KR20010059031A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
KR20010059031A
KR20010059031A KR1019990066409A KR19990066409A KR20010059031A KR 20010059031 A KR20010059031 A KR 20010059031A KR 1019990066409 A KR1019990066409 A KR 1019990066409A KR 19990066409 A KR19990066409 A KR 19990066409A KR 20010059031 A KR20010059031 A KR 20010059031A
Authority
KR
South Korea
Prior art keywords
layer
tungsten
metal layer
semiconductor device
metal
Prior art date
Application number
KR1019990066409A
Other languages
Korean (ko)
Inventor
정성희
윤경렬
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR1019990066409A priority Critical patent/KR20010059031A/en
Publication of KR20010059031A publication Critical patent/KR20010059031A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4941Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a barrier layer between the silicon and the metal or metal silicide upper layer, e.g. Silicide/TiN/Polysilicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28061Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a metal or metal silicide formed by deposition, e.g. sputter deposition, i.e. without a silicidation reaction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE: A method for manufacturing a semiconductor device is provided to prevent lowering of a characteristic of a gate oxide layer by forming a WSiN layer as a barrier layer. CONSTITUTION: A gate insulating layer(32), a conductive layer(33), and a metal layer(34) are formed on a semiconductor substrate(31). An NH3 gas and an N2 gas are implanted to form a peak of nitrogen component between the conductive layer(33) and the metal layer(34). A hard mask layer is formed on the metal layer(34). A gate electrode is formed by etching selectively the hard mask layer, the metal layer(34), and the conductive layer(33). A barrier layer is formed by the nitrogen component implanted between the conductive layer(33) and metal layer(34).

Description

반도체 소자의 제조 방법{Method for manufacturing semiconductor device}Method for manufacturing semiconductor device

본 발명은 반도체 소자의 제조 방법에 관한 것으로, 특히 NH3 및 N2 가스의 이온주입 공정으로 베리어(Barrier)층인 WSiN층을 형성하여 소자의 열안정성, 신뢰성 및 수율을 향상시키는 반도체 소자의 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device in which a WSiN layer, which is a barrier layer, is formed by ion implantation of NH 3 and N 2 gases to improve thermal stability, reliability, and yield of the device. will be.

반도체 소자의 게이트 전극은 낮은 저항의 금속물을 채택하는 것이 RC 지연시간의 감소를 위해 필수적이다.As the gate electrode of the semiconductor device, it is necessary to adopt a low resistance metal material for reducing the RC delay time.

최근의 기가(Giga)급 소자에서는 TiSi2 게이트 전극, CoSi2 게이트 전극 및 텅스텐(W) 게이트 전극 등이 사용하고 있다.In recent Giga class devices, TiSi2 gate electrodes, CoSi2 gate electrodes, tungsten (W) gate electrodes, and the like are used.

상기 고집적 소자의 텅스텐 게이트 전극은 열처리 공정에 따라 텅스텐과 그 하부층인 다결정 실리콘층과의 반응에 의한 텅스텐 실리사이드(Silicide)층이 형성된다.In the tungsten gate electrode of the highly integrated device, a tungsten silicide layer is formed by a reaction between tungsten and a polycrystalline silicon layer below the tungsten gate electrode.

상기 텅스텐 실리사이드층의 형성으로 상기 텅스텐 게이트 전극의 저항이 텅스텐층 저항 보다 증가하는 현상이 발생한다.The formation of the tungsten silicide layer causes the resistance of the tungsten gate electrode to increase than that of the tungsten layer.

그 결과 열처리 공정에 따라 상기 텅스텐층과 다결정 실리콘층과의 반응을 방지하기 위해 상기 텅스텐층과 다결정 실리콘층 사이에 베리어층을 형성하고 있다.As a result, a barrier layer is formed between the tungsten layer and the polycrystalline silicon layer in order to prevent the reaction between the tungsten layer and the polycrystalline silicon layer according to the heat treatment process.

종래 기술에 따른 반도체 소자 중 텅스텐 게이트 전극의 제조 방법은 도 1a에서와 같이, 반도체 기판(31)상에 열 산화 공정으로 게이트 산화막(32)을 성장시킨 후, 상기 게이트 산화막(32)상에 비정질 실리콘층(33), WNX막(11) 및 텅스텐층(34)을 형성한다.In the method of manufacturing a tungsten gate electrode of the semiconductor device according to the related art, after the gate oxide film 32 is grown on the semiconductor substrate 31 by a thermal oxidation process, as shown in FIG. 1A, an amorphous phase is formed on the gate oxide film 32. The silicon layer 33, the WNX film 11, and the tungsten layer 34 are formed.

도 1b에서와 같이, 상기 텅스텐층(34)상에 하드 마스크(Hard Mask)층(35), 에이알시(Anti Reflective Coating:ARC)층(36) 및 감광막을 순차적으로 형성한 후, 상기 감광막을 게이트 전극 형성될 부위에만 남도록 선택적으로 노광 및 현상한다.As shown in FIG. 1B, a hard mask layer 35, an Anti Reflective Coating (ARC) layer 36, and a photoresist layer are sequentially formed on the tungsten layer 34, and then the photoresist layer is formed. Is selectively exposed and developed so as to remain only at the site where the gate electrode is to be formed.

그리고, 상기 선택적으로 노광 및 현상된 감광막을 마스크로 상기 ARC층(36), 하드 마스크층(35), 텅스텐층(34), WNX막(11) 및 비정질 실리콘층(33)을 선택적으로 식각하여 게이트 전극을 형성한 후, 상기 감광막을 제거한다.The ARC layer 36, the hard mask layer 35, the tungsten layer 34, the WNX layer 11, and the amorphous silicon layer 33 are selectively etched using the selectively exposed and developed photoresist layer as a mask. After the gate electrode is formed, the photosensitive film is removed.

그러나 종래의 반도체 소자의 제조 방법은 비정질 실리콘층과 베리어(Barrier)층인 WNX막 그리고 텅스텐(W)층의 적층 구조의 게이트 전극을 형성하기 때문에 WNX막과 텅스텐층에 의해 게이트 산화막에 스트레스(Stress)가 가해지므로 게이트 산화막의 특성이 저하된다는 문제점이 있었다.However, in the conventional method of manufacturing a semiconductor device, since a gate electrode having a stacked structure of an amorphous silicon layer, a barrier layer, a WNX film, and a tungsten (W) layer is formed, a stress is applied to the gate oxide film by the WNX film and the tungsten layer. There is a problem that the characteristics of the gate oxide film are deteriorated because is added.

본 발명은 상기의 문제점을 해결하기 위해 안출한 것으로 비정질 실리콘층과 텅스텐층 사이에 NH3 및 N2 가스의 이온주입 공정을 사용하여 베리어층인 WSiN층을 형성하므로 게이트 산화막의 특성 저하를 방지하는 반도체 소자의 제조 방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the above problems, and the semiconductor device prevents the gate oxide film from deteriorating because the WSiN layer, which is a barrier layer, is formed between the amorphous silicon layer and the tungsten layer by using an ion implantation process of NH 3 and N 2 gases. Its purpose is to provide a process for the preparation.

도 1a와 도 1b는 종래 기술에 따른 반도체 소자 중 텅스텐 게이트 전극의 제조 방법을 나타낸 공정 단면도1A and 1B are cross-sectional views illustrating a method of manufacturing a tungsten gate electrode in a semiconductor device according to the related art.

도 2a 내지 도 2d는 본 발명의 실시 예에 따른 반도체 소자 중 텅스텐 게이트 전극의 제조 방법을 나타낸 공정 단면도2A to 2D are cross-sectional views illustrating a method of manufacturing a tungsten gate electrode in a semiconductor device according to an embodiment of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

31: 반도체 기판 32: 게이트 산화막31 semiconductor substrate 32 gate oxide film

33: 비정질 실리콘층 34: 텅스텐층33: amorphous silicon layer 34: tungsten layer

35: 하드 마스크층 36: ARC층35: hard mask layer 36: ARC layer

37: WSiN층37: WSiN layer

본 발명의 반도체 소자의 제조 방법은 기판상에 게이트 절연막, 도전층 및 금속층을 형성하는 단계, 상기 도전층과 금속층 사이에 질소(N) 성분이 피크가 되도록 전면에 NH3 및 N2 가스를 이온주입하는 단계, 상기 금속층상에 하드 마스크층을 형성하는 단계, 상기 하드 마스크층, 금속층 및 도전층을 선택적으로 식각하여 게이트 전극을 형성하는 단계 및 전면을 열치리 하여 상기 도전층과 금속층 사이에 주입된 질소(N) 성분에 의해 실리사이드층 형성 방지층인 베리어층을 형성하는 단계를 포함하여 이루어짐을 특징으로 한다.In the method of manufacturing a semiconductor device of the present invention, forming a gate insulating film, a conductive layer, and a metal layer on a substrate, and ion-implanting NH3 and N2 gas on the entire surface such that a nitrogen (N) component becomes a peak between the conductive layer and the metal layer. Forming a hard mask layer on the metal layer, selectively etching the hard mask layer, the metal layer, and the conductive layer to form a gate electrode and treating the entire surface with nitrogen injected between the conductive layer and the metal layer It characterized by comprising the step of forming a barrier layer which is a silicide layer formation prevention layer by the (N) component.

상기와 같은 본 발명에 따른 반도체 소자의 제조 방법의 바람직한 실시 예를 첨부된 도면을 참조하여 상세히 설명하면 다음과 같다.When described in detail with reference to the accompanying drawings a preferred embodiment of the method for manufacturing a semiconductor device according to the present invention as follows.

도 2a 내지 도 2d는 본 발명의 실시 예에 따른 반도체 소자 중 텅스텐 게이트 전극의 제조 방법을 나타낸 공정 단면도이다.2A to 2D are cross-sectional views illustrating a method of manufacturing a tungsten gate electrode in a semiconductor device according to an embodiment of the present invention.

본 발명의 실시 예에 따른 반도체 소자 중 텅스텐 게이트 전극의 제조 방법은 도 2a에서와 같이, 반도체 기판(31)상에 열 산화 공정으로 게이트 산화막(32)을 성장시킨 후, 상기 게이트 산화막(32)상에 비정질 실리콘층(33)과 텅스텐층(34)을 형성한다.In the method of manufacturing a tungsten gate electrode of the semiconductor device according to the embodiment of the present invention, as shown in FIG. 2A, after the gate oxide layer 32 is grown on the semiconductor substrate 31 by a thermal oxidation process, the gate oxide layer 32 is formed. An amorphous silicon layer 33 and a tungsten layer 34 are formed on it.

여기서, 상기 텅스텐층(34)을 아르곤(Ar) 스퍼터링(Sputtering) 공정에 의해 형성한다.Here, the tungsten layer 34 is formed by an argon (Ar) sputtering process.

도 2b에서와 같이, 상기 비정질 실리콘층(33)과 텅스텐층(34) 사이에 질소(N) 성분이 피크(Peak)가 되도록 농도 및 에너지를 조절한 후 NH3 및 N2 가스를 전면에 이온주입한다.As shown in FIG. 2B, after the concentration and energy are adjusted between the amorphous silicon layer 33 and the tungsten layer 34 so that the nitrogen (N) component becomes a peak, ion implantation of NH 3 and N 2 gases is performed on the entire surface. .

도 2c에서와 같이, 상기 텅스텐층(34)상에 하드 마스크층(35), ARC층(36) 및 감광막을 순차적으로 형성한 후, 상기 감광막을 게이트 전극 형성될 부위에만 남도록 선택적으로 노광 및 현상한다.As shown in FIG. 2C, after the hard mask layer 35, the ARC layer 36, and the photoresist layer are sequentially formed on the tungsten layer 34, the photoresist layer is selectively exposed and developed so that the photoresist layer remains only at the portion where the gate electrode is to be formed. do.

그리고, 상기 선택적으로 노광 및 현상된 감광막을 마스크로 상기 ARC층(36), 하드 마스크층(35), 텅스텐층(34) 및 비정질 실리콘층(33)을 선택적으로 식각하여 게이트 전극을 형성한 후, 상기 감광막을 제거한다.The ARC layer 36, the hard mask layer 35, the tungsten layer 34, and the amorphous silicon layer 33 are selectively etched using the selectively exposed and developed photoresist as a mask to form a gate electrode. Remove the photosensitive film.

도 2d에서와 같이, 상기 게이트 전극이 형성된 전면에 열처리 공정을 하여 상기 비정질 실리콘층(33)과 텅스텐층(34) 사이에 주입된 질소 이온 그리고 텅스텐과 실리콘을 반응시켜 상기 비정질 실리콘층(33)과 텅스텐층(34) 사이에 베리어층인 WSiN층(37)을 형성한다.As shown in FIG. 2D, a heat treatment process is performed on the entire surface where the gate electrode is formed to react nitrogen ion implanted between the amorphous silicon layer 33 and the tungsten layer 34, and tungsten and silicon to react with the amorphous silicon layer 33. And a WSiN layer 37 as a barrier layer is formed between the tungsten layer 34 and the tungsten layer 34.

여기서, 상기 WSiN층(37)은 상기 비정질 실리콘층(33)과 텅스텐층(34)의 반응으로 인한 텅스텐 실리사이드층의 형성을 방지하는 역할을 한다.Here, the WSiN layer 37 serves to prevent the formation of a tungsten silicide layer due to the reaction between the amorphous silicon layer 33 and the tungsten layer 34.

본 발명의 반도체 소자의 제조 방법은 NH3 및 N2 가스의 이온주입 공정을 사용하여 비정질 실리콘층과 텅스텐층 사이에 베리어층인 WSiN층을 형성하므로, 상기 WSiN층에 의해 텅스텐 실리사이드층의 형성을 방지하여 게이트 전극의 저항을 감소시키고 또한 상기 WSiN층의 형성 공정시 사용한 NH3 및 N2 가스의 이온주입 공정에 의해 상기 텅스텐층이 비정질화되어 균일한 게이트 식각 프로파일(Profile)을 갖으며 NH3 및 N2 가스의 이온주입 공정에 의해 WSiN층을 형성하므로 게이트 산화막에 가해지는 스트레스를 완화시켜 소자의 열안정성, 신뢰성 및 수율을 향상시키는 효과가 있다.In the method of manufacturing a semiconductor device of the present invention, a WSiN layer, which is a barrier layer, is formed between an amorphous silicon layer and a tungsten layer by using an ion implantation process of NH 3 and N 2 gases, thereby preventing formation of a tungsten silicide layer by the WSiN layer. The tungsten layer is amorphous by reducing the resistance of the gate electrode and ion implantation of NH3 and N2 gas used in the WSiN layer formation process, and thus has a uniform gate etch profile and ion of NH3 and N2 gas. Since the WSiN layer is formed by the implantation process, the stress applied to the gate oxide film is alleviated, thereby improving the thermal stability, reliability, and yield of the device.

Claims (5)

기판상에 게이트 절연막, 도전층 및 금속층을 형성하는 단계;Forming a gate insulating film, a conductive layer and a metal layer on the substrate; 상기 도전층과 금속층 사이에 질소(N) 성분이 피크가 되도록 전면에 NH3 및 N2 가스를 이온주입하는 단계;Ion implanting NH3 and N2 gas on the entire surface such that a nitrogen (N) component becomes a peak between the conductive layer and the metal layer; 상기 금속층상에 하드 마스크층을 형성하는 단계;Forming a hard mask layer on the metal layer; 상기 하드 마스크층, 금속층 및 도전층을 선택적으로 식각하여 게이트 전극을 형성하는 단계;Selectively etching the hard mask layer, the metal layer, and the conductive layer to form a gate electrode; 전면을 열치리 하여 상기 도전층과 금속층 사이에 주입된 질소(N) 성분에 의해 실리사이드층 형성 방지층인 베리어층을 형성하는 단계를 포함하여 이루어짐을 특징으로 하는 반도체 소자의 제조 방법.And forming a barrier layer, which is a silicide layer formation preventing layer, by the nitrogen (N) component injected between the conductive layer and the metal layer by heating the entire surface. 제 1 항에 있어서,The method of claim 1, 상기 도전층을 비정질 실리콘층으로 형성하고 상기 금속층을 텅스텐층으로 형성함을 특징으로 하는 반도체 소자의 제조 방법.And the conductive layer is formed of an amorphous silicon layer and the metal layer is formed of a tungsten layer. 제 2 항에 있어서,The method of claim 2, 상기 비정질 실리콘층을 SiH4와 PH3 가스를 사용하여 600℃ 이하 온도와 1Torr 이하의 압력으로 형성함을 특징으로 하는 반도체 소자의 제조 방법.The amorphous silicon layer is formed using a SiH4 and PH3 gas at a temperature of 600 ° C or less and a pressure of 1 Torr or less. 제 2 항에 있어서,The method of claim 2, 상기 텅스텐층을 텅스텐 타겟을 아르곤 플라즈마에 의해 400℃ 이하 온도와 1Torr 이하의 압력으로 아르곤 스퍼터링 공정에 의해 형성함을 특징으로 하는 반도체 소자의 제조 방법.The tungsten layer is formed by an argon sputtering process using a tungsten target with an argon plasma at a temperature of 400 ° C. or lower and a pressure of 1 Torr or lower. 제 1 항에 있어서,The method of claim 1, 상기 베리어층을 WSiN층으로 형성함을 특징으로 하는 반도체 소자의 제조 방법.The barrier layer is a manufacturing method of a semiconductor device, characterized in that formed by the WSiN layer.
KR1019990066409A 1999-12-30 1999-12-30 Method for manufacturing semiconductor device KR20010059031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990066409A KR20010059031A (en) 1999-12-30 1999-12-30 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990066409A KR20010059031A (en) 1999-12-30 1999-12-30 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
KR20010059031A true KR20010059031A (en) 2001-07-06

Family

ID=19633547

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990066409A KR20010059031A (en) 1999-12-30 1999-12-30 Method for manufacturing semiconductor device

Country Status (1)

Country Link
KR (1) KR20010059031A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100443243B1 (en) * 2001-12-29 2004-08-04 주식회사 하이닉스반도체 Method for forming a metal interconnection line
WO2014158448A1 (en) * 2013-03-14 2014-10-02 Applied Materials, Inc. Enhancing uv compatibility of low k barrier film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100443243B1 (en) * 2001-12-29 2004-08-04 주식회사 하이닉스반도체 Method for forming a metal interconnection line
WO2014158448A1 (en) * 2013-03-14 2014-10-02 Applied Materials, Inc. Enhancing uv compatibility of low k barrier film

Similar Documents

Publication Publication Date Title
JP3488236B2 (en) MOS transistor with composite gate electrode
KR20030044800A (en) Semiconductor device having a low-resistance gate electrode
US6187676B1 (en) Integrated circuit insulated electrode forming methods using metal silicon nitride layers, and insulated electrodes so formed
US6121138A (en) Collimated deposition of titanium onto a substantially vertical nitride spacer sidewall to prevent silicide bridging
JP2000196081A (en) Titanium polycide gate electrode formation method
US6277736B1 (en) Method for forming gate
US6686277B1 (en) Method of manufacturing semiconductor device
KR20010059031A (en) Method for manufacturing semiconductor device
KR100505449B1 (en) Method of forming polyside gate electrode of semiconductor device
US7166525B2 (en) High temperature hydrogen annealing of a gate insulator layer to increase etching selectivity between conductive gate structure and gate insulator layer
US6156632A (en) Method of forming polycide structures
US6281087B1 (en) Process for fabricating metal silicide layer by using ion metal plasma deposition
KR20010059996A (en) Method for manufacturing semiconductor device
KR100408730B1 (en) Semiconductor device and method for manufacturing the same
KR100333381B1 (en) Method of forming gate for semiconductor device
KR100370166B1 (en) Method for forming gate electrode in semiconductor device
KR100272522B1 (en) Method for fabricating slicide
KR100357186B1 (en) method for forming contact of semiconductor device
KR100443243B1 (en) Method for forming a metal interconnection line
KR20040037793A (en) Method for forming contact in semiconductor device
KR100321720B1 (en) A method for forming gate electrode with tungsten polycide structure in MOS transistor
KR100313088B1 (en) Method for forming gate of transistor
KR20020002630A (en) A method for forming a gate electrode of a semiconductor device
KR20010011553A (en) method of forming a gate electrode in semiconductor device
KR19990057276A (en) Method for manufacturing gate electrode of semiconductor device

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination