KR19980015421A - Manufacturing method of depressed electrode type solar cell - Google Patents

Manufacturing method of depressed electrode type solar cell Download PDF

Info

Publication number
KR19980015421A
KR19980015421A KR1019960034724A KR19960034724A KR19980015421A KR 19980015421 A KR19980015421 A KR 19980015421A KR 1019960034724 A KR1019960034724 A KR 1019960034724A KR 19960034724 A KR19960034724 A KR 19960034724A KR 19980015421 A KR19980015421 A KR 19980015421A
Authority
KR
South Korea
Prior art keywords
semiconductor substrate
forming
entire surface
oxide film
film
Prior art date
Application number
KR1019960034724A
Other languages
Korean (ko)
Other versions
KR100374810B1 (en
Inventor
우도 에봉 아바시프레케
Original Assignee
김광호
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김광호, 삼성전자 주식회사 filed Critical 김광호
Priority to KR1019960034724A priority Critical patent/KR100374810B1/en
Publication of KR19980015421A publication Critical patent/KR19980015421A/en
Application granted granted Critical
Publication of KR100374810B1 publication Critical patent/KR100374810B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

본 발명은 (a) 세정된 반도체 기판의 전면과 후면에 산화막을 형성하는 단계; (b) 반도체 기판 후면에 표면코팅막을 형성하는 단계; (c) 반도체 기판 전면의 산화막만을 선택적으로 제거하는 단계; (d) 반도체 기판 후면의 표면코팅막을 제거하는 단계; (e) 반도체 기판 전면에 n형 불순물을 확산시켜 n+ 반도체층을 형성하는 단계; (f) 반도체 기판 전면에 산화막을 형성하는 단계; (g) 반도체 기판 전면에 홈을 형성한 다음, 이 홈내로 n형 불순물을 깊게 확산시켜 n++ 반도체층을 형성하는 단계; (h) 상기 홈내에 전도성 금속을 도금하여 전면전극을 형성하는 단계; (i) 반도체 기판 전면에 표면코팅막을 형성하는 단계; (j) 반도체 기판 후면의 산화막을 제거하는 단계; (k) 반도체 기판 후면에 보론을 함유하고 있는 실리콘 글래스를 스핀코팅하고, 베이킹한 다음, 어닐링으로 p+ 반도체층을 형성하고, 이 때 형성된 산화막을 제거하는 단계; (l) 스크린 프린팅 방법을 이용하여 반도체 기판 후면에 전도성 금속으로 후면 전극을 형성하는 단계; (m) 반도체 기판 전면의 표면코팅막을 제거하는 단계; (n) 반도체 기판 전면에 반사방지막을 형성하는 단계; (o) 에지를 분리하는 단계를 포함하는 것을 특징으로 하는 함몰전극형 태양전지의 제조방법을 제공한다. 본 발명에 따르면, 저렴한 비용으로 반도체 기판 후면에서의 캐리어들의 재결합을 감소시킴으로써 변환효율이 향상된 태양전지를 얻을 수 있다.(A) forming an oxide film on a front surface and a rear surface of a cleaned semiconductor substrate; (b) forming a surface coating film on the back surface of the semiconductor substrate; (c) selectively removing only the oxide film on the entire surface of the semiconductor substrate; (d) removing the surface coating film on the back surface of the semiconductor substrate; (e) forming an n + semiconductor layer by diffusing n-type impurities on the entire surface of the semiconductor substrate; (f) forming an oxide film on the entire surface of the semiconductor substrate; (g) forming a groove in the entire surface of the semiconductor substrate, and then deeply diffusing the n-type impurity into the groove to form an n ++ semiconductor layer; (h) forming a front electrode by plating a conductive metal in the groove; (i) forming a surface coating film on the entire surface of the semiconductor substrate; (j) removing an oxide film on the back surface of the semiconductor substrate; (k) spin coating a silicon glass containing boron on the back surface of the semiconductor substrate, baking the silicon substrate, forming a p + semiconductor layer by annealing, and removing the oxide film formed at this time; (l) forming a rear electrode with a conductive metal on the rear surface of the semiconductor substrate using a screen printing method; (m) removing a surface coating film on the entire surface of the semiconductor substrate; (n) forming an antireflection film on the entire surface of the semiconductor substrate; and separating the edge of the photovoltaic cell according to the first aspect of the present invention. According to the present invention, it is possible to obtain a solar cell having improved conversion efficiency by reducing recombination of carriers at the back surface of the semiconductor substrate at low cost.

Description

함몰전극형 태양전지의 제조방법Manufacturing method of depressed electrode type solar cell

본 발명은 함몰전극형 태양전지의 제조방법에 관한 것으로서, 상세하기로는 반도체 기판 후면에서의 캐리어들의 재결합을 감소시킴으로써 전지의 변환효율을 향상시킨 함몰전극형 태양전지를 저렴한 비용으로 제조하는 방법에 관한 것이다.The present invention relates to a method of manufacturing a depressed electrode type solar cell, and more particularly, to a method of manufacturing a depression type electrode type solar cell in which conversion efficiency of a battery is improved by reducing recombination of carriers on the back surface of a semiconductor substrate will be.

태양전지는 반도체의 광 기전력 효과를 이용한 것으로서, p형 반도체와 n형 반도체를 조합하여 만든다. p형 반도체와 n형 반도체가 접한 부분(pn 접합부)에 빛이 들어오면, 빛 에너지에 의하여 반도체 내부에서 마이너스의 전하(전자)와 플러스의 전하(정공)가 발생한다.Solar cells are based on the photovoltaic effect of semiconductors and are made by combining p-type and n-type semiconductors. When light enters a portion where the p-type semiconductor and the n-type semiconductor are in contact (pn junction), negative charges (electrons) and positive charges (holes) are generated inside the semiconductor due to the light energy.

빛에너지에 의해 발생된 전자와 정공은 내부의 전계에 의하여 각각 n형 반도체측과 p형 반도체측으로 이동하여 양쪽의 전극부에 모아진다. 이러한 두 개의 전극을 도선으로 연결하면 전류가 흐르고 외부에서 전력으로 이용할 수 있게 된다.The electrons and holes generated by the light energy move to the n-type semiconductor side and the p-type semiconductor side by the internal electric field, respectively, and are collected in both electrode portions. When these two electrodes are connected by a lead wire, current flows and can be used as an external power source.

태양전지는 전극의 형태에 따라 스크린 프린팅형 태양전지(Screen Printing Solar Cell: SPSC)와 함몰전극형 태양전지(Buried Contact Solar Cell: BCSC)로 구분할 수 있다.Solar cells can be divided into screen printing solar cells (SPSC) and buried contact solar cells (BCSC) according to the shape of the electrodes.

SPSC는 일반적으로 제조하기가 용이하지만 에너지 변환효율이 낮은 편이다. 이는 금속 전극에서의 반사, 후면 전류 흐름에서 기인된 저항 및 일반적으로 깊게 도핑되어 있는 이미터 영역에서의 캐리어들의 높은 재결합률 때문이다. 또한 상기와 같은 이유로 SPSC에서는 단락회로전류밀도와 블루우 리스폰스(blue response) 특성이 불량하다.SPSCs are generally easier to manufacture but have lower energy conversion efficiency. This is due to the reflection at the metal electrode, the resistance caused by the backside current flow, and the high recombination rate of the carriers in the generally deeply doped emitter region. In addition, short circuit current density and blue response characteristics are poor in the SPSC for the above reasons.

한편, BCSC에서는 금속 전극을 반도체 기판 전면내에 형성시키는데, 이 전지의 에너지 변환효율과 개방회로전압은 SPSC보다 높은 편이다. 이렇게 BCSC가 SPSC보다 에너지 변환효율과 개방회로전압이 높은 것은 반도체 기판 전면내로 깊게 도핑되어 있는 금속 전극이 전지의 활성영역과 떨어져 있어서 개방회로전압 및 전지 변환효율을 감소시키는 원인으로 작용하는 캐리어들의 재결합이 보다 감소되기 때문이다.On the other hand, in the BCSC, the metal electrode is formed in the entire surface of the semiconductor substrate. The energy conversion efficiency and the open circuit voltage of the battery are higher than the SPSC. The BCSC has higher energy conversion efficiency and higher open circuit voltage than the SPSC because the metal electrode, which is deeply doped into the front surface of the semiconductor substrate, is separated from the active region of the battery, .

도 1은 통상적인 BCSC의 단면구조를 나타낸 도면으로서, 이를 제조하는 방법은 다음과 같다.1 shows a cross-sectional structure of a conventional BCSC, and a method of manufacturing the same is as follows.

먼저 p형 반도체 기판 (11)에 텍스처링을 실시하여 기판 전면과 후면에 피라미드 구조를 형성한다. 상기 반도체 기판 전면상에 n+ 반도체층 (12)을 형성한 다음, 산화공정을 실시하여 반도체 기판 (11) 전면에 산화막 (13)을 형성하고 그 기판 후면에도 산화막(미도시)을 형성한다. 상기 반도체 기판 (11) 전면내로 홈을 깊게 스크라이빙한 다음, 이 홈내에 전도성 금속을 도금하여 전면전극 (16)를 형성한다. 이 때 전면전극 (16)이 형성되어 있는 홈의 하부에는 n++ 반도체층 (15)을 형성시킨다.First, the p-type semiconductor substrate 11 is textured to form a pyramid structure on the front and rear surfaces of the substrate. An oxide film 13 is formed on the entire surface of the semiconductor substrate 11 by forming an n + semiconductor layer 12 on the entire surface of the semiconductor substrate and an oxidation process is performed to form an oxide film (not shown) on the rear surface of the semiconductor substrate 11. The grooves are deeply scribed into the entire surface of the semiconductor substrate 11 and then the conductive metal is plated in the grooves to form the front electrodes 16. [ At this time, an n ++ semiconductor layer 15 is formed under the grooves in which the front electrodes 16 are formed.

반도체 기판 (11) 후면에는 알루미늄을 증착, 소결하여 p+ 반도체층 (17)을 형성하고, 그 상부에 전도성 금속을 도금하여 후면전극 (18)을 형성한다.On the back surface of the semiconductor substrate 11, aluminum is deposited and sintered to form a p + semiconductor layer 17, and a conductive metal is plated on the p + semiconductor layer 17 to form a back electrode 18. [

마지막으로, 상기 반도체 기판 전면에 반사방지막 (14)을 형성함으로써 함몰전극형 태양전지가 완성된다.Finally, the antireflection film 14 is formed on the entire surface of the semiconductor substrate to complete the recessed electrode type solar cell.

상기의 제조방법에서 알 수 있는 바와 같이, BCSC에서는 확산 불순물로서 알루미늄을 증착, 소결하여 후면전계를 형성한다. 이렇게 알루미늄을 이용하여 후면전계를 형성하는 경우, 고가의 진공증발기가 반드시 필요하다. 이로 인하여 제조비용이 상승되는 문제점이 있다.As can be seen from the above manufacturing method, in BCSC, aluminum is deposited and sintered as a diffusion impurity to form a back electric field. In the case of forming the back electric field by using aluminum in this way, an expensive vacuum evaporator is necessarily required. This causes a problem that the manufacturing cost is increased.

본 발명이 이루고자 하는 기술적 과제는 상기 문제점을 해결하여 후면전계 형성시 고가의 증착설비를 사용하지 않고서도 반도체 기판 후면에서의 캐리어들의 재결합을 효과적으로 감소시킴으로써 변환효율이 매우 향상된 함몰전극형 태양전지를 제조하는 방법을 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made in order to solve the above problems, and it is an object of the present invention to provide a recessed-electrode type solar cell in which the conversion efficiency is greatly improved by effectively reducing the recombination of carriers on the rear surface of the semiconductor substrate without using a high- To provide a method to do so.

도 1은 통상적인 함몰전극형 태양전지의 단면구조를 개략적으로 나타낸 도면이고,1 is a schematic cross-sectional view of a typical depression electrode type solar cell,

도 2a-e는 본 발명에 따른 함몰전극형 태양전지의 제조방법을 설명하기 위한 도면들이다.FIGS. 2A to 2E are views for explaining a method of manufacturing a depression electrode type solar cell according to the present invention.

도면의 주요 부분에 대한 부호의 설명DESCRIPTION OF THE REFERENCE NUMERALS

11, 21. p형 반도체 기판11, 21. A p-type semiconductor substrate

12, 22. n+ 반도체층12, 22. n + semiconductor layer

13, 23, 24. 산화막(SiO2)13, 23, 24. The oxide film (SiO2)

14, 30. 반사방지막(TiO2)14, 30. An antireflection film (TiO2)

15, 25. n++ 반도체층15, 25. n ++ semiconductor layer

16, 26. 전면전극16, 26. Front electrode

17, 27. p+ 반도체층17, 27. p + semiconductor layer

18, 28. 후면전극18, 28. Rear electrode

29. 표면코팅막29. Surface coating film

상기 과제를 이루기 위하여 본 발명에서는 (a) 세정된 반도체 기판의 전면과 후면에 산화막을 형성하는 단계; (b) 반도체 기판 후면에 표면코팅막을 형성하는 단계; (c) 반도체 기판 전면의 산화막만을 선택적으로 제거하는 단계; (d) 반도체 기판 후면의 표면코팅막을 제거하는 단계; (e) 반도체 기판 전면에 n형 불순물을 확산시켜 n+ 반도체층을 형성하는 단계; (f) 반도체 기판 전면에 산화막을 형성하는 단계; (g) 반도체 기판 전면에 홈을 형성한 다음, 이 홈내로 n형 불순물을 깊게 확산시켜 n++ 반도체층을 형성하는 단계; (h) 상기 홈내에 전도성 금속을 도금하여 전면전극을 형성하는 단계; (i) 반도체 기판 전면에 표면코팅막을 형성하는 단계; (j) 반도체 기판 후면의 산화막을 제거하는 단계; (k) 반도체 기판 후면에 보론을 함유하고 있는 실리콘 글래스를 스핀코팅하고, 베이킹한 다음, 어닐링으로 p+ 반도체층을 형성하고, 이 때 형성된 산화막을 제거하는 단계; (l) 스크린 프린팅 방법을 이용하여 반도체 기판 후면에 전도성 금속으로 후면 전극을 형성하는 단계;(m) 반도체 기판 전면의 표면코팅막을 제거하는 단계; (n) 반도체 기판 전면에 반사방지막을 형성하는 단계; (o) 에지를 분리하는 단계를 포함하는 것을 특징으로 하는 함몰전극형 태양전지의 제조방법을 제공한다.According to an aspect of the present invention, there is provided a method of manufacturing a semiconductor device, comprising: (a) forming an oxide film on a front surface and a rear surface of a cleaned semiconductor substrate; (b) forming a surface coating film on the back surface of the semiconductor substrate; (c) selectively removing only the oxide film on the entire surface of the semiconductor substrate; (d) removing the surface coating film on the back surface of the semiconductor substrate; (e) forming an n + semiconductor layer by diffusing n-type impurities on the entire surface of the semiconductor substrate; (f) forming an oxide film on the entire surface of the semiconductor substrate; (g) forming a groove in the entire surface of the semiconductor substrate, and then deeply diffusing the n-type impurity into the groove to form an n ++ semiconductor layer; (h) forming a front electrode by plating a conductive metal in the groove; (i) forming a surface coating film on the entire surface of the semiconductor substrate; (j) removing an oxide film on the back surface of the semiconductor substrate; (k) spin coating a silicon glass containing boron on the back surface of the semiconductor substrate, baking the silicon substrate, forming a p + semiconductor layer by annealing, and removing the oxide film formed at this time; (1) forming a rear electrode with a conductive metal on the rear surface of the semiconductor substrate by using a screen printing method; (m) removing a surface coating film on the front surface of the semiconductor substrate; (n) forming an antireflection film on the entire surface of the semiconductor substrate; and separating the edge of the photovoltaic cell according to the first aspect of the present invention.

상기 표면코팅막의 재료로는 통상적인 반도체 소자 제조시 사용되는 표면코팅막 형성용 물질이라면 모두 사용할 수 있다. 그 중에서도 특히 노볼락(novolak) 및 폴리하이드록시스티렌과 같이 물에는 잘 녹지 않으면서 아세톤이나 톨루엔 등의 유기용제에 잘 녹는 물질이나 내에칭성 피막을 형성하는 감광성 수지인 포토레지스트로 형성하는 것이 바람직하다. 따라서, 상기 표면코팅막은 산화막 제거시 통상적으로 사용되는 식각액인 불산에 용해되지 않으므로 이 표면코팅막을 마스크로 사용하여 반도체 기판 후면의 산화막만을 선택적으로 제거할 수 있다.The material for the surface coating film may be any material for forming a surface coating film used in the conventional semiconductor device production. Among them, it is particularly preferable to form a material which does not dissolve in water such as novolak and polyhydroxystyrene but is soluble in an organic solvent such as acetone or toluene or a photoresist which is a photosensitive resin forming an etchable film Do. Therefore, since the surface coating film is not dissolved in hydrofluoric acid, which is a commonly used etchant for removing the oxide film, only the oxide film on the rear surface of the semiconductor substrate can be selectively removed using the surface coating film as a mask.

이하, 도 2a-e를 참조하여 본 발명에 따른 함몰전극형 태양전지의 제조방법을 상세히 설명하기로 한다.Hereinafter, a method of manufacturing a depression electrode type solar cell according to the present invention will be described in detail with reference to FIGS.

반도체 기판 (21)을 세정한 다음, 이 반도체 기판 (21)의 전면과 후면상에 산화막 (23) 및 (24)를 각각 형성한다. 이어서 산화막 (24)가 형성되어 있는 반도체 기판 후면상에 표면코팅막 (29)을 형성한다(도 2a). 이렇게 표면코팅막 (29)을 형성함으로써 반도체 기판 (21) 전면에 형성된 산화막 (23)만을 선택적으로 제거할 수 있다.After the semiconductor substrate 21 is cleaned, oxide films 23 and 24 are formed on the front and rear surfaces of the semiconductor substrate 21, respectively. Next, a surface coating film 29 is formed on the rear surface of the semiconductor substrate where the oxide film 24 is formed (FIG. 2A). By forming the surface coating film 29 in this manner, only the oxide film 23 formed on the entire surface of the semiconductor substrate 21 can be selectively removed.

반도체 기판 (21) 전면에 형성된 산화막 (23)을 제거하고 나서, 반도체 기판 후면의 표면코팅막 (29)을 제거한다. 이 표면코팅막 (29)은 불산과 같은 식각액에 대한 내성이 우수하며 일반적인 유기용매에 잘 용해되므로 제거하기가 매우 용이하다.The oxide film 23 formed on the front surface of the semiconductor substrate 21 is removed and then the surface coating film 29 on the rear surface of the semiconductor substrate is removed. The surface coating film 29 is excellent in resistance to an etchant such as hydrofluoric acid and is easily dissolved in a general organic solvent.

반도체 기판 (21) 전면에 n형 불순물인 인을 확산시켜 n+ 반도체층 (22)을 형성한 다음, 그 상부에 산화막 (23)을 다시 형성한다(도 2b).The n-type impurity phosphorus is diffused over the entire surface of the semiconductor substrate 21 to form the n + semiconductor layer 22, and then the oxide film 23 is formed again on the n + semiconductor layer 22 (FIG.

레이저를 이용하여 반도체 기판 (21) 전면에 홈을 스크라이빙하고 형성된 이 홈내로 n형 불순물을 깊게 확산시켜 n++반도체층 (25)을 형성한다. 이 홈위에 전도성 금속을 도금하여 전면전극 (26)을 형성한다. 여기에서 도금방법으로는 선택적 도금이 가능한 무전해도금방법을 사용하는 것이 바람직하다.The n + type semiconductor layer 25 is formed by deeply diffusing the n-type impurity into the groove formed by scribing the groove on the entire surface of the semiconductor substrate 21 by using a laser. And a front electrode 26 is formed by plating a conductive metal on the groove. As the plating method, it is preferable to use an electroless plating method capable of selective plating.

전면전극 (26)이 형성된 상기 반도체 기판 (21) 전면에 표면코팅막 (29)을 형성한다. 그리고 나서 반도체 기판 후면의 산화막 (24)을 제거한다(도 2c). 그 후, 반도체 기판 (21) 후면에 보론을 함유하고 있는 실리콘 글래스를 스핀코팅하고, 120 내지 170℃에서 15∼20분동안 베이킹한다. 여기에서 보론과 실리콘 글래스의 중량비는 10:90 내지 20 :80이 바람직하며, 15:85가 가장 바람직하다. 이어서 급속 열적 어닐링기(Rapid Thermal Annealer: RTA)를 이용한 어닐링으로 p+ 반도체층 (27)을 형성한다. 그리고 이러한 후면전계 형성시 생성된 산화막(미도시)을 제거해낸다.A surface coating film 29 is formed on the entire surface of the semiconductor substrate 21 on which the front electrode 26 is formed. Then, the oxide film 24 on the back surface of the semiconductor substrate is removed (FIG. 2C). Thereafter, silicon glass containing boron is spin-coated on the back surface of the semiconductor substrate 21 and baked at 120 to 170 DEG C for 15 to 20 minutes. Here, the weight ratio of boron to silicon glass is preferably 10:90 to 20:80, and most preferably 15:85. Then, the p + semiconductor layer 27 is formed by annealing using a Rapid Thermal Annealer (RTA). Then, the oxide film (not shown) generated during the formation of the rear electric field is removed.

산화막이 제거된 반도체 기판 (21) 후면에 스크린 인쇄방법을 사용하여 전극을 인쇄한 다음, 소결하여 후면전극 (28)을 형성한다(도 2d). 이어서 반도체 기판 전면의 표면코팅막 (29)을 제거한 다음, 반도체 기판 (21) 전면에 반사방지물질을 분무하여 반사방지막 (30)을 형성한다(도 2e).An electrode is printed on the rear surface of the semiconductor substrate 21 from which the oxide film has been removed using a screen printing method, and then sintered to form the rear electrode 28 (FIG. Next, the surface coating film 29 on the entire surface of the semiconductor substrate is removed, and an antireflection material is sprayed on the entire surface of the semiconductor substrate 21 to form the antireflection film 30 (FIG. 2E).

마지막으로 전지 제조공정중 외부의 불순물로 인하여 pn접합이 손상되거나 전지가 단락되는 것을 방지하기 위하여 에지(edge)를 분리해냄으로써 도 1에 도시된 바와 같은 본 발명에 따른 함몰전극형 태양전지가 완성된다.Finally, in order to prevent damage to the pn junction due to external impurities in the battery manufacturing process or to prevent short-circuiting of the battery, the edge is separated to obtain a depressed electrode type solar cell according to the present invention as shown in FIG. do.

본 발명에 의하면, 종래의 함몰전극형 태양전지의 제조방법과는 달리 후면전계 형성시 고가의 증착설비를 사용하지 않고 단지 스핀코터와 RTA를 사용한다. 따라서 종래보다 제조비용이 절감된다.According to the present invention, unlike a conventional method of manufacturing a depression electrode type solar cell, a spin coater and RTA are used only in forming a rear electric field without using expensive deposition equipment. Therefore, the manufacturing cost is reduced compared with the prior art.

Claims (6)

(a) 세정된 반도체 기판의 전면과 후면에 산화막을 형성하는 단계;(a) forming an oxide film on the front and rear surfaces of the cleaned semiconductor substrate; (b) 반도체 기판 후면에 표면코팅막을 형성하는 단계;(b) forming a surface coating film on the back surface of the semiconductor substrate; (c) 반도체 기판 전면의 산화막만을 선택적으로 제거하는 단계;(c) selectively removing only the oxide film on the entire surface of the semiconductor substrate; (d) 반도체 기판 후면의 표면코팅막을 제거하는 단계;(d) removing the surface coating film on the back surface of the semiconductor substrate; (e) 반도체 기판 전면에 n형 불순물을 확산시켜 n+ 반도체층을 형성하는 단계;(e) forming an n + semiconductor layer by diffusing n-type impurities on the entire surface of the semiconductor substrate; (f) 반도체 기판 전면에 산화막을 형성하는 단계;(f) forming an oxide film on the entire surface of the semiconductor substrate; (g) 반도체 기판 전면에 홈을 형성한 다음, 이 홈내로 n형 불순물을 깊게 확산시켜 n++ 반도체층을 형성하는 단계;(g) forming a groove in the entire surface of the semiconductor substrate, and then deeply diffusing the n-type impurity into the groove to form an n ++ semiconductor layer; (h) 상기 홈내에 전도성 금속을 도금하여 전면전극을 형성하는 단계;(h) forming a front electrode by plating a conductive metal in the groove; (i) 반도체 기판 전면에 표면코팅막을 형성하는 단계;(i) forming a surface coating film on the entire surface of the semiconductor substrate; (j) 반도체 기판 후면의 산화막을 제거하는 단계;(j) removing an oxide film on the back surface of the semiconductor substrate; (k) 반도체 기판 후면에 보론을 함유하고 있는 실리콘 글래스를 스핀코팅하고, 베이킹한 다음, 어닐링으로 p+ 반도체층을 형성하고, 이 때 형성된 산화막을 제거하는 단계;(k) spin coating a silicon glass containing boron on the back surface of the semiconductor substrate, baking the silicon substrate, forming a p + semiconductor layer by annealing, and removing the oxide film formed at this time; (l) 스크린 프린팅 방법을 이용하여 반도체 기판 후면에 전도성 금속으로 후면 전극을 형성하는 단계;(l) forming a rear electrode with a conductive metal on the rear surface of the semiconductor substrate using a screen printing method; (m) 반도체 기판 전면의 표면코팅막을 제거하는 단계;(m) removing a surface coating film on the entire surface of the semiconductor substrate; (n) 반도체 기판 전면에 반사방지막을 형성하는 단계;(n) forming an antireflection film on the entire surface of the semiconductor substrate; (o) 에지를 분리하는 단계를 포함하는 것을 특징으로 하는 함몰전극형 태양전지의 제조방법.and separating the edge of the photovoltaic cell (o). 제1항에 있어서, 상기 표면코팅막이 노볼락(novolak), 폴리하이드록시스티렌 및 포토레지스트로 이루어진 군으로부터 선택된 물질로 형성되는 것을 특징으로 하는 함몰전극형 태양전지의 제조방법.The method of claim 1, wherein the surface coating layer is formed of a material selected from the group consisting of novolak, polyhydroxystyrene, and photoresist. 제1항에 있어서, 상기 (k)단계에서 보론과 실리콘 글래스의 중량비가 10:90 내지 20:80인 것을 특징으로 하는 함몰전극형 태양전지의 제조방법.The method according to claim 1, wherein in step (k), the weight ratio of boron and silicon glass is 10:90 to 20:80. 제1항에 있어서, 상기 (k)단계에서 베이킹이 120∼170℃에서 15 내지 20동안 실시되는 것을 특징으로 하는 함몰전극형 태양전지의 제조방법.The method of claim 1, wherein the baking is performed at 120 to 170 ° C for 15 to 20 hours in step (k). 제1항에 있어서, 상기 산화막 식각시 불산을 이용하는 것을 특징으로 하는 함몰전극형 태양전지의 제조방법.The method according to claim 1, wherein hydrofluoric acid is used for etching the oxide film. 제1항에 있어서, 상기 반사방지막이 산화티탄으로 형성되는 것을 특징으로 하는 함몰전극형 태양전지의 제조방법.The method according to claim 1, wherein the antireflection film is formed of titanium oxide.
KR1019960034724A 1996-08-21 1996-08-21 Preparation method of buried contact solar cell KR100374810B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960034724A KR100374810B1 (en) 1996-08-21 1996-08-21 Preparation method of buried contact solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960034724A KR100374810B1 (en) 1996-08-21 1996-08-21 Preparation method of buried contact solar cell

Publications (2)

Publication Number Publication Date
KR19980015421A true KR19980015421A (en) 1998-05-25
KR100374810B1 KR100374810B1 (en) 2003-03-15

Family

ID=37416811

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960034724A KR100374810B1 (en) 1996-08-21 1996-08-21 Preparation method of buried contact solar cell

Country Status (1)

Country Link
KR (1) KR100374810B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140120994A (en) * 2013-04-03 2014-10-15 엘지전자 주식회사 Solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140120994A (en) * 2013-04-03 2014-10-15 엘지전자 주식회사 Solar cell

Also Published As

Publication number Publication date
KR100374810B1 (en) 2003-03-15

Similar Documents

Publication Publication Date Title
US10573764B2 (en) Solar cell with reduced base diffusion area
US8399287B1 (en) Method of manufacturing solar cell
KR101181820B1 (en) Manufacturing method of solar cell
US6524880B2 (en) Solar cell and method for fabricating the same
KR101225978B1 (en) Sollar Cell And Fabrication Method Thereof
US9209342B2 (en) Methods of manufacturing light to current converter devices
US20040200520A1 (en) Metal contact structure for solar cell and method of manufacture
US8936949B2 (en) Solar cell and manufacturing method thereof
EP2538447B1 (en) Solar cell and method for manufacturing the same
US20100319768A1 (en) Thin-film solar cell and process for its manufacture
JPH0575149A (en) Manufacture of solar cell device
JP2004512674A (en) Solar cell manufacturing method, and solar cell manufactured by the method
US6277667B1 (en) Method for fabricating solar cells
KR100416740B1 (en) Method for fabricating rear locally sintered silicon solar cell
CN216597603U (en) Back contact heterojunction solar cell capable of improving insulation and isolation effects
KR100374810B1 (en) Preparation method of buried contact solar cell
WO2014137284A1 (en) Method of fabricating a solar cell
CN113380922A (en) Preparation method and selective emitter solar cell
KR100366350B1 (en) Solar cell and method for manufacturing the same
KR100378347B1 (en) Method for producing solar battery having caved-in electrode
KR100322708B1 (en) Method for fabricating self-voltage applying solar cell
KR20020059186A (en) manufacturing method of silicon solar cell
KR100351066B1 (en) Method for fabricating solar cell of depressed electrode shape
KR100416741B1 (en) Rear locally sintered silicon solar cell
CN104241454A (en) Method for improving solar cell conversion efficiency

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080116

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee