KR19990019008A - Manufacturing method of high flow rate reverse osmosis membrane - Google Patents

Manufacturing method of high flow rate reverse osmosis membrane Download PDF

Info

Publication number
KR19990019008A
KR19990019008A KR1019970042304A KR19970042304A KR19990019008A KR 19990019008 A KR19990019008 A KR 19990019008A KR 1019970042304 A KR1019970042304 A KR 1019970042304A KR 19970042304 A KR19970042304 A KR 19970042304A KR 19990019008 A KR19990019008 A KR 19990019008A
Authority
KR
South Korea
Prior art keywords
reverse osmosis
osmosis membrane
solution
flow rate
high flow
Prior art date
Application number
KR1019970042304A
Other languages
Korean (ko)
Inventor
윤영서
임대우
김순식
Original Assignee
한형수
주식회사 새한
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한형수, 주식회사 새한 filed Critical 한형수
Priority to KR1019970042304A priority Critical patent/KR19990019008A/en
Publication of KR19990019008A publication Critical patent/KR19990019008A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2182Organic additives
    • B01D2323/21823Alcohols or hydroxydes, e.g. ethanol, glycerol or phenol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명은 정수기능 또는 용질의 농축과 같은 기능을 지닌 역삼투 분리막의 제조에 관한 것으로서, 특히 염배제율과 같은 고유물성을 유지하면서도 고유량의 특성을The present invention relates to the preparation of a reverse osmosis membrane having a function such as water purification or solute concentration, in particular, while maintaining the intrinsic properties such as salt removal rate,

나타내는 폴리아미드계 역삼투 분리막의 제조를 그 목적으로 한 것이다.It aims at manufacturing the polyamide type reverse osmosis membrane shown.

본 발명은 구체적으로 미세다공 기질 표면에 다관능성 아민용액을 도포시키고 표면을 건조시킨 후 다관능성 산할로겐 화합물 용액을 계면중합시켜 역삼투 분리막을 제조하는 공정에서 탄화수소계 용매를 사용하는 다관능성 산할로겐화합물 용액에 첨가제로 2-메톡시에탄올 또는 2-부톡시에탄올을 넣어 계면중합시 파동을 주는 것을 특징으로 한 폴리아미드계 역삼투 분리막의 제조방법에 관한 것으로서, 이와 같은 방법에 의해 제조된 분리막은 특히 고유량의 성능을 나타낸다.Specifically, the present invention is a multifunctional acid halogen using a hydrocarbon solvent in the process of preparing a reverse osmosis membrane by applying a polyfunctional amine solution to the surface of a microporous substrate, drying the surface, and then interfacially polymerizing the polyfunctional acid halide compound solution. The present invention relates to a method for producing a polyamide reverse osmosis membrane, comprising adding 2-methoxyethanol or 2-butoxyethanol as an additive to a compound solution to give a wave during interfacial polymerization. In particular, it exhibits high flow performance.

Description

고유량 역삼투 분리막의 제조방법Manufacturing method of high flow rate reverse osmosis membrane

본 발명은 폴리아미드계 역삼투 복합막의 제조에 관한 것으로서, 특히 기존의 역삼투 분리막에 비해 고유량의 성능을 지닌 역삼투막을 제조하는 방법에 관한 것이다. 최근 산업의 발달과 인구의 도시집중으로 산업폐수 및 생활하수에 의한 수질오염과 강수량의 부족으로 인한 용수 부족 등으로 용수원의 확보 및 양질의 고순수 생산이 필요하게 되었다. 이와 같은 필요성에 부응하기 위하여 역삼투 분리막의 사용이 증가추세에 있는데, 이러한 역삼투 공정은 크게 해수 및 염수의 담수화, 반도체 산업용 초순수(Ultra pure water)제조, 각종 산업용 폐수의 처리 등과 같은 정수기능과 쥬스의 농축, 맥주와 와인의 제조 등과 같은 농축기능으로 대별할 수 있다. 역삼투막으로서 요구되는 성질은 우선 높은 압력에 견디는 내압성, 내열성, 내염소성, 친수성, 물에 대한 높은 침투성 등이다.The present invention relates to the production of a polyamide reverse osmosis composite membrane, and more particularly to a method for producing a reverse osmosis membrane having a high flow rate performance compared to the conventional reverse osmosis membrane. Recently, due to industrial development and urban concentration of the population, it is necessary to secure water sources and produce high-quality pure water due to water pollution due to water pollution and lack of precipitation due to industrial wastewater and domestic sewage. In order to meet this need, the use of reverse osmosis membranes is on the rise. The reverse osmosis process is mainly used for water purification functions such as desalination of seawater and brine, manufacturing of ultra pure water for semiconductor industry, and treatment of various industrial wastewater. It can be distinguished by the concentration function such as the concentration of juice and the production of beer and wine. Properties required as a reverse osmosis membrane are, first of all, high pressure resistance, heat resistance, chlorine resistance, hydrophilicity, high permeability to water, and the like.

역삼투막은 1964년에 로브(Loeb)와 수리라잔(Sourirajan)이 셀룰로우즈 아세테이트로 비대칭막(Asymmetric membrane)을 제조한 이래 많은 발전을 거듭하여 현재는 방향족 폴리아마이드 혹은 보다 안정한 구조를 갖는 고분자 재료들로 제조된 수십종에 달하는 상업용 역삼투막이 개발되어 있다. 역삼투막의 소재는 화학적 구조의 관점에서 보면 크게 셀룰로우즈계와 비셀룰로우즈계로 양분될 수 있으며, 막형태에 따라서는 일체형의 비대칭 구조(Asymmetric structure)와 복합 구조(Composite structure)로 구분된다. 이 중 비셀룰로우즈계 복합 구조가 더 선호되고 있는 추세이다. 특히 비셀룰로우즈계 복합막 중에서 방향성 폴리술폰을 다공성 지지막으로 하고 방향족 폴리아미드를 활성층으로 하는 복합막이 개발되어 상업화가 이루어지고 있다. 복합막은 기계적 강도를 유지하기 위한 지지층과 선택적 투과성을 갖는 활성층으로 이루어져 있다. 복합막은 최적의 활성층(Active layer)소재를 선택할 수 있어 막의 전체적인 성능을 향상시킬 수 있고, 또한, 활성층에 가교를 부여할 수 있기 때문에 보다 높은 내화학성을 얻을 수 있는 장점을 가지고 있다. 활성층 소재는 수투과량이 우수한 지지체(주로 폴리술폰)표면 위에 계면중합 방법을 이용하여 박막(Thin film)형태로 코팅된다. 그 외에도, 박막 제조방법으로 고전적인 디핑법이나 플라스마 중합법이 이용되기도 한다. 계면중합법에 의한 역삼투용 복합막의 시초는 North Star Research Institute의 NS-100으로 다공성 폴리술폰 지지체에 폴리에틸렌아민 수용액과 헥산 중의 톨루디아이소시아네이트를 반응시켜 제조하였다. 그 후에 에피아민과 프탈로일 클로라이드의 반응에 의한 PA-300이 소개되었고, 이어서, 미국 특허 4,277,344에 제시된 이와 같이 meta-페닐렌디아민과 트리메조일 클로라이드를 계면중합시킨 FT-30이 사업화되었다.Reverse osmosis membranes have been developed since Loeb and Sourirajan in 1964 to produce asymmetric membranes with cellulose acetate, and now they are aromatic polyamides or polymer materials with more stable structures. Dozens of commercial reverse osmosis membranes have been developed. The material of the reverse osmosis membrane can be largely divided into cellulose and non-cellulose based from the viewpoint of chemical structure, and is classified into an integral asymmetric structure and a composite structure according to the membrane type. Among them, a non-cellulose composite structure is more preferred. In particular, among non-cellulose composite membranes, composite membranes having aromatic polyamides as porous support membranes and aromatic polyamides as active layers have been developed and commercialized. The composite membrane consists of a support layer for maintaining mechanical strength and an active layer with selective permeability. Since the composite membrane can select an optimal active layer material, the overall performance of the membrane can be improved, and since the crosslinking can be imparted to the active layer, higher chemical resistance can be obtained. The active layer material is coated in the form of a thin film on the surface of the support (mainly polysulfone) having excellent water permeability using an interfacial polymerization method. In addition, a conventional dipping method or a plasma polymerization method may be used as a thin film manufacturing method. The start of the reverse osmosis composite membrane by the interfacial polymerization method was prepared by reacting the porous polysulfone support with an aqueous polyethyleneamine solution and toludia isocyanate in hexane with NS-100 of North Star Research Institute. Subsequently, PA-300 by epiamine and phthaloyl chloride reaction was introduced, followed by commercialization of FT-30 which interfacially polymerizes meta-phenylenediamine and trimezoyl chloride as described in US Pat. No. 4,277,344.

미국특허 4,277,344에 제시된 방법은 폴리술폰계의 미세 다공성 기질에 meta-페닐렌디아민 수용액을 함침시키고, 그 기질상에 트리메조일클로라이드 용액을 도포하여 게면중합을 일어나게 하는 방법으로 이 가교 폴리아미드계 복합막은 현재 알려진 역삼투용 복합막 중에서 가장 성능이 우수한 것으로 알려져 있다. 그러나, 이 가교 폴리아미드계 복합막은 그 제조공정에 문제점을 가지고 있는데, 즉, 다관능성 산할로겐화물 용액의 가장 일반적인 용매로써 헥산 또는 프레온이 사용되는데, 헥산은 인화점과 비점이 낮아서 폭발이나 화재에 대한 위험이 많아 안전상의 문제로 인해 일반적인 공정에 부적합하며, 이를 개선하기 위해 최근 들어서는 산할로겐 화합물의 용매로 비교적 안정성이 높은 탄소수 8개 이상의 탄화수소계 용매를 주성분으로 하는 혼합용매를 많이 사용하고 있다. 그러나, 이러한 탄화수소계 용매는 끓는점, 인화점, 증발속도, 첨가제와의 상용성 등의 문제로 각 성분 간의 혼합 비율을 조절하는 것이 까다롭다. 한편, 프레온계의 용매는 안전성이 높고, 양호한 성능의 막을 제조하기 쉬우므로 가장 많이 사용되고 있으나, 최근 오존층 파괴로 인한 지구 환경 오염 물질로 그 사용이 문제화 되고 있다.The method described in US Pat. No. 4,277,344 is a method of impregnating a polysulfone-based microporous substrate with a meta-phenylenediamine aqueous solution and applying a trimezoyl chloride solution on the substrate to cause crab polymerization. Membranes are known to have the best performance among currently known reverse osmosis composite membranes. However, this crosslinked polyamide composite membrane has a problem in its manufacturing process, that is, hexane or freon is used as the most common solvent of the polyfunctional acid halide solution. Due to the high risk, it is unsuitable for general processes due to safety problems, and recently, a mixed solvent mainly containing a hydrocarbon solvent having 8 or more carbon atoms of relatively high stability as a solvent of an acid halide compound has been used. However, such a hydrocarbon solvent is difficult to control the mixing ratio between each component due to problems such as boiling point, flash point, evaporation rate, compatibility with additives. Freon-based solvents are the most widely used because they are highly safe and easy to manufacture good performance membranes. However, their use has recently become a problem due to the global environmental pollution caused by the ozone layer destruction.

복합역삼투막의 제조방법에서 프레온 사용의 구체적인 예를 들면, 일본 특공소 63-36803호에서는 폴리술폰 기질에는 meta-페닐렌디아민이나 para-페닐렌디아민을 트리메조일 클로라이드나 이소프탈로일 클로라이드를 사용하여 계면중합시키는 방법을 제시하였으며, 이 때 사용되는 산염화물의 용매로 트리클로로 트리플루오르 에탄을 사용하였다. 또한, 미국 특허4,005,012, 4,259,183, 4360,434, 4,606,943, 4,737,325, 4,828,708에서는 트리메조일 클로라이드의 용매 대신에 n-헥산, 사이클로헥산 등의 탄화수소를 사용하는 방법을 제시하였다. 그러나, 이러한 탄화수소계 용매를 사용하게 되면 미국 특허 5,258,203에서 제시한 바와 같이 낮은 유량(flux)이 문제시된다. 즉, 계면중합시에 아민이 유기층에 확산되는 속도가 산할로겐화합물이 물층에 확산되는 속도보다 빨라서 폴리아미드 피막층 특유의 리쯔 엔드 발리(Ridge Valley)구조가 생겨나는데, 이 구조의 거칠기(roughness)가 커지면 유량이 늘어나고 거칠기가 작아지면 유량이 줄어든다. 탄화수소계 용매를 사용한 경우 유량이 낮은 이유는 프레온의 경우 아민의 프레온층으로의 확산 속도가 탄화수소층으로의 확산 속도보다 빠르므로 더 큰 거칠기의 구조가 만들어지는 반면, 탄화수소계 용매는 일반적으로 아민에 대한 용해도가 좋지 않아 보다 평탄한 구조의 박막필름이 만들어지기 때문이다. 따라서, 거칠기를 키우기 위해서는 미국 특허 4,948,507, 5,258,203에서와 같이 탄화수소층 또는 물층에 아민의 분산력을 높여주기 위한 첨가제를 넣어 계면에 파동을 만들어주는 방법이 있다. 그러나, 이런 방법은 알맞은 첨가제를 선택하기 힘들고 소량 들어가는 관계로 용액에 균일하게 분포토록 하는 것이 중요하여 실제 계면중합시에는 매우 정밀한 제어가 필요하다. 한편, 계면중합시 거칠기를 향상시켜주는 방법외에 미국 특허 4,783,346, 4,983,291, 5,178,766에서와 같이 후처리공정에서 막의 모폴로지(morphology)를 변화시킴으로써 거칠기를 향상시켜주는 방법도 있다.As a specific example of the use of Freon in the method for producing a composite reverse osmosis membrane, Japanese Patent Application No. 63-36803 uses meta-phenylenediamine or para-phenylenediamine as the polysulfone substrate by using trimezoyl chloride or isophthaloyl chloride. A method of interfacial polymerization was presented, in which trichloro trifluoroethane was used as a solvent of an acid chloride. In addition, U.S. Pat. However, the use of such hydrocarbon-based solvents presents a problem of low flux, as set forth in US Pat. No. 5,258,203. That is, at the time of interfacial polymerization, the rate of diffusion of amines into the organic layer is faster than that of acid halide compounds in the water layer, resulting in the Ritz end valley structure peculiar to the polyamide coating layer. Larger flow rates increase and roughness decreases flow rates. The reason why the flow rate is low when using a hydrocarbon solvent is that in the case of freon, the diffusion rate of the amine into the freon layer is faster than the diffusion rate into the hydrocarbon layer, thereby creating a structure of greater roughness, whereas the hydrocarbon solvent is generally used in the amine. This is because the solubility in water is not good to make a thin film having a flatter structure. Therefore, in order to increase the roughness, there is a method of adding waves to the interface by adding an additive to increase the dispersibility of the amine in the hydrocarbon layer or the water layer, as in US Pat. Nos. 4,948,507, 5,258,203. However, this method is difficult to select a suitable additive and it is important to uniformly disperse the solution in a small amount, so very precise control is required for the actual interfacial polymerization. On the other hand, in addition to improving the roughness during interfacial polymerization, there is also a method for improving the roughness by changing the morphology of the film in the post-treatment process, such as US Patent 4,783,346, 4,983,291, 5,178,766.

본 발명은 탄화수소계 용매를 사용하여 역삼투 분리막 제조시 기존에 첨가된 에테르류보다 상용성이 향상된 첨가제를 넣어 계면중합시 계면에 파동을 일으켜 합성된 피막층에 적당한 거칠기를 부여하여 고유량의 분리막을 제조하는 것을 그 목적으로 한 것이다.According to the present invention, a hydrocarbon solvent is used to add an additive having improved compatibility to conventionally added ethers when preparing a reverse osmosis membrane, causing waves at the interface during interfacial polymerization, thereby giving a suitable roughness to the synthesized coating layer, thereby providing a high flow rate membrane. It is for the purpose to manufacture.

본 발명은 구체적으로 미세다공 기질 표면에 다관능성 아민용액을 도포시키고 표면을 건조시킨 후 탄화수소계 용매를 사용하는 다관능성 산할로겐 화합물 용액을 게면중합시켜 폴리아미드계 역삼투 분리막 제조시, 다관능성 할로겐 용액에 첨가제로 2-메톡시에탄올 또는 2-부톡시에탄올을 넣어 계면중합시 파동을 일으키는 것을 특징으로 한 것으로서, 이하에서 본 발명을 구체적으로 설명한다.The present invention specifically applies a polyfunctional amine solution to the surface of a microporous substrate, and after drying the surface, polyfunctional acid halide compound solution using a hydrocarbon solvent is surface polymerized to prepare a polyamide reverse osmosis membrane. 2-methoxyethanol or 2-butoxyethanol is added to the solution as an additive to generate waves during interfacial polymerization, and the present invention will be described in detail below.

기존의 첨가제로 사용되던 디에틸에테르, 메틸t-부틸에테르는 비점이 매우 낮은 관계로 게면중합시 알맞는 농도의 유지가 힘들고, 또한 탄화수소에서의 상용성이 부족해서 특히 연속공정에서의 코팅의 균일성이 유지되기 힘든 문제점이 있다.Diethyl ether and methyl t-butyl ether, which have been used as conventional additives, have very low boiling point, so it is difficult to maintain a proper concentration during crab polymerization, and also due to the lack of compatibility in hydrocarbons, particularly coating uniformity in a continuous process. There is a problem that sex is difficult to maintain.

그러나, 본 발명에서는 적당한 비점과 향상된 상용성을 가지고 있는 2-메톡시에탄올과 2-부톡시에탄올을 사용하여 고유량 역삼투 분리막을 제조함에 의해 상기 문제를 해결하였다. 역삼투막의 두 특성인 염배제율과 유량은 서로 반비례하는 관계에 있다. 즉, 유량이 늘면 염배제율이 감소하고 염배제율이 향상되면 유량이 감소한다. 그러나, 본 발명에서와 같이 첨가제를 사용하여 게면중합시 파동을 주게되면 유량이 증가되더라고 염배제율은 감소되지를 않는데, 이는 표면의 거칠기가 증가하므로써 표면적이 증가하기 때문이다.However, the present invention solves the above problem by preparing a high flow rate reverse osmosis membrane using 2-methoxyethanol and 2-butoxyethanol having a suitable boiling point and improved compatibility. Two characteristics of reverse osmosis membranes, salt rejection rate and flow rate, are inversely related to each other. That is, as the flow rate increases, the salt rejection rate decreases, and when the salt rejection rate improves, the flow rate decreases. However, as in the present invention, if the wave is applied during crab polymerization using an additive, the salt excretion rate does not decrease even though the flow rate is increased, because the surface area is increased by increasing the surface roughness.

본 발명에서 사용되는 첨가제의 사용량은 다관능성화합물 용액의 0.01 ∼ 10 중량% 범위가 적당한데, 0.01 중량% 미만으로 사용하면 첨가효과가 미미하고 10 중량% 초과 사용할 때는 오히려 반응성이 저하하는 문제가 발생한다.The amount of the additive used in the present invention is preferably in the range of 0.01 to 10% by weight of the polyfunctional compound solution, but when used in less than 0.01% by weight, the additive effect is insignificant, and when used in excess of 10% by weight, the reactivity decreases. do.

한편, 본 발명에서는 연속공정시 미세다공기질 표면에 다관능성아민용액을 침지하는 경우 초음파 존재하에 1-30초간 침지시키는 방법을 사용함에 의해 아민이 기질표면에 골고루 분포시켜 침지시간을 줄이고 유량을 향상시키도록 하는 것이 좋다.Meanwhile, in the present invention, when immersing the polyfunctional amine solution on the surface of the microporous substrate in a continuous process, the amine is evenly distributed on the substrate surface by immersing for 1-30 seconds in the presence of ultrasonic waves to reduce the immersion time and improve the flow rate. It's a good idea to do this.

그리고, 산할로겐화합물로는 이소프탈로일 클로라이드, 테레프탈로일 클로라이드, 트리메조일 클로라이드 등이 사용 가능하며, 이 때 사용되는 용매로는 탄소수 5 ∼ 12개인 n-알칸과 탄소수 8개인 포화 및 불포화 탄화수소의 구조이성질체를 혼합 또는 단독 사용하거나, 탄소수 5 ∼ 7개의 고리 탄화수소 등이 있다.In addition, isophthaloyl chloride, terephthaloyl chloride, trimesoyl chloride, etc. may be used as the acid halogen compound, and the solvent used here is n-alkane having 5 to 12 carbon atoms and saturated and unsaturated hydrocarbons having 8 carbon atoms. Structural isomers are mixed or used alone, or a cyclic hydrocarbon having 5 to 7 carbon atoms.

이하에서 실시예 및 비교예를 들어 본 발명을 좀 더 구체적으로 설명한다. 이 때 제조된 역삼투막의 성능 측정은 유량은 농도가 2000ppm인 염화나트륨(NaCl)수용액을 25℃, 225psig에서 측정하였고, 염배제율은 다음의 식에 의하여 계산하였다. 여기에서 R은 염배제율, Cf는 공급수중의 용질의 농도이며 Cp는 투과수중의 용질 농도이다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. In the measurement of the performance of the prepared reverse osmosis membrane, the flow rate was measured at 25 ° C. and 225 psig of sodium chloride (NaCl) solution having a concentration of 2000 ppm, and the salt excretion rate was calculated by the following equation. Where R is the salt excretion rate, C f is the concentration of solute in feed water and C p is the concentration of solute in permeate.

(실시예 1 - 6)(Examples 1-6)

폴리에스터 부직포상에 디메틸포름아미드와 폴리술폰 19중량% 용액을 두께가 약 100∼150㎛로 캐스트하고, 즉시 이것을 15℃ 온도의 증류수욕 중에 침지하여 고형화시킨 후, 부직포 보강 폴리술폰 미소다공성 기질을 충분히 수세하여 기질 중의 용매와 물을 치환한 후 순수에 보관하였다. 이렇게 얻은 폴리술폰 미세다공성 기질을 2중량% meta-페닐렌디아민 수용액 중에서 초음파로 10초간 침지시키고 표면의 물기를 제거한 후 표1과 같이 본 발명에 따른 첨가제가 함유된 0.15중량% 트리메조일 클로라이드 n-헥산 용액에 2분간 함침시켰다. 이를 꺼내어 공기 중에서 1분간 건조시킨 후, 60℃ 약알칼리 수용액으로 충분히 수세하고 다시 증류수로 수세하였다. 최종적으로 얻어진 역삼투 분리막의 성능을 측정하여 표1에 나타내었다.A 19% by weight solution of dimethylformamide and polysulfone on a polyester nonwoven fabric was cast to a thickness of about 100 to 150 μm, immediately immersed in a distilled water bath at 15 ° C. to solidify, and the nonwoven reinforced polysulfone microporous substrate was then solidified. After washing sufficiently with water, the solvent and water in the substrate were replaced, and then stored in pure water. The polysulfone microporous substrate thus obtained was immersed for 10 seconds in an aqueous solution of 2% by weight meta-phenylenediamine and removed from water on the surface, followed by 0.15% by weight of trimezoyl chloride n containing the additive according to the present invention as shown in Table 1. Immerse in hexane solution for 2 minutes. It was taken out, dried in air for 1 minute, washed with 60 ° C weak alkaline aqueous solution and washed with distilled water again. The performance of the finally obtained reverse osmosis membrane was measured and shown in Table 1.

(비교예 1 - 5)(Comparative Example 1-5)

폴리에스터 부직포상에 디메틸포름아미드와 폴리술폰 19중량% 용액을 두께가 약 100∼150㎛로 캐스트하고, 즉시 이것을 15℃ 온도의 증류수욕 중에 침지하여 고형화시킨 후, 부직포 보강 폴리술폰 미세다공성 기질을 충분히 수세하여 기질 중의 용매와 물을 치환한 후 순수에 보관하였다. 이렇게 얻은 폴리술폰 미세다공성 기질을 2중량% meta-페닐렌디아민 수용액 중에서 초음파로 10초간 침지시키고 표2와 같이 기존의 첨가제가 포함된 0.15중량% 트리메조일 클로라이드 n-헥산 용액에 2분간 함침시켰으며, 그 외는 실시예와 동일하게 실시하였고, 최종적으로 얻어진 역삼투 분리막의 성능을 측정하여 표2에 나타내었다.A 19% by weight solution of dimethylformamide and polysulfone on a polyester nonwoven fabric was cast to a thickness of about 100-150 μm, immediately immersed in a distilled water bath at 15 ° C. to solidify, and the nonwoven reinforced polysulfone microporous substrate was then solidified. After washing sufficiently with water, the solvent and water in the substrate were replaced, and then stored in pure water. The polysulfone microporous substrate thus obtained was soaked for 10 seconds in 2 wt% meta-phenylenediamine aqueous solution by ultrasonic wave and then impregnated for 2 min in 0.15 wt% trimezoyl chloride n-hexane solution containing conventional additives as shown in Table 2. The rest was performed in the same manner as in Example, and the performance of the finally obtained reverse osmosis membrane was measured and shown in Table 2.

상기 실시예 및 비교예에서도 확인되듯이 본 발명에 따라 역삼투 분리막을 제조하는 경우 염배제율이 감소되지 않으면서 고유량을 나타내는 우수한 성능을 지닌 분리막을 얻을 수 있다.As can be seen from the examples and comparative examples, when the reverse osmosis membrane is prepared according to the present invention, a membrane having excellent performance showing a high flow rate without decreasing the salt excretion rate can be obtained.

Claims (4)

미세다공 기질 표면에 다관능성 아민용액을 도포시키고 표면을 건조시킨 후 탄화수소 용매를 사용하는 다관능성 산할로겐화합물 용액에 계면중합시켜서 가교 폴리아미드계 역삼투 분리막 제조시, 탄화수소 용매를 사용하는 다관능성 산할로겐화합물 용액에 첨가제로 2-메톡시에탄올 또는 2-부톡시에탄올을 넣어 계면중합시 파동을 주는 것을 특징으로 하는 고유량 역삼투 분리막의 제조방법Applying a multifunctional amine solution to the surface of the microporous substrate, drying the surface, and then interfacially polymerizing the solution into a polyfunctional acid halide compound solution using a hydrocarbon solvent to prepare a crosslinked polyamide reverse osmosis membrane. Method for producing a high flow rate reverse osmosis membrane, characterized in that to give a wave during the interfacial polymerization by adding 2-methoxy ethanol or 2-butoxy ethanol as an additive to the halogen compound solution 제 1항에 있어서, 첨가제는 산할로겐화합물 용액 총 중량의 0.01-10중량% 사용하는 것을 특징으로 하는 고유량 역삼투 분리막의 제조방법The method of claim 1, wherein the additive is 0.01-10% by weight of the total weight of the acid halide compound solution. 제 1항에 있어서, 산할로겐화합물을 이소프탈로일 클로라이드, 테레프탈로일 클로라이드 또는 트리메조일 클로라이드 중에서 선택된 화합물임을 특징으로 하는 고유량 역삼투 분리막의 제조방법The method of claim 1, wherein the acid halogen compound is a compound selected from isophthaloyl chloride, terephthaloyl chloride or trimesoyl chloride. 제 1항에 있어서, 탄화수소계 용매로는 탄소수 5-12개인 n-알칸과 탄소수 8개인 포화 및 불포화탄화수소의 구조이성질체 또는 탄소수 5-7개의 고리탄화수소 중에서 선택된 단독 또는 혼합용제가 사용되는 것을 특징으로 하는 고유량 역삼투 분리막의 제조방법The method of claim 1, wherein a hydrocarbon solvent is used alone or a mixed solvent selected from the structural isomers of n-alkane of 5-12 carbon atoms and saturated and unsaturated hydrocarbons of 8 carbon atoms or cyclic hydrocarbons of 5-7 carbon atoms. Method of manufacturing high flow rate reverse osmosis membrane
KR1019970042304A 1997-08-28 1997-08-28 Manufacturing method of high flow rate reverse osmosis membrane KR19990019008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970042304A KR19990019008A (en) 1997-08-28 1997-08-28 Manufacturing method of high flow rate reverse osmosis membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970042304A KR19990019008A (en) 1997-08-28 1997-08-28 Manufacturing method of high flow rate reverse osmosis membrane

Publications (1)

Publication Number Publication Date
KR19990019008A true KR19990019008A (en) 1999-03-15

Family

ID=66037527

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970042304A KR19990019008A (en) 1997-08-28 1997-08-28 Manufacturing method of high flow rate reverse osmosis membrane

Country Status (1)

Country Link
KR (1) KR19990019008A (en)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120027748A (en) * 2010-09-13 2012-03-22 주식회사 효성 Method for manufacturing polyamide-based reverse osmosis membrane having antifouling property
WO2013180517A1 (en) 2012-05-31 2013-12-05 주식회사 엘지화학 Highly permeable reverse osmosis membrane comprising carbodiimide-based compound, and method for preparing same
KR20170020116A (en) 2015-08-13 2017-02-22 주식회사 엘지화학 Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR20170021578A (en) 2015-08-18 2017-02-28 주식회사 엘지화학 Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR20170021579A (en) 2015-08-18 2017-02-28 주식회사 엘지화학 Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR20170029971A (en) 2015-09-08 2017-03-16 주식회사 엘지화학 Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR20170032693A (en) 2015-09-15 2017-03-23 주식회사 엘지화학 Water-treatment membrane, method for manufacturing for the same, and water treatment module comprising the same
KR20170035247A (en) 2015-09-22 2017-03-30 주식회사 엘지화학 Molecular additive, manufacturing method for water-treatment membrane using by the same and water-treatment membrane comprising the same
KR20170035814A (en) 2015-09-23 2017-03-31 주식회사 엘지화학 Water-treatment membrane and method for manufacturing the same
KR20170047114A (en) 2015-10-22 2017-05-04 주식회사 엘지화학 Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR20170064425A (en) 2015-12-01 2017-06-09 주식회사 엘지화학 Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR20170091970A (en) 2016-02-02 2017-08-10 주식회사 엘지화학 Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR20170112564A (en) 2016-03-31 2017-10-12 주식회사 엘지화학 Composition for interfacial polymerizing polyamide, method for manufacturing reverse osmosis membrane using the same
KR20170113450A (en) 2016-03-31 2017-10-12 주식회사 엘지화학 Composition for interfacial polymerizing polyamide, method for manufacturing reverse osmosis membrane using the same
KR20170126693A (en) 2016-05-10 2017-11-20 주식회사 엘지화학 Reverse osmosis membrane and method manufacturing same
KR20180040962A (en) 2016-10-13 2018-04-23 주식회사 엘지화학 Composition for preparing reverse osmosis membrane, method for preparing reverse osmosis membrane using the same, and reverse osmosis membrane and water treatment module
KR20180043733A (en) 2016-10-20 2018-04-30 주식회사 엘지화학 Composition for preparing protection layer, method for preparing reverse osmosis membrane using the same, and reverse osmosis membrane and water treatment module
KR20190048995A (en) 2017-11-01 2019-05-09 주식회사 엘지화학 Cleaning method for water treatment membrane and apparatus for same
KR20190050496A (en) 2017-11-03 2019-05-13 주식회사 엘지화학 Composition for interfacial polymerizing polyamide, method for manufacturing water-treatment membrane using the same and water-treatment membrane
KR20190065655A (en) 2017-12-04 2019-06-12 주식회사 엘지화학 Method for manufacturing water-treatment membrane and water-treatment membrane manufactured by thereby
KR20190071188A (en) 2017-12-14 2019-06-24 주식회사 엘지화학 Method for manufacturing water-treatment membrane and water-treatment membrane manufactured thereby
KR20190074681A (en) 2017-12-20 2019-06-28 주식회사 엘지화학 Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using the same
KR20190083118A (en) 2018-01-03 2019-07-11 주식회사 엘지화학 Method for manufacturing water-treatment membrane and water-treatment membrane manufactured by thereby
KR20190143238A (en) 2018-06-20 2019-12-30 주식회사 엘지화학 Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using the same
KR20190143236A (en) 2018-06-20 2019-12-30 주식회사 엘지화학 Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using the same
KR20190143239A (en) 2018-06-20 2019-12-30 주식회사 엘지화학 Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using the same
KR20200017684A (en) 2018-08-09 2020-02-19 주식회사 엘지화학 Storage method of water-treatment module and water-treatment module pack using the same
KR20200025363A (en) 2018-08-30 2020-03-10 주식회사 엘지화학 Method of sample for analyzing water-treatment membrane and sample for analyzing water-treatment membrane prepared thereby
KR20200025369A (en) 2018-08-30 2020-03-10 주식회사 엘지화학 Method for manufacturing water-treatment membrane and water-treatment membrane manufactured thereby
KR20200041495A (en) 2018-10-12 2020-04-22 주식회사 엘지화학 Method for manufacturing water-treatment membrane and water-treatment membrane manufactured thereby
KR20200043774A (en) 2018-10-18 2020-04-28 주식회사 엘지화학 Method of detecting defection of seperation memebrane element and apparatus of detecting defection of seperation memebrane element
KR20200043775A (en) 2018-10-18 2020-04-28 주식회사 엘지화학 Method of detecting defection of seperation memebrane element and apparatus of detecting defection of seperation memebrane element
KR20200049107A (en) 2018-10-31 2020-05-08 주식회사 엘지화학 Method for manufacturing water-treatment membrane and water-treatment membrane manufactured thereby
KR20200053808A (en) 2018-11-09 2020-05-19 주식회사 엘지화학 Method for detecting defection of seperation memebrane
KR20200058804A (en) 2018-11-20 2020-05-28 주식회사 엘지화학 Method for manufacturing membrane and membrane manufactured thereby
KR20200126620A (en) 2019-04-30 2020-11-09 주식회사 엘지화학 Method of manufacturing membrane, membrane and water treatment module
KR20210012469A (en) 2019-07-25 2021-02-03 주식회사 엘지화학 Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using same
KR20210015175A (en) 2019-08-01 2021-02-10 주식회사 엘지화학 Method for manufacturing water-treatment membrane and water-treatment membrane manufactured thereby
KR20210023206A (en) 2019-08-22 2021-03-04 주식회사 엘지화학 Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using same
KR20210023205A (en) 2019-08-22 2021-03-04 주식회사 엘지화학 Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using same
KR20210033718A (en) 2019-09-19 2021-03-29 주식회사 엘지화학 Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using same
KR20210051614A (en) 2019-10-31 2021-05-10 주식회사 엘지화학 Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using same
KR20210051805A (en) 2019-10-31 2021-05-10 주식회사 엘지화학 Method for manufacturing water-treatment membrane and water-treatment membrane manufactured thereby
KR20210051802A (en) 2019-10-31 2021-05-10 주식회사 엘지화학 Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using same
KR20210112569A (en) 2020-03-05 2021-09-15 주식회사 엘지화학 Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using same
US11718712B2 (en) 2018-06-20 2023-08-08 Lg Chem, Ltd. Composition for interfacial polymerization of polyamide and manufacturing method for water treatment separation membrane using same
US11992812B2 (en) 2018-06-15 2024-05-28 Lg Chem, Ltd. Composition for polyamide interfacial polymerization, and method for manufacturing water treatment separation membrane by using same

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120027748A (en) * 2010-09-13 2012-03-22 주식회사 효성 Method for manufacturing polyamide-based reverse osmosis membrane having antifouling property
WO2013180517A1 (en) 2012-05-31 2013-12-05 주식회사 엘지화학 Highly permeable reverse osmosis membrane comprising carbodiimide-based compound, and method for preparing same
US9205384B2 (en) 2012-05-31 2015-12-08 Lg Chem, Ltd. High permeate flux reverse osmosis membrane including carbodiimide compound and method of manufacturing the same
KR20170020116A (en) 2015-08-13 2017-02-22 주식회사 엘지화학 Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR20170021578A (en) 2015-08-18 2017-02-28 주식회사 엘지화학 Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR20170021579A (en) 2015-08-18 2017-02-28 주식회사 엘지화학 Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR20170029971A (en) 2015-09-08 2017-03-16 주식회사 엘지화학 Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR20170032693A (en) 2015-09-15 2017-03-23 주식회사 엘지화학 Water-treatment membrane, method for manufacturing for the same, and water treatment module comprising the same
KR20170035247A (en) 2015-09-22 2017-03-30 주식회사 엘지화학 Molecular additive, manufacturing method for water-treatment membrane using by the same and water-treatment membrane comprising the same
KR20170035814A (en) 2015-09-23 2017-03-31 주식회사 엘지화학 Water-treatment membrane and method for manufacturing the same
KR20170047114A (en) 2015-10-22 2017-05-04 주식회사 엘지화학 Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR20170064425A (en) 2015-12-01 2017-06-09 주식회사 엘지화학 Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR20170091970A (en) 2016-02-02 2017-08-10 주식회사 엘지화학 Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR20170112564A (en) 2016-03-31 2017-10-12 주식회사 엘지화학 Composition for interfacial polymerizing polyamide, method for manufacturing reverse osmosis membrane using the same
KR20170113450A (en) 2016-03-31 2017-10-12 주식회사 엘지화학 Composition for interfacial polymerizing polyamide, method for manufacturing reverse osmosis membrane using the same
US10632425B2 (en) 2016-03-31 2020-04-28 Lg Chem, Ltd. Composition for interfacial polymerization of polyamide and method for manufacturing reverse osmosis membrane using same
KR20170126693A (en) 2016-05-10 2017-11-20 주식회사 엘지화학 Reverse osmosis membrane and method manufacturing same
KR20180040962A (en) 2016-10-13 2018-04-23 주식회사 엘지화학 Composition for preparing reverse osmosis membrane, method for preparing reverse osmosis membrane using the same, and reverse osmosis membrane and water treatment module
KR20180043733A (en) 2016-10-20 2018-04-30 주식회사 엘지화학 Composition for preparing protection layer, method for preparing reverse osmosis membrane using the same, and reverse osmosis membrane and water treatment module
US11577971B2 (en) 2016-10-20 2023-02-14 Lg Chem, Ltd. Composition for forming reverse osmosis membrane protection layer, method for preparing reverse osmosis membrane using same, reverse osmosis membrane, and water treatment module
KR20190048995A (en) 2017-11-01 2019-05-09 주식회사 엘지화학 Cleaning method for water treatment membrane and apparatus for same
KR20190050496A (en) 2017-11-03 2019-05-13 주식회사 엘지화학 Composition for interfacial polymerizing polyamide, method for manufacturing water-treatment membrane using the same and water-treatment membrane
KR20190065655A (en) 2017-12-04 2019-06-12 주식회사 엘지화학 Method for manufacturing water-treatment membrane and water-treatment membrane manufactured by thereby
KR20190071188A (en) 2017-12-14 2019-06-24 주식회사 엘지화학 Method for manufacturing water-treatment membrane and water-treatment membrane manufactured thereby
KR20190074681A (en) 2017-12-20 2019-06-28 주식회사 엘지화학 Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using the same
KR20190083118A (en) 2018-01-03 2019-07-11 주식회사 엘지화학 Method for manufacturing water-treatment membrane and water-treatment membrane manufactured by thereby
US11992812B2 (en) 2018-06-15 2024-05-28 Lg Chem, Ltd. Composition for polyamide interfacial polymerization, and method for manufacturing water treatment separation membrane by using same
KR20190143238A (en) 2018-06-20 2019-12-30 주식회사 엘지화학 Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using the same
KR20190143236A (en) 2018-06-20 2019-12-30 주식회사 엘지화학 Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using the same
KR20190143239A (en) 2018-06-20 2019-12-30 주식회사 엘지화학 Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using the same
US11718712B2 (en) 2018-06-20 2023-08-08 Lg Chem, Ltd. Composition for interfacial polymerization of polyamide and manufacturing method for water treatment separation membrane using same
KR20200017684A (en) 2018-08-09 2020-02-19 주식회사 엘지화학 Storage method of water-treatment module and water-treatment module pack using the same
KR20200025363A (en) 2018-08-30 2020-03-10 주식회사 엘지화학 Method of sample for analyzing water-treatment membrane and sample for analyzing water-treatment membrane prepared thereby
KR20200025369A (en) 2018-08-30 2020-03-10 주식회사 엘지화학 Method for manufacturing water-treatment membrane and water-treatment membrane manufactured thereby
KR20200041495A (en) 2018-10-12 2020-04-22 주식회사 엘지화학 Method for manufacturing water-treatment membrane and water-treatment membrane manufactured thereby
KR20200043774A (en) 2018-10-18 2020-04-28 주식회사 엘지화학 Method of detecting defection of seperation memebrane element and apparatus of detecting defection of seperation memebrane element
KR20200043775A (en) 2018-10-18 2020-04-28 주식회사 엘지화학 Method of detecting defection of seperation memebrane element and apparatus of detecting defection of seperation memebrane element
KR20200049107A (en) 2018-10-31 2020-05-08 주식회사 엘지화학 Method for manufacturing water-treatment membrane and water-treatment membrane manufactured thereby
KR20200053808A (en) 2018-11-09 2020-05-19 주식회사 엘지화학 Method for detecting defection of seperation memebrane
KR20200058804A (en) 2018-11-20 2020-05-28 주식회사 엘지화학 Method for manufacturing membrane and membrane manufactured thereby
KR20200126620A (en) 2019-04-30 2020-11-09 주식회사 엘지화학 Method of manufacturing membrane, membrane and water treatment module
KR20210012469A (en) 2019-07-25 2021-02-03 주식회사 엘지화학 Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using same
KR20210015175A (en) 2019-08-01 2021-02-10 주식회사 엘지화학 Method for manufacturing water-treatment membrane and water-treatment membrane manufactured thereby
KR20210023206A (en) 2019-08-22 2021-03-04 주식회사 엘지화학 Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using same
KR20210023205A (en) 2019-08-22 2021-03-04 주식회사 엘지화학 Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using same
KR20210033718A (en) 2019-09-19 2021-03-29 주식회사 엘지화학 Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using same
KR20210051614A (en) 2019-10-31 2021-05-10 주식회사 엘지화학 Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using same
KR20210051805A (en) 2019-10-31 2021-05-10 주식회사 엘지화학 Method for manufacturing water-treatment membrane and water-treatment membrane manufactured thereby
KR20210051802A (en) 2019-10-31 2021-05-10 주식회사 엘지화학 Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using same
KR20210112569A (en) 2020-03-05 2021-09-15 주식회사 엘지화학 Composition for interfacial polymerizing polyamide and method for manufacturing water-treatment membrane using same

Similar Documents

Publication Publication Date Title
KR19990019008A (en) Manufacturing method of high flow rate reverse osmosis membrane
US5576057A (en) Method of producing high permeable composite reverse osmosis membrane
JP3489922B2 (en) Method for producing highly permeable composite reverse osmosis membrane
KR101733264B1 (en) Polyamide water-treatment membranes having properties of high salt rejection and high flux and manufacturing method thereof
JP5978998B2 (en) Composite semipermeable membrane, composite semipermeable membrane element, and method for producing composite semipermeable membrane
JPH07102311B2 (en) Thin-film composite membrane manufacturing method
KR101114668B1 (en) Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby
JPH09271647A (en) Highly permeable composite reverse osmosis membrane and reverse osmosis membrane module using the same
JP3665692B2 (en) Method for producing dry composite reverse osmosis membrane
JP3862184B2 (en) Method for producing composite reverse osmosis membrane
KR19980068279A (en) Manufacturing method of crosslinked polyamide reverse osmosis membrane
KR102169137B1 (en) A polyamide composite membrane having improved salt and boron rejection and method for preparation thereof
JP4563093B2 (en) Method for producing high salt rejection composite reverse osmosis membrane
KR20170047114A (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR19980068304A (en) Performance Improvement Method of Polyamide Reverse Osmosis Composite Membrane
KR100477587B1 (en) Polyamide Composite Membrane Manufacturing Method
KR102035271B1 (en) A method for preparing membrane having nano-sized pore with good chemical resistance
KR100477588B1 (en) Polyamide Reverse Osmosis Composite Membrane Manufacturing Method
KR102067861B1 (en) Composition for preparing reverse osmosis membrane, method for preparing reverse osmosis membrane using the same, and reverse osmosis membrane and water treatment module
KR101716045B1 (en) Manufacturing method for polyamide watertreatment membranes having properies of high flux and water-treatment membranes manufactured by using the same
KR20020065781A (en) Composite polyamide reverse osmosis membrane and producing method of the same
KR102288033B1 (en) Method for manufacturing water-treatment membrane and water-treatment membrane manufactured thereby
KR100238700B1 (en) Method for preparation of reverse osmosis membrane by polyamide system
JPH0910566A (en) Semipermeable composite membrane
KR19990019013A (en) Manufacturing method of crosslinked polyamide reverse osmosis membrane

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application