KR100378347B1 - Method for producing solar battery having caved-in electrode - Google Patents

Method for producing solar battery having caved-in electrode Download PDF

Info

Publication number
KR100378347B1
KR100378347B1 KR1019960034725A KR19960034725A KR100378347B1 KR 100378347 B1 KR100378347 B1 KR 100378347B1 KR 1019960034725 A KR1019960034725 A KR 1019960034725A KR 19960034725 A KR19960034725 A KR 19960034725A KR 100378347 B1 KR100378347 B1 KR 100378347B1
Authority
KR
South Korea
Prior art keywords
semiconductor substrate
semiconductor
forming
electrode
type
Prior art date
Application number
KR1019960034725A
Other languages
Korean (ko)
Other versions
KR19980015422A (en
Inventor
우도 에봉 아바시프레케
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1019960034725A priority Critical patent/KR100378347B1/en
Publication of KR19980015422A publication Critical patent/KR19980015422A/en
Application granted granted Critical
Publication of KR100378347B1 publication Critical patent/KR100378347B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE: Provided is a method for producing a solar battery having caved-in electrode having excellent conversion efficiency at small expense, which has lower polluting potential than ever. CONSTITUTION: The method comprises the steps of (i) spin-coating a silicon glass containing n-type contaminants on the front of p-type semiconductor board(11), and then baking the silicon glass, (b) spin-coating a silicon glass containing p-type contaminants on the back of p-type semiconductor board(11), and then baking the silicon glass, (c) forming an n+ semiconductor layer(12) and a p+ semiconductor layer(11) on the front and the back of the semiconductor board respectively, by annealing, (d) forming grooves on the front of the semiconductor board, and diffusing n-type contaminants into the grooves to form an n++ semiconductor layer(15), (e) plating a conducting metal on the top of the grooves to form a front electrode(16), (f) forming a surface coating layer on the front of the semiconductor board, and then selectively removing an oxide film(13) from the back of the semiconductor board, (g) forming a back electrode(17) on the back of the semiconductor board(from which oxide film is removed) by using a screen printing method, (h) removing a surface coating layer from the front of the semiconductor board, (i) forming anti-reflection film(14) on the front of the semiconductor board, and (j) isolating an edge.

Description

함몰전극형 태양전지의 제조방법Method of manufacturing recessed electrode type solar cell

본 발명은 함몰전극형 태양전지의 제조방법에 관한 것으로서, 상세하기로는 낮은 제조비용으로 변환효율이 우수한 함몰전극형 태양전지를 제조하는 방법에 관한 것이다.The present invention relates to a method of manufacturing a recessed electrode type solar cell, and more particularly, to a method of manufacturing a recessed electrode type solar cell having excellent conversion efficiency at a low manufacturing cost.

태양전지는 반도체의 광 기전력 효과를 이용한 것으로서, p형 반도체와 n형 반도체를 조합하여 만든다. p형 반도체와 n형 반도체가 접한 부분(pn 접합부)에 빛이 들어오면, 빛 에너지에 의하여 반도체 내부에서 마이너스의 전하(전자)와 플러스의 전하(정공)가 발생한다.The solar cell uses the photovoltaic effect of the semiconductor and is made by combining a p-type semiconductor and an n-type semiconductor. When light enters a portion (pn junction) where the p-type semiconductor and the n-type semiconductor come into contact with each other, negative charges (electrons) and positive charges (holes) are generated within the semiconductor by the light energy.

빛에너지에 의해 발생된 전자와 정공은 내부의 전계에 의하여 각각 n형 반도체측과 p형 반도체측으로 이동하여 양쪽의 전극부에 모아진다. 이러한 두 개의 전극을 도선으로 연결하면 전류가 흐르고 외부에서 전력으로 이용할 수 있게 된다.The electrons and holes generated by the light energy move to the n-type semiconductor side and the p-type semiconductor side by the internal electric field, and are collected at both electrode portions. Connecting these two electrodes with wires allows the current to flow and can be used as power from the outside.

태양전지는 전극의 형태에 따라 스크린 프린팅형 태양전지(Screen Printing Solar Cell: SPSC)와 함몰전극형 태양전지(Buried Contact Solar Cell: BCSC)로 구분할 수 있다.Solar cells can be classified into screen printing solar cells (SPSCs) and buried contact solar cells (BCSCs) according to the shape of the electrodes.

SPSC는 일반적으로 제조하기가 용이하지만 금속 전극에서의 반사, 후면 전류 흐름에서 기인된 저항 및 일반적으로 깊게 도핑되어 있는 이미터 영역에서의 캐리어들의 높은 재결합률로 인하여 전지의 변환효율이 낮은 편이고 어스펙트비가 불량하다.SPSCs are generally easy to manufacture, but the conversion efficiency of the cell is low and aspect due to reflections in the metal electrode, resistance due to backside current flow and high recombination rates of carriers in the deeply doped emitter regions. The rain is bad.

한편, BCSC에서는 금속 전극을 반도체 기판 전면내로 깊게 파인 홈에 형성시키는데, 이 전지의 변환효율은 SPSC보다 높은 편이다. 이렇게 BCSC가 SPSC보다 변환효율이 높은 것은 반도체 기판 전면내로 깊게 도핑되어 있는 금속 전극이 전지의 활성영역과 떨어져 있어서 개방회로전압 및 전지 변환효율을 감소시키는 원인으로 작용하는 캐리어들의 재결합이 보다 감소되기 때문이다.On the other hand, in BCSC, metal electrodes are formed in grooves deeply dug into the front surface of the semiconductor substrate, and the conversion efficiency of the battery is higher than that of SPSC. BCSC has higher conversion efficiency than SPSC because the metal electrode deeply doped into the front surface of the semiconductor substrate is separated from the active region of the battery, thereby reducing the recombination of carriers, which causes the open circuit voltage and battery conversion efficiency to be reduced. to be.

도 1은 통상적인 BCSC의 단면구조를 나타낸 도면으로서, 이를 제조하는 방법은 다음과 같다.1 is a view showing a cross-sectional structure of a conventional BCSC, a method of manufacturing the same as follows.

먼저 p형 반도체 기판 (11)에 텍스처링을 실시하여 기판 전면과 후면에 피라미드 구조를 형성한다. 상기 반도체 기판 전면상에 pn접합을 형성하여 n+ 반도체층 (12)을 형성한 다음, 산화공정을 실시하여 반도체 기판 전면에 산화막 (13)을 형성하고 그 기판 후면에도 산화막(미도시)을 형성한다. 상기 반도체 기판 전면내로 홈을 깊게 스크라이빙한 다음, 이 홈내에 전도성 금속을 도금하여 전면전극 (16)를 형성한다. 이 때 전면전극 (16)이 형성되어 있는 홈의 하부에는 n++ 반도체층 (15)을 형성시킨다.First, the p-type semiconductor substrate 11 is textured to form pyramid structures on the front and rear surfaces of the substrate. A pn junction is formed on the front surface of the semiconductor substrate to form an n + semiconductor layer 12, and then an oxidation process is performed to form an oxide film 13 on the front surface of the semiconductor substrate and an oxide film (not shown) on the back surface of the substrate. . After deeply scribing a groove into the entire surface of the semiconductor substrate, a conductive metal is plated in the groove to form the front electrode 16. At this time, the n ++ semiconductor layer 15 is formed in the lower portion of the groove in which the front electrode 16 is formed.

반도체 기판 (11) 후면에는 알루미늄을 증착, 소결하여 p+ 반도체층 (17)을 형성하고, 그 상부에 전도성 금속을 도금하여 후면전극 (18)을 형성한다.Aluminum is deposited on the back surface of the semiconductor substrate 11 and sintered to form a p + semiconductor layer 17, and a conductive metal is plated thereon to form a back electrode 18.

마지막으로, 상기 반도체 기판 (11) 전면에 반사방지막 (14)을 형성함으로써 함몰전극형 태양전지가 완성된다.Finally, the recessed electrode type solar cell is completed by forming the antireflection film 14 on the entire surface of the semiconductor substrate 11.

BCSC를 상기 방법에 따라 제조하는 경우, 고가의 용광로(furnace)와 진공증발기 등이 필요하며 많은 비용과 시간이 소요된다. 또한 제조공정중에 몇몇의 공정이 고온조건하에서 실시되는데, 이러한 고온조건하의 공정 수가 많으면 많을수록 오염발생률이 높아지고 제조비용이 상승되는 원인으로서 작용한다.In the case of manufacturing the BCSC according to the above method, an expensive furnace, a vacuum evaporator, and the like are required, which is expensive and time consuming. In addition, some of the processes are performed under high temperature conditions during the manufacturing process. The more processes under such high temperature conditions, the higher the incidence of contamination and the higher the manufacturing cost.

그러므로 본 발명이 이루고자 하는 기술적 과제는 상기 문제점을 해결하여 저렴한 비용으로 우수한 변환효율 특성을 갖는 함몰전극형 태양전지를 제조할 수 있는 방법을 제공하는 것이다.Therefore, the technical problem to be achieved by the present invention is to solve the above problems to provide a method for manufacturing a depression electrode type solar cell having excellent conversion efficiency characteristics at a low cost.

도 1은 통상적인 함몰전극형 태양전지의 단면구조를 개략적으로 나타낸 도면이고,1 is a view schematically showing a cross-sectional structure of a conventional recessed electrode solar cell,

도2a-e는 본 발명에 따른 함몰전극형 태양전지의 제조방법을 설명하기 위한 도면들이다.Figure 2a-e is a view for explaining a manufacturing method of a recessed electrode solar cell according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

11, 21. p형 반도체기판11, 21.p-type semiconductor substrate

12, 22. n+ 반도체층12, 22.n + semiconductor layer

13, 23, 24. 산화막13, 23, 24. Oxide

14. 반사방지막14. Anti-reflection film

15, 25. n++ 반도체층15, 25.n ++ semiconductor layer

16, 26. 전면전극16, 26.Front electrode

17, 27. 후면전극17, 27.Rear electrode

28. p+ 반도체층28. p + semiconductor layer

29. 표면코팅막29. Surface coating film

상기 과제를 이루기 위하여 본 발명에서는 (a) p형 반도체 기판 전면에 n형 불순물을 함유하고 있는 실리콘 글래스(silicon glass)를 스핀코팅한 다음, 베이킹하는 단계; (b) 반도체 기판 후면에 p형 불순물을 함유하고 있는 실리콘 글래스를 스핀코팅한 다음, 베이킹하는 단계; (c) 어닐링으로 상기 반도체 기판 전면과 후면에 n+ 반도체층과 p+ 반도체층을 각각 형성하는 단계; (d) 상기 반도체 기판 전면내에 홈을 형성하고, 이 홈내로 n형 불순물을 확산시켜 n++ 반도체층을 형성하는 단계; (e) 상기 홈 상부에 전도성 금속을 도금하여 전면전극을 형성하는 단계; (f) 반도체 기판 전면에 표면 코팅층을 형성하고 나서, 반도체 기판 후면의 산화막만을 선택적으로 제거하는 단계; (g) 스크린 프린팅 방법을 이용하여 산화막이 제거된 반도체 기판 후면에 전도성 금속으로 후면전극을 형성하는 단계; (h) 반도체 기판 전면의 표면 코팅층을 제거하는 단계; (i) 반도체 기판 전면에 반사방지막을 형성하는 단계; (j) 에지(edge)를 분리하는 단계를 포함하는 것을 특징으로 하는 함몰전극형 태양전지의 제조방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of (a) spin-coating silicon glass (silicon glass) containing n-type impurities on the entire surface of the p-type semiconductor substrate, and then baking; (b) spin coating silicon glass containing p-type impurities on the back surface of the semiconductor substrate and then baking; (c) forming n + semiconductor layers and p + semiconductor layers on the front and rear surfaces of the semiconductor substrate by annealing, respectively; (d) forming a groove in the entire surface of the semiconductor substrate and diffusing n-type impurities into the groove to form an n ++ semiconductor layer; (e) plating a conductive metal on the groove to form a front electrode; (f) forming a surface coating layer on the entire surface of the semiconductor substrate, and then selectively removing only the oxide film on the rear surface of the semiconductor substrate; (g) forming a back electrode with a conductive metal on the back side of the semiconductor substrate from which the oxide film has been removed using a screen printing method; (h) removing the surface coating layer on the front surface of the semiconductor substrate; (i) forming an antireflection film over the entire surface of the semiconductor substrate; (j) it provides a method of manufacturing a recessed electrode type solar cell comprising the step of separating the edge (edge).

상기 표면코팅막의 재료로는 통상적인 반도체 소자 제조시 사용되는 표면코팅막 형성용 물질이라면 모두 사용할 수 있다. 그 중에서도 특히 노볼락(novolak) 및 폴리하이드록시스티렌과 같이 물에는 잘 녹지 않으면서 아세톤이나 톨루엔 등의 유기용제에 잘 녹는 물질이나 내에칭성 피막을 형성하는 감광성 수지인 포토레지스트로 형성하는 것이 바람직하다. 따라서, 상기 표면코팅막은 산화막 제거시 통상적으로 사용되는 식각액인 불산에 용해되지 않으므로 이 표면코팅막을 마스크로 사용하여 반도체 기판 후면의 산화막만을 선택적으로 제거할 수 있다.As the material of the surface coating film, any material for forming a surface coating film used in manufacturing a conventional semiconductor device may be used. In particular, it is preferable to form a photoresist that is a material that is not soluble in water, such as novolak and polyhydroxystyrene, and is easily soluble in organic solvents such as acetone and toluene, or a photoresist that forms a etch resistant film. Do. Therefore, since the surface coating film is not dissolved in hydrofluoric acid, which is an etching solution commonly used when removing the oxide film, only the oxide film on the back surface of the semiconductor substrate may be selectively removed using the surface coating film as a mask.

본 발명에서는 오직 한 단계의 고온 공정 즉, 반도체 기판 전면내의 홈에 n형 불순물을 확산하는 공정을 포함하고 있으므로 통상적인 함몰전극형 전지와 비교하여 전지 제조비용이 매우 절감된다. 또한 반도체 기판 전면에 pn 접합을 형성하거나 반도체 기판 후면에 전계를 형성하는 경우, 종래의 함몰전극형 태양전지에서는 고가의 진공증착설비를 사용하는 반면, 본 발명에서는 급속 열적 어닐링기를 사용한다. 여기에서 RTA를 사용하면 비교적 낮은 온도에서 매우 단시간 즉, 30초 내지 1분동안의 열처리로 충분하므로 열적 버지트 감소에 유리하며 불순물의 재분포를 방지함으로써 품질이 낮은 반도체 기판의 벌크 수명을 보존하는 데 유용하다.In the present invention, since only one step of the high temperature process, that is, the process of diffusing the n-type impurities in the grooves in the front surface of the semiconductor substrate, the battery manufacturing cost is significantly reduced compared to the conventional recessed electrode type battery. In addition, when the pn junction is formed on the front surface of the semiconductor substrate or the electric field is formed on the back surface of the semiconductor substrate, the conventional vacuum electrode type solar cell uses an expensive vacuum deposition equipment, while the present invention uses a rapid thermal annealing device. In this case, the use of RTA is sufficient for heat treatment at a relatively low temperature for a very short time, that is, 30 seconds to 1 minute, which is advantageous for reducing the thermal budget and preventing the redistribution of impurities, thereby preserving the bulk life of the low quality semiconductor substrate. Useful for

이하, 도 2a-e를 참조하여 본 발명에 따른 함몰전극형 태양전지의 제조방법을 설명하기로 한다.Hereinafter, a method of manufacturing a recessed electrode solar cell according to the present invention will be described with reference to FIGS. 2A-E.

먼저, p형 반도체 기판 (21)을 세정한 다음, 이 반도체 기판 (21) 전면에 n형 불순물인 인을 함유하고 있는 실리콘 글래스를 스핀코팅한다. 이 때 n형 불순물과 실리콘 글래스의 중량비는 5:95 내지 15:85이 바람직하며, 10:90이 가장 바람직하다. 이어서, 120∼170℃에서 15∼20동안 베이킹한다. 그리고 나서, 반도체 기판 (21) 후면에는 p형 불순물인 보론을 함유하고 있는 실리콘 글래스를 스핀코팅한다. 이 때 p형 불순물과 실리콘 그래스의 중량비는 10:90 내지 20:80이 바람직하며, 15:85가 가장 바람직하다. 이어서, 120∼170℃에서 15 내지 20동안 베이킹한다.First, the p-type semiconductor substrate 21 is washed and then spin-coated silicon glass containing phosphorus as an n-type impurity on the entire surface of the semiconductor substrate 21. In this case, the weight ratio of n-type impurities and silicon glass is preferably 5:95 to 15:85, and most preferably 10:90. Subsequently, it bakes for 15-20 at 120-170 degreeC. Then, silicon glass containing boron as a p-type impurity is spin coated on the back surface of the semiconductor substrate 21. At this time, the weight ratio of the p-type impurity and silicon grass is preferably 10:90 to 20:80, and most preferably 15:85. Subsequently, it bakes at 120-170 degreeC for 15-20.

그 후, RTA를 이용하여 30초 내지 1분동안 어닐링하여 반도체 기판 전면에 n+ 반도체층 (22)과 산화막으로서 산화규소막 (23)을 형성하고, 반도체 기판 후면에는 p+ 반도체층 (28)과 산화규소막 (24)을 형성한다 (도 2a).Thereafter, annealing is performed for 30 seconds to 1 minute using RTA to form the n + semiconductor layer 22 and the silicon oxide film 23 as an oxide film on the front surface of the semiconductor substrate, and the p + semiconductor layer 28 is oxidized on the back surface of the semiconductor substrate. The silicon film 24 is formed (FIG. 2A).

레이저를 이용하여 반도체 기판 (21) 전면내에 홈을 스크라이빙한 다음, 형성된 홈을 식각하고 세정한다. 그 후, 세정된 홈내로 n형 불순물인 인을 깊게 확산시켜 n++ 반도체층 (25)을 형성한다. 이어서 선택적 도금이 가능한 무전해도금방법으로 상기홈에 전도성 금속을 도금하여 전면전극 (26)을 형성한다 (도 2b).After the grooves are scribed in the entire surface of the semiconductor substrate 21 using a laser, the formed grooves are etched and cleaned. Thereafter, phosphorus as an n-type impurity is deeply diffused into the cleaned groove to form the n ++ semiconductor layer 25. Subsequently, a conductive metal is plated on the groove by an electroless plating method capable of selective plating to form the front electrode 26 (FIG. 2B).

전면전극 (26)이 형성된 상기 반도체 기판 (21) 전면에 표면코팅막 (29)을 형성한다. 이렇게 표면코팅막 (29)을 형성하면 반도체 기판 후면의 산화막 (24)을 선택적으로 제거할 수 있다(도 2c). 여기에서 표면코팅막은 식각마스크로서의 역할을 수행한다.The surface coating layer 29 is formed on the entire surface of the semiconductor substrate 21 on which the front electrode 26 is formed. If the surface coating film 29 is formed in this way, the oxide film 24 on the back surface of the semiconductor substrate can be selectively removed (FIG. 2C). Here, the surface coating film serves as an etching mask.

산화막 (24)이 제거된 반도체 기판 (21) 후면에 스크린 인쇄방법을 이용하여 전극을 인쇄한 다음, 소결하여 후면전극 (27)을 형성한다 (도 2d). 그 후, 반도체 기판 전면에 형성된 표면코팅막 (29)을 제거한 다음, 반사방지막(미도시)을 형성한다 (도 2e). 이어서, 전지 제조 공정중 불순물로 인하여 오염된 부분을 제거하기 위하여 에지(edge)를 분리해내면 도 1과 같은 구조를 갖는 함몰전극형 태양전지가 완성된다.The electrode is printed on the back surface of the semiconductor substrate 21 from which the oxide film 24 has been removed by using a screen printing method, and then sintered to form the back electrode 27 (FIG. 2D). Thereafter, the surface coating film 29 formed on the entire surface of the semiconductor substrate is removed, and then an antireflection film (not shown) is formed (FIG. 2E). Subsequently, when the edge is separated to remove the contaminated portion due to impurities during the battery manufacturing process, the recessed electrode solar cell having the structure as shown in FIG. 1 is completed.

상기에서 알 수 있는 바와 같이, 본 발명에서는 p형 또는 n형 확산 불순물을 주입하는 경우, 스핀 코터와 RTA만이 필요하며 고온조건하의 공정이 한 번이다. 따라서 종래보다 오염발생률이 낮아지고 전지 제조비용이 매우 절감된다.As can be seen from the above, in the present invention, when injecting a p-type or n-type diffusion impurity, only a spin coater and an RTA are required, and the process under high temperature conditions is performed once. Therefore, the contamination rate is lower than the conventional one, and the battery manufacturing cost is greatly reduced.

본 발명에 따르면 저렴한 비용으로 변환효율이 우수한 함몰전극형 태양전지를 제조할 수 있다.According to the present invention, it is possible to manufacture a sunken electrode solar cell having excellent conversion efficiency at low cost.

Claims (7)

(a) p형 반도체 기판 전면에 n형 불순물을 함유하고 있는 실리콘 글래스(silicon glass)를 스핀코팅한 다음, 베이킹하는 단계;(a) spin-coating silicon glass containing n-type impurities on the entire surface of the p-type semiconductor substrate and then baking; (b) 반도체 기판 후면에 p형 불순물을 함유하고 있는 실리콘 글래스를 스핀코팅한 다음, 베이킹하는 단계;(b) spin coating silicon glass containing p-type impurities on the back surface of the semiconductor substrate and then baking; (c) 어닐링으로 상기 반도체 기판 전면과 후면에 n+ 반도체층과 p+ 반도체층을 각각 형성하는 단계;(c) forming n + semiconductor layers and p + semiconductor layers on the front and rear surfaces of the semiconductor substrate by annealing, respectively; (d) 상기 반도체 기판 전면내에 홈을 형성하고, 이 홈내로 n형 불순물을 확산시켜 n++ 반도체층을 형성하는 단계;(d) forming a groove in the entire surface of the semiconductor substrate and diffusing n-type impurities into the groove to form an n ++ semiconductor layer; (e) 상기 홈 상부에 전도성 금속을 도금하여 전면전극을 형성하는 단계;(e) plating a conductive metal on the groove to form a front electrode; (f) 반도체 기판 전면에 표면 코팅층을 형성하고 나서, 반도체 기판 후면의 산화막만을 선택적으로 제거하는 단계;(f) forming a surface coating layer on the entire surface of the semiconductor substrate, and then selectively removing only the oxide film on the rear surface of the semiconductor substrate; (g) 스크린 프린팅 방법을 이용하여 산화막이 제거된 반도체 기판 후면에 전도성 금속으로 후면전극을 형성하는 단계;(g) forming a back electrode with a conductive metal on the back side of the semiconductor substrate from which the oxide film has been removed using a screen printing method; (h) 반도체 기판 전면의 표면 코팅층을 제거하는 단계;(h) removing the surface coating layer on the front surface of the semiconductor substrate; (i) 반도체 기판 전면에 반사방지막을 형성하는 단계; 및(i) forming an antireflection film over the entire surface of the semiconductor substrate; And (j) 에지(edge)를 분리하는 단계를 포함하는 것을 특징으로 하는 함몰전극형 태양전지의 제조방법.(j) A method of manufacturing a recessed electrode type solar cell, characterized in that it comprises the step of separating the edge (edge). 제1항에 있어서, 상기 표면코팅막이 노볼락(novolak), 폴리하이드록시스티렌 및 포토레지스트로 이루어진 군으로부터 선택된 물질로 형성되는 것을 특징으로 하는 함몰전극형 태양전지의 제조방법.The method of claim 1, wherein the surface coating film is formed of a material selected from the group consisting of novolak, polyhydroxystyrene and photoresist. 제1항에 있어서, 상기 (a) 단계에서 n형 불순물과 실리콘 글래스의 중량비가 5:95 내지 15:85인 것을 특징으로 하는 함몰전극형 태양전지의 제조방법.The method of claim 1, wherein the weight ratio of n-type impurities and silicon glass in the step (a) is 5:95 to 15:85. 제1항에 있어서, 상기 (b) 단계에서 p형 불순물과 실리콘 글래스의 중량비가 10:90 내지 20:80인 것을 특징으로 하는 함몰전극형 태양전지의 제조방법.The method of claim 1, wherein the weight ratio of the p-type impurities and silicon glass in step (b) is 10:90 to 20:80. 제1항에 있어서, 상기 (a)단계와 (b)단계에서, 베이킹이 120∼170℃에서 15 내지 20동안 실시되는 것을 특징으로 하는 함몰전극형 태양전지의 제조방법.The method of claim 1, wherein in the steps (a) and (b), baking is performed at 120 to 170 ° C. for 15 to 20 hours. 제1항에 있어서, 상기 (f) 단계에서 산화막 식각시 불산을 이용하는 것을 특징으로 하는 함몰전극형 태양전지의 제조방법.The method of claim 1, wherein in the step (f), hydrofluoric acid is used to etch the oxide film. 제1항에 있어서, 상기 반사방지막이 산화티탄으로 형성되는 것을 특징으로 하는 함몰전극형 태양전지의 제조방법.The method of claim 1, wherein the anti-reflection film is formed of titanium oxide.
KR1019960034725A 1996-08-21 1996-08-21 Method for producing solar battery having caved-in electrode KR100378347B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960034725A KR100378347B1 (en) 1996-08-21 1996-08-21 Method for producing solar battery having caved-in electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960034725A KR100378347B1 (en) 1996-08-21 1996-08-21 Method for producing solar battery having caved-in electrode

Publications (2)

Publication Number Publication Date
KR19980015422A KR19980015422A (en) 1998-05-25
KR100378347B1 true KR100378347B1 (en) 2003-05-22

Family

ID=37417030

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960034725A KR100378347B1 (en) 1996-08-21 1996-08-21 Method for producing solar battery having caved-in electrode

Country Status (1)

Country Link
KR (1) KR100378347B1 (en)

Also Published As

Publication number Publication date
KR19980015422A (en) 1998-05-25

Similar Documents

Publication Publication Date Title
KR101181820B1 (en) Manufacturing method of solar cell
US8399287B1 (en) Method of manufacturing solar cell
US6524880B2 (en) Solar cell and method for fabricating the same
EP0776051B1 (en) Structure and fabrication process for an aluminium alloy self-aligned back contact silicon solar cell
US5053083A (en) Bilevel contact solar cells
KR101225978B1 (en) Sollar Cell And Fabrication Method Thereof
US20100190286A1 (en) Method for manufacturing solar cell
US9209342B2 (en) Methods of manufacturing light to current converter devices
KR101139456B1 (en) Back contact solar cell and fabrication method thereof
US20130037102A1 (en) Back electrode type solar cell and method for producing back electrode type solar cell
KR19990063990A (en) Self-Regulating (SALDE) Solar Cells with Partially Deeply Dispersed Emitters and Methods of Manufacturing the Same
US20100319768A1 (en) Thin-film solar cell and process for its manufacture
KR101597532B1 (en) The Manufacturing Method of Back Contact Solar Cells
US6277667B1 (en) Method for fabricating solar cells
EP1826825B1 (en) Solar cell structure comprising rear contacts and current collection by means of transistor effect and production method thereof
JP2928433B2 (en) Method for manufacturing photoelectric conversion element
KR19980068248A (en) Manufacturing method of back side sintered silicon solar cell
KR100378347B1 (en) Method for producing solar battery having caved-in electrode
KR100374810B1 (en) Preparation method of buried contact solar cell
CN113380922A (en) Preparation method and selective emitter solar cell
WO2014137284A1 (en) Method of fabricating a solar cell
KR100351066B1 (en) Method for fabricating solar cell of depressed electrode shape
KR100322708B1 (en) Method for fabricating self-voltage applying solar cell
KR101779057B1 (en) Wafer type solar cell and method for manufacturing the same
KR19980067094A (en) Method of manufacturing silicon solar cell

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080115

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee