KR100403824B1 - Photodiode detector and fabricating method thereof - Google Patents

Photodiode detector and fabricating method thereof Download PDF

Info

Publication number
KR100403824B1
KR100403824B1 KR1019960042221A KR19960042221A KR100403824B1 KR 100403824 B1 KR100403824 B1 KR 100403824B1 KR 1019960042221 A KR1019960042221 A KR 1019960042221A KR 19960042221 A KR19960042221 A KR 19960042221A KR 100403824 B1 KR100403824 B1 KR 100403824B1
Authority
KR
South Korea
Prior art keywords
layer
xgaxas
inp
photodiode detector
cap layer
Prior art date
Application number
KR1019960042221A
Other languages
Korean (ko)
Other versions
KR19980022924A (en
Inventor
이원태
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1019960042221A priority Critical patent/KR100403824B1/en
Publication of KR19980022924A publication Critical patent/KR19980022924A/en
Application granted granted Critical
Publication of KR100403824B1 publication Critical patent/KR100403824B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE: A photodiode detector is provided to control a diffusion rate of Zn penetrating an InGaAs layer and reduce a noise component caused by a leakage current by separating an In1-xGaxAs layer into a region composed of an In1-xGaxAs(x=0.47) layer and an In1-xGaxAs(0.48<=x<=0.60) layer and by sequentially growing the In1-xGaxAs layer. CONSTITUTION: An InP substrate is prepared. An In1-xGaxAs layer is formed on the substrate, having a gradient composition in which a part of the In1-xGaxAs layer in contact with the substrate a more increased Ga composition than a part of the In1-xGaxAs layer in contact with a cap layer. An InP cap layer is formed on the In1-xGaxAs layer. A SiO2 layer(36) is formed on both edges of the InP cap layer to form an opening of a predetermined width in the center of the InP cap layer. A Zn diffusion layer(34) is diffused and formed in the cap layer under the opening.

Description

포토다이오드 디텍터 및 그 제조방법Photodiode detector and manufacturing method thereof

본 발명은 포토다이오드 디텍터에 관한 것으로서, 특히 광통신 시스템에서 광을 수신하여 전기신호로 변환시켜 주는 포토다이오드 디텍터에 관한 것이다.The present invention relates to a photodiode detector, and more particularly, to a photodiode detector that converts light into an electric signal in an optical communication system.

화합물 반도체는 최근 광통신의 발달로 광통신 시스템에 사용되는 1.0㎛내지 1.6㎛의 파장영역에서 동작하는 포토다이오드 디텍터(photodiode detector) 제작에 가장 적합한 재료로 많은 관심이 쏠리고 있다.Background Art Compound semiconductors have attracted much attention as a material most suitable for fabricating a photodiode detector which operates in a wavelength range of 1.0 to 1.6 μm used in an optical communication system due to recent development of optical communication.

일반적으로 포토다이오드 디텍터의 누설전류(leakage current)가 잡음(noise)을 일으키게 되어 포토다이오드 디텍터의 수신감도는 떨어지게 된다. 이러한 잡음 발생에 의한 누설전류는 크면 클수록 포토다이오드 디텍터의 수신감도는 더욱 나빠지는데 이러한 누설전류를 어떻게 제한하는냐에 따라서 좋은 포토다이오드 디텍터를 구현 할 수 있는가가 결정된다.In general, the leakage current of the photodiode detector causes noise, and the reception sensitivity of the photodiode detector is lowered. The larger the leakage current due to the noise generation, the worse the sensitivity of the photodiode detector becomes. The degree to which the leakage current is limited depends on whether a good photodiode detector can be implemented.

도 1은 종래의 포토다이오드 디텍터의 구조를 나타내는 개략적 수직 단면도이다.1 is a schematic vertical sectional view showing a structure of a conventional photodiode detector.

도시된 바와 같이 종래의 포토다이오드 디텍터는 n-InP 기판(1), undoped In0.53Ga0.47As층(2) 및 undoped InP 캡층(3)이 순차로 적층되어 있고, InP 캡층(3)의 양쪽 가장자리 상면에는 SiO2층(6)이 적층되어 중앙부에 소정 폭의 개구부가 형성되어 있다. 또한 SiO2층(6)의 개구부의 양측면과 이 양측면에 인접한 SiO2층(6)의 상면 일부에 p-금속층(8)이 형성되어 있고, 상기 개구부 아래의 InP 캡층(3)부분에는 Zn확산에 의한 Zn 확산층(4)이 형성되어 있다. p-금속층(8)의 상부에는 중앙부에 형성된 개구부를 완전히 덮도록 반사방지막(5)이 형성되어 있으며, 상기 n-InP 기판(1)의 저면에는 n-금속층(7)이 증착되어 있는 구조체를 이루고 있다.As shown in the figure, the conventional photodiode detector comprises an n-InP substrate 1, an undoped In0.53Ga0.47As layer 2 and an undoped InP cap layer 3 which are sequentially stacked, and both edges of the InP cap layer 3 An SiO2 layer 6 is laminated on the upper surface, and an opening having a predetermined width is formed at the center. The p-metal layer 8 is formed on both sides of the opening of the SiO2 layer 6 and on the upper surface of the SiO2 layer 6 adjacent to both sides of the SiO2 layer 6. The InP cap layer 3 under the opening has Zn diffusion Zn diffusion layer 4 is formed. An antireflection film 5 is formed on the upper portion of the p-metal layer 8 so as to completely cover the opening formed in the central portion of the n-InP substrate 1, and a structure in which an n-metal layer 7 is deposited on the bottom surface of the n-InP substrate 1 .

상기 구조의 포토다이오드 디텍터는 누설전류를 줄이고자 InGaAs층의 확산계수와 다른 확산계수 값을 갖는 InGaAs층을 형성하여 잡음을 줄이고, 광수신감도를 개선시킨 구조가 요구된다.The photodiode detector of the above structure is required to have an InGaAs layer having a diffusion coefficient different from the diffusion coefficient of the InGaAs layer in order to reduce the leakage current, thereby reducing the noise and improving the light reception sensitivity.

그런데 상기한 종래 구조의 포토다이오드 디텍터는 undoped In0.53Ga0.47As층(2)의 Ga 조성이 고정된 상태로 undoped In0.53Ga0.47As층(2) 위에 InP 캡층(3)이 적층되기 때문에 InP 캡층(3)은 Zn가 확산될 때 Zn의 높은 확산성질로 인하여 Zn는 InP 캡층(3) 부분을 초과하여 InP 캡층(3)과 undoped In0.53Ga0.47As층(2)이 이루고 있는 경계면을 지나 undoped In0.53Ga0.47As층(2)을 침투하게 된다. 이러한 Zn의 확산은 누설전류를 생성시켜 포토다이오드 디텍터에 영향을 줄 수 있으며, Zn는 undoped In0.53Ga0.47As층(2)의 다른 부분까지 급속히 확산되어 수신감도에 영향을 미치게 된다. 즉 Zn의 조절할 수 없는 확산속도로 인해 포토다이오드 디텍터의 응답감도가 영향을 받기 때문에 상기한 종래의 포토다이오드 디텍터 구조로는 Zn의 영향을 조절할 수 없어 광통신을 위한 포토다이오드 디텍터의 최적화에 기여할 수 없다는 문제점이 있게 된다.However, since the InP cap layer 3 is stacked on the undoped In0.53Ga0.47As layer 2 in a state where the Ga composition of the undoped In0.53Ga0.47As layer 2 is fixed, the photodiode detector of the conventional structure described above, (3), due to the high diffusivity of Zn when Zn is diffused, causes Zn to pass through the interface between the InP cap layer (3) and the undoped In0.53Ga0.47As layer (2) beyond the InP cap layer (3) In0.53Ga0.47As layer (2). This diffusion of Zn can affect the photodiode detector by generating a leakage current, and Zn is rapidly diffused to other parts of the undoped In0.53Ga0.47As layer 2 to affect the reception sensitivity. In other words, since the response sensitivity of the photodiode detector is influenced by the uncontrollable diffusion rate of Zn, the influence of Zn can not be controlled in the conventional photodiode detector structure described above, which can not contribute to the optimization of the photodiode detector for optical communication There is a problem.

본 발명은 상기한 문제점을 개선코자 창출된 것으로서, 포토다이오드의 중간층은 조성이 다른 복수의 영역으로 구분되어 성장됨으로서 누설전류를 줄이고 수신감도가 향상된 포토다이오드 디텍터를 제공함에 그 목적이 있다.It is an object of the present invention to provide a photodiode detector in which an intermediate layer of a photodiode is divided into a plurality of regions having different compositions to thereby reduce a leakage current and improve reception sensitivity.

또한, 본 발명은 상기한 목적을 달성하기 위한 포토다이오드 디텍터를 제조함에 있어서 최적의 제조방법을 제공하는데 다른 목적이 있다.It is another object of the present invention to provide an optimal manufacturing method for manufacturing a photodiode detector for achieving the above object.

도 1는 종래의 포토다이오드 디텍터 구조를 나타내는 개략적 수직 단면도.1 is a schematic vertical sectional view showing a conventional photodiode detector structure.

도 2는 본 발명의 일 실시예에 따른 포토다이오드 디텍터 구조를 나타내는 개략적 수직 단면도.2 is a schematic vertical cross-sectional view illustrating a photodiode detector structure according to an embodiment of the present invention.

<도면의 주요부분에 대한 부호의 설명>Description of the Related Art

31..n-InP 기판32..undoped In1-xGaxAs층31.n-InP substrate 32. an undoped In1-xGaxAs layer

33..undoped InP 캡층34..Zn의 확산층33 &lt; / RTI &gt; doped InP cap layer 34 &lt; RTI ID = 0.0 &

35..반사방지막36..SiO2층35. An antireflection film 36. SiO2 layer

37..n-금속층38..p-금속층37.n-metal layer 38.p- metal layer

32a..In1-xGaxAs(x=0.47)층32b..In1-xGaxAs(x=0.48)층32a..In1-xGaxAs (x = 0.47) layer 32b..In1-xGaxAs (x = 0.48) layer

32c..In1-xGaxAs(x=0.50)층32d..In1-xGaxAs(x=0.52)층32c.In1-xGaxAs (x = 0.50) layer 32d..In1-xGaxAs (x = 0.52) layer

32e..In1-xGaxAs(x=0.54)층32f..In1-xGaxAs(x=0.56)층32e..In1-xGaxAs (x = 0.54) layer 32f..In1-xGaxAs (x = 0.56) layer

32g..In1-xGaxAs(x=0.58)층32h..In1-xGaxAs(x=0.60)층32g..In1-xGaxAs (x = 0.58) layer 32h..In1-xGaxAs (x = 0.60) layer

상기한 목적을 달성하기 위하여 본 발명에 의한 포토다이오드 디텍터는, InP 기판;According to an aspect of the present invention, there is provided a photodiode detector comprising: an InP substrate;

상기 기판 위에 적층되고, 상기 기판에 접한 부분이 상기 캡층과 접한 부분보다 Ga의 조성값이 증가되는 경사형 조성을 갖는 In1-xGaxAs층;An In1-xGaxAs layer stacked on the substrate and having a graded composition in which a composition value of Ga is increased as compared with a portion in contact with the substrate in contact with the cap layer;

상기 In1-xGaxAs층 위에 적층되는 InP 캡층;An InP cap layer deposited on the In1-xGaxAs layer;

상기 Inp 캡층의 중앙에 소정 폭의 개구부가 형성되도록 양쪽 가장자리 상면에 형성되는 SiO2층; 및 상기 개구부 아래의 상기 캡층 부분에 확산되어 형성되는 Zn 확산층;을 포함하는 것을 특징으로 한다.An SiO2 layer formed on the upper surface of the InP cap layer so as to form an opening with a predetermined width at the center of the Inp cap layer; And a Zn diffusion layer diffused in the cap layer portion under the opening.

본 발명에 의하면, 상기 In1-xGaxAs층은 조성값이 x=0.47인 In1-xGaxAs층, x=0.48인 In1-xGaxAs층, x=0.50인 In1-xGaxAs층, x=0.52인 In1-xGaxAs층, x=0.54인 In1-xGaxAs층, x=0.56인 In1-xGaxAs층, x=0.58인 In1-xGaxAs층 및 x=0.60인 In1-xGaxAs층으로 순차 성장되는 것이 바람직하다.According to the present invention, the In1-xGaxAs layer includes an In1-xGaxAs layer having x = 0.47, an In1-xGaxAs layer having x = 0.48, an In1- the In1-xGaxAs layer having x = 0.54, the In1-xGaxAs layer having x = 0.56, the In1-xGaxAs layer having x = 0.58 and the In1-xGaxAs layer having x = 0.60.

또한, 상기한 다른 목적을 달성하기 위하여 본 발명에 의한 포토다이오드 디텍터의 제조방법은, InP 기판 위에 Ga의 조성값이 증가되는 경사형 조성을 갖는 In1-xGaxAs층 및 InP 캡층을 순차 성장시켜 적층하는 성장단계;According to another aspect of the present invention, there is provided a method of fabricating a photodiode detector, comprising: forming an In1-xGaxAs layer and an InP cap layer on the InP substrate, the In1-xGaxAs layer having a graded composition, step;

상기 결과물의 캡층 상면 중앙에 소정 폭의 개구부를 형성하도록 산화막층을 증착하고, 상기 산화막의 개구부의 양측면과 이 양측면에 인접한 상기 산화막층의 상면 일부에 금속층을 형성하는 증착단계; 및Depositing an oxide layer to form openings having a predetermined width at the center of the top surface of the cap layer and forming a metal layer on both sides of the openings of the oxide layer and a part of the top surface of the oxide layer adjacent to both sides; And

상기 개구부 아래의 캡층 부분에 Zn를 확산시켜 Zn 확산층을 형성하는 확산단계;를 포함하는 것을 특징으로 한다.And a diffusion step of diffusing Zn in the cap layer portion under the opening to form a Zn diffusion layer.

이하 본 발명의 일 실시예에 따른 포토다이오드 디텍터 및 포토다이오드 디텍터의 제조방법을 첨부한 도면을 참조하여 상세히 설명한다. 도 2는 본 발명의 일 실시예에 따른 포토다이오드 디텍터의 구조를 나타낸 개략적 수직 단면도이다.Hereinafter, a method of manufacturing a photodiode detector and a photodiode detector according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. 2 is a schematic vertical cross-sectional view illustrating a structure of a photodiode detector according to an embodiment of the present invention.

도시된 바와 같이 본 발명에 따른 포토다이오드 디텍터는, n-InP 기판(31) 위에 undoped In1-xGaxAs층(32) 즉, 조성값이 x=0.47인 In1-xGaxAs층(32a), x=0.48인 In1-xGaxAs층(32b), x=0.50인 In1-xGaxAs층(32c), x=0.52인 In1-xGaxAs층(32d), x=0.54인 In1-xGaxAs층(32e), x=0.56인 In1-xGaxAs층(32f), x=0.58인 In1-xGaxAs층(32g) 및 x=0.60인 In1-xGaxAs층(32h)이 순차 적층되고, undoped InP 캡층(33)은 조성값이 x=0.60인 In1-xGaxAs층(32h) 위에 적층된다. undoped Inp 캡층(33)의 중앙에 소정 폭의 개구부가 형성되도록 양쪽 가장자리 상면에는 SiO2층(36)이 형성되고, SiO2층(36)의 개구부의 양측면과 이 양측면에 인접한 상면 일부에는 p-금속층(38)이 형성된다. 상기 개구부 아래의 캡층(33) 부분은 Zn로 확산된 Zn 확산층(34)이 형성된다. p-금속층(38) 상부에는 개구부를 완전히 덮도록 반사방지막(35)이 형성되고, 상기 n-InP 기판(31)의 저면에는 n-금속층(37)이 형성된다.As shown in the figure, the photodiode detector according to the present invention includes an undoped In1-xGaxAs layer 32, that is, an In1-xGaxAs layer 32a having a composition value of x = 0.47, In1-xGaxAs layer 32b with x = 0.50, In1-xGaxAs layer 32c with x = 0.52, In1-xGaxAs layer 32e with x = 0.54, In1- xGaxAs layer 32f having x = 0.58 and an In1-xGaxAs layer 32g having x = 0.60 and an In1-xGaxAs layer 32h having x = 0.60 are sequentially laminated on the substrate 10. The undoped InP cap layer 33 has In1- xGaxAs layer 32h. An SiO2 layer 36 is formed on the upper surfaces of both sides of the undoped Inp cap layer 33 so that a predetermined opening is formed in the center of the undoped Inp cap layer 33. In both sides of the opening of the SiO2 layer 36, 38 are formed. A portion of the cap layer 33 under the opening is formed with a Zn diffusion layer 34 diffused by Zn. An antireflection film 35 is formed on the p-metal layer 38 to completely cover the openings and an n-metal layer 37 is formed on the bottom surface of the n-InP substrate 31.

이와 같은 구조의 포토다이오드 디텍터의 동작을 설명하면 다음과 같다.The operation of the photodiode detector having such a structure will be described below.

상기 n-InP 기판(31) 위에 적층되는 In1-xGaxAs층(32a)은 격자정합이 이루어지도록 조성값이 x=0.47이 되고, In1-xGaxAs층(32)이 경사형 조성(gradient composition)을 갖도록 x=0.47인 In1-xGaxAs층(32a) 위에 x=0.48인 In1-xGaxAs층(32b), x=0.50인 In1-xGaxAs층(32c), x=0.52인 In1-xGaxAs층(32d), x=0.54인 In1-xGaxAs층(32e), x=0.56인 In1-xGaxAs층(32f), x=0.58인 In1-xGaxAs층(32g) 및 x=0.60인 In1-xGaxAs층(32h)이 순차 적층된다. 이 때 상기 개구부 아래의 undoped Inp 캡층(33) 부분에서 Zn 확산층(34)이 확산되어 In1-xGaxAs층(32)으로 Zn가 침투되면, In1-xGaxAs층(32)에서 이 Zn의 확산은 In1-xGaxAs의 x가 증가함에 따라 In1-xGaxAs를 구성하는 원자들 사이의 결합에너지(binding energy)가 증가되므로 상기 In1-xGaxAs층(32)으로 침투되는 상기 Zn의 확산속도는 감소되어 확산계수(diffusion constant)가 작게된다. 즉, Ga의 조성비가 증가되면 In1-xGaxAs층(32)에 확산되는 상기 Zn의 확산 속도가 감소하게 된다. 따라서 상기 확산계수 값이 작게 되고, 포토다이오드 디텍터의 누설전류(leakage current) 성분은 감소된다. 이 때 상기 누설전류는 확산전류(diffsion current)에 의해서 영향을 받는데 이 확산전류는 다음식에 의해서 결정된다.The In1-xGaxAs layer 32a stacked on the n-InP substrate 31 has a composition value of x = 0.47 so that lattice matching is performed and a In composition ratio of In1-xGaxAs layer 32 the In1-xGaxAs layer 32b having x = 0.48, the In1-xGaxAs layer 32c having x = 0.50, the In1-xGaxAs layer 32d having x = 0.52, The In1-xGaxAs layer 32e with x = 0.55, the In1-xGaxAs layer 32f with x = 0.56, the In1-xGaxAs layer 32g with x = 0.58 and the In1-xGaxAs layer 32h with x = 0.60 are sequentially stacked. At this time, when the Zn diffusion layer 34 is diffused in the undoped Inp cap layer 33 under the opening and Zn is penetrated into the In1-xGaxAs layer 32, the diffusion of Zn in the In1-xGaxAs layer 32 becomes In1- As the x of xGaxAs increases, the bonding energy between the atoms constituting In1-xGaxAs increases, so that the diffusion rate of Zn penetrated into the In1-xGaxAs layer 32 decreases and the diffusion constant ) Becomes smaller. That is, when the composition ratio of Ga is increased, the diffusion rate of Zn diffused in the In1-xGaxAs layer 32 is decreased. Accordingly, the diffusion coefficient value is reduced, and the leakage current component of the photodiode detector is reduced. In this case, the leakage current is influenced by the diffusion current, which is determined by the following equation.

Jd = Js[exp(qV/kT) - 1]Jd = Js [exp (qV / kT) - 1]

여기서,here,

q: 전하q: charge

k: 절대온도k: absolute temperature

Jd : diffusion currentJd: diffusion current

T : junction temperatureT: junction temperature

V : applied voltageV: applied voltage

Js :saturation currentJs: saturation current

Js = qni 2[Dp/(LpNd) + Dn/(LnNa)]Js = qn i 2 [Dp / (LpNd) + Dn / (LnNa)]

여기서,here,

ni: intrinsic carrier concentrationn i : intrinsic carrier concentration

Dn, Dp : 각각 electron과 hole의 확산계수Dn, Dp: diffusion coefficient of electron and hole, respectively

Ln, Lp : 각각 electron과 hole의 diffsion lengthLn, Lp: Diffsion length of electron and hole, respectively

Nd, Na: donor와 acceptor densityNd, Na: donor and acceptor density

상기 수학식 2에서 Js를 줄이고자 In0.53Ga0.47As층 보다 확산계수 값이 적고, 경사형 조성을 갖는 In1-xGaxAs(0.48≤x≤0.60)을 택하여 x=0.47인 In1-xGaxAs층(32a) 위에 In1-xGaxAs(0.48≤x≤0.60)층(32b ~ 32h)을 적층 시킨다. 이렇게 하면 InP 캡층(33)을 초과하여 침투되는 In1-xGaxAs층(32)의 Zn 확산을 제어할 수 있고, Js 값을 줄여 누설전류와 잡음성분을 감소시키고 결과적으로 포토다이오드 디텍터의 응답감도(sensitivity)를 높일 수 있다.The In1-xGaxAs layer 32a having x = 0.47 is selected by selecting In1-xGaxAs (0.48? X? 0.60) having a gradient value less than that of the In0.53Ga0.47As layer and reducing the Js in the Equation (2) (0.48? X? 0.60) layers 32b to 32h are stacked thereon. This can control the diffusion of Zn in the In1-xGaxAs layer 32 which penetrates the InP cap layer 33 and reduces the leakage current and the noise component by decreasing the Js value. As a result, the sensitivity of the photodiode detector ) Can be increased.

이하 본 발명에 의한 단계별 제조공정에 따른 포토다이오드 디텍터의 제조방법에 대하여 상세히 설명한다.Hereinafter, a method of manufacturing a photodiode detector according to a stepwise manufacturing process according to the present invention will be described in detail.

먼저 일반적인 MOCVD(Metal Organic Chamcal Vapor Deposition)법을 이용하여 n-InP 기판(31) 위에 격자 정합이 이루어지는 undoped In1-xGaxAs(x=0.47)층(32a)을 성장시키고, 이 In1-xGaxAs(x=0.47)층(32a) 위에 순차적으로 x=0.48인 In1-xGaxAs층(32b), x=0.50인 In1-xGaxAs층(32c), x=0.52인 In1-xGaxAs층(32d), x=0.54인 In1-xGaxAs층(32e), x=0.56인 In1-xGaxAs층(32f), x=0.58인 In1-xGaxAs층(32g), x=0.60인 In1-xGaxAs층(32h) 및 InP 캡층(33)을 성장시킨다.An undoped In1-xGaxAs (x = 0.47) layer 32a having lattice matching is grown on an n-InP substrate 31 by using a general MOCVD (Metal Organic Chamcal Vapor Deposition) The In1-xGaxAs layer 32b having x = 0.50, the In1-xGaxAs layer 32c having x = 0.52, the In1-xGaxAs layer 32d having x = 0.54, xGaxAs layer 32e, In1-xGaxAs layer 32f with x = 0.56, In1-xGaxAs layer 32g with x = 0.58, In1-xGaxAs layer 32h with x = 0.60, and InP cap layer 33 .

다음에 InP 캡층(33)의 양쪽 가장자리 상면에 SiO2층(36)을 적층시켜 중앙부에 소정 폭의 개구부를 형성하고, SiO2층(36)의 개구부의 양측면과 이 양측면에 인접한 SiO2층(36)의 상면 일부에 p-금속층(38)을 형성한다.An SiO2 layer 36 is laminated on the upper surfaces of the InP cap layer 33 to form openings having a predetermined width at the center and both sides of the opening of the SiO2 layer 36 and the SiO2 layer 36 adjacent to both sides A p-metal layer 38 is formed on a part of the upper surface.

그 다음, 상기 개구부 아래의 캡층(33) 부분에 Zn를 확산시켜 Zn 확산층(34)을 형성한다.Then, Zn is diffused into the cap layer 33 under the opening to form the Zn diffusion layer 34. [

그리고 나서, p-금속층(38)의 상부에 중앙부에 형성된 개구부를 완전히 덮도록 반사방지막(35)을 형성하고, 상기 n-InP 기판(31)의 저면에는 n-금속층(37)을 형성시켜 포토다이오드 디텍터의 제작을 완료한다.Then, an antireflection film 35 is formed on the p-metal layer 38 so as to completely cover the openings formed in the central portion. An n-metal layer 37 is formed on the bottom surface of the n-InP substrate 31, The manufacture of the diode detector is completed.

상기 본 발명에 따른 제조방법의 특징에 의하면, n-InP 기판(31) 위에 격자정합이 이루어지도록 조성값이 x=0.47인 In1-xGaxAs층(32a)을 성장시킨다. 다음에 조성값이 x=0.48인 In1-xGaxAs층(32b), x=0.50인 In1-xGaxAs층(32c), x=0.52인 In1-xGaxAs층(32d), x=0.54인 In1-xGaxAs층(32e), x=0.56인 In1-xGaxAs층(32f) 및 x=0.58인 In1-xGaxAs층(32g)을 순차 성장시켜 적층시키고, 조성값이 x=0.60인 In1-xGaxAs층(32h)은 InP 캡층(33)과 격자정합이 이루어질수 있도록 In1-xGaxAs(x=0.58)층(32g) 위에 성장시켜 적층시킨다.According to the manufacturing method of the present invention, the In1-xGaxAs layer 32a having a composition value of x = 0.47 is grown so that lattice matching can be performed on the n-InP substrate 31. [ Next, an In1-xGaxAs layer 32b having a composition value of x = 0.48, an In1-xGaxAs layer 32c having x = 0.50, an In1-xGaxAs layer 32d having x = 0.52, The In1-xGaxAs layer 32f having x = 0.56 and the In1-xGaxAs layer 32g having x = 0.58 are sequentially grown and laminated to form an In1-xGaxAs layer 32h having a composition value of x = XGaxAs (x = 0.58) layer 32g so that lattice matching can be performed with respect to the In 1-xGaxAs (x = 0.58) layer 33.

이러한 특징은 In1-xGaxAs층(32)의 3원소 화합물 In1-xGaxAs의 조성값 x가 0.47에서 0.60으로 경사형 조성으로 변할 때 격자상수의 변화는 5.86Å 내지 5.82Å로 되어 원자들 사이의 결합에너지가 증가되고, In1-xGaxAs층(32)으로 침투되는 Zn의 확산속도는 감소되어 확산계수가 작게된다. 따라서 조성이 경사형으로 변화되어 성장된 In1-xGaxAs층(32)에서 Zn의 확산 속도는 조절될 수 있고, Zn가 침투될 때 누설 전류는 최소화 될 수 있다.This characteristic is that when the composition value x of the three-element compound In1-xGaxAs in the In1-xGaxAs layer 32 is changed from 0.47 to 0.60 to a graded composition, the lattice constant changes from 5.86A to 5.82A, And the diffusion rate of Zn permeated into the In1-xGaxAs layer 32 is decreased, so that the diffusion coefficient is reduced. Accordingly, the diffusion rate of Zn can be controlled in the grown In 1-xGaxAs layer 32 by changing the composition to be a slope, and the leakage current can be minimized when Zn is infiltrated.

이상에서 살펴본 바와 같이 본 발명에 의한 포토다이오드 디텍터는, InGaAs/InP계 포토다이오드 디텍터에 있어서, In1-xGaxAs층을 In1-xGaxAs(x=0.47)층과 In1-xGaxAs(0.48≤x≤0.60)층의 복수의 층으로 이루어진 영역으로 구분하여 순차 성장시킴으로써, InGaAs 층에 침투되는 Zn의 확산속도를 조절할 수 있고, 누설전류에 의한 잡음성분을 감소시킬 수 있는 효과가 있다. 그 결과로서 포토다이오드 디텍터의 응답감도는 증대된다.As described above, the photodiode detector according to the present invention is an InGaAs / InP-based photodiode detector in which an In1-xGaxAs layer is divided into an In1-xGaxAs (x = 0.47) layer and an In1-xGaxAs (0.48? X? 0.60) The diffusion rate of Zn penetrated into the InGaAs layer can be controlled and the noise component due to the leakage current can be reduced. As a result, the response sensitivity of the photodiode detector increases.

Claims (3)

InP 기판;InP substrate; 상기 기판 위에 적층되고, 상기 기판에 접한 부분이 상기 캡층과 접한 부분보다 Ga의 조성값이 증가되는 경사형 조성을 갖는 In1-xGaxAs층;An In1-xGaxAs layer stacked on the substrate and having a graded composition in which a composition value of Ga is increased as compared with a portion in contact with the substrate in contact with the cap layer; 상기 In1-xGaxAs층 위에 적층되는 InP 캡층;An InP cap layer deposited on the In1-xGaxAs layer; 상기 Inp 캡층의 중앙에 소정 폭의 개구부가 형성되도록 양쪽 가장자리 상면에 형성되는 SiO2층; 및An SiO2 layer formed on the upper surface of the InP cap layer so as to form an opening with a predetermined width at the center of the Inp cap layer; And 상기 개구부 아래의 상기 캡층 부분에 확산되어 형성되는 Zn 확산층;을 포함하는 것을 특징으로 하는 포토다이오드 디텍터.And a Zn diffusion layer diffused in the cap layer portion under the opening. 제1항에 있어서, 상기 In1-xGaxAs층은 조성값이 x=0.47인 In1-xGaxAs층, x=0.48인 In1-xGaxAs층, x=0.50인 In1-xGaxAs층, x=0.52인 In1-xGaxAs층, x=0.54인 In1-xGaxAs층, x=0.56인 In1-xGaxAs층, x=0.58인 In1-xGaxAs층 및 x=0.60인 In1-xGaxAs층으로 순차 성장되는 것을 특징으로 하는 포토다이오드 디텍터.The In1-xGaxAs layer according to claim 1, wherein the In1-xGaxAs layer has an In1-xGaxAs layer with x = 0.47, an In1-xGaxAs layer with x = 0.48, an In1-xGaxAs layer with x = 0.50, x In xGaxAs layer having x = 0.54, In 1-xGaxAs layer having x = 0.56, In 1-xGaxAs layer having x = 0.58, and In 1-x GaxAs layer having x = 0.60. InP 기판 위에 Ga의 조성값이 증가되는 경사형 조성을 갖는 In1-xGaxAs층 및 InP 캡층을 순차 성장시켜 적층하는 성장단계;Growing an In1-xGaxAs layer and an InP cap layer having an inclined composition in which the composition of Ga is increased on an InP substrate by sequentially growing and laminating the In1-xGaxAs layer and the InP cap layer; 상기 결과물의 캡층 상면 중앙에 소정 폭의 개구부를 형성하도록 산화막층을 증착하고, 상기 산화막의 개구부의 양측면과 이 양측면에 인접한 상기 산화막층의 상면 일부에 금속층을 형성하는 증착단계; 및Depositing an oxide layer to form openings having a predetermined width at the center of the top surface of the cap layer and forming a metal layer on both sides of the openings of the oxide layer and a part of the top surface of the oxide layer adjacent to both sides; And 상기 개구부 아래의 캡층 부분에 Zn를 확산시켜 Zn 확산층을 형성하는 확산단계;를 포함하는 것을 특징으로 하는 포토다이오드 디텍터의 제조방법.And diffusing Zn to form a Zn diffusion layer on the cap layer portion under the opening.
KR1019960042221A 1996-09-24 1996-09-24 Photodiode detector and fabricating method thereof KR100403824B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960042221A KR100403824B1 (en) 1996-09-24 1996-09-24 Photodiode detector and fabricating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960042221A KR100403824B1 (en) 1996-09-24 1996-09-24 Photodiode detector and fabricating method thereof

Publications (2)

Publication Number Publication Date
KR19980022924A KR19980022924A (en) 1998-07-06
KR100403824B1 true KR100403824B1 (en) 2004-05-17

Family

ID=37422569

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960042221A KR100403824B1 (en) 1996-09-24 1996-09-24 Photodiode detector and fabricating method thereof

Country Status (1)

Country Link
KR (1) KR100403824B1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984589A (en) * 1982-11-08 1984-05-16 Fujitsu Ltd Semiconductor photodetector
JPS62221168A (en) * 1986-03-24 1987-09-29 Hitachi Ltd Photodiode
JPH03297173A (en) * 1990-04-17 1991-12-27 Nec Corp Semiconductor optical detector device
JPH04255274A (en) * 1991-02-06 1992-09-10 Fujitsu Ltd Semiconductor photodetective device and manufacture thereof
US5179430A (en) * 1988-05-24 1993-01-12 Nec Corporation Planar type heterojunction avalanche photodiode
US5316956A (en) * 1992-02-07 1994-05-31 Sumitomo Electric Industries, Ltd. Method for manufacturing semiconductor light-receiving elements
KR100369254B1 (en) * 1996-02-26 2003-03-28 삼성전자 주식회사 Photodiode and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984589A (en) * 1982-11-08 1984-05-16 Fujitsu Ltd Semiconductor photodetector
JPS62221168A (en) * 1986-03-24 1987-09-29 Hitachi Ltd Photodiode
US5179430A (en) * 1988-05-24 1993-01-12 Nec Corporation Planar type heterojunction avalanche photodiode
JPH03297173A (en) * 1990-04-17 1991-12-27 Nec Corp Semiconductor optical detector device
JPH04255274A (en) * 1991-02-06 1992-09-10 Fujitsu Ltd Semiconductor photodetective device and manufacture thereof
US5316956A (en) * 1992-02-07 1994-05-31 Sumitomo Electric Industries, Ltd. Method for manufacturing semiconductor light-receiving elements
KR100369254B1 (en) * 1996-02-26 2003-03-28 삼성전자 주식회사 Photodiode and manufacturing method thereof

Also Published As

Publication number Publication date
KR19980022924A (en) 1998-07-06

Similar Documents

Publication Publication Date Title
US7187013B2 (en) Avalanche photodiode
US7872252B2 (en) Method of fabricating semiconductor devices on a group IV substrate with controlled interface properties and diffusion tails
EP0131437B1 (en) Heterojunction avalanche photodiode
KR900004180B1 (en) Semiconductor photo detector and manufacturing thereof
EP0043734A2 (en) Avalanche photodiodes
KR20030079988A (en) Isoelectronic co-doping
EP0163546A2 (en) Process for fabricating an avalanche photodiode and an avalanche photodiode thus-obtained
CA1294349C (en) Rear entry photodiode
JPH05160426A (en) Semiconductor light receiving element
EP0236189A1 (en) Monolithic semiconductor structure of a heterojunction bipolar transistor and a laser
US20100148216A1 (en) Semiconductor light receiving element and method for manufacturing semiconductor light receiving element
US5387796A (en) Low leakage current photodetector arrays
US5942771A (en) Semiconductor photodetector
KR910009357B1 (en) Semiconductor device photo diode
US4122486A (en) Semiconductor light-emitting element
US4974061A (en) Planar type heterostructure avalanche photodiode
US20020163007A1 (en) Semiconductor light emitting device and method for manufacturing the same
JPH06216403A (en) Semiconductor photodetector
US4839714A (en) High-gain photodetectors made from NIPI mesas with selective lateral contacts
KR100403824B1 (en) Photodiode detector and fabricating method thereof
US8263966B2 (en) Photodetector and method for manufacturing photodetector
JPH0786630A (en) Single wavelength photo-detector
Mihashi et al. Long-wavelength receiver optoelectronic integrated circuit on 3-inch-diameter GaAs substrate grown by InP-on-GaAs heteroepitaxy
US4729004A (en) Semiconductor photo device
US20030112841A1 (en) Means of controlling dopant diffusion in a semiconductor heterostructure

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20070910

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee