KR19980022924A - Photodiode detector and its manufacturing method - Google Patents

Photodiode detector and its manufacturing method Download PDF

Info

Publication number
KR19980022924A
KR19980022924A KR1019960042221A KR19960042221A KR19980022924A KR 19980022924 A KR19980022924 A KR 19980022924A KR 1019960042221 A KR1019960042221 A KR 1019960042221A KR 19960042221 A KR19960042221 A KR 19960042221A KR 19980022924 A KR19980022924 A KR 19980022924A
Authority
KR
South Korea
Prior art keywords
layer
xgaxas
photodiode detector
inp
opening
Prior art date
Application number
KR1019960042221A
Other languages
Korean (ko)
Other versions
KR100403824B1 (en
Inventor
이원태
Original Assignee
김광호
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김광호, 삼성전자 주식회사 filed Critical 김광호
Priority to KR1019960042221A priority Critical patent/KR100403824B1/en
Publication of KR19980022924A publication Critical patent/KR19980022924A/en
Application granted granted Critical
Publication of KR100403824B1 publication Critical patent/KR100403824B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

본 발명은 포토다이오드 디텍터에 관한 것으로서, 본 발명의 포토다이오드 디텍터는 InGaAs/InP계 포토다이오드의 In1-xGaxAs층을 In1-xGaxAs(x=0.47)층과 In1-xGaxAs(0.48≤x≤0.60)층의 복수의 층으로 이루어진 영역으로 구분하여 순차 성장시킴으로써, InGaAs 층에 침투되는 Zn의 확산속도를 조절할 수 있고, 누설전류에 의한 잡음성분을 감소시킬 수 있으며, 그 결과로서 포토다이오드 디텍터의 응답감도가 증대되는 포토다이오드 디텍터를 제공한다.The present invention relates to a photodiode detector, wherein the photodiode detector of the present invention comprises an In1-xGaxAs layer of an InGaAs / InP-based photodiode, an In1-xGaxAs (x = 0.47) layer and an In1-xGaxAs (0.48≤x≤0.60) layer. By sequential growth by dividing into regions consisting of a plurality of layers, the diffusion rate of Zn permeated into the InGaAs layer can be controlled, and the noise component due to leakage current can be reduced. As a result, the response sensitivity of the photodiode detector It provides an increased photodiode detector.

Description

포토다이오드 디텍터 및 그 제조방법Photodiode detector and its manufacturing method

본 발명은 포토다이오드 디텍터에 관한 것으로서, 특히 광통신 시스템에서 광을 수신하여 전기신호로 변환시켜 주는 포토다이오드 디텍터에 관한 것이다.The present invention relates to a photodiode detector, and more particularly, to a photodiode detector for receiving and converting light into an electrical signal in an optical communication system.

화합물 반도체는 최근 광통신의 발달로 광통신 시스템에 사용되는 1.0㎛내지 1.6㎛의 파장영역에서 동작하는 포토다이오드 디텍터(photodiode detector) 제작에 가장 적합한 재료로 많은 관심이 쏠리고 있다.BACKGROUND ART Compound semiconductors have recently attracted a lot of attention as the most suitable material for fabricating photodiode detectors operating in the wavelength range of 1.0 μm to 1.6 μm used in optical communication systems.

일반적으로 포토다이오드 디텍터의 누설전류(leakage current)가 잡음(noise)을 일으키게 되어 포토다이오드 디텍터의 수신감도는 떨어지게 된다. 이러한 잡음 발생에 의한 누설전류는 크면 클수록 포토다이오드 디텍터의 수신감도는 더욱 나빠지는데 이러한 누설전류를 어떻게 제한하는냐에 따라서 좋은 포토다이오드 디텍터를 구현 할 수 있는가가 결정된다.In general, the leakage current of the photodiode detector causes noise, and thus the reception sensitivity of the photodiode detector decreases. The larger the leakage current caused by the noise, the worse the reception sensitivity of the photodiode detector. How to limit the leakage current determines whether a good photodiode detector can be implemented.

도 1은 종래의 포토다이오드 디텍터의 구조를 나타내는 개략적 수직 단면도이다.1 is a schematic vertical cross-sectional view showing the structure of a conventional photodiode detector.

도시된 바와 같이 종래의 포토다이오드 디텍터는 n-InP 기판(1), undoped In0.53Ga0.47As층(2) 및 undoped InP 캡층(3)이 순차로 적층되어 있고, InP 캡층(3)의 양쪽 가장자리 상면에는 SiO2층(6)이 적층되어 중앙부에 소정 폭의 개구부가 형성되어 있다. 또한 SiO2층(6)의 개구부의 양측면과 이 양측면에 인접한 SiO2층(6)의 상면 일부에 p-금속층(8)이 형성되어 있고, 상기 개구부 아래의 InP 캡층(3)부분에는 Zn확산에 의한 Zn 확산층(4)이 형성되어 있다. p-금속층(8)의 상부에는 중앙부에 형성된 개구부를 완전히 덮도록 반사방지막(5)이 형성되어 있으며, 상기 n-InP 기판(1)의 저면에는 n-금속층(7)이 증착되어 있는 구조체를 이루고 있다.As shown, a conventional photodiode detector has an n-InP substrate (1), an undoped In0.53Ga0.47As layer (2) and an undoped InP cap layer (3) sequentially stacked, and both edges of the InP cap layer (3). On the upper surface, SiO 2 layers 6 are stacked to form openings having a predetermined width in the center portion. In addition, p-metal layers 8 are formed on both sides of the openings of the SiO 2 layer 6 and a part of the upper surface of the SiO 2 layer 6 adjacent to both sides, and the InP cap layer 3 under the openings is formed by Zn diffusion. The Zn diffusion layer 4 is formed. An anti-reflection film 5 is formed on the upper portion of the p-metal layer 8 so as to completely cover the opening formed in the center portion, and a structure in which the n-metal layer 7 is deposited on the bottom of the n-InP substrate 1 is formed. It is coming true.

상기 구조의 포토다이오드 디텍터는 누설전류를 줄이고자 InGaAs층의 확산계수와 다른 확산계수 값을 갖는 InGaAs층을 형성하여 잡음을 줄이고, 광수신감도를 개선시킨 구조가 요구된다.In order to reduce the leakage current, the photodiode detector having the structure needs to have an InGaAs layer having a diffusion coefficient value different from that of the InGaAs layer to reduce noise and improve light reception sensitivity.

그런데 상기한 종래 구조의 포토다이오드 디텍터는 undoped In0.53Ga0.47As층(2)의 Ga 조성이 고정된 상태로 undoped In0.53Ga0.47As층(2) 위에 InP 캡층(3)이 적층되기 때문에 InP 캡층(3)은 Zn가 확산될 때 Zn의 높은 확산성질로 인하여 Zn는 InP 캡층(3) 부분을 초과하여 InP 캡층(3)과 undoped In0.53Ga0.47As층(2)이 이루고 있는 경계면을 지나 undoped In0.53Ga0.47As층(2)을 침투하게 된다. 이러한 Zn의 확산은 누설전류를 생성시켜 포토다이오드 디텍터에 영향을 줄 수 있으며, Zn는 undoped In0.53Ga0.47As층(2)의 다른 부분까지 급속히 확산되어 수신감도에 영향을 미치게 된다. 즉 Zn의 조절할 수 없는 확산속도로 인해 포토다이오드 디텍터의 응답감도가 영향을 받기 때문에 상기한 종래의 포토다이오드 디텍터 구조로는 Zn의 영향을 조절할 수 없어 광통신을 위한 포토다이오드 디텍터의 최적화에 기여할 수 없다는 문제점이 있게 된다.However, the photodiode detector of the above-described conventional structure has an InP cap layer because the InP cap layer 3 is laminated on the undoped In0.53Ga0.47As layer 2 while the Ga composition of the undoped In0.53Ga0.47As layer 2 is fixed. (3) Zn is undoped due to the high diffusivity of Zn when Zn is diffused, beyond the interface between InP cap layer (3) and InP cap layer (3) and undoped In0.53Ga0.47As layer (2). It penetrates the In0.53Ga0.47As layer 2. The diffusion of Zn may cause leakage current to affect the photodiode detector, and Zn diffuses rapidly to other parts of the undoped In 0.53 Ga 0.47 As layer 2 to affect the reception sensitivity. That is, since the response sensitivity of the photodiode detector is affected by the non-adjustable diffusion rate of Zn, the influence of Zn cannot be controlled by the above-described conventional photodiode detector structure and thus it cannot contribute to the optimization of the photodiode detector for optical communication. There is a problem.

본 발명은 상기한 문제점을 개선코자 창출된 것으로서, 포토다이오드의 중간층은 조성이 다른 복수의 영역으로 구분되어 성장됨으로서 누설전류를 줄이고 수신감도가 향상된 포토다이오드 디텍터를 제공함에 그 목적이 있다.The present invention has been made to improve the above-described problems, and the object of the present invention is to provide a photodiode detector, which reduces leakage current and improves reception sensitivity by growing into a plurality of regions having different compositions.

또한, 본 발명은 상기한 목적을 달성하기 위한 포토다이오드 디텍터를 제조함에 있어서 최적의 제조방법을 제공하는데 다른 목적이 있다.In addition, the present invention has another object to provide an optimal manufacturing method in manufacturing a photodiode detector for achieving the above object.

도 1는 종래의 포토다이오드 디텍터 구조를 나타내는 개략적 수직 단면도.1 is a schematic vertical cross-sectional view showing a conventional photodiode detector structure.

도 2는 본 발명의 일 실시예에 따른 포토다이오드 디텍터 구조를 나타내는 개략적 수직 단면도.2 is a schematic vertical cross-sectional view showing a photodiode detector structure according to an embodiment of the present invention.

도면의 주요부분에 대한 부호의 설명Explanation of symbols for main parts of the drawings

31..n-InP 기판32..undoped In1-xGaxAs층31..n-InP Substrate 32..undoped In1-xGaxAs Layer

33..undoped InP 캡층34..Zn의 확산층33..undoped InP cap layer 34..Zn diffusion layer

35..반사방지막36..SiO2층35. Anti-reflection film 36. SiO2 layer

37..n-금속층38..p-금속층37..n-metal layer 38..p-metal layer

32a..In1-xGaxAs(x=0.47)층32b..In1-xGaxAs(x=0.48)층32b..In1-xGaxAs (x = 0.47) layer

32c..In1-xGaxAs(x=0.50)층32d..In1-xGaxAs(x=0.52)층32d..In1-xGaxAs (x = 0.52) layer

32e..In1-xGaxAs(x=0.54)층32f..In1-xGaxAs(x=0.56)층32e..In1-xGaxAs (x = 0.54) layer

32g..In1-xGaxAs(x=0.58)층32h..In1-xGaxAs(x=0.60)층32 h..In1-xGaxAs (x = 0.60) layer

상기한 목적을 달성하기 위하여 본 발명에 의한 포토다이오드 디텍터는, InP 기판;In order to achieve the above object, the photodiode detector according to the present invention comprises: an InP substrate;

상기 기판 위에 적층되고, 상기 기판에 접한 부분이 상기 캡층과 접한 부분보다 Ga의 조성값이 증가되는 경사형 조성을 갖는 In1-xGaxAs층;An In1-xGaxAs layer stacked on the substrate and having an inclined composition in which a portion of the substrate in contact with the substrate is increased in composition value of Ga than a portion in contact with the cap layer;

상기 In1-xGaxAs층 위에 적층되는 InP 캡층;An InP cap layer stacked on the In1-xGaxAs layer;

상기 Inp 캡층의 중앙에 소정 폭의 개구부가 형성되도록 양쪽 가장자리 상면에 형성되는 SiO2층; 및 상기 개구부 아래의 상기 캡층 부분에 확산되어 형성되는 Zn 확산층;을 포함하는 것을 특징으로 한다.An SiO 2 layer formed on upper surfaces of both edges such that an opening having a predetermined width is formed at the center of the Inp cap layer; And a Zn diffusion layer formed to be diffused to the cap layer portion below the opening.

본 발명에 의하면, 상기 In1-xGaxAs층은 조성값이 x=0.47인 In1-xGaxAs층, x=0.48인 In1-xGaxAs층, x=0.50인 In1-xGaxAs층, x=0.52인 In1-xGaxAs층, x=0.54인 In1-xGaxAs층, x=0.56인 In1-xGaxAs층, x=0.58인 In1-xGaxAs층 및 x=0.60인 In1-xGaxAs층으로 순차 성장되는 것이 바람직하다.According to the present invention, the In1-xGaxAs layer is an In1-xGaxAs layer having a composition value of x = 0.47, an In1-xGaxAs layer having x = 0.48, an In1-xGaxAs layer having x = 0.50, an In1-xGaxAs layer having x = 0.52, It is preferable to sequentially grow an In1-xGaxAs layer having x = 0.54, an In1-xGaxAs layer having x = 0.56, an In1-xGaxAs layer having x = 0.58 and an In1-xGaxAs layer having x = 0.60.

또한, 상기한 다른 목적을 달성하기 위하여 본 발명에 의한 포토다이오드 디텍터의 제조방법은, InP 기판 위에 Ga의 조성값이 증가되는 경사형 조성을 갖는 In1-xGaxAs층 및 InP 캡층을 순차 성장시켜 적층하는 성장단계;In addition, the method of manufacturing a photodiode detector according to the present invention in order to achieve the above-described other object, the growth by sequentially growing and laminating the In1-xGaxAs layer and InP cap layer having an inclined composition in which the composition value of Ga is increased on the InP substrate step;

상기 결과물의 캡층 상면 중앙에 소정 폭의 개구부를 형성하도록 산화막층을 증착하고, 상기 산화막의 개구부의 양측면과 이 양측면에 인접한 상기 산화막층의 상면 일부에 금속층을 형성하는 증착단계; 및Depositing an oxide layer to form an opening having a predetermined width in a center of an upper surface of the cap layer of the resultant, and forming a metal layer on both sides of the opening of the oxide layer and a portion of an upper surface of the oxide layer adjacent to both sides; And

상기 개구부 아래의 캡층 부분에 Zn를 확산시켜 Zn 확산층을 형성하는 확산단계;를 포함하는 것을 특징으로 한다.And diffusing Zn into the cap layer portion below the opening to form a Zn diffusion layer.

이하 본 발명의 일 실시예에 따른 포토다이오드 디텍터 및 포토다이오드 디텍터의 제조방법을 첨부한 도면을 참조하여 상세히 설명한다. 도 2는 본 발명의 일 실시예에 따른 포토다이오드 디텍터의 구조를 나타낸 개략적 수직 단면도이다.Hereinafter, a photodiode detector and a method of manufacturing the photodiode detector according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. 2 is a schematic vertical cross-sectional view showing the structure of a photodiode detector according to an embodiment of the present invention.

도시된 바와 같이 본 발명에 따른 포토다이오드 디텍터는, n-InP 기판(31) 위에 undoped In1-xGaxAs층(32) 즉, 조성값이 x=0.47인 In1-xGaxAs층(32a), x=0.48인 In1-xGaxAs층(32b), x=0.50인 In1-xGaxAs층(32c), x=0.52인 In1-xGaxAs층(32d), x=0.54인 In1-xGaxAs층(32e), x=0.56인 In1-xGaxAs층(32f), x=0.58인 In1-xGaxAs층(32g) 및 x=0.60인 In1-xGaxAs층(32h)이 순차 적층되고, undoped InP 캡층(33)은 조성값이 x=0.60인 In1-xGaxAs층(32h) 위에 적층된다. undoped Inp 캡층(33)의 중앙에 소정 폭의 개구부가 형성되도록 양쪽 가장자리 상면에는 SiO2층(36)이 형성되고, SiO2층(36)의 개구부의 양측면과 이 양측면에 인접한 상면 일부에는 p-금속층(38)이 형성된다. 상기 개구부 아래의 캡층(33) 부분은 Zn로 확산된 Zn 확산층(34)이 형성된다. p-금속층(38) 상부에는 개구부를 완전히 덮도록 반사방지막(35)이 형성되고, 상기 n-InP 기판(31)의 저면에는 n-금속층(37)이 형성된다.As shown, the photodiode detector according to the present invention has an undoped In1-xGaxAs layer 32 on the n-InP substrate 31, that is, an In1-xGaxAs layer 32a having a composition value of x = 0.47, and x = 0.48. In1-xGaxAs layer 32b, In1-xGaxAs layer 32c with x = 0.50, In1-xGaxAs layer 32d with x = 0.52, In1-xGaxAs layer 32e with x = 0.54, In1- with x = 0.56 The xGaxAs layer 32f, the In1-xGaxAs layer 32g with x = 0.58, and the In1-xGaxAs layer 32h with x = 0.60 are sequentially stacked, and the undoped InP cap layer 33 has an In1- composition value of x = 0.60. It is laminated on the xGaxAs layer 32h. SiO2 layer 36 is formed on the upper surface of both edges so that an opening of a predetermined width is formed in the center of the undoped Inp cap layer 33, and p-metal layers are formed on both sides of the opening of the SiO2 layer 36 and a part of the upper surface adjacent to both sides. 38) is formed. A portion of the cap layer 33 below the opening is formed with a Zn diffusion layer 34 diffused into Zn. An anti-reflection film 35 is formed on the p-metal layer 38 so as to completely cover the opening, and an n-metal layer 37 is formed on the bottom surface of the n-InP substrate 31.

이와 같은 구조의 포토다이오드 디텍터의 동작을 설명하면 다음과 같다.The operation of the photodiode detector having such a structure will be described below.

상기 n-InP 기판(31) 위에 적층되는 In1-xGaxAs층(32a)은 격자정합이 이루어지도록 조성값이 x=0.47이 되고, In1-xGaxAs층(32)이 경사형 조성(gradient composition)을 갖도록 x=0.47인 In1-xGaxAs층(32a) 위에 x=0.48인 In1-xGaxAs층(32b), x=0.50인 In1-xGaxAs층(32c), x=0.52인 In1-xGaxAs층(32d), x=0.54인 In1-xGaxAs층(32e), x=0.56인 In1-xGaxAs층(32f), x=0.58인 In1-xGaxAs층(32g) 및 x=0.60인 In1-xGaxAs층(32h)이 순차 적층된다. 이 때 상기 개구부 아래의 undoped Inp 캡층(33) 부분에서 Zn 확산층(34)이 확산되어 In1-xGaxAs층(32)으로 Zn가 침투되면, In1-xGaxAs층(32)에서 이 Zn의 확산은 In1-xGaxAs의 x가 증가함에 따라 In1-xGaxAs를 구성하는 원자들 사이의 결합에너지(binding energy)가 증가되므로 상기 In1-xGaxAs층(32)으로 침투되는 상기 Zn의 확산속도는 감소되어 확산계수(diffusion constant)가 작게된다. 즉, Ga의 조성비가 증가되면 In1-xGaxAs층(32)에 확산되는 상기 Zn의 확산 속도가 감소하게 된다. 따라서 상기 확산계수 값이 작게 되고, 포토다이오드 디텍터의 누설전류(leakage current) 성분은 감소된다. 이 때 상기 누설전류는 확산전류(diffsion current)에 의해서 영향을 받는데 이 확산전류는 다음식에 의해서 결정된다.The In1-xGaxAs layer 32a stacked on the n-InP substrate 31 has a composition value of x = 0.47 to achieve lattice matching, and the In1-xGaxAs layer 32 has a gradient composition. On In1-xGaxAs layer 32a with x = 0.47, In1-xGaxAs layer 32b with x = 0.48, In1-xGaxAs layer 32c with x = 0.50, In1-xGaxAs layer 32d with x = 0.52, x = An In1-xGaxAs layer 32e of 0.54, an In1-xGaxAs layer 32f of x = 0.56, an In1-xGaxAs layer 32g of x = 0.58 and an In1-xGaxAs layer 32h of x = 0.60 are sequentially stacked. At this time, when the Zn diffusion layer 34 diffuses in the undoped Inp cap layer 33 below the opening and Zn penetrates into the In1-xGaxAs layer 32, the diffusion of Zn in the In1-xGaxAs layer 32 is In1-x. As x of xGaxAs increases, the binding energy between atoms constituting In1-xGaxAs increases, so the diffusion rate of Zn penetrating into the In1-xGaxAs layer 32 decreases, thereby increasing the diffusion coefficient. ) Becomes smaller. That is, when the composition ratio of Ga is increased, the diffusion rate of Zn diffused into the In1-xGaxAs layer 32 decreases. Therefore, the diffusion coefficient value is reduced, and the leakage current component of the photodiode detector is reduced. At this time, the leakage current is affected by the diffusion current, which is determined by the following equation.

Jd = Js[exp(qV/kT) - 1]Jd = Js [exp (qV / kT)-1]

여기서,here,

q: 전하q: charge

k: 절대온도k: absolute temperature

Jd : diffusion currentJd: diffusion current

T : junction temperatureT: junction temperature

V : applied voltageV: applied voltage

Js :saturation currentJs: saturation current

Js = qni 2[Dp/(LpNd) + Dn/(LnNa)]Js = qn i 2 [Dp / (LpNd) + Dn / (LnNa)]

여기서,here,

ni: intrinsic carrier concentrationn i : intrinsic carrier concentration

Dn, Dp : 각각 electron과 hole의 확산계수Dn, Dp: diffusion coefficient of electron and hole, respectively

Ln, Lp : 각각 electron과 hole의 diffsion lengthLn, Lp: diffsion length of electron and hole, respectively

Nd, Na: donor와 acceptor densityNd, Na: donor and acceptor density

상기 수학식 2에서 Js를 줄이고자 In0.53Ga0.47As층 보다 확산계수 값이 적고, 경사형 조성을 갖는 In1-xGaxAs(0.48≤x≤0.60)을 택하여 x=0.47인 In1-xGaxAs층(32a) 위에 In1-xGaxAs(0.48≤x≤0.60)층(32b ~ 32h)을 적층 시킨다. 이렇게 하면 InP 캡층(33)을 초과하여 침투되는 In1-xGaxAs층(32)의 Zn 확산을 제어할 수 있고, Js 값을 줄여 누설전류와 잡음성분을 감소시키고 결과적으로 포토다이오드 디텍터의 응답감도(sensitivity)를 높일 수 있다.To reduce the Js in Equation 2, the In1-xGaxAs layer 32a having a diffusion coefficient value smaller than that of In0.53Ga0.47As layer and having an inclined composition, x1.47 is selected as In1-xGaxAs (0.48≤x≤0.60). In1-xGaxAs (0.48 ≦ x ≦ 0.60) layers 32b to 32h are stacked on the top. This allows control of the Zn diffusion of the In1-xGaxAs layer 32 that penetrates beyond the InP cap layer 33, reducing the Js value to reduce leakage currents and noise components, and consequently the sensitivity of the photodiode detector. ) Can be increased.

이하 본 발명에 의한 단계별 제조공정에 따른 포토다이오드 디텍터의 제조방법에 대하여 상세히 설명한다.Hereinafter, a method of manufacturing the photodiode detector according to the step-by-step manufacturing process according to the present invention will be described in detail.

먼저 일반적인 MOCVD(Metal Organic Chamcal Vapor Deposition)법을 이용하여 n-InP 기판(31) 위에 격자 정합이 이루어지는 undoped In1-xGaxAs(x=0.47)층(32a)을 성장시키고, 이 In1-xGaxAs(x=0.47)층(32a) 위에 순차적으로 x=0.48인 In1-xGaxAs층(32b), x=0.50인 In1-xGaxAs층(32c), x=0.52인 In1-xGaxAs층(32d), x=0.54인 In1-xGaxAs층(32e), x=0.56인 In1-xGaxAs층(32f), x=0.58인 In1-xGaxAs층(32g), x=0.60인 In1-xGaxAs층(32h) 및 InP 캡층(33)을 성장시킨다.First, an undoped In1-xGaxAs (x = 0.47) layer 32a, which is lattice matched, is grown on an n-InP substrate 31 using a general metal organic chemical vapor deposition (MOCVD) method, and the In1-xGaxAs (x = 0.47) In1-xGaxAs layer 32b with x = 0.48, In1-xGaxAs layer 32c with x = 0.50, In1-xGaxAs layer 32d with x = 0.52, In1 with x = 0.54 sequentially over layer 32a -xGaxAs layer 32e, In1-xGaxAs layer 32f with x = 0.56, In1-xGaxAs layer 32g with x = 0.58, In1-xGaxAs layer 32h with x = 0.60 and InP cap layer 33 are grown Let's do it.

다음에 InP 캡층(33)의 양쪽 가장자리 상면에 SiO2층(36)을 적층시켜 중앙부에 소정 폭의 개구부를 형성하고, SiO2층(36)의 개구부의 양측면과 이 양측면에 인접한 SiO2층(36)의 상면 일부에 p-금속층(38)을 형성한다.Next, SiO 2 layers 36 are stacked on the upper surfaces of both edges of the InP cap layer 33 to form openings having a predetermined width in the center thereof, and both sides of the openings of the SiO 2 layers 36 and the SiO 2 layers 36 adjacent to both sides are formed. The p-metal layer 38 is formed on a portion of the upper surface.

그 다음, 상기 개구부 아래의 캡층(33) 부분에 Zn를 확산시켜 Zn 확산층(34)을 형성한다.Next, Zn is diffused into a portion of the cap layer 33 below the opening to form a Zn diffusion layer 34.

그리고 나서, p-금속층(38)의 상부에 중앙부에 형성된 개구부를 완전히 덮도록 반사방지막(35)을 형성하고, 상기 n-InP 기판(31)의 저면에는 n-금속층(37)을 형성시켜 포토다이오드 디텍터의 제작을 완료한다.Then, the anti-reflection film 35 is formed on the upper portion of the p-metal layer 38 so as to completely cover the opening formed in the center portion, and the n-metal layer 37 is formed on the bottom surface of the n-InP substrate 31 to form a photo. Complete the fabrication of the diode detector.

상기 본 발명에 따른 제조방법의 특징에 의하면, n-InP 기판(31) 위에 격자정합이 이루어지도록 조성값이 x=0.47인 In1-xGaxAs층(32a)을 성장시킨다. 다음에 조성값이 x=0.48인 In1-xGaxAs층(32b), x=0.50인 In1-xGaxAs층(32c), x=0.52인 In1-xGaxAs층(32d), x=0.54인 In1-xGaxAs층(32e), x=0.56인 In1-xGaxAs층(32f) 및 x=0.58인 In1-xGaxAs층(32g)을 순차 성장시켜 적층시키고, 조성값이 x=0.60인 In1-xGaxAs층(32h)은 InP 캡층(33)과 격자정합이 이루어질수 있도록 In1-xGaxAs(x=0.58)층(32g) 위에 성장시켜 적층시킨다.According to the characteristic of the manufacturing method according to the present invention, the In1-xGaxAs layer 32a having a composition value of x = 0.47 is grown on the n-InP substrate 31 to achieve lattice matching. Next, an In1-xGaxAs layer 32b having a composition value of x = 0.48, an In1-xGaxAs layer 32c having x = 0.50, an In1-xGaxAs layer 32d having x = 0.52, and an In1-xGaxAs layer having x = 0.54 ( 32e), an In1-xGaxAs layer 32f having x = 0.56 and an In1-xGaxAs layer 32g having x = 0.58 are sequentially grown and stacked, and the In1-xGaxAs layer 32h having a composition value of x = 0.60 is an InP cap layer. (33) is grown and stacked on the In1-xGaxAs (x = 0.58) layer 32g so that lattice matching can be achieved.

이러한 특징은 In1-xGaxAs층(32)의 3원소 화합물 In1-xGaxAs의 조성값 x가 0.47에서 0.60으로 경사형 조성으로 변할 때 격자상수의 변화는 5.86Å 내지 5.82Å로 되어 원자들 사이의 결합에너지가 증가되고, In1-xGaxAs층(32)으로 침투되는 Zn의 확산속도는 감소되어 확산계수가 작게된다. 따라서 조성이 경사형으로 변화되어 성장된 In1-xGaxAs층(32)에서 Zn의 확산 속도는 조절될 수 있고, Zn가 침투될 때 누설 전류는 최소화 될 수 있다.This characteristic is that when the composition value x of the three-element compound In1-xGaxAs of the In1-xGaxAs layer 32 is changed to the inclined composition from 0.47 to 0.60, the lattice constant is changed from 5.86 5. to 5.82 결합, so that the binding energy between atoms Is increased, and the diffusion rate of Zn penetrating into the In1-xGaxAs layer 32 is reduced to make the diffusion coefficient small. Therefore, the diffusion rate of Zn in the In1-xGaxAs layer 32 grown by changing the composition in an oblique shape can be controlled, and leakage current can be minimized when Zn penetrates.

이상에서 살펴본 바와 같이 본 발명에 의한 포토다이오드 디텍터는, InGaAs/InP계 포토다이오드 디텍터에 있어서, In1-xGaxAs층을 In1-xGaxAs(x=0.47)층과 In1-xGaxAs(0.48≤x≤0.60)층의 복수의 층으로 이루어진 영역으로 구분하여 순차 성장시킴으로써, InGaAs 층에 침투되는 Zn의 확산속도를 조절할 수 있고, 누설전류에 의한 잡음성분을 감소시킬 수 있는 효과가 있다. 그 결과로서 포토다이오드 디텍터의 응답감도는 증대된다.As described above, the photodiode detector according to the present invention includes an In1-xGaxAs layer with an In1-xGaxAs (x = 0.47) layer and an In1-xGaxAs (0.48≤x≤0.60) layer in an InGaAs / InP-based photodiode detector. By sequentially dividing into regions consisting of a plurality of layers, the diffusion rate of Zn permeated into the InGaAs layer can be controlled, and the noise component due to leakage current can be reduced. As a result, the response sensitivity of the photodiode detector is increased.

Claims (3)

InP 기판;InP substrate; 상기 기판 위에 적층되고, 상기 기판에 접한 부분이 상기 캡층과 접한 부분보다 Ga의 조성값이 증가되는 경사형 조성을 갖는 In1-xGaxAs층;An In1-xGaxAs layer stacked on the substrate and having an inclined composition in which a portion of the substrate in contact with the substrate is increased in composition value of Ga than a portion in contact with the cap layer; 상기 In1-xGaxAs층 위에 적층되는 InP 캡층;An InP cap layer stacked on the In1-xGaxAs layer; 상기 Inp 캡층의 중앙에 소정 폭의 개구부가 형성되도록 양쪽 가장자리 상면에 형성되는 SiO2층; 및An SiO 2 layer formed on upper surfaces of both edges such that an opening having a predetermined width is formed at the center of the Inp cap layer; And 상기 개구부 아래의 상기 캡층 부분에 확산되어 형성되는 Zn 확산층;을 포함하는 것을 특징으로 하는 포토다이오드 디텍터.And a Zn diffusion layer formed by being diffused in the cap layer portion below the opening. 제1항에 있어서, 상기 In1-xGaxAs층은 조성값이 x=0.47인 In1-xGaxAs층, x=0.48인 In1-xGaxAs층, x=0.50인 In1-xGaxAs층, x=0.52인 In1-xGaxAs층, x=0.54인 In1-xGaxAs층, x=0.56인 In1-xGaxAs층, x=0.58인 In1-xGaxAs층 및 x=0.60인 In1-xGaxAs층으로 순차 성장되는 것을 특징으로 하는 포토다이오드 디텍터.The In1-xGaxAs layer according to claim 1, wherein the In1-xGaxAs layer has a composition value of x = 0.47, an In1-xGaxAs layer with x = 0.48, an In1-xGaxAs layer with x = 0.50, and an In1-xGaxAs layer with x = 0.52 and an In1-xGaxAs layer having x = 0.54, an In1-xGaxAs layer having x = 0.56, an In1-xGaxAs layer having x = 0.58, and an In1-xGaxAs layer having x = 0.60, and a photodiode detector. InP 기판 위에 Ga의 조성값이 증가되는 경사형 조성을 갖는 In1-xGaxAs층 및 InP 캡층을 순차 성장시켜 적층하는 성장단계;A growth step of sequentially growing and laminating an In1-xGaxAs layer and an InP cap layer having an inclined composition in which Ga composition values are increased on the InP substrate; 상기 결과물의 캡층 상면 중앙에 소정 폭의 개구부를 형성하도록 산화막층을 증착하고, 상기 산화막의 개구부의 양측면과 이 양측면에 인접한 상기 산화막층의 상면 일부에 금속층을 형성하는 증착단계; 및Depositing an oxide layer to form an opening having a predetermined width in a center of an upper surface of the cap layer of the resultant, and forming a metal layer on both sides of the opening of the oxide layer and a portion of an upper surface of the oxide layer adjacent to both sides; And 상기 개구부 아래의 캡층 부분에 Zn를 확산시켜 Zn 확산층을 형성하는 확산단계;를 포함하는 것을 특징으로 하는 포토다이오드 디텍터의 제조방법.And a diffusion step of diffusing Zn into a portion of the cap layer under the opening to form a Zn diffusion layer.
KR1019960042221A 1996-09-24 1996-09-24 Photodiode detector and fabricating method thereof KR100403824B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960042221A KR100403824B1 (en) 1996-09-24 1996-09-24 Photodiode detector and fabricating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960042221A KR100403824B1 (en) 1996-09-24 1996-09-24 Photodiode detector and fabricating method thereof

Publications (2)

Publication Number Publication Date
KR19980022924A true KR19980022924A (en) 1998-07-06
KR100403824B1 KR100403824B1 (en) 2004-05-17

Family

ID=37422569

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960042221A KR100403824B1 (en) 1996-09-24 1996-09-24 Photodiode detector and fabricating method thereof

Country Status (1)

Country Link
KR (1) KR100403824B1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984589A (en) * 1982-11-08 1984-05-16 Fujitsu Ltd Semiconductor photodetector
JPS62221168A (en) * 1986-03-24 1987-09-29 Hitachi Ltd Photodiode
US5179430A (en) * 1988-05-24 1993-01-12 Nec Corporation Planar type heterojunction avalanche photodiode
JPH03297173A (en) * 1990-04-17 1991-12-27 Nec Corp Semiconductor optical detector device
JPH04255274A (en) * 1991-02-06 1992-09-10 Fujitsu Ltd Semiconductor photodetective device and manufacture thereof
JP3288741B2 (en) * 1992-02-07 2002-06-04 住友電気工業株式会社 Manufacturing method of semiconductor light receiving element
KR100369254B1 (en) * 1996-02-26 2003-03-28 삼성전자 주식회사 Photodiode and manufacturing method thereof

Also Published As

Publication number Publication date
KR100403824B1 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
US7187013B2 (en) Avalanche photodiode
Liu et al. A planar InP/InGaAs avalanche photodiode with floating guard ring and double diffused junction
EP0156156A1 (en) Avalanche photodiodes
Campbell et al. High-speed InP/InGaAsP/InGaAs avalanche photodiodes grown by chemical beam epitaxy
US20080149177A1 (en) Apparatus and Method for Optimizing the Efficiency of Germanium Junctions in Multi-Junction Solar Cells
EP0087299A2 (en) Multilayer avalanche photodetector
US5132747A (en) Avalanche photo diode
JPH05160426A (en) Semiconductor light receiving element
CA1294349C (en) Rear entry photodiode
US5387796A (en) Low leakage current photodetector arrays
KR910009357B1 (en) Semiconductor device photo diode
US5942771A (en) Semiconductor photodetector
EP0205899B1 (en) Planar heterojunction avalanche photodiode
CA1135823A (en) Low noise multistage avalanche photodetector
US4974061A (en) Planar type heterostructure avalanche photodiode
CA2050363A1 (en) Photo-sensing device
JPH06216403A (en) Semiconductor photodetector
US5679603A (en) Method of making semiconductor device including high resistivity layer
US5757025A (en) Infrared photodetector using delta-doped semiconductors
Mihashi et al. Long-wavelength receiver optoelectronic integrated circuit on 3-inch-diameter GaAs substrate grown by InP-on-GaAs heteroepitaxy
KR100403824B1 (en) Photodiode detector and fabricating method thereof
EP0700082A2 (en) Monolithically integrated circuits having dielectrically isolated, electrically controlled optical devices and process for fabricating the same
JPH0786630A (en) Single wavelength photo-detector
US4729004A (en) Semiconductor photo device
JPS6222546B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070910

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee