JPS62221168A - Photodiode - Google Patents

Photodiode

Info

Publication number
JPS62221168A
JPS62221168A JP61064064A JP6406486A JPS62221168A JP S62221168 A JPS62221168 A JP S62221168A JP 61064064 A JP61064064 A JP 61064064A JP 6406486 A JP6406486 A JP 6406486A JP S62221168 A JPS62221168 A JP S62221168A
Authority
JP
Japan
Prior art keywords
layer
ingaasp
buffer layer
junction
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61064064A
Other languages
Japanese (ja)
Inventor
Ichiro Fujiwara
一郎 藤原
Kazuhiro Ito
和弘 伊藤
Hiroshi Matsuda
広志 松田
Kazuyuki Nagatsuma
一之 長妻
Hirobumi Ouchi
博文 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61064064A priority Critical patent/JPS62221168A/en
Publication of JPS62221168A publication Critical patent/JPS62221168A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To enable a planar type long wavelength PIN photodiode capable of rapid response to be manufactured by a method wherein the hole accumulation is prevented from occurring in the hetero interface between an InGaAsP photoabsorbing layer and an InP window layer. CONSTITUTION:An InGaAsP buffer layer 14 in slightly higher carrier concentra tion (subject to no rapid diffusion, generally exceeding 1X10<-6>cm<-2>) is formed between an InP window layer 15 and an InGaAsP photoabsorbing layer 13. Additionally, a PN junction in formed in the buffer layer 14. Furthermore, the forbidden band width of buffer layer 14 is specified as the intermediate value, i.e., 1.2-1.4mum between those of the window layer (0.92mum) and the photoabsorbing layer (1.67mum) for accelerating the response. The PN junction in formed in the InGaAsP layer in relatively high carrier concentration to increase the controllability of impurity diffusion from conventional + or -0.5mum to + or -0.2mum. Finally, the hole accumulation due to the hetero barrier to a valued electron band can be prevented from occurring to make the rapid response feasible at low bias voltage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は長波長光通信に用いられるホトダイオードに係
り、特に高速応答を可能にするPINホトダイオードの
構造を提供する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a photodiode used in long wavelength optical communication, and particularly provides a PIN photodiode structure that enables high-speed response.

〔従来の技術〕[Conventional technology]

従来の1.6μmtftに受信可能なホトダイオードの
構造は、 1985年のレーザ研究13巻の117ペー
ジにおいて三角らが示しているようにInGaAs光吸
収層内にpn接合を形成することにより、InPウィン
ドウ層とInGaAs光吸収層のへテロ界面で生じる正
孔の蓄積効果による応答速度の劣化を防いできた(第3
図)、なお、第3図において、1はn + −InP基
板、2はn″″−InP層、3はn−−InGaAs光
吸収層、4はn″″−InPウィンドウ層、5はZnま
たはCd拡散層、6はSiNxパッシベーション膜、7
はp形電極、8はn形電極をそれぞれ示す。
The structure of a conventional photodiode capable of receiving 1.6 μm TFT was achieved by forming a pn junction in an InGaAs light absorbing layer, as shown by Misumi et al. in Laser Research Vol. 13, page 117 in 1985. This has prevented the response speed from deteriorating due to the hole accumulation effect generated at the hetero interface between the InGaAs light absorption layer and the InGaAs light absorption layer.
In FIG. 3, 1 is an n + -InP substrate, 2 is an n""-InP layer, 3 is an n--InGaAs light absorption layer, 4 is an n""-InP window layer, and 5 is a Zn or Cd diffusion layer, 6 is SiNx passivation film, 7
8 indicates a p-type electrode, and 8 indicates an n-type electrode.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、InGaAs光吸収層のキャリア濃度が低いた
めに、pn接合をペテロ界面の近傍に制御することが難
しいという欠点があった。
However, since the carrier concentration of the InGaAs light absorption layer is low, there is a drawback that it is difficult to control the pn junction in the vicinity of the Peter interface.

本発明の目的は、上記欠点を克服し、かつ高速応答な可
能なPINホトダイオードの構造を提供することにある
SUMMARY OF THE INVENTION The object of the present invention is to overcome the above-mentioned drawbacks and to provide a PIN photodiode structure capable of high-speed response.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を実現するため1本発明ではInPウィンドウ
層とInGaAs光吸収層との間にキャリア濃度が少し
高い(速い拡散が生じないキャリア濃度で。
In order to achieve the above object, in the present invention, the carrier concentration is slightly high between the InP window layer and the InGaAs light absorption layer (at a carrier concentration that does not cause rapid diffusion).

一般にI X 10 lBam−”以上) InGaA
sPバッファ層を設け、たこと及び、バッファ層内にp
n接合を形成したことを特徴としている。
InGaA
An sP buffer layer is provided, and p is provided in the buffer layer.
It is characterized by the formation of an n-junction.

また、バッファ層の禁止帯幅をウィンドウ層(0,92
μm)と光明収層(1,67μm)の中間(1,2〜1
.4μm)として高速化を実現したことも特徴としてい
る。
In addition, the forbidden band width of the buffer layer is set to the window layer (0,92
μm) and the photoconcentration layer (1,67 μm) (1,2~1 μm)
.. Another feature is that it achieves high speed as 4μm).

〔作用〕[Effect]

一般に、化合物半導体へのZnまたはCdのp型不純物
拡散は、第2図のように二段拡散となることが知られて
いる。なお、第2図において横軸は拡散の深さ、縦軸は
キャリア濃度であり、Aは遅い拡散、Bは速い拡散を示
す。
Generally, it is known that p-type impurity diffusion of Zn or Cd into a compound semiconductor is a two-stage diffusion as shown in FIG. In FIG. 2, the horizontal axis is the depth of diffusion, and the vertical axis is the carrier concentration, where A indicates slow diffusion and B indicates fast diffusion.

ホトダイオードを高性能化する立場からウィンドウ層4
はキャリア濃度が低い方が望まい1力1、pn接合形成
の立場からは速い拡散が生じる&まとにキャリア濃度を
低くすることは、接合の位置の制御性を悪くすることに
なる1本発明のように。
Window layer 4 from the standpoint of improving the performance of photodiodes
It is desirable for the carrier concentration to be low.From the standpoint of forming a pn junction, fast diffusion occurs; lowering the carrier concentration at all will impair the controllability of the junction position. Like an invention.

キャリア濃度が高いバッファ層を設けることにより、ウ
ィンドウ層のキャリア濃度を低くすることができ、かつ
pn接合を制御性良く形成することができる。
By providing a buffer layer with a high carrier concentration, the carrier concentration of the window layer can be lowered, and a pn junction can be formed with good controllability.

〔実施例〕〔Example〕

以下、本発明の実施例を図面により説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図において、11はn÷−InP基板、12はn″
″−InP層(厚みlpm)、13はn −−InGa
As光吸収層(3um) 、14はn−InGa、^β
ノ(ツファ層(0,5pm) 、15はn″″−InP
ウィンドウ層(2μm)、16はp◆拡散層(p+−x
np及びp″″’−InGaAsp) 、17はパッシ
ベーション膜、18はp型オーミック電極、19はi型
オーミック電極である。
In FIG. 1, 11 is n÷-InP substrate, 12 is n''
″-InP layer (thickness lpm), 13 is n--InGa
As light absorption layer (3um), 14 is n-InGa, ^β
ノ(Tuffa layer (0.5pm), 15 is n″″-InP
Window layer (2μm), 16 is p◆diffusion layer (p+-x
17 is a passivation film, 18 is a p-type ohmic electrode, and 19 is an i-type ohmic electrode.

以下に製造方法の概略を示す。An outline of the manufacturing method is shown below.

n型InP基板11の上に気相成長法または減圧OM−
VPE法を用い、n型InP層12.n型InGaAs
層13.n型InGaAs層14.n型InP層15を
連続成長させる。尚、バッファ層14は拡散を該バッフ
ァ層内に制御すること、結晶成長における厚さ方向の組
成のずれを防止すること等力1ら0.5μm程度が好ま
しい1次に、予め設定された温度分布を持つ電気炉に結
晶基板と拡散ソースを真空封止したアンプルを挿入する
ことにより、ZnまたはCdのp型不純物拡散を行う。
On the n-type InP substrate 11, vapor phase growth method or reduced pressure OM-
Using the VPE method, an n-type InP layer 12. n-type InGaAs
Layer 13. n-type InGaAs layer 14. The n-type InP layer 15 is grown continuously. The buffer layer 14 is heated at a preset temperature, preferably about 1 to 0.5 μm, to control diffusion within the buffer layer and to prevent deviations in composition in the thickness direction during crystal growth. A p-type impurity of Zn or Cd is diffused by inserting an ampoule in which a crystal substrate and a diffusion source are vacuum-sealed into an electric furnace having a distribution.

その後1周知のCVD法により、SiNx/ P S 
G/5iOzのパッシベーション膜を形成し、最後番こ
p型オーミック電極、Au/Pt/Ti、n型オーミッ
ク電極A u / P d / AuGeNiを周知の
蒸着法を用いて形成する。
After that, SiNx/PS was formed using the well-known CVD method.
A passivation film of G/5iOz is formed, and finally a p-type ohmic electrode, Au/Pt/Ti, and an n-type ohmic electrode, Au/Pd/AuGeNi, are formed using a well-known vapor deposition method.

なお、本実施例においては、光吸収層にInGaAsウ
ィンドウ層にInPを用いたが、他の化合物半導体系例
えばGaAs層 GaA Q As系においてもヘテロ
界面に禁止帯の不整が生じる場合には、同様の効果を得
ることができる。
In this example, InGaAs is used for the light absorption layer, and InP is used for the window layer, but the same method can be applied to other compound semiconductor systems, such as GaAs layers, GaA Q As systems, if band gap irregularities occur at the hetero interface. effect can be obtained.

本実施例においてpn接合は比較的キャリア濃度の高い
(10五63″″+1以上) InGaAsP層(λ=
1.3μm)内に形成されるため、不純物拡散の制御性
が従来の±0.5μmから±0.2μmへ向上している
。また価電子帯のへテロ障壁にもとづく、正孔の蓄積を
防ぐことが可能となり、低ノ(イアスミ圧(−10V以
下)で高速動作が可能となる。
In this example, the pn junction has a relatively high carrier concentration (10563''+1 or more) and an InGaAsP layer (λ=
1.3 μm), the controllability of impurity diffusion is improved from the conventional ±0.5 μm to ±0.2 μm. Furthermore, it is possible to prevent the accumulation of holes based on the heterobarrier of the valence band, and high-speed operation is possible at low Iasumi pressure (-10 V or less).

〔発明の効果〕 本発明によれば、InGaAg光吸収層とInPウィン
ドウ層間のへテロ界面に生じる正孔の蓄積を防ぐことが
できるので、高速応答可能なプレーナ型長波長PINホ
トダイオードを実現可能にする。
[Effects of the Invention] According to the present invention, it is possible to prevent the accumulation of holes generated at the hetero interface between the InGaAg light absorption layer and the InP window layer, thereby making it possible to realize a planar type long wavelength PIN photodiode capable of high-speed response. do.

また、pn接合を比較的キャリア濃度が高い。Further, the pn junction has a relatively high carrier concentration.

InGaAsPバッファ層中に形成するため、制御性も
、  向上し、経済的利益も大きい。
Since it is formed in the InGaAsP buffer layer, controllability is improved and economic benefits are also large.

【図面の簡単な説明】[Brief explanation of drawings]

第1@は本発明の実施例であるプレーナ型PINホトダ
イオードの縦断面図、第2図は、遅い拡散と速い拡散を
概念的に示す図、第3図は従来形のプレーナ型PINホ
トダイオード縦断面図である。 11−n+−InP基板、12− n−−InP層、1
3−・・n−InGaAs層(禁止帯幅1.67 μm
) 、14・・−n  InGaAsP層(禁止帯組成
1.3 μm) 、15・=n −−InP層(禁止帯
幅0.92pm) 、16−p+−InP層及びp +
 −InGaAsP層、17・・・パッシベーションl
I% (Si(h/ P S G /5iNz) 、 
 18− P型オーミック電極(Au/Pd/Ti) 
、19−n型¥:J 1 図 YZ 図 纂 3 図
Figure 1 is a vertical cross-sectional view of a planar PIN photodiode according to an embodiment of the present invention, Figure 2 is a diagram conceptually showing slow diffusion and fast diffusion, and Figure 3 is a vertical cross-sectional view of a conventional planar PIN photodiode. It is a diagram. 11-n+-InP substrate, 12-n--InP layer, 1
3-...n-InGaAs layer (bandgap width 1.67 μm
), 14...-n InGaAsP layer (forbidden band composition 1.3 μm), 15-=n −-InP layer (forbidden band width 0.92 pm), 16-p+-InP layer and p +
-InGaAsP layer, 17...passivation l
I% (Si(h/PSG/5iNz),
18- P-type ohmic electrode (Au/Pd/Ti)
, 19-n type ¥: J 1 Figure YZ Figure 3 Figure

Claims (1)

【特許請求の範囲】 1、n型基板上に少なくとも光吸収層とウィンドウ層を
含む複数の半導体層を積層して形成するプレーナ型ホト
ダイオードにおいて、光吸収層とウィンドウ層間にバッ
ファ層を設け、pn接合のフロントをバッファ層中に形
成したことを特徴とするホトダイオード。 2、特許請求の範囲第1項においてバッファ層の禁止帯
幅を1.2μmから1.4μmの間にすることを特徴と
するホトダイオード。 3、特許請求の範囲第1項において、光吸収層をInG
aAs、ウィンドウ層をInP、バッファ層をInGa
AsP(禁止帯幅:1.3μm)としたことを特徴とす
るホトダイオード。
[Claims] 1. In a planar photodiode formed by stacking a plurality of semiconductor layers including at least a light absorption layer and a window layer on an n-type substrate, a buffer layer is provided between the light absorption layer and the window layer, and a pn A photodiode characterized in that a junction front is formed in a buffer layer. 2. A photodiode according to claim 1, characterized in that the forbidden band width of the buffer layer is between 1.2 μm and 1.4 μm. 3. In claim 1, the light absorption layer is made of InG.
aAs, window layer InP, buffer layer InGa
A photodiode characterized by being made of AsP (forbidden band width: 1.3 μm).
JP61064064A 1986-03-24 1986-03-24 Photodiode Pending JPS62221168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61064064A JPS62221168A (en) 1986-03-24 1986-03-24 Photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61064064A JPS62221168A (en) 1986-03-24 1986-03-24 Photodiode

Publications (1)

Publication Number Publication Date
JPS62221168A true JPS62221168A (en) 1987-09-29

Family

ID=13247287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61064064A Pending JPS62221168A (en) 1986-03-24 1986-03-24 Photodiode

Country Status (1)

Country Link
JP (1) JPS62221168A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403824B1 (en) * 1996-09-24 2004-05-17 삼성전자주식회사 Photodiode detector and fabricating method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403824B1 (en) * 1996-09-24 2004-05-17 삼성전자주식회사 Photodiode detector and fabricating method thereof

Similar Documents

Publication Publication Date Title
US4442444A (en) Avalanche photodiodes
KR900004180B1 (en) Semiconductor photo detector and manufacturing thereof
JPH022691A (en) Semiconductor light receiving device
JPS6016474A (en) Hetero multiple junction type photo detector
JP2708409B2 (en) Semiconductor light receiving element and method of manufacturing the same
JPH05160426A (en) Semiconductor light receiving element
CA1261451A (en) Silicon germanium photodetector
JPS62221168A (en) Photodiode
US4729004A (en) Semiconductor photo device
JPS63108782A (en) Semiconductor photodetector
JPH04342174A (en) Semiconductor photoelectric receiving element
US4443809A (en) p-i-n Photodiodes
JPH0265279A (en) Semiconductor photodetecting element
CN217387860U (en) Beam-splitting non-oxidized multi-junction VCSEL
US4477964A (en) Method of making p-i-n photodiodes
JP2695092B2 (en) Superlattice light receiving element
JPS59149070A (en) Photodetector
JP2995751B2 (en) Semiconductor light receiving element
JPH03244164A (en) Semiconductor photodetector
JP2991555B2 (en) Semiconductor light receiving element
JPH0410233B2 (en)
JPS63187671A (en) 1.3mum-range semiconductor photodetector
JPH03231476A (en) Avalanche photodiode
JPH10233523A (en) Photodetector
JPH03179786A (en) Photodetector and manufacture thereof