials using electroplating carbon nanomaterials as additives through alkali electrolysis of alkali transition metals, which are dispersed and cured in various resin substrates and subjected to high temperature heat treatment in an inert atmosphere Way 제 1항에 있어서, 탄소 나노소재가 탄소 나노튜브, 탄소 나노섬유 및 탄소 나노입자인 것을 특징으로 탄소 나노소재/고분자 복합재 및 이를 이용한 전자파 차폐재의 제조방법According to claim 1, wherein the carbon nanomaterials are carbon nanotubes, carbon nanofibers and carbon nanoparticles, characterized in that the carbon nanomaterials / polymer composites and a method for producing an electromagnetic shielding material using the same 제 2항에 있어서, 첨가제인 탄소 나노소재를 구리, 니켈 및 크롬등의 알칼리 전이금속 전해액으로 약 5 내지 30분 동안 도금 처리하는 것을 특징으로 하는 탄소 나노소재의 표면 처리방법3. The method of claim 2, wherein the carbon nanomaterial as an additive is plated with an alkali transition metal electrolyte such as copper, nickel, and chromium for about 5 to 30 minutes. 제 2항에 있어서, 도금처리 된 탄소 나노소재를 약 1.0 중량% ~ 15.0 중량%의 첨가량으로 각 고분자 수지 기재에 혼화, 분산되는 것을 특징으로 탄소 나노소재/고분자 복합재 및 이를 이용한 전자파 차폐재의 제조방법The method of manufacturing a carbon nanomaterial / polymer composite and an electromagnetic wave shielding material according to claim 2, wherein the plated carbon nanomaterial is mixed and dispersed in each polymer resin substrate at an amount of about 1.0% by weight to 15.0% by weight. 제 1항에 있어서, 상기 수지 결합제로서 열경화성 수지로는 페놀, 에폭시 수지, 열가소성 수지로는 아크릴 수지, 폴리 염화비닐리덴 (PVDC), 폴리 불소화 비닐리덴 (PVDF), 프로필렌 (PP) 및 실리콘 수지인 것을 특징으로 하는 탄소 나노소재/고분자 복합재 및 이를 이용한 전자파 차폐재의 제조방법The method of claim 1, wherein the resin binder is a phenol, an epoxy resin, a thermoplastic resin, an acrylic resin, polyvinylidene chloride (PVDC), polyvinylidene fluoride (PVDF), propylene (PP) and silicone resins. Carbon nano material / polymer composite and a method of manufacturing an electromagnetic shielding material using the same
KR1020030008351A 2003-02-10 2003-02-10 Electromagnetic Wave Shielding Material using Carbon Nano-Composites and Preparation Method Thereof KR20030019527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030008351A KR20030019527A (en) 2003-02-10 2003-02-10 Electromagnetic Wave Shielding Material using Carbon Nano-Composites and Preparation Method Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030008351A KR20030019527A (en) 2003-02-10 2003-02-10 Electromagnetic Wave Shielding Material using Carbon Nano-Composites and Preparation Method Thereof

Publications (1)

Publication Number Publication Date
KR20030019527A true KR20030019527A (en) 2003-03-06

Family

ID=27730617

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030008351A KR20030019527A (en) 2003-02-10 2003-02-10 Electromagnetic Wave Shielding Material using Carbon Nano-Composites and Preparation Method Thereof

Country Status (1)

Country Link
KR (1) KR20030019527A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005038824A1 (en) * 2003-10-16 2005-04-28 Electronics And Telecommunications Research Institute Electromagnetic shielding material having carbon nanotube and metal as electrical conductor
KR100583610B1 (en) * 2003-03-07 2006-05-26 재단법인서울대학교산학협력재단 Febrication method of transition metal oxide/carbon nanotube composite
KR100647595B1 (en) * 2004-02-17 2006-11-17 삼성에스디아이 주식회사 Complex for forming case and plasma display panel assembly using the same
KR100797827B1 (en) * 2006-09-19 2008-01-24 재단법인 포항산업과학연구원 Method of coating on carbon fiber-epoxy composite
KR101135672B1 (en) * 2004-08-31 2012-04-13 하이페리온 커탤리시스 인터내셔널 인코포레이티드 Conductive thermosets by extrusion
US9017570B2 (en) 2012-05-08 2015-04-28 Hyundai Motor Company Hybrid filler for electromagnetic shielding composite material and method of manufacturing the hybrid filler
US9506194B2 (en) 2012-09-04 2016-11-29 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media
WO2017039032A1 (en) * 2015-09-02 2017-03-09 윈엔윈(주) Electromagnetic wave shielding material sheet and manufacturing method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100583610B1 (en) * 2003-03-07 2006-05-26 재단법인서울대학교산학협력재단 Febrication method of transition metal oxide/carbon nanotube composite
WO2005038824A1 (en) * 2003-10-16 2005-04-28 Electronics And Telecommunications Research Institute Electromagnetic shielding material having carbon nanotube and metal as electrical conductor
US7588700B2 (en) 2003-10-16 2009-09-15 Electronics And Telecommunications Research Institute Electromagnetic shielding material having carbon nanotube and metal as electrical conductor
KR100647595B1 (en) * 2004-02-17 2006-11-17 삼성에스디아이 주식회사 Complex for forming case and plasma display panel assembly using the same
KR101135672B1 (en) * 2004-08-31 2012-04-13 하이페리온 커탤리시스 인터내셔널 인코포레이티드 Conductive thermosets by extrusion
KR100797827B1 (en) * 2006-09-19 2008-01-24 재단법인 포항산업과학연구원 Method of coating on carbon fiber-epoxy composite
US9017570B2 (en) 2012-05-08 2015-04-28 Hyundai Motor Company Hybrid filler for electromagnetic shielding composite material and method of manufacturing the hybrid filler
US9506194B2 (en) 2012-09-04 2016-11-29 Ocv Intellectual Capital, Llc Dispersion of carbon enhanced reinforcement fibers in aqueous or non-aqueous media
WO2017039032A1 (en) * 2015-09-02 2017-03-09 윈엔윈(주) Electromagnetic wave shielding material sheet and manufacturing method therefor

Similar Documents

Publication Publication Date Title
Liu et al. Enhanced microwave absorption property of silver decorated biomass ordered porous carbon composite materials with frequency selective surface incorporation
Song et al. Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding
Wang et al. Microwave absorption properties of carbon nanotubes-epoxy composites in a frequency range of 2-20 GHz
He et al. Electric-magnetic-dielectric synergism and Salisbury screen effect in laminated polymer composites with multiwall carbon nanotube, nickel, and antimony trioxide for enhancing electromagnetic interference shielding
Luo et al. Carbon nanotubes/epoxy resin metacomposites with adjustable radio-frequency negative permittivity and low dielectric loss
Wang et al. The electromagnetic interference shielding of silicone rubber filled with nickel coated carbon fiber
Farhan et al. Electromagnetic interference shielding effectiveness of carbon foam containing in situ grown silicon carbide nanowires
KR20040078002A (en) Carbon Nano-Composite Materials for Shielding of Electromagnetic Wave and Preparation Method Thereof
US20100311866A1 (en) Heirarchial polymer-based nanocomposites for emi shielding
Gogoi et al. Synthesis and microwave characterization of expanded graphite/novolac phenolic resin composite for microwave absorber applications
Lee et al. EMI shielding effectiveness of carbon nanofiber filled poly (vinyl alcohol) coating materials
Zachariah et al. Hybrid materials for electromagnetic shielding: A review
González et al. Carbon nanotube composites as electromagnetic shielding materials in GHz range
CN108929542B (en) Polydimethylsiloxane/graphene flexible composite film with negative dielectric constant and preparation method thereof
Hu et al. Investigation into electrical conductivity and electromagnetic interference shielding effectiveness of silicone rubber filled with Ag-coated cenosphere particles
JP5218396B2 (en) Electromagnetic interference suppression sheet, high-frequency signal flat cable, flexible printed circuit board, and electromagnetic interference suppression sheet manufacturing method
CN110712400B (en) Method for preparing layered carbon fiber electromagnetic shielding composite material by using three-dimensional carbon/ferroferric oxide Koch layered layer
Chaudhary et al. Multi-component framework derived SiC composite paper to support efficient thermal transport and high EMI shielding performance
Fan et al. Enhanced microwave absorption of epoxy composite by constructing 3D Co–C–MWCNTs derived from metal organic frameworks
Li et al. Conductive Ag microspheres with lychee-like morphology on the enhanced microwave absorption properties of MWCNTs
Lan et al. Electromagnetic shielding effectiveness and mechanical property of polymer–matrix composites containing metallized conductive porous flake-shaped diatomite
Wang et al. Temperature dependence of the electromagnetic and microwave absorption properties of polyimide/Ti 3 SiC 2 composites in the X band
CN1233758C (en) Conductive electromagnetic shielding paint and application thereof
CN110498990B (en) Preparation method of C @ Ni composite material and electromagnetic shielding film
KR20030019527A (en) Electromagnetic Wave Shielding Material using Carbon Nano-Composites and Preparation Method Thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E601 Decision to refuse application